Modelling Cognition
Edited by P. Morris
© 1987 John Wiley & Sons Lid.

5

Initial skill learning: an analysis of how
elaborations facilitate the three
components

Davina H. CHARNEY and LYNNE M. REDER
Carnegie-Mellon University

1. INTRODUCTION: SKILL LEARNING AND THEORIES OF
COGNITION

Understanding the processes by which people learn is fundamental to any
theory of cognition. Accounting for learning adds constraints to theories of
cognition; not only must a theory account for adult capacities, but it must also
posit mechanisms for acquiring new capabilities as adult learners do.
Although the study of how information is acquired has been central in
memory research, only a few theories of cognition, problem-solving and the
like (e.g. Anderson, 1983; Kieras and Polson, 1985; Hayes and Simon, 1974)
have been concerned with specifying how a skill or procedure is initially
acquired.

[t seems natural and desirable to try to apply what we have discovered
about acquiring factual information to the study of how people learn new
skills or procedures, However, while the findings from the memory domain
are certainly relevant to the study of skill acquisition, they fall short of what is
needed. At the very least, the standard performance measures for fact
learning (e.g. recognition judgments, binary-choice decision tasks and recall
protocols) are inappropriate for measuring skill learning, which requires the
learner to apply his or her knowlege. Consider a budding scientist who has
studied inferential statistics in order to determine the reliability of experimen-
tal results, A fair test of how well this student has learned the various
statistical tests is not whether she can recall their formulae, but rather whether
she can select the appropriate test and use it correctly to analyze the data.

~if——

136 MODELLING COGNITION

Presented with two samples to contrast, the student must remember that there
is a test called the Student ¢-test and decide that it is an appropriate test for the
data at hand. Then she must retrieve the formuia for the test, find and plug in
values for the variables in the formula correctly, and solve for the correct
result.!

This example illustrates that although skill learning and fact learning both
involve the acquisition of new information, they differ in the types of
information that must be learned and the ways in which the learner uses the
information. The first obvious difference between fact learning and skill
learning is that a skill has an execution component that is quite specific to that
skill and the requirements for execution vary considerably from skill to skill,
The output for many skills comes in the form of complex motor activity, such
as pressing a certain sequence of keys or fitting together the parts of a device,
Ip contrast, the output modes for demonstrating mastery of a fact are general,
simple and well-learned: the learner vocalizes or writes the fact that is
retrieved from memory or signals whether the retrieved representation meets
some criterion (e.g. recognition or paraphrase match).

One reason for the variation is that skills are often built up out of
component skills, which are called on in the manner of ‘subroutines’. For
example, performing a -test involves at least two component skills: finding
the mean and the standard error of a sample. A different procedure might
involve finding a different mean, but using some of the same values to
determine the error term. The relationship between facts in a domain seems
gualitativcly different from the relationship between subroutines embedded
In a procedure. While it is commeon to ‘unpack’ a concept by retrieving related
concepts, the process is seldom as routine and unvarying as performing a fixed
subroutine.

Another difference between skill learning and fact learning is that the
context in which a fact is retrieved can facilitate access to the learned
information. A learner demonstrates fact learning by retrieving a fact in
response to a query. The query not only provides a retrieval cue, but it also
provides an appropriate occasion for retrieving that particular fact. In other
words, a person can be considered to have mastered a fact if he or she can
recall it when specifically queried. But recall of procedures when queried is
not sufficient for mastery of a skill. Knowing how to perform a skill requires
that the learner understand and appreciate the contexts in which a particular
procedure is appropriate. In the case given above, deciding to use the f-test
rather than some other test depends on knowing something about the
function of the ¢-test and something about the data to be analyzed. Granted, it
Is just as important to know when to use a fact as when to use a procedure.

1 . e 4
Remembering that the name of the test is “t-test” is not critical in this case, but in other skill

tasks (sucp as using a computer or constructing a proof), remembering the rame of a procedure
can be quite important.

ROLE OF ELABORATIONS IN ACQUISITION OF A COGNITIVE SKILL 137

The difference is, however, that learning a skill means knowing when to use
the acquired procedures but learning a fact does not. A test of skill learning
should measure the learner’s ability to choose procedures appropriately.

In addition to differences in what must be learned, there are also differ-
ences in how we view ‘mastery’ of a fact versus a skill. Although facts can vary
in learnability and strength, we usually do not judge ‘how well’ a fact is
recalled when it is recalled. In contrast, procedures not only vary in ease of
learning, but most require practice for any degree of competence to be
attained. That is why in skill domains, we classify practitioners as experts,
novices or intermediates. We do not say that someone is ‘skilled’ in a
particular domain until she can execute the procedures rapidly and rather
effortlessly. A person who is slow to execute basic procedures or who
rehearses the requisite steps ‘declaratively’ is usually judged to be a novice.

Because skill learning involves different output requirements and different
standards for proficiency, we need new, more sensitive measures in order to
study skill learning. But, more importantly, we need to consider closely the
cognitive mechanisms of skill learning and how they interact with those of fact
learning. If skill learning draws heavily on declarative knowledge, then we
might expect factors that affect encoding, retention and retrieval from
declarative memory to be important for skill learning. Conversely, if skill
learning and fact learning involve largely independent processes, then we
might not expect conditions that facilitate fact learning to have much benefit
for skill learning.

One model of cognition that carefully considers where declarative know-
ledge interacts with procedural knowledge is Anderson’s (1983) ACTs
model, Anderson follows Fitts (1964) is positing that learners initially acquire
a skill in declarative form, usually from oral or written instructions. Pro-
cedural knowledge of the skill, in the form of a production system, arises only
after hands-on practice. At first, in order to approximate the required skill
behavior, the learner uses a set of general-purpose productions to retrieve
segments of the declarative representation of the instructions, and translate
them into a series of actions. With additional practice, the learner gradually
constructs a set of skill-specific productions that directly incorporate the
relevant declarative knowledge, eliminating the extra step of retrieving this
information from declarative memory. As the productions are compiled and
tuned, skill performance improves dramatically; performance becomes much
more efficient and requires much less conscious attention.

In this model, declarative knowledge becomes increasingly superfluous to
skill performance as learners gain expertise, but the declarative representa-
tion is critical to the initial stages of skill learning. We might expect, then, that
factors influencing the formation of the declarative representation would
strongly influence initial skill performance. In particular, the form of the
verbal instructions on which the declarative representation is based is clearly

138 MODELLING COGNITION

quite important. If the learner cannot extract an adequate declarative rep-
resentation of what to do from the instructions, it is unlikely that he or she wiil
be able to approximate the skill, except perhaps through trial-and-error or
some other problem-solving heuristic. Further, since the initial productions
are based on the learner’s early approximations of the skill performance, the
form of the verbal instructions may critically influence what the skill-specific
productions look like. Surprisingly the issue of how verbal instructions
influence the initial acquisition of procedures is only beginning to receive
attention in the literature (e.g. LeFevre, 1985; Kieras and Pelson, 1985;
Hayes and Simon, 1974).

This chapter, then, is concerned with the initial stage of cognitive skill
acquisition; that is, how a novice learns a skill well enough 10 use it. We mean
to distinguish this stage, in which the learner acquires the bare essentials of a
cognitive skill, from later stages in which the learner becomes proficient.
Theories concerned with proficiency (e.g. the dynamics of speedup with
practice) have been developed by a number of researchers (e.g. Anderson,
1982; Newell and Rosenbloom, 1981; Rosenbloom and Newell, in press;
Schneider and Shiffrin, 1977; Shiffrin and Dumais, 1981; Shiffrin and
Schneider, 1977). Rather than trying to understand the development of
cognitive expertise, our goal is to explore more carefully the requisite
components of initial cognitive skill acquisition and what features of the initial
verbal instruction facilitate each component.

We will begin by outlining three components that we consider crucial for
initial skill learning. Then we will describe three types of elaborations that we
believe facilitate learning and illustrate the ways in which they facilitate the
components of skill learning. Finally, we will summarize our view as to where
elaborations are beneficial and where they are not.

2. A TRIPARTITE MODEL OF COGNITIVE SKILL ACQUISITION
We conceive of initial skill learning as consisting of three critical components:

(a) learning novel concepts and the functionality of novel procedures;

(b) learning how to execute the procedures;

{(c) learning the conditions under which a procedure is applied; and remem-
bering the best procedure to execute in a given situation.

In other words, learning a skill means knowing what procedures exist for
accomplishing various goals, knowing how to carry out the procedures, and
knowing under what circumstances to apply them (including remembering to
use them when the situation warrants). Each of these components can be
learned independently and each component can be a ‘bottleneck’ to acquiring
a skill. Furthermore, the relative importance of the components may Vary,
depending on the type of skill being learned: assembling a piece of equip-

ROLE OF ELABORATIONS IN ACQUISITION OF A COGNITIVE SKILL 139

ment, operating a device, using a computer system, solving problems. _Thls
¥) i
section will consider the requirements of each component in more detail.

2.1. Learning novel concepts and the functionality of procedures

For someone learning an entirely new skill, the idea of what kinds of th_in%s
can be accomplished and what objects the procedures act on may be entirely
unfamiliar. Consider someone who is learn?ng to use a computer text-edn(tior
(e.g. EMACS) for the first time. A proficient typist who has never used a
word-processor will consider it a novel concept to insert a word into a strgng
instead of erasing a line and retyping it. Features such as automatic hqel
wrapping, multiple windows into the same.ﬁle, keyboard macros and klll
buffers are other concepts that will be entirely new. In addmfm to nove
concepts such as these, the novice user must also find out what things can and
cannot be done with a text-editor. That is, the learner needs t'o knovn:' what
distinct procedures (in this case, what commands) are available in the
text-editing system and understand what each_ one does. , . .

It is important to distinguish between learning a procedure’s functionality
and acquiring a ‘mental model’ of the system .tllaat uses these procedures.
Learning the concepts and the function of 'md?wdual procedures does not
entail acquiring a mental model of a system (i.e. its components and how they
interact). Although a sophisticated understanding of the concepts and proce-
dures may involve the construction of a mental model, a mental model is nqt
always necessary for proficient skill performance. For example, many experi-
enced drivers have little more than a crude idea of how a car works. Tl_le va!ue
of a mental model to the novice learner depends on the type of_ skill bem.g
learned. As Kieras {1985) points out, a mental model of how a device wprks is
only likely to improve performance if the pfocedures for ogcratmg or
assembling the device can be inferred from knowing how the parts interact. In
a computer-operating system, the syntax and the names of commands are
oftentimes chosen arbitrarily, so having a mental model of how a computer
works is not likely to ilelp people learn and remember how to execute the
commands. On the other hand, when the goal is to trouble-shoot the sy§tem,
having a mental model can be very helpful. That is, whe_n the computer is not
responding in the expected way, it is much easier to diagnose tpe trogble if
one has a mental model of what the computer does under various circum-
stances. -

1.2. Learning how to execute new procedures

It is often crucial in skill learning to remember fairly arbitrary associations of
objects and functions (e.g. which button on a control panel produces thg
desired state) and to be able to reproduce exact sequences of symbols an

140 MODELLING COGNITION
actions. In this respect, skill learning is quite different from fact learning.
When seeking declarative information, people are usually highly tolerant of
gist reporting, paraphrasing and even slips of the tongue. It is irrelevant for
most purposes whether a fact presented in one syntactic form (e.g. passive) is
stored or retrieved in another {e.g. active). In contrast, there is low tolerance
for such variation in most cognitive skill domains. For example, computers
cannot commonly recognize a wide range of synonyms or abbreviations of
crucial terms. In fact, computers are notoriously ‘literal-minded’: when a user
presses the wrong key, the computer at best responds with an error message,
and at worst performs an undesired action. The computer has little or no
capacity to infer what key the user intended, even if the key he typed had a
similar label or was physically near the correct key. Given the current
technology, learners must strictly adhere to the vocabulary and syntactic rules
of whatever system, language or program they are using. Equally strict
conditions on the sequence of operations and the use of symbols are imposed
in many noncomputer skill domains,

The complexity of the execution component depends on the nature of the
procedure and the skill domain itself. In many domains, the task of learning to
execute a procedure consists of learning three elements:

(a) the name of the procedure;
(b) the rule describing a sequence of operations; and

(¢) the method of binding variables in the rule to objects in that problem
space.

These three elements can be illustrated most clearly in the case of computer
commands. Suppose that a learner is given the task of renaming a file. To
execute the procedure, the learner must first remember the name of the
command (e.g. RENAME). Then he must reproduce the sequence of argu-
ments that the RENAME command requires (e.g. type the name of the
command, then the current name of the file, then the desired name of the
file). In this sequence, the name of the command (RENAME) is a constant
term, but the present and desired names are variables. The learner must
determine the values of these variables for the present situation, and plug the
values into the correct places in the sequence.

The first and third elements, learning the name of a procedure and learning
to bind variables, are not required in alt skills, They are most often required in
skills like using a computer that involve a set of general, multi-purpose
procedures. Whereas the procedures in a computer manual can be used over
and over in novel combinations to accomplish a wide variety of goals, the goal
15 fairly fixed in an assembly task or a device operation task. For example,
when one is learning to put together a stereo phonograph system, there is a
specific, known object that a closed set of pieces is going to form. In this case,
the descriptions of the procedures can be completely explicit, naming the

1
|
}
!

ROLE OF ELABORATIONS IN ACQUISITION OF A COGNITIVE SKILL 141
exact parts that are involved at each stage. Each step in the a;serlrlbly 15
performed only once. Under these circumstances, there are no variables an
the procedures need not be named. _ N
The second element, the rule or sequence of operatlons, can take m 3;
different forms. Commonly, the sequence of operations comes in the fo;'m o
an ordered list such as a cookbook recipe, each step of Wthl:l may 1e ekr. to
distinct subprocesses (e.g. sautéing vegetablfzs as part of a recipe forllmak'll?g
spaghetti sauce). However, a list format is not appropriate to all s }i;
Mathematical formulaes and computer commands have a formal syntax w IE
may be expressed abstractly in the form qf a rule or template. To 1llus}:raftie tt e
diversity of these abstract rules, we provide three examples bel_ow. The first is
a formula for the -test for single mean {compared to a specified constant).
The second is the syntactic rule for the command to rename files on the
IBM-PC. The third is a template for defining functions in the computer

language LISP:?
-k (1)
s:\/ﬁ

where s is an estimate of the population standard deviation.

REN[AME] [d:][path]filename[.ext] filename[.ext] (2)
(DEFUN (function name) 3)
((parameter 1) {parameter 2) ... (parameter n))

{process description)

To execute the procedures for the s-test, one finds values ff)r all'of the
variables mentioned in the rule, performs the arithmetic calcqlatlons.mgnaled
by the mathematical symbols and solves for a numt.aric solution. This prc');ﬁ-
dure is quite different from the use of a syntactic rule or template.. e
sequence of operations for generating a RENAME command or defining a
LISP function from a template is to type a sequence of symbols that matches
the template in structure, in which each constant term (f:.g. DEFUN) 'and
each symbol (e.g. parentheses, colons, spaces) appears in the appropriate
location and each variable is replaced by the appropnatle value.-

The degree to which the rule for a procedure must be internalized depends
on the task. For many skills, executing the procedures should b.c automatic.
For example, once learners know how to use a computer text-editor, they use
the manual mainly to learn new features or to solve some um.expected problftm
or for an occasional reminder. They should not have any difficulty executing
the standard set of commands without much conscious attention. On the other

IThe rule for the rename command was taken from the official D_isk Operating System {DOS)
manual (Anonymous, 1983). The LISP template is taken from Winston and Hom {1981).

142 MODELLING COGNITION
hand, factors such as the number and complexity of the procedures, their
importance or their frequency of use may require learners to depend on
written instructions each time they perform a task. For example, airplane
pilots review printed check-lists each time they fly.

2.3. Learning conditions for application

As argued above, having a skill means knowing when to apply particular
procedures. In some cases, the conditions for application are perfectly straight-
forward. For example, when the procedures come in a strictly ordered
sequence, the precondition for any given procedure is the result of correctly
executing the previous procedure. The conditions for application may be
much more complex, however. In skills such as using a computer, there may
be multiple ways to accomplish a goal. Under certain conditions, one proce-
dure might be much more efficient or advantageous than the rest. If novices
do not appreciate the conditions under which the procedures are most useful,
they might overlook procedures that would be very useful to them. Instead,
they might always choose to use some inefficient procedure that they hap-
pened to learn first or that may initially be easier to remember.

Card, Moran and Newell's (1983) study of experienced users of text-editing
system demonstrated that experts have well-defined rules for selecting be-
tween procedures. The text-editor involved offered two basic methods of
moving the cursor: searching for a specified string of characters or moving the
cursor up or down a line at a time. The subjects had consistent strategies for
choosing between these methods (e.g. use the search method if the target
location is more than three lines away, use the line-feed method otherwise).
Presumably, these computer users developed their strategies themselves, but
their early learning was not observed. At least some of the subjects had
developed fairly inefficient strategies. For example, one subject never used
the string search method; she used some variation of the line-feed method
even when the target location was over ten lines away.?

If we wish learners to use a repertoire of procedures appropriately, it may
be necessary to motivate the use of some procedures by demonstrating the
advantages they have in particular situations. Acquiring a repertoire goes
beyond the ability to decide between specified procedures on demand. Even if
a person can, when queried, consistently judge which of two procedures is
more efficient in a given context, he may not always select the most efficient
one in real situations. The learner may fail to ask (or be unwilling to ask) for
each subgoal, ‘which procedure is optimal here?’ Computing the relative costs

2Card, Moran and Newell successfully modelled how the experts used selection rules, but they
were not interested in the relative efficiency of the rules their subjects had come up with nor in
how the subjects had acquired their rules.

T‘

i

i

]
T

ROLE OF ELABORATIONS IN ACQUISITION OF A COGNITIVE SKILL 143

of procedures can be time consuming and teFiious, and not \.Nitl,lolut its shareagi
the costs. Therefore, unless a procedure easily "comes to mmdl, it }rlnaybr.fl:.:tn :o
unused. This means that skilled perf-ormance mvolv;s no.t cml ybt let ;: 1axb§lzm
recognize the situations in which a given proc_edure is optimal, but the y
to retrieve the best procedure easily anc:l rapidly wh-en necessary. bl
It is worth noting that learning sophist-lcated selection stratcgies is pro .at y
unnecessary for skill tasks such as learnm_g to assemble a device orl operate 2
piece of equipment. Since the procedurf:s in thesg tasks are less mu ;Purpot?gr,
they are also less interchangeable. It is more ll}cely that the con t1}111011sth£m
application in these tasks grow out of ordering constraints rather

considerations of efficiency.

3.4. The independence of the three components of skill learning

The three components of skill learning that have just been descr}bcd are fglrly
independent of one another. A learner may know that a'spec1ﬁc pr?celu_r::
exists for solving a problem without knowing or remembmjmg how to dp[‘; y it
For example, a child knows what shoe-lying is and 'wh_en it needs to be: one,
but lacks the ability to carry out the procedure. Slmlla_rly, by rote learning,
one may learn to perform a series of steps without knowing what the steps ari
for. Finally, one may understand what a procefiurf: dogs and how to carrg i

out, but not know when or why to use it. This situation often arises W en
novices consult computer manuals: they finish reading a c.iescn_pnon of a
command, understand more or less what it does and how tc.) issue 1t,_but lack
the slightest inkling as to when they would ever want to use it or how it relate.s
to other commands they have learned. Since each of the thre'e components is
necessary to skill learning, each can constitute a ‘bottleneck’ for acquiring a
skill,

3. THREE TYPES OF ELABORATIONS FOR FACILITATING SKILL
LEARNING

The guestion we address in the remainder of this chapter is h(.)w t-he presen-
tation of information in an instructional text can facilitate learning in tl}e three
components just described. We will focus on a partic‘:ular aspect of instruc-
tional texts, namely the degree to which the main points are elaborated.
The effect of elaborations on the acquisition of information from a text has
been the topic of considerable speculation and research (Reder, Chaxjney ar_ld-
Morgan, in press; Anderson and Reder, 1979; Reder, 1976, 1979, in press;
Weinstein, 1978; Mandl and Ballstaedt, 1981; Mandl, Schnotz and Tergan,
1984; Bransford, 1979; Chiesi, Spilich and Voss, 1979; Craik and Tulving,
1975). In the view of most researchers, there are several 'rea.sons why
elaborations should help subjects fearn and remember the main ideas of a

144 MODELLING COGNITION

text. Elaborations provide multiple retrieval routes to the essential infor-
mation by creating more connections to the learner’s prior knowledge. If one set
of connections is forgotten, it may be possible to retrieve the desired infor-
mation another way. Further, if the learner forgets an important point, it may be
possible to reconstruct it from the information that is still available. Not af|
the evidence on elaborations is positive, however. Reder and Anderson
(1980, 1982) found that elaborations can impair learning and retention of the
main points of a textbook chapter as compared to studying a brief summary of
the main points. In contrast, Reder, Charney and Morgan (in press) found
that when the goal is to use the information in a skill-learning task, elabora-
tions can improve performance.

This section defines the essential characteristics of three types of elabor-
ations that we think are especially important for skill learning: analogies and
two types of examples (simple instantiations and situation examples). After
these types of elaborations are defined, the next section will describe how they
may specifically contribute to skill learning.

3.1. Analogy

An analogy draws a comparison between a concept that a person wants to
learn and concept in a different domain that the learner is already familiar
with. In Gentner’s (1983) terminology, the former is the ‘target concept’ and
the latter is the ‘base concept’. Gentner proposes that the quality of an
analogy depends on what type of information can be mapped from the base to
the target construct. Good analogies map across relationships between
objects rather than specific attributes of objects. For example, in the familiar
analogy between the solar system and the structure of the atom, the attributes
of the sun (HOT and YELLOW) are not mapped to the nucleus of the atom.
What is mapped is the relationship of the sun to the planets (i.e. the sun is
MORE MASSIVE THAN the planets and the planets REVOLVE
AROUND the sun).

We suspect that analogies reduce the processing load during learning by
facilitating chunking of the information in the target domain, That is, the
structure of concepts and relations from the base domain can be used to
provide temporary labels on components of the target idea while the problem
or task is being solved. Since the base labels are well understood, the pointers
to the relevant structure(s) in memory are not lost while the learner works
through the critical new aspects of the target domain.

3.2. Exemplification

Like analogy, exemplification involves a mapping between two concepts, but
the mapping is more tightly constrained. We will follow Hobbs (1978) in

ROLE OF ELABORATIONS IN ACQUISITION OF A COGNITIVE SKILL 145

defining exemplification as a relationship be_tween a rule (or genera'}‘lzhatlorllg
and a specific instance (or example)'for which the rule hc_)lds true. The ruI

and the example are related by sharing th'e same underlying proposition. r:
other words, the relationships beween c_)b]ects in the general constr;x_;t n:us

map across to the specific construct. Unlike a_nalogy, howevc?,r, exempli x;a ion
also constrains the mappings of object attl_'lbutes. The objects in a rule zlnfrie
abstract, general categories. The objects in an example are more spect: ;
members of those general categories. That is, an example can be construc_: e

by substituting one or more specific, concrete terms for gcperz.:l terms in]a
rule. To see how this works, consider the following generalization—example

pair (taken from Charney, 1985):

Lawsuits are now pending which seek to hold handgun manu- {4)
facturers and distributors liable for the damage caused by their

products,

The family of James Riordan, a Chicago police officer killed by (5)
a handgun, is suing Walther, the West German fnaker of _the
gun and International Armament Corporation, its American

distributor.

Statement (4) is a generalization that asserts th'e e?(istence of a new type ;;f
jawsuit, initiated against manufacturers and distributers c')f handgunsl) 3;
people who have been hurt by the handguns. Statemgnt (5)is an example od
this generalization. It asserts the existence of a partlculgr la\?isu3t, lmtla:;
against a specific manufacturer {Walther), anc} a spec1ﬁc_: distributor (the
International Armament Corporation), by the Riordan family, who were hurt

ames Riordan was killed by a handgun. _

wril?llllejclassimcmber constraint on examples leads to an important dlffel.rence
between analogy and exemplification. The bas_e‘ and target concepts mTan
analogy come from different domains: a familiar base and an unfa;m iar
target. In exemplification, on the other hand, th; rule and the examp e ar;:1
both from the same domain, the domain of the skill to be learned. Since bot_
constructs are relatively unfamiliar, there is the danger t%lat the legrner will
not understand the rule well enough to make the appropriate mapping to the
example. o ‘

Despite this danger, exemplification may aid learning in seve_ral ways. Flrsti
seeing typical objects that the rule might operate on can clarify the gene_rg
terms in the rule. The general terms are linked to more concrete and speciic
concepts. Second, seeing a variety of examples and coupterexamples can help
the learner define the scope of the rule’s application {Nitsch, 1977; Tennyson,
1973; Tennyson, Woolley and Merrill, 1972). Third, f:xamples may have an
important role for establishing the validity or the utility of a rule (Perelman

146 MODELLING COGNITION

and Olbrechts-Tyteca, 1969; Schoenfeld, 1979; Mandl, Schnotz and Tergan
1984; Gilson and Abelson, 1968). Finally, learners can use examples o}
correctly solved problems as models for solving new problems (e.g. Anderson,
Sauers and Farrell, 1984).

With this last use of examples (serving as models for solutions to new
problems), the boundary between analogy and exemplification begins to blur.
On the one hand, using examples as models is analogic in that there is a
specific-to-specific mapping between the constructs (the example and the new
problem}. Furthermore, as we would expect in an analogy, the ‘base’ example
is more familiar than the target problem by virtue of having been seen or
worked on before. On the other hand, unlike analogy, the examples that are
used as models are often introduced to the learner in the context of a general
principle of rule. Further, the model problems come from the same unfamiliar
domain as the novel problems they are mapped to. Consider, for exampie, the
problems that are laid out in the course of a mathematics chapter. A general
formula or algorithm is exemplified with specific problems that can then be
used as models for the chapter-end exercises. Anderson, Farrell and Sauers
(1984) explicitly combine general-to-specific and specific-to-specific map-
pings in their analysis of subjects learning to write LISP functions. The
subjects were presented with an abstract template for defining a function in
LISP along with an example of a correct function definition. On the basis of
protocol analysis, Anderson et al. conclude that subjects first make the
exemplification mapping between the template and the example, then anal-
ogize between the example and the new problem. In spite of the dual nature of
this type of learning, we will use the term exemplification whenever a general
principle or rule or procedure is instantiated with a specific example within a
prescribed domain, even when we assume that the example is later used as a
model.

3.3, Situational examples

We will single out situational examples as an especially rich type of example.
Situational examples differ from other kinds of instantiations in that they
illustrate the contexts in which a procedure applies rather than simply
illustrating the details of how to execute an abstract procedure. The distinc-
tion we are drawing between simple instantiations and situational examples is
similar to that drawn by Mandl, Schnotz and Tergan (1984) between ‘illustra-
tive examples’ and ‘application examples’. Both types of examples provide
specific instances of the general terms of a rule, but the types differ in what
other kinds of information they provide.

To illustrate the two kinds of examples, consider the following three
sentences. The first is a rule from a text for teaching students to improve their
writing style (Williams, 1981). The second simply instantiates the concepts in

R

ROLE OF ELABORATIONS IN ACQUISITION OF A COGNITIVE SKILL 147

the rule, and the third is a situational example:

When a nominalization follows an empty verb, change the nom- (6)
inalization to a verb that replaces the empty verb.

For example, nominalizations such as investigation, inquiry ot (7)
response often follow empty verbs such as make or conduct. Use
the verbs investigate, inquire or respond instead.

For example, change the sentence ‘The police conducted an (8)
extremely thorough investigation into the incident’, to ‘The
police investigated the incident extremely thoroughly.’

The example in statement (7) instantiates the general terms ‘empty verb’
and ‘nominalization’ but does not provide a context in which they might
occur. The situational example (statement 8) instantiates the general terms
within a specific context. The context illustrates something about the situ-
ations in which the rule should apply: the nominalization need not follow the
empty verb directly. It also illustrates something about how to carry through
the solution: changing a noun to a verb can necessitate changes to other parts
of the sentence,

If instantiation is the major contribution of an example, then both types of
examples should aid performance to the same degree. But if it is important to
use the example as a model or to motivate the use of a procedure, then seeing
a situational example should improve performance more than seeing a
conceptual example. Situational examples may also help people remember a
rule when they are working on a task, because seeing the task may remind
them of the example (Ross, 1984). Finally, situational examples may be
better for demonstrating the utility of the rule, by showing rather than just
asserting that following the rule leads to a desirable outcome.

4. THE INTERACTION OF ELABORATION TYPES AND THE
COMPONENTS OF SKILL LEARNING

In this section, we recapitulate the three components of skill learning and
analyze the potential benefits that specific types of elaborations may have for
learning a specific component. In particular, we claim that situation examples
are the most useful for skilt learning because each example can contribute to
learning in all three components. On the other hand, while analogies can be
constructed to illustrate each component, they are more likely to help people
learn the functionality of a procedure than how to execute it or when to select
it. We will begin by briefly discussing the role of analogies in skill learning,
describing their benefits and limitations. Subsequent sections will show in
more detail how examples can contribute to the three components of skill
learning.

148 MODELLING COGNITION
4.1. The role of analogies in skill learning

Initially, one might expect analogies to be the most helpful form of elabor-
ation for learners since, unlike examples, they involve constructs in a base
domain that are highly familiar to the learner. As such, analogies may be very
useful for clarifying unfamiliar concepts. Suppose a novice computer user is
learning to use a personal computer with floppy disk drives. The following
analogy can help the user anticipate some features of diskettes:

A diskette is similar to a small, flexible phonograph record, ex- {9
cept that instead of storing sounds, it contains information
that the computer can read, add to or delete.

By mapping information from his previous knowledge of phonograph
records, the user may anticipate that diskettes are used in a horizontal
orientation and that it is unwise to let the surface of the diskette become dirty
or scratched. The usefulness of the analogy is somewhat limited, however.
Leamners may draw spurious assumptions from the analogy, e.g. that infor-
mation is stored on a diskette linearly, asitison a phonograph record. Or they
may assume that, like phonograph records, diskettes must be removed from
their protective covering when they are used.

Analogies may also be constructed for motivating the use of some proce-
dures. One procedure that many computer users must learn is how to specify
the location of the file or directory they want to work on. The following
analogy attempts to motivate the choice between two options for specifying
the ‘path’ through a directory structure. The choice arises in the DOS
operating system because paths optionally begin with a backslash symbol (\).
The backslash signals that the path is to start at the top-level (or ‘root’)
directory. If the backslash is omitted, the path is assumed to start at the
current directory (which may or may not be the top-level directory). This
analogy compares the specification of a file in a directory structure to dialling
a local or long-distance telephone call.

When should you specify a path that begins at the root direc- (10)
tory? It may be useful to draw an analogy to using the tele-
phone to make long-distance calls. When you are calling a
number within the current area code, you do not have to dial or
specify your own area code. You just dial the number you want.
This is like leaving off the first backslash in a path; the computer
assumes you want to stay within the current directory. However,
if you want to call someone outside the current area code, you
dial ‘1" and then the new area code and then the number. The
‘1" that you dial first is analogous to the backslash for ihe root
directory, and the new area code is analogous to tix uc of

~p—

ROLE OF ELABORATIONS IN ACQUISITION OF A COGNITIVE SKILL 149

another subdirectory where the files (or phone numbers) are
stored.

This analogy clarifies the concept of a path and t_he appropriate circum-
stances for starting the path at the root directory. Again, howc:.ver, the z?na‘logy
is fairly fragile. For instance, the computer allows you to overspecify _ the
location of a file, but the phone company does not. That is, you can specify a
path to any file starting at the root di!'ecFory, ,even a file in the current
directory. This would be analogous to dialling ‘1 anq your own area <code.
The analogy also breaks down in a very common circumstance: when the
current directory is the root directory and you wish to spec_:nfy a path to a
subdirectory within it, no backslash is needed. If all exceptions have to be
explained to the user, the analogy may be more .trouble_ than it is worth.

A more important drawback of the analogy is that it c‘loes not help t.he
learner acquire the particular procedures peeded for using Fhe operating
system. That is, knowing that an area code is ana.logous to a directory name
does not help the learner master the system-speclﬁf: conventions for specify-
ing a path through a directory structure. So even if the analogy were more
robust, learners would still have to rely on other means to learn how to
execute the procedures. ' .

As this discussion illustrates, it is possible to construct analogies for various
components of skill learning, but the benefit of analogies is limited. Analogies
can clarify unfamiliar concepts and procedures, but often cannot hold up at
the level of detail to which learners must understand and apply the concepts.
Analogies are probably least appropriate for elaborating on the e)fecutlon
component of a skill. We believe that examples drawn from the domain under
study, though less familiar than the base domain of an analogy, are more
useful to the learner in the long run. If examples are carefully construcleq,
they may simultaneously clarify the function of a procedure, how to execute it
and when to select it.

4.2. The role of examples for conveying functionality and motivating
procedures

Below we introduce two new concepts from computing to illustrate how
situational examples can motivate us well as explain a concept or procedure.
To give more force to our claim that rich situational examples are best f_or
introducing or teaching these concepts, we will present the concepts first with
the impoverished examples and then with richer ones.

4.2.1. Command editing

At the time of this writing, using a command editor within. an operating
system is a relatively novel concept, even for people familiar with computers,

150

MODELLING COGNITION

5130?3 this feature is not available on many operating systems. Comm
::h 1tmgtrcfers c;o the ability to retrieve commands that were already issuecaiuzd
e system and then use them again, either reissui)
- ‘ . . , eissuing them verbatim or issuj
adr.n.odlﬁed (edited) versm_n of the command. The functionality of commua]:(gi
editing can be conv:i:yed with rather straightforward examples; however, if th
zxamp!es_do not illustrate the motivation for its use, learners wi‘ll no‘:
usgr;c:ate thedfeature and when it is most useful. Consequently, they will not
procedures regularly and wi : i
e g y ill probably forget all about them fairly
Consider the following example that explains what command editing

means, but tdllb to motivate its use (tht: CXdlllple pelld“ls to a IllOdIIlCd Y

Suppose you have typed the followi

into your computer— ing sequence of commands (11)
$dir

$finger

$go .chap

‘The first command in this sequence produces a listing of the con-
tents of the current directory; the second, a listing of the people
currcn.tly using the machine, and the last requests that the cgr-
rent directory be changed to a subdirectory called ‘chap’.) Now
Suppose you want to list the contents of the ‘chap’ subdir;:ctory
Using command editing, you press the up-arrow a few times:
so that 3go .chap, then finger, then $dir appear on the com-

mand line. Now you need onl
- y press the return key to rei
the $dir command for the .chap subdirectory. Yo e

COE:E a(t;ov;_ t:zxample 1s sufﬁcnent. for explaining the functionality of the
mand editing procedure, but is poor for motivating its use in that it
pro]:Ides little or no savings in keystrokes over typing a new dir command. In
f.,.u:uj ;nS::atr;:EIt;, ti:ic usefuiness ‘of the prc?cedure is obscured and no nm;ice
would see eed to spend time learning it. The following example, in
rast, should make much clearer the usefulness of the command editor.

Suppose, for example, you want to copy a number of files from (12)
someone else’s account on another system. To copy the first
file (calleq ‘draftl.mss’), you must specify a long path to the
relevant directory in your friend’s account on the other machine

$copy cmpsyb::[wells.papers.curchap]draftl.mss *.»

Suppose you want to copy another file called ‘final.mss’ from

ROLE OF ELABORATIONS IN ACQUISITION OF A COGNITIVE SkiLL 151

that same location. One way 10 do so would be to type a new
copy command that would look exactly the same as the com-
mand above, except that ‘final.mss’ would appear in place of
‘draftl.mss’. However, retyping the command will require 58
keystrokes for each file you want to copy. And if you enter the
command with unnoticed typing mistakes in the path or the
filename, you will have to type the entire command again. Com-
mand editing saves you all of this retyping. Instead of retyping,
you simply ‘recall’ the last copy command and edit it to change
the name of the file. Typing the up-arrow key brings back the
last command. Then, by striking the jeft-arrow key, you can
move the cursor leftward to the specific characters in the file-
name that must be changed. When you are finished changing
the name of the file, press RETURN to issue the modified com-
mand. By editing and reusing your first copy command, you save
nearly 40 keystrokes for each file you have to copy and you
reduce the chances of error in retyping the whole command.

Both examples clarify the concept of reissuing 2 command. By specifying
the sequence of keys that must be typed, both examples also instantiate the
rules for executing the command-editing procedures. Only the situation
example, however, illustrates the conditions under which the command-
editing procedure is more desirable than the procedure for issuing a new
command. In particular, command editing is worthwhile when you must type
a number of long, similar commands. We will return to the issue of learning

when to use a procedure in section 4.4 below.

4.2.2. Subdirectories

Consider another example from the same general domain. We have men-
tioned subdirectories in the course of the preceding example. This construct
may aiso be unfamiliar to many readers of this chapter. Simply stating that a
directory can be divided into subdirectories is sufficient for ‘explaining’ the
concept, but it is unlikely that the user will be sufficiently motivated to acquire
the cluster of skills needed to make use of such a facility.

The following example, taken from the IBM DOS Manual (Anonymous,
1983), illustrates the concept more fuily along with some rationale for the
usefulness of subdirectories, but adds little to the reader’s sense of how
subdirectories might facilitate day-to-day activities on the computer.

DOS Version 2.00 gives you the ability to better organize your (13)
disk by placing groups of related files in their own directories
—all on the same disk. For example, let us assume that the XYZ

152 MODELLING COGNITION

company has two departments (sales and accounting) that share
an IBM Personal Computer. All of the company’s files are kept

on the computer’s fixed disk. The local organization of the file
categories would be viewed like this:

. Disk
Sales - Ac;cb'unting
David J oanne Don "Karol
Reports | Réports Reports -.Reports
Custc;mer.lst Accts'.rec

With DOS Version 2.00, it is possible to create a directory struc-
ture that matches the file organization. With this ability, all of
DAVID’s report files can be grouped together in a single direc-
tory (called REPORTS), separated from all the other files on
the disk. Likewise, all of the accounts receivable files can be in
a unique directory, and soon.

The example above implies that subdirectories are only useful when
different people are using the same disk. Even then, it does not illustrate the
advantage subdirectories have over a single directory for any given user. In
order to convey the usefulness of subdirectories, the learner might be shown a
‘one-level’ directory filled with many unrelated files and told to imagine trying
to find a file for which the name can be recognized but not easily recalled. The
figure below is an example of a listing of files in a flat or one-level directory.

Directory _CMPSYB::PSY$SUSER:{ANON]

2APA REF;6 28CS.DAT;1 ABHRTR3.MSS;7 APAREF.LIB;1
CAU.MSS;15 CHP2BIB.AUX;1 CHP2BIB.MAK;3 CHP2BIB.MSS;10
CHP6BIB MAK;3 CHP6BIB.MSS;12 CHP7BIB.MAK;1 CHP7BIB.MSS;14
CIANCI.MSS;3 COLDSA.DAT;1 COPING1.DAT;1 DEBBIB.AUX;t

DEBBIB.MSS;3 DEBBIB.OTL;1 DOCU.MDR;1 DOCU.MSS;1
EMACSINIT.;1 FILE2.0OUT;3 FMC.DAT;1 FORM.ERR;2
FORM.LET;! FPRO.DAT;2 FRDPRO.LNO;1 FRDPRO.MS$S;1
FREUD.LNO;2 FREUD.MS8;13 FREUD2.LNO;1 FREUD2.MSS;1

GPSCIBIB.AUX;3 GPSCIBIB.MSS;4 GRADE.BAS;1 HEARTBIB.AUX;1
HEARTBIB.MAK;10 HEARTBIB.MSS;19 HEARTBIB1.MSS;3 HRTBIBADD.MAK;3
HRTBIBADD.MSS;2 IMP.FRM;2 IMPFRM.MSS;8 INST.MSS;1

INTERR.SPS;1 JPAREV.MSS;1 JUNK.DT;1 JUNK2.DT;1
LMFF.MS8;1 LOGIN.COM;6 LOT.OTL;1 LOT.OU1;1
LOT2.0TL;10 LOT2R.0OTL;5 LOTA MSS;8 LOTREF.AUX;19

LOTREF.MSS;18 LOTREF.OTL;14 LOTTAB4.MS5;13 MAILMAI;1

|

153
ROLE OF ELABORATIONS IN ACQUISITION OF A COGNITIVE SKILL

H MFSBIO.MSS;9
: MBOX.;2 METHOD.MSS;4 '
MALIAS";Q MIKE.OU1;1 MYAPA.LIB;2 MYAPA.REF;2 0G5
MlxlféhésC’ON‘l MYREG2.CON;1 NETLOGIN.COM;2 NELSSEéRS\éER.L H
M S CS.DAT : EAR.;1 P1.MSS;
; NOTES.MSS;2 NY 3 '
NE:\JI’:gSS‘IDAT’Z P3.MS5;11 PCORR.SPS;1 giligdszs.zo
P2. ' . g e ;

: L.DT;1 PILL2.DT; -
PILLI:I%%NSAT‘I El:'Il;i-‘EZ.NlSS;l-i PREFACE.MSS;3 PRETETS'{.MSSQ
}I:gz)o DAT;I , PROT.DAT;1 - QUES.;1 gggSMs,Sl

UES"l" MSS;6 RA.MSS;1 RALOT.SPS;1 M.PLE r,ﬂss'l
9 vl l ’ SA3.DAT;1 SA3.SRT;3 SA b .DT.I,
:.ERE.I; MSS;3 SAREF.OTL;3 SCHBISBS.T\:SS;ZS ggggND 065.6

31 SCRIPT.MSS;1 SCS.MS5S; . 5
SgﬁiEBlfggg‘t SF2F.5PS;3 SHVITA.MSS;31 SHVII;TF?-II.MSSJ
gIG LE':F‘I l SIGMA1.MSS;1 SIGNUP.;1 SD;.S Tx:r.l
S[XlQUEj‘l SOCANX.DAT;] SOCSUP.MSS;3 :;M.Mssjl
SPS.SI.TXT;I SPSS2.TXT;1 g'{JAP:gli?r SS9 o 3 H

4 SUP.;1 ’ H . ‘

i‘l\ih;; :44323 TABLE1.MSS;1 TABLE2.MSS;1 TABLE4.ERR;1
TABLE4.MSS;1 VCR.;1

Total of 134 files.

tly

hey gave to a file. They correc

ften people forget the exact name t ey

bcfi)eve thI; tit)aey can often recognize the namil from a ;omflt;tse rlr::‘t:;ga:f ltgz
- however, in a directory such as the one a .ov , nar

?iiznnaﬁis;night have to be inspected. Contrast the directory listing above

with the one below:

Directory __CMPSYB::PSYSUSER:[NEAT—NIK]
; 0.DIR;1
COURSES.DIR;1 EMACSINIT.;1 EXPER.DIR;1 INF!

; ISC.DIR;1
LOGIN.COM;57 MALIAS.;6 MAIL.;17 M
MSS.DIR;1 PLAN.;1

Total of 10 files.

Each of the subdirectories (i.e. the entries with dir, sufﬁxets:j.ma);oic;&tg;
files and still deeper subdirectories (e.g. undel;‘;c.:ourtscs: ar:‘ ,S:;l t;:':cdata o
i ‘exper’ are subdirectories .
specific courses, and under ‘exp . i e may still
i i i hing for a particular
materials for specific experiments.) Searc] e ey of
i ; ming the user knows the caleg
take some looking around; however, assu \ o
the file, the number of individual filenames that must be inspected is m
smaller. ' . . .
By contrasting the situations for finding a ﬁle. with and w::gpu::tz::)eilare
tories, the pair of example directories above clarfﬁes whgt subdire fortes > ;
as weil as motivating the circumstances for thelr_ Cl‘:i;tl.o;‘l S:.sgi.lyu; ety
tegorized fairly . _
user has a large number of files that an be ca y
constructed sgituational examples can thus 111us}rate both why the feature
useful and when it is most appropriate or efficient to use.

154 MODELLING COGNITION

4.3. The role of examples for learning how to execute procedures

We believe that examples can give the learner the most concrete, most specific
picture of exactly what to do while executing a procedure and making the
necessary adjustments to specific task situations. The procedures that benefit
most from exemplification are those that involve the interpretation of a
general rule. An unelaborated rule, with its special notation, variables,
symbols, general terms, etc., is usually too abstract for learners to com-
prehend. In this section, we will describe various ways in which examples can
facilitate execution, including clarifying the spirit of a rule and providing a
model for future solutions.

4.3.1. Learning to integrate a collection of operations: command editing

Command editing, a procedure introduced in the last section, is not a difficult
concept to grasp; however, whether or not it is easy to execute depends on the
nature of the system implementation. Both the DOS and VMS operating
systems have command-editing features, but the implementations differ in
several important respects, such as providing external cues to relevant oper-
ations. For example, on the IBM-PC, the key that recalls the previously issued
DOS command is the F3 button. Of the ten function keys on the keyboard,
there is no obvious reason why the desired key should be F3. Once the
previous command is recalled, the user may edit it using a key labeled ‘Ing’'
that toggles the system between insert and overwrite modes, and a key labeled
‘Del’ that puts the machine into delete mode. In contrast, it may be easier to
remember how to initiate command editing in VMS because there are
up-arrow and down-arrow keys that are uniquely associated with going back
over a buffer of previously issued commands. Once a command is recalled,
however, it may be harder to remember how to toggle from insert mode to
overwrite mode because there are no overt function keys; the relevant
sequence of keystrokes is the non-mnemonic controi-a.

Command editing thus consists of a collection of operations for viewing and
retrieving items in a buffer and changing the mode or state of the computer.
The operations themselves are fairly simple: usually consisting of a single
keystroke. As a result, the execution component of command editing is not
easily described with a general rule; rather, learners must remember all the
component operations and determine how to sequence them. Situational
examples that show learners a complete interaction should be very valuable.*

The most difficult aspect of learning to execute this type of procedure may
be remembering the arbitrary association of a key and a function. An

4The situational example about command editing presented earlier (example 12) provides
much of the necessary description. To have fullest effect, the editing operations should probably
be described more fully and should be set off from the body of the text.

‘W"

ROLE OF ELABORATIONS IN ACQUISITION OF A COGNITIVE SKILL 155

additional benefit of examples may be to strengthen memory traces for such
associations through repetition in a concrete context.

4.3.2. Learning to generate instances of a rule: renaming files

Among the types of procedures that are hardest [.0 learn to execute are those
that require the learner to generate a particular instance of.an abstract rule.
Examples of these procedures were provided earlier: lc?rnlng to pPTrfor'm a
(-test, learning to issue computer commands, or deﬁm.ng a function in a
programming language. As discussed above, executing this type of procedu.re
requires that the learner remember the name(s) of the procedure, the dgtzuls
of the rule or sequence of operations and how to assign values to any variables
that appear in the rule. _

Examples can help people learn this type of procedure in several ways.
Consider the following typical example that was intended to help learners
parse a rule, in this case, a rule for renaming files on the IBM-PC. In the
manual, the example in (15) follows the general rule in (14).

REN[AME)] [d:][pathlfilename(.ext] filenamel.ext] {14)
For example, the command:

REN B:ABODE HOME (15)
renames the file ABODE on drive B to HOME.

The example clarifies some notational aspects of the rule. Elements that
appear in square brackets in the rule are optional; in the example, the last
three letters of the name of the command and the path are omitted. One
problem with the example is that it does not clarify under what conditions the
optional clements can be omitted. A series of situational examples that
contain different combinations of optional elements might be necessary to
illustrate these points. The example does begin to illustrate the distinctiqn
between constant terms and variables. Elements in the rule that are printed in
italics are variables. In the example, the italicized elements have been
replaced. The d: is replaced by B: and the first instance of filename is replaced
by ABODE.

One serious problem with this example is that the filenames ABODE and
HOME do not seem very typical of real filenames and, more importantly,
they do not signal which is the old name and which is the new name of the file.
If learners have trouble figuring out and remembering the order of the
arguments in the rule, remembering this example is unlikely to help them.
Some manuals attempt to solve this problem with examples like the following:

RENAME OLDFILE NEWFILE (16)

156 MODELLING COGNITION

While the ‘filenames’ in this example do signal the function of the argu-
ments, they are far from typical examples of filenames. Since real filenames do
not typically refer to functions in rules, using this type of example may
ultimately confuse the learner. The filenames are poor illustrations of what

the ‘fillers’ of the argument slots may look like. The following situational
example is better:

Suppose you have a file called BUDGET that contains your (17)
budget for 1986. Now you want to create a new budget for

1987, but you need a way to keep the files for the two years
distinct. The command:

RENAME BUDGET BUDGET.86

changes the name of the existing file BUDGET to
BUDGET.86. Now you can create a file for the new budget

called BUDGET.87, and it will be easy to distinguish the two
files.

In addition to clarifying aspects of notation, this example also clarifies the
functions of the two ordered arguments or parameters in the rule: the first is
the old name and the second is the new name. The example also helps to
motivate the use of the RENAME command, by presenting a situation in
which renaming a file makes sense. As mentioned above, additional examples
of the same sort may be needed to illustrate other aspects of rule.’

The results of Reder, Charney and Morgan (in press) suggest that rich
examples of correct commands help people learn to generate their own
commands. Indeed, elaborations on the execution of procedures proved to be
more important to learners than elaborations on the function and motivation
of the commands. We systematically varied whether or not a computer
manual contained syntactic elaborations (e.g. examples of syntactically cor-
rect commands to illustrate more abstract rules for the commands) or con-
ceptual elaborations (e.g. analogies illustrating the basic concepts, examples
of situations in which a command would be useful). Factorially combining
the two types of elaborations produced four versions of the manual. Figures 1
and 2 are corresponding excerpts from two of the manuals, describing the
CHDIR (‘Change Directory’) command; Figure 1 contains just conceptual
elaborations and Figure 2 contains just syntactic elaborations.

$The rule itself, taken from the DOS manua, is not very informative about the function of the
arguments (or parameters). The following statement of the rule might be better:

RENAME {location and current name of file] [new name of file]

Research suggests, however, that even this form of the rule benefits from exemplification
{Reder, Chamey and Morgan, in press).

ROLE OF ELABORATIONS IN ACQUISITION OF A COGNITIVE SKILL 157
CHANGING THE CURRENT DIRECTORY - CHDIR

i i the “current” directory

command allows you to designate a directory as
Tr;ec?nr:gmso that the computer will automatically !ook there for files or sm;b;
!dtz:eciories mentioned in your commands. You can designate a current directory fo

aach disk drive independently.

FORMAT
CHDIR [foc and name of new current directory]

iati i instead of typing CHDIR.
n use the abbreviation CD in the command ins! 1
{YL%I::ac:on of new current directory] refers to the path to the durectory_youhwalr;t ;g
designate as the new current directory. The last directory name on the iist shou

f the directory you want to designate.
beFt::a e:g'r?lglg, the comma:1yd below designates a subdirectory called PASCAL as the

new current directory in drive B:
A) CHDIR B:\PROGRAMS\PASCAL {ENTER)

i i i i that the path to the new

t symbol in the path is a backslash (\). This means that new

cuIrg?ltf 'cr!?rectygnry starts with the root directory qf the dlske:lt:c;nptglc\;% EAT\;\S paaft}I; T:;‘

hat the root directory contains a subdirectory ca ; » and ;

g%tl?)s(;ﬂ?\MS contains PASCAL, the directory you want to designate asé tthe gsi\;’a
current directory. As usual, the amount of location t.:nftcwrrua\tl:):;_ ycc);tlo'r‘::: ! tt?epc;rive
n which directory was last designated as the current dire 8.

de_lqgn::a?‘ge the currentrtl:lirectory back to the root directory, give a command like

the following:
A} CHDIR B\ (ENTER)

The backslash (\) in the commands above symbolize the root dl{%q:ggb So the
command above changes the current directory for drive B to the root di ot [% you
If you forget which directory is the current directory, the computer can_l:'d N thé
Enter a CHDIR command without specifying a location. The computer wi l:t‘i)ll ix e
path from the root directory to the current directory or a backslash if you are
root directory.

Figure 1. Excerpt of manual illustrating RICH SYNTAX elaborations.

After they studied a version of the manual, supjects were a§ked to carry ?]:u
a set of ordinary tasks on the computer, without refcrrmg_ Pack to t_e
documentation. The subjects who had studied man.uals containing syntactic
elaborations worked significantly more quickly and _1ssu:13d s:gmﬁcantly fewer
commands. The conceptual elaborations did not snlgmﬁcantly xmprovefg(::-
formance, perhaps because the selection of appropriate commands was fairly
obvious for this particular set of tasks. .

There is otherl;vidence that examples strongly influence subjects’ interpre-
tation of procedural rules. LeFevre and Dixon (1984) and LeFevre (1985)

- —

158

MODELLING COGNITION

CHANGING THE CURRENT DIRECTORY - CHDIR

The CHDIR command (short for “change directory” allows you 1o designate g
directory as the “current” directory for a drive so that the computer will automatically
look there for files or subdirectories mentioned in your commands. You can desig-
nate a current directory for each disk drive independently. Changing the current
direclory on the diskette in drive A does not affect the current directory on drive B.

The root directory is automatically designated as the current directory for each drive
when you first start up the computer. It is useful to designate a subdirectory as the
current directory when you will be working primarily on the files in that subdirectory.

Then you won't have to specify the path to the subdirectory in each command you
issua.

FORMAT
The format of the command is:

CHDIR [[d:]path)

You can use the abbreviation CD in the command instead of typing CHODIR.

If you designate a subdirectory as the new current directory, the computer will
carry out all the subsequent commands within that directory, unless you specify a

to the root directory,

path to another directory. To change the current directory back
use a backslash as the path.

It you forget which directory is the current directory,
Enter a CHDIR command without specifying a location

path from the root directory to the current directory, or
directory.

Figure 2. Excerpt of manual illustrating RICH CONCEPT elaborations.

conducted research on instructions for solving analogy problems. They found
that when verbal instructions for how to soive a problem (i.e. rules) were
contradicted by a situational example, subjects tended to execute a procedure
that was consistent with the example rather than one consistent with the rule.
We suspect that because the examples were concrete and specific, subjects
mistrusted their intepretation of the more abstract rule and reinterpreted the
rule to conform to the operations illustrated in the example. In any case, the
results underscore the importance of choosing examples carefully.

4.4. The role of examples for learning and remembering to select the best
procedure

Various factors may cause a learner to select a less than optimal procedure for
solving some problem. The learner may know that one procedure is more
appropriate for a problem than another, but if she only remembers how to
execute the suboptimal one, that is the one she will end up using. In this sort

the computer can remind you.
- The computer wil display the
"\", if you are still in the root

ROLE OF ELABORATIONS IN ACQUISITION OF A COGNITIVE SKILL 159

. i .)
of situation, the learner has mastered the selection problem; she;jmlmply rii:;it
; 1 learned. In contrast,
i tion of the procedures she has .
more help with the execu ; s learned, In G
ituati inly interested in concern people w
e situations we are mainly in . !
Lt;ing a procedure that they would acknowledge to be more appr(épnate an
eople who have not learned to judge between alternative proce ures.d .
i we believe that situational examples can play a dual role l}[]l Fr(:;z Sser
selection. First, they can provide the relevant snm_ulus cues to help Do user
‘think of’ the right procedure for a specific situation, and _second, t gy aiS
help people learn or induce a generalization for when a given procecure
better than some alternative.

4.4.]1. Increasing the salience of alternative procedures: command editing

Consider again the command editing procedure. It is quite Eossnblebfr?rr1 3;1;;3;
who knows what command editing lis and who regaf;;r;}::;z Oofwmtgdifyingg ack
i commands, to type in a long comman _
F:Z\sﬂfliz a similar command that hf: recently' issued. Tc};e prc;cec::;;er s;ingz
may not have been sufficiently sahent. that it occurre tdo t elo er u e

appropriate time. If a person only th.mks of one procedure
specific goal then the problem of selection does not arise. el situation

It is interesting to speculate on whal.aspects of a .h‘ypot etic jtuation
example are most likely to increase saheqce aqd facilitate rcmf\l;al L e
procedure in a real problem situation. Retlrleval is probal‘)ly' mostul ; f when
the example and the problem are identical or very §1mllar. n e‘nd ce
circumstances, many elements in the problem situation may remi e
learner of the example, and hence the procedure used‘ in the exa::lpbé
Unfortunately, since the procedures in a con}puter-o;_)eratlng system cblems
used in such a wide variety of contexts, it is h1gh1-y unlikely that the pro‘f e
users face will be exactly like the examples in the manual, even 1

re carefully chosen. .

exsvn}llz}teli:ppens, the:, when the actual problem situation does notlpe;fercetlgj
match the example? In part, this will depend on hqw the gxaml? ¢ leva};t
resented in memory and how good the cxample is at illustrating the r? fant
dimensions of the situation to encode. We believe that the same examp fscim
best motivate why a person should want to use thg command-editing fa le);
will also be best for reminding a person to use it because these exam;;nd
highlight those elements of the problem si.tuau_on thz}t r;aaket:hthzxc;c:nn;r]r; nd
most appropriate. As long as a problem situation malc. csl e amp.e o
those dimensions, the example may serve as a good retrieval cue, 1 -byla e
other differences between the situations. On the ofher hand, it is p0S|SI- le e
a learner will only store a superficial representation of the example; \Lri]u e
case, examples that lirerally match aspects of the current situation
better memory cues.

160 MODELLING COGNITION

To illustrate these two possibilities, consider again the two examples on
command editing that were provided earlier (examples 11 and 12), in the light
of the following ‘real-world’ problem. Suppose your friend Smith has a
subdirectory called ‘upkeep’ on his computer that contains files with helpful
information about maintenance and repair people. Smith has given you
permission to browse through his files from your account on another com-
puter. To see what files are available in the subdirectly, you type a relatively
long command, such as the following:

$dir onion::[Smith.home.upkeep)

To read the contents of any file in the ‘upkeep’ directory, you will have to
issue commands of the form:

$type onion::[Smith.home.upkeep]}plumbers.mss.

The gquestion is, will you be more likely to remember to use command
editing in this situation (i.e. changing the dir command into the needed type
command and reissuing it), if you had previously seen example (11) or
example (12) in the manual? Example (11) superficially resembles the
problem situation, in that both involve typing and later reissuing a dir
command. Example (12) showed how to avoid retyping a different command,
the copy command. However, the point of this example was to motivate why
one would want to bother with command editing: to save keystrokes by
avoiding retyping a very long file specification or ‘path’ to a file. So despite the
greater superficial similarity of example (11) to the problem situation, ex-
ample (12) should be a better cue to a user’s memory. This assumes that users
represent tasks and goals at a deeper level, ¢.g. ‘My goal is to save keystrokes
and reuse the expression that I already typed.’ It is obviously an empirical
question how users tend to encode the examples they read in a manual.

4.4.2. Learning to judge when one procedure is better than another: command
editing
Skill learners should be familiar with a repertoire of procedures and should be
able to select the most appropriate procedure for any given situation. An
obvious question is what makes a procedure most appropriate? At various
points in this chapter, we have described situations in which one procedure is
‘better’ than another. In most cases, we have justified this valuation in terms
of efficiency: one procedure saves the user keystrokes (e.g. command editing)
or reduces the size of the search space (e.g. creating subdirectories). Often, of
course, the choice between procedures is not so clear-cut. Consider the choice
between procedures for writing a computer program: e.g. should the pro-
grammer write a recursive program or an iterative one? It may be easier to
write a computer program one way, but the program may be more computa-

~-—--

ROLE OF ELABORATIONS IN ACQUISITION OF A COGNITIVE SKILL 161

tionally efficient another way. To the extent that the :_:onsideratic_ms for
choosing between procedures can be specified, we are mterestf':d in how
instructional texts can help learners acquire such selection strategies.

As we argued in the preceding section, situational examples highlight those
characteristics of a situation that make a particular procedure highly appro-
priate. Consider again the two examples used to illustrate the command-ed;t?ng
procedure. Example (11) illustrated a situation in which command editing
was no more efficient than typing a new dir command. In example (12),
however, command editing was by far the more efficient procedure, because
the user could avoid typing a number of copy commands that all contained the
same long path specification. We can use this characteristic of the task
situation to formulate a generalization about when to choose command
editing:

if you must issue a number of very long, similar commands, it is more efficient to
edit the commands than to type new oncs.

One way to convey a selection principle such as this would be to state it
explicitly in a computer manual or instructional text. As with any generaliz-
ation, a selection principle can be illustrated with examples, in this case,
situation examples. Since, as we have seen, situation examples can also be
used to exemplify syntactic rules for issuing computer commands, situation
examples have the potential of simultaneously illustrating two sorts of rules:
rules for executing procedures and generalizations for when to select the
procedures. Of course, it may not always be necessary to state the selection
principle explicitly. We speculate that learners who see a number of situation
examples can often induce the generalization independently.

The extent to which learners need help choosing between alternative
procedures is a question which requires further research. We have found that
learners can often choose the most efficient computer command without the
benefit of explicit advice, whether exemplified or not (Reder, Charney and
Morgan, in press; Charney, 1985). It may be that instruction is needed more
in more complex skill domains, such as programming,

4.5. Some potential drawbacks to situational examples

Our analysis suggests that situational examples must be chosen carefully to
illustrate the conditions under which a procedure should be applied. The
example must make salient the underlying goal of the procedure as well as
iflustrating a situation where it is used. If the examples are poorly constructed,
they can actually interfere with good performance. When subjects only see
impoverished examples, that fail to emphasize the conditions that make one
procedure more appropriate than another, the subjects may draw spurious
conclusions about when to use the procedures.

