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The neural mechanism underlying preparation for tasks that vary in
difficulty has not been explored. This functional magnetic resonance
imaging study manipulated task difficulty by varying the working
memory (WM) load of the n-back task. Each n-back task block was
preceded by a preparation period involving a screen that indicated
the level of difficulty of the upcoming task. Consistent with previous
work, activation in some brain regions depended on WM load in the
task. These regions were used as regions of interest for the univari-
ate and multivariate (classification) analyses of preparation periods.
The findings were that the patterns of brain activation during task
preparation contain information about the upcoming task difficulty.
(1) A support vector machine classifier was able to decode the
n-back task difficulty from the patterns of brain activation during
task preparation. Those individuals whose activation patterns for
anticipated 1- versus 2- versus 3-back conditions were classified
with higher accuracy showed better behavioral performance on the
task, suggesting that task performance depends on task preparation.
(2) Left inferior frontal gyrus, intraparietal sulcus, and anterior cingu-
late cortex parametrically decreased activation as anticipated task
difficulty increased. Taken together, these results suggest dynamic
involvement of the WM network not only during WM task perform-
ance, but also during task preparation.

Keywords: fMRI, multivoxel pattern classification, n-back task, task
preparation, working memory

Introduction
Working memory (WM) is a limited capacity system involved in
the maintenance and online manipulation of information in the
mind (Baddeley and Hitch 1974; Baddeley 2010). WM load
increases with the amount of information that an individual
needs to process at one time. Neuroimaging studies consistently
show that activation in the network of brain regions that include
prefrontal, anterior cingulate, posterior parietal cortices, and
some striatal regions (see Owen et al. 2005; Rottschy et al. 2012
for reviews) is modulated by WM load. In this study, we refer
to these regions as the WM network. Damage to neural sub-
strates of the WM network leads to impairment in learning,
reasoning, and decision-making (e.g., Mishkin and Manning
1978; Petrides and Milner 1982; Curtis and D’Esposito 2003;
Müller and Knight 2006).

Given that the defining characteristics of the WM system
refer to its engagement during on-line processing of infor-
mation, the functionality of the WM network has been investi-
gated exclusively during task performance. However, both in
real-life situations and when participating in experiments,
people not only perform tasks but also spend time preparing
to execute them. Until now, no study examined how activation
in the WM network during task preparation is modulated by

anticipated task difficulty or whether there is a relationship
between this preparatory activation and subsequent behavior.

Previous behavioral studies suggest that, during task prep-
aration, both attentional and WM resources are activated,
which, in turn, facilitate task performance. For example, the
presentation of a valid cue informing subjects about the type
of the upcoming trial in Stroop tasks facilitates task perform-
ance and significantly reduces subjects’ response times (RTs),
compared with trials when either an invalid or no cue is pre-
sented (e.g., Logan and Zbrodoff 1982; Aarts et al. 2008). The
neuroimaging studies of task preparation have demonstrated
that brain activations preceding encoding predict encoding
success (Adcock et al. 2006; Mackiewicz et al. 2006; Otten et al.
2006; Guderian et al. 2009; Park and Rugg 2010), subject’s in-
tentions (e.g., Haynes et al. 2007; Gallivan et al. 2011; Gilbert
2011), a task that follows the cue in a task-switching paradigm
(e.g., Brass and von Cramon 2002), or the type of stimulus a
subject expects to process (e.g., Sakai and Passingham 2003).

Based on these previous findings and also on the fact
that brain activation in the WM network is modulated by task
difficulty, we hypothesized that preparation for a WM task
relies on functioning of the WM network. Moreover, brain
activation in the WM network during task preparation may
depend on the expected level of task difficulty. Given that only
a small number of previous studies examined this question,
the direction of such modulation is difficult to predict. One
recent magnetoencephalographic (MEG) study reported
greater event-related synchronization (ERS) in frontal, parietal,
and temporal regions during preparation for a WM task,
compared with preparation for a task that did not involve WM
(Altamura et al. 2010). ERS is thought to correspond to de-
creases in brain activation (e.g., Pfurtscheller 2001; Neuper
et al. 2006), suggesting that the expectation of greater cognitive
demands may reduce activation in the brain regions that
usually increase activation during WM task performance. On
the other hand, some studies suggest that brain activation
during task preparation resembles what is observed during
task performance. For example, while the superior parietal
lobule (a region involved in spatial processing) activates strongly
during preparation for spatial compared with verbal tasks,
Broca’s and Wernicke’s areas activate more strongly before
verbal, relative to the spatial, tasks (Sakai and Passingham
2003). These findings suggest that the brain regions that increase
in activation when WM load increases during task performance
will also increase in activation (or preactivate) during task
preparation.

We examined the WM network activation during task prep-
aration as a function of expected WM load in the fMRI study
using the n-back task (Braver et al. 1997; Cohen et al. 1997).
Performance on the n-back task involves multiple cognitive
processes necessary to maintain a set of items in memory,
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rapidly update the identity and sequential order of items when a
new item is presented, and to match a current itemwith one pre-
sented n items prior (e.g., Chatham et al. 2011). The difficulty of
the n-back task increases as the value of n increases. To make
the examination of preparatory activations possible, we pre-
sented blocks of n-back in a completely random order. Each
block of n-back was preceded by an 8-s instruction period
(called a preparatory period) during which an instruction screen
indicated the upcoming level of difficulty (“1-back,” “2-back,” or
“3-back”). Along with the conventional univariate methods of
fMRI data analysis (i.e., general linear model (GLM)), we used a
multivoxel pattern classification analysis (MVPA) to examine
whether anticipated WM load during task performance can be
decoded from the patterns of brain activation during task prep-
aration. While the GLM analysis assesses average brain activation,
the MVPA can uncover the signal components independent of
the average response to the voxels of interest (e.g., Mur et al.
2009; Kragel et al. 2012). We also examined whether brain acti-
vation during task preparation could predict subjects’ behavioral
performance (i.e., RT and accuracy) at task.

Materials and Methods

Subjects
Nineteen native English speakers (mean age = 24, right-handed, 11
female) participated in this study for $65 compensation. Three subjects
were excluded from the study due to excessive motion. All subjects
were treated in accordance with the CMU IRB guidelines.

Design and Procedure
The n-back task requires that a subject indicates whether the current
stimulus is the same as one that appeared a specific number of presen-
tations prior (Braver et al. 1997; Cohen et al. 1997). For example, in the
2-back condition, the current stimulus is a target when it has the same
identity as one that appeared 2 presentations prior. All other stimuli
that do not match the stimulus shown 2 presentations before are con-
sidered nontargets. Figure 1A illustrates the 2-back condition of the
n-back task. The greater the value of n (the number of positions back

in time), the more challenging the n-back task, because there are more
stimuli to maintain and update. In our study, subjects performed 1-, 2-,
and 3-back tasks. Subjects practiced each of these tasks with single
digits (1–9) as stimuli (3 blocks of 12 trials for each of the 3 levels of
n-back) prior to entering the scanner.

In the scanner, the subjects performed 30 blocks of the n-back task,
with 12 trials per block using words as stimuli, with 10 blocks for each
of the 3 levels of n-back. The order of blocks of 1-, 2-, and 3-back was
randomly determined for each subject as was the assignment of words
to positions within a block. Blocks were separated by 10–12 s of rest.
Additionally, each block was preceded with an 8-s instruction screen
indicating the upcoming n-back condition (Fig. 1A). The instruction
screen displayed “1-back,” “2-back,”or “3-back.” A behavioral pilot
study indicated that randomized presentation of n-back blocks made it
more difficult for subjects to remember the current n-back condition
(e.g., subjects may respond as if they are in the 1-back condition,
when, in fact, they are in the 3-back condition). To ameliorate this
problem, we assigned different background color and font combi-
nations for each level of n-back as well as giving explicit instructions
prior to each block. The background/font color schemes were ran-
domly assigned to each n-back condition for each subject. The practice
trials outside the scanner familiarized subjects with the instruction
screens and the color/font assignments to the level of n-back.

The stimuli were 180 nouns selected from the MRC Psycholinguistic
Database. The words were between 4 and 7 letters and consisted of no
more than 2 syllables. Six different words were selected for each block
of trials and not repeated in any other block. Each word was repeated
exactly once within its block, either in the target or nontarget position
as defined by the level of n-back for that block. To discourage percep-
tual matching of words, words were repeated in the opposite case
(lower or upper) than the first presentation. Following Braver et al.
(2001), one-third of all trials were targets. Each word was displayed
until the subject responded with a maximum duration of 4 s. There was
a jittered interval of 2–8 s between words. Subjects responded to
targets with one hand and to nontargets with the other. Hand assign-
ment was counterbalanced across subjects.

fMRI Acquisition
The fMRI experiment was conducted using a Siemens 3T Verio MR
system. A high-resolution structural image (0.8 × 0.8 × 0.8 mm) was ac-
quired using magnetization-prepared rapid acquisition with gradient
echo (MPRAGE) [time repetition (TR) = 1800 ms, time echo (TE) = 2.22 ms,

Figure 1. (A) Example of a partial run in the 2-back version of the n-back task. (B and C). Changes in RT and accuracy as a function of WM load across all subjects. Error bars refer
to a ±1 standard error.
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field of view (FOV) = 205, flip angle (FA) = 9°, number of slices = 256].
Functional data were collected using a gradient-echo, echo-planar se-
quence (TR = 2000 ms, TE = 30 ms, field of view (FOV) = 205, flip angle
(FA) = 79°, 36 slices, 3.2 × 3.2 × 3.2 mm). Field maps were collected
with the same resolution as the blood oxygen level-dependent (BOLD)
images using a gradient-echo sequence (TR = 394 ms, FA = 60°,
TE = 5.1 and 7.56 ms).

Our pilot study showed that when trials are presented at a fast pace,
subjects tend to skip responses, resulting in a number of missed trials
within a block. Because we planned to analyze blocks of trials (not
separate events), we tried to reduce the number of missed trials within
a block by presenting stimuli in a self-paced manner with the con-
straint that a trial length could be no more than 4 s. This resulted in a
variable number of volumes in the subjects’ fMRI data (ranging from
1009 to 1119 volumes).

fMRI Data Analysis
The images were preprocessed and analyzed with FSL 4.1.7 (www.
fmrib.ox.ac.uk/fsl, last accessed on 09.12.2013). For each raw BOLD
dataset, nonlinear noise reduction was performed using SUSAN (http://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/SUSAN, last accessed on 09.12.2013). Pre-
processing included motion correction with MCFLIRT (Jenkinson et al.
2002), fieldmap-based echo-planar imaging unwarping using PRELUDE+
FUGUE (Jenkinson 2003), nonbrain removal using BET (Smith 2002),
spatial smoothing with a Gaussian kernel of full-width at half-maximum
6 mm; grand-mean intensity normalization of the entire 4D dataset by
a single multiplicative factor; high-pass temporal filtering (Gaussian-
weighted least-squares straight line fitting, with sigma = 50.0 s). Given
that we used a block design, no slice-timing correction was applied.

Preprocessed data were subjected to the Probabilistic Independent
Component Analysis (Beckmann and Smith 2004) that was implemented
using FSL’s MELODIC (Multivariate Exploratory Linear Decomposition
into Independent Components, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
MELODIC, last accessed on 09.12.2013) Version 3.10. In the input data,
the nonbrain voxels were masked, the data were demeaned voxel-wise,
and the voxel-wise variance was normalized. Preprocessed data were
whitened and projected into a 20-dimensional subspace using principal
component analysis. The whitened observations were decomposed into
sets of vectors that describe signal variation across the temporal domain
(time courses) and across the spatial domain (maps) by optimizing for
nonGaussian spatial source distributions using a fixed-point iteration
technique (Hyvärinen 1999). Estimated component maps were divided
by the standard deviation of the residual noise and thresholded by
fitting a mixture model to the histogram of intensity values (Beckmann
and Smith 2004). The noise components were identified based on pub-
lished recommendations (Tohka et al. 2008; Kelly et al. 2010) and
removed using the fsl_regfilt script.

The denoised data were submitted to a first (subject)-level GLM
analysis that was implemented using FEAT (FMRI Expert Analysis
Tool, v5.98). This analysis examined the parametric changes in brain
activation as a function of memory load by comparing BOLD signal
among the blocks of 1- versus 2- versus 3-back task. The model in-
cluded 6 regressors: 1-, 2-, and 3-back instruction periods, and 1-, 2-,
and 3-back task performance blocks.

Coregistration was carried out using FLIRT (Jenkinson and Smith
2001; Jenkinson et al. 2002). BOLD images were registered to the high-
resolution structural (MPRAGE) images, the high-resolution images
were registered to the MNI152_T1_2 mm template, and the 2 resulting
transformations were concatenated and applied to the original BOLD
image (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT, last accessed on
09.12.2013) to transform it to the MNI space.

A group analysis was performed using a permutation method
(Nichols and Holmes 2002) implemented through the Randomise v2.1
tool (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise, last accessed on
09.12.2013), with a whole brain as a mask, 5 mm smoothing, 5000 per-
mutations, and correction for multiple comparisons at the voxel-wise
FWE-controlled threshold P < 0.05. Then, those regions that parametri-
cally increased (Increase network) or decreased (Decrease network) in
activation across the 3 levels of n-back were used as the regions of
interest (ROIs) in subsequent analyses.

The Analyses of Preparation Periods

Univariate Analysis (GLM)
The first of those subsequent analyses contrasted activations during
the instruction periods preceding 1-, 2-, and 3-back task blocks in the
Increase and Decrease networks identified in the previous analysis.
The group analysis was also performed using the Randomise tool with
5 mm smoothing, 5000 permutations, threshold-free cluster enhance-
ment (Smith and Nichols 2009) correction for multiple comparisons,
and FWE-controlled threshold P < 0.05.

Multivoxel Pattern Classification
The second of the follow-up analyses used MVPA implemented using
PYMVPA (Hanke et al. 2009). This analysis examined whether the pat-
terns of brain activation in the Increase and Decrease networks during
“task preparation” can predict the upcoming n-back condition (1- vs.
2- vs. 3-back). The voxels of interest for MVPA were selected based on
the results of the GLM analysis, so no further feature selection was per-
formed. MVPA was conducted using a linear support vector machine
(SVM; Vapnik 1995), with the default parameter C = 1 and a
leave-one-sample-out cross-validation strategy on all voxels in the In-
crease network and separately on all voxels in the Decrease network.
The masks of Increase and Decrease networks were coregistered to
each subject’s BOLD images. Classification accuracies were computed
for each subject in the subject’s space. A one-versus-one multiclass
classification was used (for detailed explanation see http://www.csie.
ntu.edu.tw/~cjlin/libsvm/, last accessed on 09.12.2013). The resulting
accuracies were then averaged across the subjects, but not across the
networks, and compared against chance (33% for three conditions).
While classifying 1- versus 2- versus 3-back conditions during task
performance was not the focus on our study, we still conducted this
analysis to confirm that the three n-back conditions differ not only in
the magnitude of activation, but also in the patterns of activation.

The samples used as inputs to MVPAwere volumes (or TRs) pertain-
ing to each condition of interest. There were 10 preparation periods for
each of the three n-back conditions each lasting for 4 TRs (or 8 s).
Overall, there were a total of 40 samples associated with preparation
for each of the three n-back conditions. The length of the n-back
blocks varied across subjects and conditions (because the task was self-
paced and because 3-back was slower than other conditions). The
length of each block was not, however, <42 s (21 TRs) for any n-back
condition for any subject. Having a different number of samples for
different conditions can bias a classifier. To avoid this bias, only the
first 21 TRs from each n-back block were used for the analysis, result-
ing in a total of 210 samples (21 TRs × 10 blocks) per n-back condition.

Relationship Between Preparatory Activation and Behavior
The relationship between classification accuracy during preparation
periods and behavioral measures was examined in 2 ways. We corre-
lated subjects’ RT for each level of n-back and classification accuracy
for 1- versus 2- versus 3-back preparation periods separately in the In-
crease and Decrease networks. A total of 6 correlation coefficients
were computed (three n-back conditions in 2 networks). In addition,
we also used 6 behavioral measures (response accuracy and RT for the
3 levels of n-back) as inputs to the K-mean cluster analysis (k = 2) to
partition subjects into 2 groups based on their behavioral performance.
These 2 groups of subjects were then compared for their classification
accuracy in the Increase and Decrease networks. In addition, the same
correlation analyses were performed between the differences in
average activation for 1- versus 3-back preparation periods in Increase
and Decrease networks and behavioral measures of performance.

Results

Behavioral
As in previous studies (Carlson et al. 1998; Nystrom et al.
2000), subjects were slower (F2,30 = 46.4, P < 0.001, partial
η2 = 0.76; Fig. 1B) and less accurate (F2,30 = 22.5, P < 0.001,
partial η2 = 0.6; Fig. 1C) as the value of n increased in the task.
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Neuroimaging
The first analysis allowed us to identify a network of regions
that parametrically increased activation when WM load in-
creased (Increase network) and also a network of regions that
decreased activation with an increase in WM load (Decrease
network). Consistent with the previous work (for a review, see
Owen et al. 2005; Rottschy et al. 2012), the Increase network
consisted of prefrontal cortex, paracingulate/anterior cingulate
cortex (ACC), parietal regions [including intraparietal sulcus
(IPS)], and subcortical structures parametrically increased acti-
vation with increases in WM load (Table 1). Medial frontal
cortex, posterior cingulate gyrus, and the inferior division of
the lateral occipital cortex, among other regions, parametri-
cally decreased activation as a function of WM load and com-
prised the Decrease network (Table 1).

Parametric Changes in the WM Load Regions During
Preparation for 1-, 2-, and 3-Back Tasks
This analysis tested the hypothesis that activations in the WM
Increase and Decrease networks (Fig. 2A) are modulated by
expected levels of difficulty. A GLM analysis supported this
hypothesis and showed that although left inferior frontal gyrus

(LIFG), left IPS, and ACC increased activation linearly as a func-
tion of WM load during the task, they decreased activation
during task preparation as a function of expected WM load
(LIFG: z-max = 4.69, n-voxels = 118 [−40 6 24]; LIPS:
z-max = 3.85, n-voxels = 99 [−42 −50 52]; ACC: z-max = 3.85,
n-voxels = 12 [−4 12 48]) (Fig. 3B,C). The time courses associ-
ated with task preparation in LIFG, LIPS, and ACC were ex-
tracted using PEPATE (http://www.jonaskaplan.com/peate/
index.php, last accessed on 09.12.2013) and are given in Sup-
plementary Figures 1–3. A subsequent correlation analysis
showed that the activation changes in these regions did not
correlate with behavioral measures of performance (either RT
or accuracy).

Multivoxel Pattern Classification Analysis
This analysis tested whether the expected n-back conditions can
be decoded from the activation patterns in the Increase and De-
crease networks. The Increase network on average consisted of
3413 (standard deviation (SD) = 284) voxels (in subjects’ space)
across subjects. The Decrease network consisted on average of
3726 (SD = 314) voxels across subjects. Not surprisingly, MVPA
accurately decoded the 3 levels of n-back during task

Table 1
Parametric changes in brain activation as a function of WM load during task performance and classification accuracies for 1- versus 2- versus 3-back conditions during instruction periods and task
performance

Region BA n-voxels z-max x y z SVM classification accuracy
1- versus 2- versus 3-back

Instructions Task

Parametric increases in activation (1- < 2- < 3-back) during task performance
L Anterior cingulate cortex (ACC)/paracingulate gyrus 32 818 9.99 −2 22 42 0.48 (0.08) 0.54 (0.06)
R Inferior parietal sulcus (IPS) 40 503 8.29 40 −46 44 0.45 (0.05) 0.50 (0.07)
L Orbitofrontal cortex (OFc) 13 447 9.66 −32 24 −6 0.43 (0.07) 0.47 (0.06)
L Inferior parietal sulcus (IPS) 40 407 8.0 −34 −52 40 0.43 (0.07) 0.48 (0.06)
L Superior frontal gyrus (SFG) 6 388 7.4 −28 8 62 0.48 (0.05) 0.53 (0.06)
R Frontal pole (FP) 10 370 8.22 42 48 22 0.46 (0.08) 0.54 (0.07)
R Precuneus (Prec) 7 314 7.99 2 −62 48 0.46 (0.08) 0.51 (0.05)
L Frontal pole (FP) 10 313 7.58 −38 56 10 0.47 (0.06) 0.53 (0.06)
L Inferior frontal gyrus (IFG) 9 300 8.21 −40 8 26 0.41 (0.06) 0.47 (0.06)
L Middle frontal gyrus (MFG) 46 277 7.66 −48 36 22 0.45 (0.06) 0.49 (0.06)
R Superior frontal gyrus (SFG) 6 262 6.87 28 12 60 0.43 (0.09) 0.50 (0.06)
R Insular cortex (Ins) 13 177 8.88 34 24 −2 0.44 (0.07) 0.45 (0.04)
L Basal ganglia (Bas) 160 7.2 −16 0 14 0.39 (0.07) 0.41 (0.05)
R Lateral occipital cortex, superior (LOCs) 19 97 7.1 32 −66 46 0.43 (0.07) 0.48 (0.05)
L Thalamus (Thal) 52 6.49 −8 −18 8 0.36 (0.12)a 0.40 (0.05)
R Cerebellum (Cerebel) 27 5.83 36 −70 −28 0.39 (0.05) 0.47 (0.05)
L Lateral occipital cortex, superior (LOCs) 7 26 6.42 −16 −74 52 0.40 (0.09) 0.48 (0.05)
R Middle frontal gyrus (MFG) 8 10 5.92 44 34 38 0.41 (0.07) 0.47 (0.06)
Parametric decreases in activation (3- < 2- < 1-back) during task performance
L Planum polare 13 1599 10.4 −42 −16 −8 0.44 (0.04) 0.47 (0.06)
R Parietal operculum 13 1305 8.67 48 −30 22 0.48 (0.07) 0.49 (0.08)
L Anterior cingulate/medial frontal cortex 10 968 8.22 −2 54 −4 0.48 (0.09) 0.52 (0.06)
R Juxtapositional lobule cortex 6 916 9.0 2 −8 48 0.45 (0.06) 0.48 (0.05)
L Posterior cingulate gyrus 31 591 8.29 −10 −50 28 0.44 (0.08) 0.47 (0.07)
R Right precentral gyrus 4 312 7.1 36 −18 48 0.41 (0.09) 0.47 (0.07)
R Planum polare 38 228 7.14 42 0 −18 0.42 (0.05) 0.43 (0.05)
L Posterior cingulate gyrus 31 200 8.47 −14 −30 38 0.40 (0.09) 0.43 (0.05)
L Postcentral/precentral gyrus 4 64 8.2 −36 −18 40 0.40 (0.04) 0.42 (0.05)
R Lateral occipital cortex, inferior 19 60 6.52 54 −70 8 0.40 (0.06) 0.44 (0.06)
R Postcentral gyrus 2 31 6.41 56 −16 48 0.41 (0.09) 0.47 (0.07)
R Temporal pole 38 17 6.55 40 24 −26 0.44 (0.07) 0.45 (0.04)
R Subcallosal cortex 25 13 5.9 0 16 −12 0.37 (0.07) 0.40 (0.04)
R Frontal pole 11 13 5.85 36 36 −16 0.41 (0.08) 0.44 (0.04)
R Postcentral gyrus 2 12 6 30 −32 70 0.38 (0.09) 0.45 (0.06)
L Occipital pole 19 11 5.69 −26 −94 24 0.38 (0.08) 0.45 (0.04)
R Postcentral gyrus 40 10 5.71 26 −36 56 0.32 (0.09)a 0.40 (0.05)

Note: The images were thresholded at voxel-wise FWE-corrected P< 0.05. The abbreviations for region labels used in the text are in parentheses next to the labels.
Standard deviations for the mean classification accuracies are referred in parentheses.
L: left; R: right; BA: Brodmann areas.
aClassification accuracies at chance.
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performance in the Increase and Decrease networks [Increase
network: mean SVM accuracy = 0.63 (SD = 0.07); Decrease
network:mean SVM accuracy = 0.58 (SD = 0.09)]. Given that this
specific analysis was performed on the features (voxels) that
have already been identified as informative by the GLM analysis
of 1- versus 2- versus 3-back task, we will not discuss these
MVPA findings further in the text as they are difficult to interpret
separately from the univariate analysis.

Importantly, the SVM classifier accurately decoded the
n-back conditions not only during task performance, but also
during the preparatory periods that preceded performance on
1-, 2-, and 3-back tasks [Increase network: mean SVM accuracy =
0.56 (SD = 0.06); Decrease network: mean SVM accuracy = 0.54
(SD = 0.08)] (Fig. 2D). When calculated across subjects, the
mean classification accuracy was significantly above chance
(33%) for all conditions (Increase network, n-back task:
t15 = 15.9, P < 0.001; Decrease network, n-back task: t15 = 11.0,
P < 0.001; Increase network, preparation: t15 = 15.9, P < 0.001;
Decrease network, preparation: t15 = 10.5, P < 0.001). Table 2
summarizes the mean percent of correctly classified trials [i.e.,
true positives (sometimes called sensitivities)] for each of the
three n-back conditions in each network for task preparation
and task performance. The data in the table confirm that the
above-chance classification performance was achieved because
each of the three conditions was accurately classified [compared
with a situation when the above-chance classification could be

achieved because classification accuracy for 1 condition was
very high (e.g., 95%), but classification accuracy for 2 other con-
ditions was at chance (e.g., 33%)].

To make sure that the classification results are not due to
some peculiar noise structure in the data, we conducted the
classification analysis on 120 volumes (TR) randomly selected
from the rest periods in the Increase and Decrease networks.
These 120 TRs were randomly assigned to the three con-
ditions (we call them random rest 1, random rest 2, and
random rest 3) to resemble the structure of the classifier used
for the analysis of the preparation periods. The logic was that
if the above-chance classification accuracies for the prep-
aration periods are explained by some specific noise structure
in the data, we will find the above-chance classification accu-
racy for this random rest analysis. This was not, however, the
case, as the classification accuracies of this random rest analy-
sis were not above (and even slightly below) the chance level
(Fig. 2D).

While we based our conclusions on the classification analy-
sis of the whole Increase and Decrease networks, we per-
formed an additional MVPA in each of the regions comprising
a specific network for each individual subject. The goal of this
analysis was to examine whether the classification accuracy in
the whole network analysis was determined by the contri-
bution from some specific regions, or by the contribution from
the voxels in the distributed network. The results of this

Figure 2. (A) The regions that parametrically increased (in red) and parametrically decreased (in blue) in activation with an increase in WM load. (B) LIFG and (C) LIPS
parametrically increased in activation as a function of WM load during the task, but parametrically decreased activation during instruction periods. (D) SVM classification accuracy
for 1- versus 2- versus 3-back conditions for instruction, n-back blocks, and random rest periods. Error bars refer to a ±1 standard error. (E) Correlation between the classification
accuracy for 1- versus 2- versus 3-back instruction periods in the Increase (red) and Decrease (blue) networks and RT on the 1-, 2-, and 3-back task. The correlations denoted with
“*” are significant at P< 0.05, and the correlation denoted with “+” is marginally significant at P= 0.08.
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second classification analysis were averaged across subjects for
each region in the network, and the results are presented in
Table 1 (2 right columns). The classification accuracy was
above chance in all regions during n-back task performance.
During task preparation, one region in the Increase network
(left thalamus) and another region in the Decrease network
(right postcentral gyrus) failed to classify the three n-back con-
ditions above chance.

We further explored data by computing the mean accuracies
across all regions in a specified network [the mean accuracy
across 18 regions in the Increase network: preparation = 0.43
(SD = 0.03), n-back task = 0.48 (SD = 0.04); the mean accuracy
across 17 regions in the Decrease network: preparation = 0.41
(SD = 0.04), n-back task = 0.45 (SD = 0.03)]. These

classification accuracies were above the 33% chance level (In-
crease network, n-back task: t17 = 16.2, P < 0.001; Decrease
network, n-back task: t16 = 15.4, P < 0.001; Increase network,
preparation: t17 = 9.0, P < 0.001; Decrease network, prep-
aration: t16 = 8.6, P < 0.001). However, they were significantly
lower than the classification accuracies for the whole networks
(Increase network, n-back task: t17 =−15.2, P < 0.001; Decrease
network, n-back task: t16 =−16.3, P < 0.001; Increase network,
preparation: t17 =−16.3, P < 0.001; Decrease network, prep-
aration: t16 =−13.3, P < 0.001). This result suggests that discrimi-
nation between 1-, 2-, and 3-back conditions during both
preparation and task performance relies on the distributed
network of regions rather than on some specific region in that
network.

Relationship Between Classification Accuracy
and Behavioral Performance on the n-Back Task
The previous analyses showed that it is possible to decode task
difficulty from the preparation periods that precede the task.
What remains unclear is whether subjects’ classification accu-
racy during anticipation of 1-, 2-, and 3-back tasks is related to
subsequent task performance. A correlation analysis between
classification accuracies in the Increase and Decrease networks
during task preparation and RTs for 1-, 2-, and 3-back tasks

Table 2
Percent of correctly classified trials (true positives) for each condition of interest

1-back 2-back 3-back

Increase network task preparation 58.3 (11.1) 54.7 (10.2) 54.7 (11.7)
Increase network task performance 72.8 (8.2) 53.4 (9.7) 59.5 (10.3)
Decrease network task preparation 54.7 (12.9) 53.0 (14.3) 54.5 (11.9)
Decrease network task performance 65.6 (12.3) 51.4 (9.5) 54.6 (9.5)

Note: Standard deviations for the mean classification accuracies are referred in parentheses.

Figure 3. Comparison of higher and lower performing subjects. (A) RT for correct responses and (B) percent correct for the 3 levels of n-back. (C) SVM classification accuracy in
the Increase and Decrease networks. (D) Histogram of the absolute SMV weights for one higher- and one lower-performance subjects in the Increase network. (E) The absolute
SVM weights (thresholded at 0.001) in the Increase network are overlaid on the individual brains of the same higher- and lower-performance subjects shown in D. The
figure illustrates that a subject with lower classification accuracy has fewer informative features compared with a subject with higher classification accuracy.
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showed that the subjects with higher classification accuracies
(and, consequently, more distinct neural representations of the
3 task conditions) were faster at each level of the n-back task.
Figure 2E reports correlation coefficients and P-values for all 6
analyses.

Another result that points to the same conclusion and sup-
ports the idea that task preparation determines the quality of
task performance (e.g., Park and Rugg 2010) used a combi-
nation of all 6 behavioral measures (RT and response accuracy
for 1-, 2-, and 3-back). These measures were entered into the
K-mean cluster analysis (k = 2). This analysis partitioned 16
subjects into groups of 10 and 6 subjects based on their behav-
ioral performance. Given that subjects in the larger group were
slower (F1,14 = 67.6, P < 0.001, partial η2 = 0.83; Fig. 3A),
although not less accurate (Fig. 3B), we refer to them as the
“lower-performance” group and the other subjects as the
“higher-performance” group. “Higher-performers” were not
only faster than “lower-performers”, but their latencies were
less affected by task difficulty (F1,14 = 7.3, P < 0.05, partial
η2 = 0.34). The important point is that “higher-performers”,
compared with “lower-performers,” had higher SVM classifi-
cation accuracies for expected 1- versus 2- versus 3-back
conditions during preparation periods in the Increase
(t14 = 2.3, P < 0.05) and Decrease (t14 = 3.1, P < 0.01) networks
(Fig. 3C). These differences suggest that the voxels in the In-
crease or Decrease networks of the “higher-performers”
contain more information about the upcoming n-back con-
dition compared with “lower-performers.” In the SVM classi-
fier, a discriminative ability of a voxel is expressed as a weight
(a parameter calculated by the SVM that can be interpreted as a
distance of a specific data point from the hyperplane) with
greater weights corresponding to more informative features.
To illustrate how “higher-performers” and “lower-performers”
differ in terms of the discriminative ability of the voxels in the
ROIs, we plotted the absolute SVM weights taken from the In-
crease network classification of preparation periods for one
“higher-performer” and one “lower-performer” (Figs 3D,E). A
histogram shown in Figure 3D illustrates that a “higher-
performer,” compared with a “lower-performer,” has more fea-
tures (voxels) with higher absolute weights and fewer features
with lower absolute weights in the Increase network. When
the absolute SVM weights were mapped to the subjects’ brains
and thresholded to remove less informative features, the result-
ing representation of informative features was sparser for the
“lower-performer” (Fig. 3E).

Discussion
The present study examined the novel question of how brain
activation in the WM network is modulated by anticipated diffi-
culty of the upcoming task during the instruction period that we
refer to as task preparation. The WM network is operationally
defined here as the network of regions whose activity is modu-
lated by the changes in WM load during task performance. The
regions comprising the WM network were identified by contrast-
ing brain activations during performance on 1- versus 2- versus
3-back tasks. Consistent with multiple neuroimaging studies (see
Owen et al. 2005; Rottschy et al. 2012 for reviews), parametric in-
creases in WM load during task performance resulted in para-
metric increases in activation in prefrontal cortex (PFC), ACC,
IPS, and some subcortical structures (Increase network) and
parametric decreases in medial frontal cortex, posterior cingulate

gyrus, and the inferior division of the lateral occipital cortex
(Decrease network). The univariate (i.e., GLM) and multivariate
(i.e., SVM) analyses revealed that the WM network dynamically
adjusts to anticipated cognitive demands during task prep-
aration.

Parametric Effects of Expected Difficulty on Brain
Activation During Preparation
Our finding that the left IFG, IPS, and ACC increase in acti-
vation during task performance when WM load increases, but
decrease in activation when the anticipated difficulty of the up-
coming task increases, is inconsistent with the proposal that ef-
fective task preparation involves preactivation of the neural
networks engaged during task performance (e.g., Wylie et al.
2006). Rather, it seems that, at least in some situations, the acti-
vation in task-related regions may be inhibited prior to task
execution, a finding that is consonant with recent MEG results
(Altamura et al. 2010). Their MEG study found decreased pre-
paratory activation (expressed as a beta power increase) in
several brain regions (including left IFG, DLPFC, and left parie-
tal cortex) for a WM, compared with control, task that did not
engage WM. The Altamura et al. study, however, did not vary
WM load parametrically, so it is unclear whether this modu-
lation is an all-or-none response or is graded as a function of
expected cognitive load. Our results indicate that modulation
of brain response by anticipated cognitive load occurs in a
graded manner with greater decreases during anticipation of
more difficult tasks.

Many previous neuroimaging studies have found that PFC
and ACC play an important role in task preparation (e.g.,
MacDonald et al. 2000; Brass and von Cramon 2002, 2004; Luks
et al. 2002; Sohn et al. 2007; Lavric et al. 2008). Specifically, it
was proposed that the posterior left IFG, also called inferior
frontal junction or IFJ, is involved in the processing and
context-related updating of the task representations during task
preparation (Brass and von Cramon 2004). The coordinates of
the left IFJ reported in Brass and von Cramon [−37 8 35 Talair-
ach] are very close to those reported in our study [−40 6 24 MNI]
for the LIFG. The finding that this region responds parametri-
cally to anticipated WM load provides converging evidence for
the role of the left IFJ in task preparation by showing that this
region not only supports processing and updating of the task
representations, but also controls the amount of allocated cogni-
tive resources based on expected cognitive load.

Preparation to perform a task is a complex process that in-
cludes (but is not limited to) encoding of task instructions, re-
trieval of the relevant rules for the current task, retrieval of the
stimulus–response mapping, effort anticipation, planning to al-
locate attention to specific features of the stimuli, and what we
call adjusting/cleaning memory storage. The last process in-
volves suppression of information that was encoded for the
previous task in order to reduce proactive interference. This
last process may explain why left IFG, left IPS, and ACC de-
creased activation when anticipated WM load increased. Pre-
vious neuroimaging studies of WM suggest that all these
regions are involved in maintenance of memory represen-
tations by increasing activation for tasks with greater WM load
(Courtney et al. 1997; Rypma and D’Esposito 1999; D’Esposito
et al. 2000; Pessoa et al. 2002; Narayanan et al. 2005). Given
that WM is limited capacity (e.g., Baddeley and Hitch 1974), it
is reasonable that people try to minimize interference from the
sources not related to the task at hand as the task becomes
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more demanding (e.g., ask a friend to stop talking when one is
engaged in a complex task such as driving in merging traffic or
computing a complex sum). The load-related decreases during
task preparation in the regions involved in maintenance of
memory representations may be related to a brain mechanism
that helps to “clear the mind” before starting a demanding WM
task. For example, if a subject anticipates performing the
3-back task, she or he knows that it will involve maintaining
and manipulating in memory 3 items compared with the one
item required when performing the 1-back task. Consequently,
the memories of stimuli, responses, and rules not related to the
upcoming task (particularly those coming from previous
blocks of trials) should be expunged to free up more proces-
sing resources to deal with a complex task.

It is unclear whether the difficulty of the preceding task
influences how much one needs to “clear the mind” during
preparing for an upcoming task. Unfortunately, we were
unable to address this question, because the design of our
current experiment did not provide sufficient power for such
analyses: the order of n-back conditions was randomly deter-
mined for each subject. That means that the number of tran-
sitions between various conditions varied by subject. Future
research should examine this question in an experiment that
controls for the number and order of transitions among WM
load levels.

“Clearing the mind” may also be a part of an effort calcu-
lation process that conceivably occurs during task preparation
(Croxson et al. 2009). Croxson et al. examined the interaction
between expected reward and expected effort during task
preparation/anticipation. They found that activation in dorsal
ACC decreased with an increase in anticipated effort given that
the high reward was expected. Our study did not have a
reward component, but the results are consistent with that of
Croxson et al. The 3-back task requires greater effort than
1-back, and this difference appears to be anticipated during
the preparation periods.

The results of our study demonstrate that neither encoding
of task instructions, retrieval of task rules, nor the stimulus–
response mapping can explain why the left IFG, left IPS, and
ACC, the regions comprising the Increase network, parametri-
cally decreased activation during task preparation when antici-
pated cognitive demands increased. First, the instruction
screens contained just one word and it is unlikely that encod-
ing of the phrase “1-back” was easier or more difficult than
that of the phrase “3-back.” Secondly, the stimulus–response
mapping (e.g., press a button with your right hand if this is a
target) was identical for all n-back conditions. Thirdly, a retrie-
val of more complex rules elicits increases in brain activation
of the left ventro-lateral PFC [−42 6 30] and the left inferior par-
ietal cortex [−36 −51 45] (Bunge et al. 2003). Given that the co-
ordinates reported by Bunge et al. are very close to the
coordinates of the left IFG and IPS in our study, it may follow
that 1-back rule is more complex than 3-back. This, however,
seems unlikely because subjects practiced all n-back con-
ditions outside the scanner to achieve high proficiency on the
task prior to performing the n-back task in the scanner and
because, in general, it takes longer to explain to a subject the
2- or 3-back rule than the 1-back.

Multivoxel Pattern Classification Analysis
An important goal of cognitive neuroscience is to be able to
predict people’s future behavior from the brain activations

that precede them (Haynes 2011). Several previous studies
have successfully used MVPA to decode subjects’ intentions
(e.g., Gilbert 2007; Haynes et al. 2007; Gallivan et al. 2011).
Using this technique, we were able to support our hypothesis
about the involvement in the WM network during preparation
for WM tasks of varying difficulty by showing that the upcom-
ing n-back conditions (1- vs. 2- vs. 3-back) can be decoded
from the activation patterns in the Increase and Decrease net-
works during preparatory periods. Because subjects’ accuracy
in the n-back task were uncorrelated with classification accu-
racy, we believe that subjects’ ability to memorize, maintain,
and manipulate the stimuli during the task did not depend on
whether or not the Increase and Decrease networks contained
information about the upcoming difficulty level during task
preparation. However, based on the finding that greater
1- versus 2- versus 3-back classification accuracy during task
preparation predicts faster behavioral responses and less of an
increase in RT when WM load increases at task, we propose
that the subjects who formmore distinct neural representations
of upcoming n-back conditions in the Increase and Decrease
networks have more fluent (i.e., easier) access to the infor-
mation during the task.

It could be argued that the differences in patterns across the
WM load conditions during the preparatory periods revealed
by MVPA reflect the overall changes in activity across load
levels that have been revealed by the GLM analysis. If this were
the case, the decreases in BOLD signal in the LIFG, LACC, and
LIPS during task preparation should correlate with classifi-
cation accuracies in these regions during task preparation. We
tested this idea and found that the 3- minus 1-back BOLD
signal changes did not correlate with the 1- versus 2- versus
3-back SVM classification accuracies in either ROI (the lowest
P-value of >0.25).

In summary, the present work advances our understanding
of the neural mechanisms of preparation for tasks of varying
difficulty. The results of the present study suggest that neuroi-
maging research on WM should be extended to task prep-
aration. These results also have implications for clinical
research concerning cognitive impairments and learning dis-
abilities. Specifically, a treatment may depend on whether sub-
ject’s performance is impaired due to inability to prepare for
the task or inability to process the information during the task.
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Supplementary material can be found at: http://www.cercor.oxford-
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Funding
This work was supported by a NIMH (training grant
T32MH019983).

Notes
Conflict of Interest: None declared.

References
Aarts E, Roelofs A, van Turennout M. 2008. Anticipatory activity in

anterior cingulate cortex can be independent of conflict and error
likelihood. J Neurosci. 28:4671–4678.

8 Preparation for Tasks That Vary in Difficulty • Manelis and Reder

 at A
cquisitions D

eptH
unt Library on January 10, 2014

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 

http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bht262/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bht262/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bht262/-/DC1
http://cercor.oxfordjournals.org/
http://cercor.oxfordjournals.org/


Adcock RA, Thangavel A, Whitfield-Gabrieli S, Knutson B, Gabrieli
JDE. 2006. Reward-motivated learning: mesolimbic activation pre-
cedes memory formation. Neuron. 50:507–517.

Altamura M, Goldberg TE, Elvevåg B, Holroyd T, Carver FW, Weinberger
DR, Coppola R. 2010. Prefrontal cortex modulation during antici-
pation of working memory demands as revealed by magnetoence-
phalography. Int J Biomed Imaging. doi:10.1155/2010/840416.

Baddeley A. 2010. Working memory. Curr Biol. 20:136–140.
Baddeley AD, Hitch GJ. 1974. Working memory. In: Bower GA,

editors. Recent advances in learning and motivation. Vol. 8.
New York: Academic Press. p. 47–90.

Beckmann CF, Smith SM. 2004. Probabilistic independent component
analysis for functional magnetic resonance imaging. IEEE Trans
Med Imaging. 23:137–152.

Brass M, von Cramon DY. 2004. Decomposing components of task
preparation with functional magnetic resonance imaging. J Cogn
Neurosci. 16:609–620.

Brass M, von Cramon DY. 2002. The role of the frontal cortex in task
preparation. Cereb Cortex. 12:908–914.

Braver TS, Barch DM, Kelley WM, Buckner RL, Cohen NJ, Miezin FM,
Snyder AZ, Ollinger JM, Akbudak E, Conturo TE et al. 2001. Direct
comparison of prefrontal cortex regions engaged by working and
long-termmemory tasks. Neuroimage. 14:48–59.

Braver TS, Cohen JD, Nystrom LE, Jonides J, Smith EE, Noll DC. 1997.
A parametric study of frontal cortex involvement in human
working memory. Neuroimage. 5:49–62.

Bunge SA, Kahn I, Wallis JD, Miller EK, Wagner AD. 2003. Neural cir-
cuits subserving the retrieval and maintenance of abstract rules. J
Neurophysiol. 90:3419–3428.

Carlson S, Martinkauppi S, Rämä P, Salli E, Korvenoja A, Aronen HJ.
1998. Distribution of cortical activation during visuospatial n-back
tasks as revealed by functional magnetic resonance imaging. Cereb
Cortex. 8:743–752.

Chatham CH, Herd SA, Brant AM, Hazy TE, Miyake A, O’Reilly R, Fried-
man NP. 2011. From an executive network to executive control: a
computational model of the n-back task. J Cogn Neurosci.
23:3598–3619.

Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC, Jonides J,
Smith EE. 1997. Temporal dynamics of brain activity during a
working memory task. Nature. 386:604–608.

Courtney SM, Ungerleider LG, Keil K, Haxby JV. 1997. Transient and
sustained activity in a distributed neural system for human working
memory. Nature. 386:608–611.

Croxson PL, Walton ME, O’Reilly JX, Behrens TEJ, Rushworth MFS.
2009. Effort-based cost-benefit valuation and the human brain.
J Neurosci. 29:4531–4541.

Curtis CE, D’Esposito M. 2003. Persistent activity in the prefrontal
cortex during working memory. Trends Cogn Sci. 7:415–423.

D’Esposito M, Postle BR, Rypma B. 2000. Prefrontal cortical contri-
butions to working memory: evidence from event-related fMRI
studies. Exp Brain Res. 133:3–11.

Gallivan JP, McLean DA, Valyear KF, Pettypiece CE, Culham JC. 2011.
Decoding action intentions from preparatory brain activity in
human parieto-frontal networks. J Neurosci. 31:9599–9610.

Gilbert SJ. 2011. Decoding the content of delayed intentions. J Neuro-
sci. 31:2888–2894.

Guderian S, Schott BH, Richardson-Klavehn A, Duzel E. 2009. Medial
temporal theta state before an event predicts episodic encoding
success in humans. Proc Natl Acad Sci USA. 106:5365–5370.

Hanke M, Halchenko YO, Sederberg PB, Hanson SJ, Haxby JV, Poll-
mann S. 2009. PyMVPA: a python toolbox for multivariate pattern
analysis of fMRI data. Neuroinformatics. 7:37–53.

Haynes JD. 2011. Decoding and predicting intentions. Ann N Y Acad
Sci. 1224:9–21.

Haynes JD, Sakai K, Rees G, Gilbert S, Frith C, Passingham RE. 2007.
Reading hidden intentions in the human brain. Curr Biol.
17:323–328.

Hyvärinen A. 1999. Fast and robust fixed-point algorithms for indepen-
dent component analysis. IEEE Trans Neural Netw. 10:626–634.

Jenkinson M. 2003. A fast, automated, n-dimensional phase unwrap-
ping algorithm. Magn Reson Med. 49:193–197.

Jenkinson M, Bannister P, Brady M, Smith S. 2002. Improved optimis-
ation for the robust and accurate linear registration and motion cor-
rection of brain images. Neuroimage. 17:825–841.

Jenkinson M, Smith S. 2001. A global optimisation method for robust
affine registration of brain images. Med Image Anal. 5:143–156.

Kelly RE Jr, Alexopoulos GS, Wang Z, Gunning FM, Murphy CF, Mori-
moto SS, Kanellopoulos D, Jia Z, Lim KO, Hoptman MJ. 2010.
Visual inspection of independent components: defining a pro-
cedure for artifact removal from fMRI data. J Neurosci Methods.
189:233–245.

Kragel PA, Carter RM, Huettel SA. 2012. What makes a pattern? Match-
ing decoding methods to data in multivariate pattern analysis. Front
Neurosci. 6:162.

Lavric A, Mizon GA, Monsell S. 2008. Neurophysiological signature of
effective anticipatory task-set control: a task-switching investi-
gation. Eur J Neurosci. 28:1016–1029.

Logan GD, Zbrodoff NJ. 1982. Constraints on strategy construction in a
speeded discrimination task. J Exp Psychol Hum Percept Perform.
8:502–520.

Luks TL, Simpson GV, Feiwell RJ, Miller WJ. 2002. Evidence for
anterior cingulate cortex involvement in monitoring preparatory at-
tentional set. Neuroimage. 17:792–802.

MacDonald AW III, Cohen JD, Stenger VA, Carter CS. 2000. Dissociat-
ing the role of the dorsolateral prefrontal and anterior cingulate
cortex in cognitive control. Science. 288:1835–1838.

Mackiewicz KL, Sarinopoulous I, Cleven KL, Nitschke JB. 2006. The
effect of anticipation and the specificity of sex differences for amyg-
dale and hippocampus function in emotional memory. Proc Natl
Acad Sci USA. 103:14200–14205.

Mishkin M, Manning FJ. 1978. Non-spatial memory after selective pre-
frontal lesions in monkeys. Brain Res. 143:313–323.

Müller NG, Knight RT. 2006. The functional neuroanatomy of working
memory: contributions of human brain lesion studies. Neuro-
science. 139:51–58.

Mur M, Bandettini PA, Kriegeskorte N. 2009. Revealing represen-
tational content with pattern-information fMRI—an introductory
guide. Soc Cogn Affect Neurosci. 4:101–109.

Narayanan NS, Prabhakaran V, Bunge SA, Christoff K, Fine EM, Gabrie-
li JDE. 2005. The role of the prefrontal cortex in the maintenance of
verbal working memory: an event-related fMRI analysis. Neuropsy-
chology. 19:223–232.

Neuper C, Wörtz M, Pfurtscheller G. 2006. ERD/ERS patterns reflecting
sensorimotor activation and deactivation. Prog Brain Res.
159:211–222.

Nichols TE, Holmes AP. 2002. Nonparametric permutation tests for
functional neuroimaging: a primer with examples. Hum Brain
Mapp. 15:1–25.

Nystrom LE, Braver TS, Sabb FW, Delgado MR, Noll DC, Cohen JD.
2000. Working memory for letters, shapes, and locations: fMRI evi-
dence against stimulus-based regional organization in human pre-
frontal cortex. Neuroimage. 11:424–446.

Otten LJ, Quayle AH, Akram S, Ditewig TA, Rugg MD. 2006. Brain
activity before an event predicts later recollection. Nat Neurosci.
9:489–491.

Owen AM, McMillan KM, Laird AR, Bullmore E. 2005. N-back working
memory paradigm: a meta-analysis of normative functional neuroi-
maging studies. Hum Brain Mapp. 25:46–59.

Park H, Rugg MD. 2010. Prestimulus hippocampal activity predicts
later recollection. Hippocampus. 20:24–28.

Pessoa L, Gutierrez E, Bandettini P, Ungerleider L. 2002. Neural corre-
lates of visual working memory: fMRI amplitude predicts task per-
formance. Neuron. 35:975–987.

Petrides M, Milner B. 1982. Deficits on subject-ordered tasks after
frontal- and temporal-lobe lesions in man. Neuropsychologia.
20:249–262.

Pfurtscheller G. 2001. Functional brain imaging based on ERD/ERS.
Vision Res. 41:1257–1260.

Rottschy C, Langner R, Dogan I, Reetz K, Laird AR, Schulz JB,
Fox PT, Eickhoff SB. 2012. Modelling neural correlates of
working memory: a coordinate-based meta-analysis. Neuroimage.
60:830–846.

Cerebral Cortex 9

 at A
cquisitions D

eptH
unt Library on January 10, 2014

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 

http://cercor.oxfordjournals.org/
http://cercor.oxfordjournals.org/


Rypma B, D’Esposito M. 1999. The roles of prefrontal brain regions
in components of working memory: effects of memory load
and individual differences. Proc Natl Acad Sci USA. 96:
6558–6563.

Sakai K, Passingham RE. 2003. Prefrontal interactions reflect future
task operations. Nat Neurosci. 6:75–81.

Smith S. 2002. Fast robust automated brain extraction. Hum Brain
Mapp. 17:143–155.

Smith SM, Nichols TE. 2009. Threshold-free cluster enhancement: ad-
dressing problems of smoothing, threshold dependence and local-
isation in cluster inference. NeuroImage. 44:83–98.

Sohn MH, Albert MV, Jung K, Carter CS, Anderson JR. 2007. Antici-
pation of conflict monitoring in the anterior cingulate cortex and
the prefrontal cortex. Proc Natl Acad Sci USA. 104:10330–10334.

Tohka J, Foerde K, Aron AR, Tom SM, Toga AW, Poldrack RA. 2008.
Automatic independent component labeling for artifact removal in
fMRI. Neuroimage. 39:1227–1245.

Vapnik V. 1995. The nature of statistical learning theory. New York:
Springer.

Wylie GR, Javitt DC, Foxe JJ. 2006. Jumping the gun: is effective prep-
aration contingent upon anticipatory activation in task-relevant
neural circuitry? Cereb Cortex. 16:394–404.

10 Preparation for Tasks That Vary in Difficulty • Manelis and Reder

 at A
cquisitions D

eptH
unt Library on January 10, 2014

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 

http://cercor.oxfordjournals.org/
http://cercor.oxfordjournals.org/

