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Abstract
In this paper we present a method for fitting strategy
choice data at the individual subject/individual trial
level, and demonstrate, using the SAC model, that
good fits 1o data can be obtained at this level. We
conclude by discussing the sources of power in using
this method.

Introduction

How do people decide which strategy 1o use in solving a
problem or answering a question? It is generally accepted
that superficial features of a problem influence the strategy
that is chosen to solve the problem. On the other hand, the
claim that people select a question-answering strategy prior
to executing any strategy, specifically prior to searching for
the answer (Reder, 1987) has not been generally accepted
{e.g., LeFevre, Greenham, & Waheed, 1993; Siegler &
Jenkins, 1988). Even more controversial has been the claim
that one of the criteria used in the decision of whether to
ry 1o retrieve the answer (or compute the answer by some
other means) is a rapid “feeling-of-knowing” and that this
rapid feeling-of-knowing depends only on features of the
question and not at all on partial retrievals of the answer
(Reder, 1987; Reder & Ritter, 1992; Schunn, Reder,
Nhouyvanisvong, Richards, & Stroffolino, in press).

In this paper we focus on one set of arithmetic
gameshow experiments that illustrate these results. In that
series of experiments, this phenomenon was explored,
carefully controlling for prior knowledge and tracking how
learning and retrieve/compute strategy selections changed
as a function of exposure to problems (Reder & Ritter,
1992; Schunn et al. in press). Arithmetic problems that
people were unlikely to know before the experiment {e.g.,
37 * 23) were used as stimuli. Subjects were exposed 10
problems over and over (up to 28 times in one experiment)
and each time made a very rapid assessment of whether
they would be able to quickly retrieve the answer. The
subjects indicated their strategy selection by pressing one
key if they thought they could retrieve the answer, and
other key if they thought they had to calculate the answer.
This quick assessment took place in about a half second
and was too little time to actually retrieve the answer.
Subjects were allowed to study the answer to the problem
after each trial and were given incentives to learn the
answers and to select retrieve. However, there were
disincentives for selecting retrieve if the answer was not
known. '

Evidence that these rapid strategy selections were based
on aspects of the question, and not a partial retrieval of the
answer, came from several results of the experiments. First,
time to make the retrieve/compute decision was affected by
praciice with the task, but not practice with a specific
problem. In other words, the practice with a specific
problem that led to faster answers did not iead 1o faster
preliminary decisions. The second result came from
operator switch problems—some of the problems were
distorted such that the operator was switched so that the
two operands had appeared together béfore but not with
that operator. For example, if 21435 was presented earljer,
then 21*35 could appear as a special operator switch trial.
For such a problem, the subject could not know the answer
since it had not been previously presented. But, such a
problem would still look familiar as a first impression. In
fact, it was operand co-occurrence that predicted retrieve
judgments, not how often the exact problem had been seen.

A third result that supports the view that a rapid feeling-
of-knowing comes from exposure to the problem and not
knowledge of the answer comes from Experiment 1 of
Schunn et al. In this experiment sometimes subjects were
exposed to problems without getting a chance to actually
answer the problem (either by calculation or retrieval) and
without having the opportunity to study the answer. This
manipulation was done for only a subset of the problems,
called infrequently-answered problems. As one would
expect, speed and accuracy in producing the answers were
affected by how often subjects studied the questions:
however, tendency to select retrieve was only affected by
exposure to the problem itself.

In the rest of this paper, we describe a model of this
retrieve/compute strategy selection process. The SAC
model was first proposed, implemented and fit 1o these data
by Reder with the help of Stroffolino and Richards. The
original simulation and model fits have been extended and
will appear in detail in Reder and Schunn, (in press) and
Schunn, Reder, Nhouyvanisvong, Richards, and Stroffolino
{(in press). We present the model and the fits to the data
from Schunn et al. to demonstrate how a model can be
applied to subject data at the individual subject/individual
trial level and provide an excellent fit to the data. At the
end of the paper we will discuss which features of the
model and simulations were important sources of power in
the model fits.

Schunn, C. D., & Reder, L. M. (1996). Modeling changes in strategy selections over time. Proceedings of
the AAAI-96 Workshop on Computational Cognitive Modeling. Portland, Oregon, August 1996.



The SAC Model

The model is called SAC, which stands for Source of
Activation Confusion. The representation used by the SAC
model consists of interassociated nodes representing
concepts that vary in long term strength. Here, we apply
the SAC model to several arithmetic experiments. For
these simulations, nodes represent numbers, operators, and
whole problems. The nodes representing whole problems
connect the operands and operators to the answers.

Each node has a base-level or long-term strength. The
strength of a node represents the history of exposure 1o that
concept, with more exposure producing greater
strengthening. Nodes that represent arithmetic problems
such as 27 * 34 would start out weak at the beginning of
the experiment, as these problems were initially unfamiliar
to the subjects. By contrast, nodes for familiar problems
would be strong even at the beginning of the experiment.
However, the experiments did not use problems that were
likely to have pre-experimental familiarity, and the
stmulations presented here assume that all problem nodes
are created for the first time during the experiment.

Strength can also be thought of as the base-line or resting
level of activation of a node. Increases and decreases in
this base-line strength change according to a power
function:

B=cZyd (1)
where B is the base level activation, ¢ and d are constants,
and 1j is the time since the i'? presentation. This function
captures both power law decay of memories with time, and
power law learning of memones with practice.

In addition to the base or resting level of activation of a
node, there is also the current activation level of a node.
The current level of a node will be higher than its base-line
whenever it receives stimulation from the environment
(i.e., when the concept is mentioned or perceived, or when
the concept receives activation from other nodes). While
base-line strength decays according to a power-function
(i.e., first quickly and then slowly), current activation
decays rapidly and exponentially towards the base level.
Let A represent the current level of activation and B
represent the base level of activation. Then, the decrease in
current activation will be:

=-p(A-B) @)
such that, after each trial, the current activation will
decrease for every node by the proportion p times that
node’s current distance from its base level activation.

Activation spreads between nodes via links. Links
connect nodes that are associated through conceptual
relations. For example, links connect nodes that represent
the components of a problem—operands and operators—to
the node that represents the entire problem. Links also
connect the nodes representing the entire problems to the
nodes representing the answers. These links will vary in
strength depending on how often the two concepts have
been thought of concurrently. Strength of links also

depends on the delay between exposures. Specifically, link
strength is determined by a power function given by:

Sgr=Z L (3)
where S 1 is the strength of the link from the node s to
node 1, tj is the time since the iP co-exposure, and dj_ is the
decay constant for links.

The current activation level of a node can rise from
environmental stimulation or from associated nodes that
send activation 1o it. The amount of activation that is sent
depends on the activation level of the source (sending)
node and on the strength of the link from the source node
to the receiving node, relative to the strength of all other
links emanating from the same source node. The change in
activation of some node r is computed by summing. the
spread of activation from all source nodes s directly
connected to node r according to the equation:

AAr=E(Ag* S5 r /5. 1) 4
where AAris the change in activation of the receiving node
1, Ag is the activation of each source node s, S ¢ is strength
of the link between nodes s and r, and IS5 j is sum of the

strengths of all links emanating from node s. The effect of
the ratio Sg r / ZSg j is to limit the total spread from a node

s to all connected nodes to be equal to the node s's current
activation Ag.

in this spreading activation model, feeling-of-knowing
judgments are based on the activation level of the node
representing the problem. In essence, we assume that
feeling-of-knowing monitors intersection of activation
from two source nodes. Specifically, when two terms in a
problem send out activation to associated concepts and an
intersection of activation is detected by bringing an
intermediate node over threshold, a person wnll have a
feeling-of-knowing response. :

In our current simulations, we assume that when a
problem is presented, all the nodes representing the
components are activated. For example, in the problem 23
* 14, the nodes representing 23, *, and 14 are all activated.
Then, activation spreads from the component nodes to all
the connected problem nodes. Problem nodes connected to
several of the components receive the greatest amount of
activation (e.g., 23 * 14). The extent of activation that
accumulates at the problem node affects the likelihood of
selecting retrieve as the strategy of choice. In a similar
fashion, activation spreads from problems nodes to answer
nodes. This is how answers are retrieved.

Because activation that spreads to a node is added 1o the
base activation, the selection of which problem node wili
have the highest final activation will also depend on the
relative base level activations. The current activation level
of the most (currently) active problem node is used to
determine feeling-of-knowing. Based on the feeling-of-
knowing, a decision is then made to retrieve or compute.
That is, if the problem hode has a relatively high activation
level, then retrieval will most likely be selected; and if the
problem node has a relatively low activation level, then
computation will most likely be selected.



Model Details

In addition to predicting feeling-of-knowing decisions
(i.e., decisions between retrieval and computation}, this
model can also predict which answers are retrieved from
memory, and the speed with which the answers are
retrieved. Here, however, we focus on the feeling-of-
knowing, or retrieve/compute, decisions. The computer
simulation is given as input the same problems presented to
each subject. Since each subject received a different set of
problems in random order, a separate simulation was
conducted for each subject. This precise yoking of the
simulation o subjects was important because on a given
trial the expected activation level for a problem would vary
depending on the exact sequence of trials: for any subject
on a given trial, the number of links, the current activation,
and strengths would be different from any other subject’s
values. The simulation output is a probability of selecting
to retrieve on each trial. We will now step through the
process by which that probability is determined.

At the start of the experiment, the representation of
memory for the simulation is identical regardless of the
experimental stimuli to be seen. Nodes for the operands are
assumed to already exist, whereas nodes for the problem
components are assumed not to exist (i.e., the problems are
novel). For simplicity, the initial base level strengths of the
operand and operator nodes are set to a constant amount.
When problems are seen for the first time, a problem node
is created, as are the links from the component operand and
operator nodes to the novel problem node. The initial base
level strengths of the problem nodes and of the links is
simply determined by the equations determining power-law
growth and decay.

On each trial, all the nodes representing the problem
components are activated to the same constant amount.
Activation then spreads along the links emanating from
nodes representing each of the problem components to
nodes representing the complete problems. Activation only
spreads to directly connected nodes at this point.

Once the activation has spread across these links,
activation of the problem nodes can be used to make a
strategy selection between retrieve and calculate. The
activation value of the most active node is used. The
simulation predicts a probability of choosing retrieve based
on this activation value. This probability of choosing
retrieve is calculated by assumning a normal distribution of
activation values with a fixed variance and activation
threshold for selecting retrieve. This probability is refiected
in the formula:

P=N[{A-T)¥c ] (3)
where A is the activation of the most-active problem node,
T is the subject’s threshold, ¢ is the standard deviation, and
NIx] is the area under the normal curve to the left of x for a
normal curve with mean=0, and standard deviation=1.

A single value for the standard deviation parameter was
used for all simulations. However, we assume that subjects
vary in their thresholds for choosing between retrieve and
compute. That is, some subjects are conservative and have

high thresholds, whereas other subjects are optimistic and
have lower thresholds. A value between 30 and 200 was
selected for each subject 1o maximize fit to their data.
This value reflects the subject’s overall base-rate of
sélecting retrieve. This wide range of possible values

~mirrored the large between-subjects variance that was

found within each of the experiments in the retrieval
selection rates. While the subjects might have differed on
other dimensions as well, there were no other obvious
differences (with the exception of the one mentioned
below), and so, for parsimony’s sake, the other six
parameters were held constant across subjects.

After each trial, all the node strengths and activations are
updated using Equations 1 and 2. Link strengths are
updated for each link, following the same kind of function
used to determine changes to base level activation—all the
links connecting the problem component nodes to the
problem node in the just-presented problem are
strengthened, whereas all other links in the neiwork are
weakened. It is at this point that if a new problem has been
presented for the first time, that a new node representing
that problem is created, and links are created connecting
the component nodes to the problem node.

The simulation just described involves seven parameters,
listed in Table 1 along with the values that we used.

Table 1. SAC Model Parameters and Values

parameter name value
input activation 50
P 0.8
c 5
d 0.175
dp 0.12
T 30-200
c 45
never-retrieve T/F

There is one final component of the SAC model that
required an additional parameter. This eighth parameter
was only used for simulating some of the subjects. The
parameter was simply a binary value by subject reflecting
whether the subject had a predilection not to choose
retrieve for a particular operator. This parameter was added
because we found that some subjects had a strong aversion
to choosing retrieve for a particular operator. To model
these subjects, the probability of selecting retrieve on that
operator is set to zero. For those subjects, the probability of
selecting retrieve for the other (non-meta-rule) operator
was simply determined as for the regular subjects—by the
equations given in the SAC model. A simple 5% cutoff is
used to select which subjects to model with this never-
retrieve rule: subjects have to select retrieve for less than
five percent of the trials with a particular operator.

In sum, there are eight parameters for the simulations,
six of which were held constant for all simulations.

Model-fitting Methodology

To compare the SAC model's predictions 1o subjects’
actual retrieve/compute decisions, we used an aggregation



procedure developed by Anderson (1990). For each trial,
for each subject, the model produced a probability of
choosing retrieve based on the calculated activation values
resulting from the trial history for that subject. That is, the
probability reflecied the model’s experience with the exact
same problems given to the subject. Since subjects made
binary decisions and the simulation produced probabilities,
it was necessary lo aggregate trials. That is, all trials for a
given subject in which the simulation predicted that the
probability of selecting retrieve would fall between 0% and
10% were grouped together; all trials where the probability
fell between 10% and 20% were grouped together and so
on. We tabulated the proportion of retrieval strategy
selections that were made by that subject for the exact
same trials in each probability range. This was done for all
probability ranges. Note that each subject contributes data
points to each {or at least many) of the ranges. The fit of
the model was tested by plotting mean actual proportion of
retrieval strategy selections against mean expected percent
retrievals. A perfect fit would be a straight line with a slope
of 1 and a y-intercept of 0. We plot this desired line to
show where the fitted points should actually lie.

Rather than plot the full scatter plot of each subject’s
value in each probability range, which often contains too
many points from which to abstract the central tendency
accurately, we plot the mean subject value (i.e., mean of
subject means) within each range. To present an estimate
of the subject variance, we also plot standard error bars.
Furthermore, we present the r? between predicted and
actual values based on the full scatter plot, not the mean
responses across subjects. This value presents an estimate
of the amount of variance that the modei accounts for at the
individual subject level, a fine-grained level of detail not
typically presented in tests of computational models. To
assess whether there are any systematic biases in the
model’s predictions, we also present the slope and y-
intercept of the best fitting regression line.

Since the number of subjects and data points per subject
varied for the various experiments and analyses, it was
necessary to vary the size (and hence number) of the
probability ranges. Values were selected for each analysis
using the following rule: the ranges were made sufficiently
large such that subject contributed at least 5 data points 10
most of the ranges, thereby ensuring stable proportions.
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Figure 1. Model fit for all problems in Reder and Ritter.

Simulation of Feeling of Knowing Data

As a first test of the SAC model, the strategy choice data
from Reder and Ritter's Experiment 2 (described above)
were compared with the SAC model's predictions. Using
the aggregation procedure described earlier, subjects’ actual
retrieve/compute decisions were well predicted by SAC,
with an 2 of .85 (see Figure 1}. Note that the line drawn in
the graph is the desired line actual= predicted. The slope of
the best fitting line was not significantly different from 1
(slope=0.993, 1(56)=0.125, p>.9}, nor was the intercept
significantly different from O (intercept=-0.001,
1(56)=0.029, p>.9). In other words, the SAC model
accounted for a large percent of the variance of the
subject’s strategy selections even at the individual subject
fevel, and there were no systematic biases in the
predictions.

A key result of Reder and Ritter was that subjects were
as likely 10 select retrieve for operator-switch problems as
for the training problems. The SAC model predicts this
effect: Operators are associated with a large number of
problems and the activation spread from a node along each
link is inversely proporticnal to the total connection
strength of the links emanating from that node. The fit of
the SAC model to the operator-switch retrieve data is quite

good (r2=.82). Figure 2 presents this fit. Fewer groupings
were used in this analysis because there were relatively few
operator-switch problems. Again, the slope of the best
fitting line was not significantly different from 1
(slope=1.17, 1(23)=1.42, p>.15), nor was the intercept
significantly different from 0 (intercept= -0.009,
1(23)=0.22, p>.8).

Value of Each Parameter

. One criticism of our model is that it contains many free
parameters. This leads to the gquestion: are all the
parameters necessary? Rather than testing the value of all
the parameters individually, we address this issue more
globally by exploring one particular reduced alternative
model. This alternative model might be called the
everything-is-in-the-threshold-values account. Since each
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Figure 2. Model fit for the operator-switch problems only.
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Figure 3. The Scrambled model fit for Reder and Ritter.

subject was given a different threshold value, and there are
more subjects than probability ranges, one might argue that
the good fits are due to having more free parameters than
data points. To evaluate this alternative, a variant of the
SAC model was created in which the model’s predictions
for each subject were scrambled. That is, the original
model’s predictions for each subject were kept, but the
pairing with the subject’s actual responses was randomly
reorganizing. For example, rather than having the model’s
prediction for the first trial paired with the subject’s
response to the first trial, the model’s prediction for the
first rial might be paired with the subject’s response to the
tenth trial, or perhaps the 100th trial.

This scrambled model was able to account for 54% of
the variance, suggesting that subject thresholds were an
important part of the SAC model’s good fit. However, this
fit is much worse than the 85% of the variance for which
the original model can account (see Figure 3). Furthermore,
the scrambled model’s best fitting regression line deviates
significantly from the desired line: its slope differed
significantly from 1 (slope=0.694, 1{56)=3.56, p<.001), and
the intercept differed significantly from O (intercept=0.068,
1(56)=2.04, p<.05).

As another alternative to the SAC model, there is a class
of strategy selecton models which we call base rate
models {e.g., Anderson, 1993; Siegler & Jenkins, 1988).
Base rate models assume that strategies are selected
according to the relative proportion of times each strategy
has been successful. Such a model would correctly predict
that subjects should initially select to calculate and
gradually shift to selecting to retrieve because the
experiment was designed such that subjects would initially
know none of the answers and gradually know an
increasingly larger percentage of the answers.

To evaluate such a base rate account could we tested the
following model. We assumed that there was a linear
increase over trials in the probability of selecting retrieval
since analyses of the data had suggested that there were no
significant curvilinear trends over time. Each subject was
assigned two parameters: the initial retrieval rate, and the
rate at which retrieval selections increased over time.
Despite having many free parameters, the base rate model
was only able to account for 71% of the variance in the
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Figure 4. The Base-rate model fit for Reder and Ritter.

individual subject strategy selections (see Figure 4),
significantly lower than the 85% produced by the SAC
model. The slope of the best fitting line was not
significantly different from 1 (slope=1.09, 1(39)=0.75,
p>.45), nor was the intercept significantly different from 0
{intercept= 0.032, t(39)=0.61, p>.5). Yet, Figure 4 shows
that there were serious deviations between the predicted
and actual strategy selections rates. Furthermore, the base
rate model could not explain why subjects would be
sensitive to the familiarity of operator-switch problems—it
would predict that the current base rate would be used no
matter what the familiarity of the operator-switch problem.

To test the model further, we applied the SAC model to
the data from Schunn et al’s Experiment 1 {described
above). In order to provide a much stronger test of the SAC
model, the model’s parameters were set 1o the same values
that were used in the simulation of Reder and Ritter. The
only parameters that we did not take from the simulation of
Reder and Ritter were the two subject-specific parameters:
the subject’s threshold, and whether they used the never-
retrieve rule for an operator.

As with the Reder and Ritter data, the SAC model fit the
new Experiment 1 data quite well, producing a r2 of .69
(see Figure 5). The slope of the best fitting line was not
significantly different from 1 (slope=0.951, {(254)=1.22,
p>.2), nor was the intercept significantly different from 0
(intercept=0.011, 1(254)=0.54, p>.5). Thus, the SAC model
generalizes very well to other data sets with all but the
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Figure 5. Model fit for all problems in Schunn et al. Exp. 1.



subject specific parameters held constant.

In sum, with the parameters set to the same values used
for the simulations of the Reder and Ritter data (but still
allowing subject-specific parameters), the SAC model
produced a very good fit to the data. The SAC model,
again holding all but the subject-specific parameters
constant, has also been applied to the second experiment of
Schunn et al. Unfortunately, for lack of space, we can only
say that the model produced just as good a fit to that data
set as was obtained for the model fits presented here.

Discussion

In this paper, we described the application of a model to
strategy selection data at the individual subject/individual
trial level, and did so across several data sets holding the
parameter values constant. Why were we able to provide
such a good fit at this detailed level? In other words, what
were the sources of power in the model? There are several
factors that we believe were important. First, we employed
a general class of model (spreading activation) that has
been successfully employed in accounting for many
aspects of human memory and behavior. By using a kind of
model that has already demonsirated a lot of generality, we
were more likely to find generality of our own model in
applying it to different data sets using the same parameter
values,

Second, the experiments that we modeled carefully
controlled subjects’ exposure to the problems (by using
novel problems). In this way, we were able to capture
individual subject performance without having to postulate
individual differences in pre-existing knowledge, which
normally would be very difficult to characterize with a
small number of parameters. The remaining subject
differences were general biases in strategy selection, which
were fairly easy to capture with two simple parameters.

Third, we yoked our model to each individual subject’s
history of exposure to the various problems, rather than
giving the model as input the average subject’s experience.
In this way, we were able to precisely capture the influence
of different experiences both across subjects and across
time. Not only is it likely that this feature contributed to the
power of our model, but it also ruled out a particular
excuse should we not have obtained good fits to the
data—using this method, we could not hide behind vague
claims about strange mixtures or orderings of problems or
as a source of individual deviations from model
predictions.

Finally, the experiments that we modeled provided a
reasonably large number of data points per subject. The
advantage of this is that we could posit two free parameters
per subject without leading to problems of over-fitting the

data, which in turn would have lead 10 lack of generality

across data sets. In general, whenever there are free
parameter associated with each subject, the number of data
points per subject rather than number of subjects seems
more crucial to being able to accurately test the model.

In sum there are several features of the experiments that
we selected to model and the way in which we conducted
the model fitting process that are likely to have contributed
to the strong fits that we obtained. There ‘is one final
feature of our model fitting process that deserves comment;
the methods of presenting and evaluating the model fits.
These methods of evaluating the fit of the models are not
the most commonly used ones. For example, typically one
computes some form of a goodness-of-fit test, which is
typically a sum squared error between predicted and actual
observations. We believe that this method has two serious
drawbacks. First, it confounds relative ordering deviations
and absolute magnitude deviations. That is, when there is a
poor goodness-of-fit, it is unclear whether it 1s caused by a
poor absolute magnitude of fit, or whether the relative
ordering of predictions are in error. Qur method of looking
at both r? (a measure of relative order relations) and the
slope and intercept of the best fitting regression line (a
measure of absolute magnitude fit) does distinguish these
two aspects. Second, there is an unfortunate property of
statistical goodness-of-fit tests: the mode! appears to do
better the fewer the data points. In other words, one is
punished for applying the model to large data sets. Third,
the absolute magnitude of sum squared error is not very
meaningful to the reader, whereas r? is. This is why we
believe that our evaluation methodology is better than the
typically-used chi-square procedure.
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