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Abstract

Words of varying pre-experimental frequency were presented
up to 10 times each. On each presentation, three responses were
allowed-- new, remember, and know--the last for words that
seem familiar, but give no conscious recollection of an earlier
presentation. A novel pattern of results was predicted by the
SAC memory model. SAC used the same parameter values used
in fits to other tasks and provided good fits to the participants’
remember and know responses.

Introduction

A dominant goal in cognitive science is to develop a
theory of cognitive behavior within a unified framework that
can explain a broad spectrum of human behavior without the
necessity of postulating a new theory denovo each time a
new task is to be explained. In this paper we describe a
theory that has such a goal, to account for individual subject
performance at a very detailed level of analysis, for a wide
variety of cognitive phenomena. The model is restricted to
trying to account for phenomena associated with declarative
memory (cite Anderson, Squire). We have tested the SAC
(Source of Activation Confusion) model of memory in a
variety of rescarch paradigms, and have been gratified by
precise fits of theory to data without the need to postulate
many new variables to fit a large quantity of data points in a
qualitatively different task. We have recently reported our
efforts to use this model to explain feeling of knowing and
strategy selection decisions (Reder & Schunn, 1996;
Schunn, Reder, Nhouyvansivong, Richards & Stroffolino,
1997). In this paper we describe a more recent test of the
model’s generality that extends the model to a new domain
and tests the model’s novel theoretical predictions against
empirical data and the degree of fit to the behavioral data.
The empirical test of novel predictions enables us to
examine our theoretical constraints using both at the
conceptual level and at the level of specific parameter values
from previous model fits.

The domain that we have chosen to explore is called The
Mirror Effect (Glanzer, Adams, Iverson & Kim, 1993),
using the Remember/Know Paradigm (ref) as a magnifying
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glass that enables more fine grain predictions. The Mirror
Effect refers to the phenomenon that two distinct classes of
items (e.g., high and low frequency words) produce opposite
orderings in liklihood to respond "old" in recognition tests,
depending on whether the item had actually been studied.
That is the "hits" (correct recogpition judgments for
presented items) are higher for low frequency words than
high frequency words, while the “false alarms" (spurious
recognition judgments for items not studied) are higher for
high frequency words than low frequency words. When
these results are plotted as two functions, one for hits and
one for false alarms , with frequency on the abscissa, they
are mirror images, hence the name. One reason that this
effect has interested memory theorists is that to the extent
that psychology aspires to provide mechanistic
explanations of phenomena, this pattern of data offers a clear
set of constraints that any theoretical account must satisfy.

The Remember/Know Paradigm was first developed by
Tulving (1985) to explore the recollective component of
memory and has been a popular paradigm among researchers
who subscribe to the view that there are two processes for
recognition judgments (e.g., Mandler, 1980; Jacoby &
Dallas, 1981) or that there exist multiple memory systems
{e.g., Tulving, Schacter, Squire & McNaughton, refs). In
this paradigm, participants study a list of words and are
asked to make new/old judgments like in a standard
recognition test of studied words. The difference is that after
participants respond “old” to words that they believe had
been presented on the list, they are asked to decide whether
this “old” judgment is based on a recollective experience in
which they can actually recall having seen the word
presented on the list (in their “mind’s eye™) or whether they
are basing this “old” decision on a sense of familiarity, i.e.,
the subject does not really remember seeing the word on the
list, but just “knows” it must have been presented because
it seems so familiar.

The reason that we were drawn to investigating the mirror
effect, varying word frequency, and the Remember/Know
paradigm is that our theory of memory makes novel
predictions that integrate across these two paradigms,
specifically addressing what happens to the Mirror Effect for
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words of different frequency when the recognition task
reguires participants to discriminate among old responses,
i.e., make Remember/Know distinctions. The reason that
we claim that these predictions are novel is that there are
already some experiments in the literature that do not
support our theoretical predictions; however, we felt
sufficiently confident about the validity of our model' that
we believed further tests of this prediction were justified.
The prediction that we make is that there will be more
"remember” judgments for low frequency words that are old,
but that there will be more "know" responses for high
frequency words than low frequency words, regardless of
whether or not the word had actually been studied.”
Theories are not difficult to generate that explain how a
person correctly identifies that a word was studied or explain
how a person correctly rejects a lure as not studied. Of more
theoretical interest is to explain, without making additional
assumptions, why people will incorrectly accept some not
presented items as studied (false alarms) and why they will
fail to recognize some items that were studied. Like other
dual process models of memory, we assume that there are
two ways to make a recognition judgment, one based on
familiarity of the word and one based on retrieval of the
encoding event. SAC postulates a node to represent the
concept of the studied word and another node to represent
the encoded memory episode. Figure 1 illustrates the
memory representation that we assume. The familiarity of
the word/concept node is affected by recent study but it is
also affected by how frequently it has been seen in previous
contexts (i.e., pre-experimental word frequency will affect
this feeling of familiarity). The postulation that previous
exposure will affect tendency to respond "old" motivated our
interest in experiments that use pre-experimental word
frequency as a factor. In our view, an accurate recognition
judgment is based on the retrieval of the study event node,
while responses based on the word node are error prone.

Figure 1: An example semantic network representation of
nodes involved in a word recognition experiment.
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Note in Figure 1 that higher frequency words not only
have a higher starting strength or familiarity from more
previous exposures, but that they also have more pre-
experimental associations from all the contexts in which the
word has been seen. According to SAC" the amount of
activation that can spread from a concept node to the event
node must be divided among all links that fan out from the
node. If we assume that all links have equal strength, then
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the amount of activation that can reach the event node is
much less in the case of high frequency words than low
frequency words because the former has much more
competition for the activation than the latter. This type of
theory would explain the Mirror Effect as follows: high
frequency words have a higher strength/familiarity of the
word node and hence there will be many “old” responses
based on the word node, regardless of whether or not the
word had actually been studied in the experiment. This will
cause more false alarms for high frequency words than low
frequency words, a common result. On the other hand, the
greater fan out of high frequency words means that it is
more difficult to send activation from the word node to the
node that encoded the episodic study event, leading to fewer
correct recognitions of high frequency words (fewer hits), the
mirror result of the greater false alarms.

Until recently it seemed difficult to test the plausibility of
this type of theoretical account, however, the advent of the
Remember/Know paradigm has made it possible to bring
evidence to bear on our predictions. Words whose concept
nodes have greater strength should elicit more "know"
judgments, i.e., higher frequency words should elicit more
"know" responses regardless of presentation on the study
list. This result has not been found in prior research (that we
were able to find). As explained above, SAC also predicts
more "remember” responses for low frequency words than for
high frequency words, provided that the word had actually
been studied.

In order to provide a rigorous test of our theory, we
modified the traditional experimentai paradigm to enable
more precise or richer predictions. Specifically, we crossed
pre-experimental frequency with  experimental word
frequency because our model also allows us to predict how
much strengthening and forgetting there should be as a
function of number of presentations of a word and the delay
since it was last seen. So we opted to use a continuous
recognition paradigm in which participants were required to
make a remember /know/new judgment each time a word
was presented. Each subject received a unique sequence of
words and the same sequence was given to the computer
simulation that predicted an specific individual’s judgments
for each word, each time the word was presented: new vs.
remember vs. know. This enabled us to compare the
observed proportion of each type of judgment for each word
on each appearance of a given word with the predicted
proportion generated by the computer simulation of SAC.
More details of the model and how the precise model fits
were generated are described after the experimental results are
reported.

Method

Participants. The participants were 28 CMU
undergraduates taking part in the experiment for course
credit.

Materials and Procedure.

This experiment employed a continuous recognition
paradigm (e.g., Shepard & Teghtsoonian, 1961). This
design does not have the separate study and test phases
typically found in memory experiments. Instead, the words

1/30/97 4:24 PM



are continuously presented for judgment, and the
participants have to keep track constantly of which words
have been presented and which words have not.

Within this paradigm, we manipulated two factors, pre-
experimental word frequency and experimental presentation
frequency. The first factor had two levels, using 192 low
frequency and 192 high frequency words selected from the
MRC psycholinguistic database (Coltheart, 1981). Low and
high frequency words had Kucera and Francis normative
mean frequency counts of 1.6 and 142, respectively, which
were comparable to those used by Gardiner and Java (1990).

The second factor, presentation frequency involved
randomly assigning words from each frequency category to
be presenled either 10, 5, 3 or 1 times, with N’s of 8, 4, 4,
and 160 respectively. This produced a total of 272 trials.
The presentation order of the words was random,

The stimuli were presented to the participants on the
computer over a single 25 minute session. The participants
were asked to read each word silently and make one of three
responses: "new" if they thought that the word had not been
presented previously in the experiment; “R”™ if they
recognized the word as having been presented earlier in the
experiment and had conscious recollection of reading it
earlier; or “K” if they recognized the word from earlier in the
experiment but did nof have conscious recollection of
reading it earlier. Note that this differs from most
remember/know experiments where participants first made
new/old judgments before making rememberknow
judgments for “old” responses. We used this procedure in
order to get the participants’ first impressions. They were
told to make the judgment as quickly as possibly without
sacrificing accuracy.

To help participants understand the difference between the
R and K responses, they were given real-world examples
taken from Gardiner and Java (1990). In addition to the
examples of remember and know experiences, it was stressed
that the difference in the responses was not of memory
strength, but rather of two different states of memeory.
Knowing did not necessarily entail a poorer memory. After
the examples were presented to them, the participants were
required to give two additional examples of their own to
establish that they had understood distinction.

Results and Discussion

Six participants were dropped from the analyses: two due to
procedural errors, and 4 misunderstood the distinction
between R and K responses. The level of significance for
this experiment was set to p < .05, unless otherwise noted.

Table 1 shows the mean probabilities of R and K
responses for each presentation number for both low and
high frequency words. The overall recognition was
computed as the sum of R and K responses. Note that
presentation one entails the lure trials for which the correct
response was “new”. Thus, these probabilities represent the
false alarm rates. Presentations 2 — 10 then constitute the
old trials. The overall hit rates were computed as the mean
of the probabilities from presentation 2 — 10.

Table 1: Proportion of R and K responses as a function of
word frequency and presentation number.

1 2 3 4 5 6 7 8 9 10]2-10

R .01 .49 .69 .79 83 .89 87 .91 .92 92}.81
K .04 .38 .28 .19 .16 .11 .13 .09 .07 .09}.17

R .03 .38 .52 .67 .73 .77 .79 .86 .84 .80].71
K 13 .44 .39 .30 .24 .23 (19 .12 15 .16].23

A separate repeated measures ANOVA was carried out for
the hit and false alarm rates. For the hit rates, the ANOVA
revealed a main effect of word frequency, F(1,21) = 7.40,
MSe = 0.024 such that low frequency words were
recognized more than high  frequency  words.
Discriminability (d7) scores also show this difference. Low
frequency words were better discriminated than high
frequency words, 4 of 4.17 and 3.02, respectively. There
was also a main effect of presentation number, E(i,21) =
25.20, MSe = 0.049. This is evident in the increase in hit
rates from presentation 2 to presentation 3. After
presentation 3, participants appear to be at ceiling. The
main effect of response was also significant, F(1,21} =
49.26, MSe = 60.45, such that there were more R responses
than K responses. The interaction of word frequency by
response type was significant, F(1,21) = 31.86, MSe = 1.70
as was the interaction between presentation number and
response type, F(8,168) =29.8, MSe = 1.40. The word
frequency by presentation number interaction was marginally
significant, F(8,168) = 1.90, MSe = 0.002, p < .10. The
three-way interaction was not significant, F(8,168) = 1.20,
MSe = 0.021.

Of most interest to us is the word frequency by response
type interaction. Figure 2 shows this interaction. Note that
as predicted and consistent with the previous findings, R
responses were greater for low frequency words than for high
frequency words, (21} = 4.47. However as our model
predicts, this pattern is reversed for K responses. There were
more K response for high frequency than for low frequency
words, t(21) = 3.52,

The ANOVA conducted on the false alarms revealed a
main effect of word frequency, F(1,21) = 30.26, MSe =
0.087, such that participants made more false alarms to high
frequency words than to low frequency words. That is, there
were mote R and K false alarms to high than to low
frequency words. The main effect of response type was also
significant, F(1,21) = 19.65, MSe = 0.095, as was the word
frequency by response type interaction, E(1,21) = 16.62,
MSe = 0.027. This last interaction is shown in the right
panel of Figure 2. As predicted by SAC, a contrast between
low frequency and high K false alarms revealed a reliable
difference, t(21) = 8.02. The contrast between R responses
for low frequency and high frequency words was also
significant, {(21) = 2.26.

These findings are in agreement with SAC’s predictions:
The hit rates were greater for low frequency words than for
high frequency words. The reverse pattern was found for the
false alarm rates. Of more interest to us was the dissociation
between the R and K responses due to word frequency. The
proportion of R responses were greater for low frequency
words than for high frequency words. This result, predicted
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by our model, is consistent with what other researches have
found. The pattern of results for K responses was in the
opposite direction. As predicted by our model, there were
more K responses for high frequency words than for low
frequency words. This result has not been found by
previous research.

where B is the base level actjvation, ¢ and d are constants,
and tj is the time since the i~ presentation. This function
captures both power law decay of memories with time, and
power law learning of memories with practice,

In addition to the base or resting level of activation of a
node, there is also the current activation level of a node. The
current level of a node will be higher than its base-line

Figure 2. Data in filled objects and solid lines, simulation in open objects and dotted lines.
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Simulation of Experiment Data

In this section, we present a simulation of the data from our
experiment as a test of SAC’s precise predictions. The
computer simulation was given as inpul the same words
presented to each participant. Since the presentation order of
the words was randomly determined for each particpant, a
separate simulation was conducted for each participant. This
precise yolking of the simulation to participants was
important because on a given trial the expected activation
level for a word would vary depending on the exact sequence
of trials. That is, for each participant on a given trial, the
number of links, the current activation, and strength of the
presented word would be different from any other
participant’s values. The simulation outputs a probability of
responding R and K on each trial. We will now step through
the process by which that probability is determined.

At the beginning of the simulation, each participant’s
simulation is identical: the context node and the nodes for
all of the words to be presented in the experiment are
assumed to already exist, and the nodes for the study events
are assumed not to exist (1.e., these study events are novel).
The initial base-line strength of the word nodes are
determined by their respective Kucera and Francis frequency
counts, using a power-law learning function (i.e., raising the
word-frequency to  an  exponent). The pre-existing
experimental context base-level strength and fan are set to a
constant amount, the amount being irrelevant to the
simulations of the recognilion process. When a word is seen
for the first time in the experiment, a study event node is
created for that word, as are the links from the word and
context nodes. The initial base-line strength of the study
event node and of links to it are determined by our standard
learning and decay parameters (presented below).

Increases and decreases in each node’s base-line strength
change acco_réiing to a power function:

B=cZy (0

whenever it receives stimulation from the environment. This
current activation decays exponentially towards the base
level. Let A represent the current level of activation and B
represent the base level of activation. Then, the decrease in
current activation will be:

AA=-p (A -B) @
such that, after each trial, the current activation will decrease
for every node by the proportion p times that node’s current
distance from its base level activation. In our simulations, p
is set to 0.8. Thus, current activation drops quite rapidly,
and only has noticeable effects on the trial on which it
became activated, and perhaps the trial immediately
thereafter.

Activation spreads between nodes via links. For example,
links connect nodes representing the words to nodes
representing the study event. These links will vary in
strength depending on how often the word has been seen in
that context. Strength of links also depends on the delay
between exposures. Specifically, link strength is determined
by a power f_l.gwtion given by:

Ssr=Zt I (3)
where Sg r is the strength of the link from the node s to
node 1, tj is the time since the it co-exposure, and df_ is the
decay constant for links.

On each trial, all nodes representing the study event are
activated by a constant amount. We assume that a basic
perceptual process activates these nodes. For example, when
the word forpedo is presented for the third time, the torpedo
word node and the context node are activated (see Figure 1).
Activation then spreads along the links from the word and
context nodes to all connected nodes (e.g., the node
representing the study event),

The amount of activation that is sent depends on the
activation level of the source (sending) node and on the
strength of the link from the source node to the receiving
node, relative to the strength of all other links emanating
from the same source node. The change in activation of
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some node r is computed by summing the spread of
activation from all source nodes s directly connected to node
r according to the equation:

AAp = Z(Ag ™ Sg r/ LSs,j) 4)
where AAr is the change in activation of the receiving node
r, Ag is the activation of each source node s, Sq r is strength
of the link between nodes 5 and r, and £S¢ j is sum of the
strengths of all links emanating from node s. Equation 4 is
very similar to one used by Anderson {1993) to account for
data in fan effect paradigms (e.g., Anderson, 1974).

Once the activation has spread across these links, the
activation of the study event node and the word node can be
used to make the R and K judgments. Note that the
activation of the study event node is not just affected by the
amount of activation it receives from the word node. It also
gels stronger (has a higher base level strength) each time it
is studied. So activation at the event node on a trial will be
stronger when it has been presented many times, both
because the event node itself is strengthened and because the
word node is sending more activation -- the link from the
word node is strengthened and even the word node has a
somewhat increased base strength.

We assume that Remember decision involves a fixed
activation threshold with normally distributed noise. Thus,
rather than producing a binary decision, the simulation
produces a probability of choosing R or K based on the
activation values. This means that if the activation value of
the study event node is high, the probability of responding
R is very high; conversely, when the activation is very low,
the probability of responding R is very low. Specifically,
this probability is computed by the formula:

P(R) = N[ (Ag-Te)se | (5)
where Ap is the activation of the event node, T} is the
participant’s threshold for the study event node activation, s
is the standard deviation of the study event node noise
distribution, and N[x] is the area under the normal curve to
the left of x for a normal curve with mean=0, and standard
deviation=1. Recall that we assume an interdependence
between R and K judgments. Consequently, the probability
of responding K is a calculated by the following formula:

P(K)={ 1 - N[ (Ae-Te)fse ] }* N[ (Aw-Tw)sw]. (6)

In essence, the probability of responding K is one minus the
probability of the study event node passing over threshold
times the probability of the word node being above its
threshold. The probability of responding “new” is one
minus the probability that the activation does not pass over
the Know threshold.

After each trial, all the links strengths, node strengths and
node activations are updated using Equations 1, 2, and 3. At
this point, if a word is presented for the first time, then a
new study event node would be created as well as the links
connecting the new node to the word and context nodes. The
nodes in the network are updated in this fashion regardless of
whether the subject responds “new”, R, or K.

The present simulation just described involves ten
parameters. The values for each of these parameters are listed
in Table 2. The p, dn, and di, parameters were the same
parameter values used in a simulation of feeling-of-knowing
phenomena (Reder & Schunn, 1996; Schunn et al., 1977).
Because of differences in design and stimuli used in the
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experiments, the KN, KI., ci, and o parameters are new
parameters not found in the previous simulations. For
parsimony, c], and ¢y were given the same value.

However, in contrast to all the other values, which were
held constant across participants, we assume that
participants vary in their thresholds for responding R and K.
That is, some participants are conservative and have high
thresholds. Others, however, might be more liberal and have
lower thresholds. The R decision threshold (Tg) and K
decision threshold (Ty) values reflect the participant’s
overall base-rate of responding R and K, respectively. While
the participants might have differed on other dimensions as
well, there were no other obvious differences. So for
parsimony’s sake, the other eight parameters were held
constant across participants.

Table 2: SAC model parameters descriptions and values.

Parameter Function Value
Ky convert K-F frequency to word node strength 0.3
K. convert K-F frequency to word fan 0.7

p decay constant for current activation 0.8
cN node power-law growth constant 25
dn node power-law decay constant 0.175
cL link power-law growth constant 25
dp. link power-taw decay constant 0.12
Te Study event node decision threshold 36-308
Of Study event node decision standard deviation 40
Tw Word node decision thresheld 46-80
Ow Word node decision standard deviation 8

To compare SAC’s predictions to participants’ actual R
and K responses, we regressed the model’s predicted R and K
probabilities to the participants’ actual R and K probabilities
for each condition. We present I between predicted and
actual values for the overall recognition rates (i.e., sum of R
and K) as well as for each response type separately. The fit
of the model to the data was defined as the sum of the
squared error between the model’s predicted R rate for each
participant in each condition and each participant’s actual R
rate in each condition plus the sum of squared error between
the models’ predicted K rate and the participant’s actual K
rate. The full, exhaustive combinatorial space of possible
parameters was not searched. Instead, we used the same
parameters from our earlier model fits (Reder & Schunn,
1996; Schunn et al, 1997) when possible, and iteratively
tried a range of values for each of the new parameters. We
selected the value on each parameter producing the lowest
surn squared error.

The best fitting participant R thresholds ranged from 36 to
308, with a mean threshold of 97.7 (SD=56.3). The best
fitting K thresholds ranged from 46-80, with a mean of 57.4
(8D=9.6). Using these values, the SAC model fit the data
quite well, producing an r’ of 0.98 for the overall
recognition rate. In other words, the SAC model accounted
for a large percent of the vaniance of the participant’s R and
K judgments even at the individual participant level.

The fits of each type of response was also very good. For
the R judgment probabilities, a fit of the SAC model’s
predicted probabilities to the participants’ actual R judgment
probabilities, produced an r* of 0.95. For the fit of the K
responses, the I was 0.86. Again, even after breaking down
the recognition judgment into the R and K components,
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SAC accounted for a good portion of the variance. Figure 3
plots the empirical R probabilities on the left and model
simulation on the right. Similarly, Figure 4 plots the K
probabilities. Note that, consistent with the empirical data,
R judgments are consistently higher for low frequency than
for high frequency words; whereas for K judgments, the
model again correctly predicts more K judgments for high
frequency than for low frequency words.

General Discussion

We were pleased with our ability to confirm our
predictions, especially given that they went against the
existing literature. There are probably other theories that
could make this prediction, e.g., by postulating different
thresholds for saying remember. However, we consider these
empirical and modeling results strong support for our theory

Figure 3: The mean proportion of Remember responses by word frequency and presentation number. A) Data B) Simulation,
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for several reasons: (1) Our explanation comes from

Figure 4: The mean proportion of Know responses by word frequency and presentation number. A) Data B) Simulation.
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The right hand panels of each figure show that the model
gives very good quantitative fit to the data. The fit of the
model to the data in Figure 2 shows that the meodel also
accounts for the predicted the pattern of results for hits and
false alarms rates. Note that the model not only predicts the
dissociation in R judgments (which is consistent with SAC
predictions and previous findings), it also predicts the reverse
dissociation for the K responses. This reverse pattern for K
judgment is a novel finding that is accounted for by SAC.

In the case of false alarms, the model accounts for the
increase in K judgment due to word frequency, which is a
novel finding that was predicted by SAC. For the R false
alarm judgments, the theory predicts no effect of word
frequency; however, there were slightly more R false alarms
for high frequency than for low frequency in the behavioral
data. Overall, the simulation from the SAC model produced
very good qualitative fits.

assumptions that have been tested and confirmed in very
different experimental paradigms; (2) We made these
predictions prior to conducting the experiments: (3) we fit
our data at a very fine grain size, crossing pre-experimental
exposure and experimental presentation frequency; {4) we
account for a lot of data using few parameters, many of
which were estimated for previous research in a different
domain.

All this said, we think it unlikely that this theoretical
account is exactly right--no theory is likely to stand the test
of time without modification. Nevertheless, we think this
example of detailed fitting of behavioral data with precise
theoretical predictions is the way theorizing should be done.
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" This is not to say that we believe that SAC as currently
specified is exactly right, nor that similar models articulated
by others could not account for the data. Rather, we believe
that this is a good approximation to the truth and that is
among the most precise models that make such specific
predictions and has been more rigorously tested than any model
of which we are aware.

. The study by Gardiner and Java (ref) and Strack and Forster
(ref) did not find an effect of word frequency on know judgments
for either old words or new words.

"' Our theory shares this assumption with other activation
based theories, most notably ACT-R (ref).
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