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The role of the medial temporal lobe (MTL) in associative memory
encoding has been the focus of many memory experiments.
However, there has been surprisingly little investigation of whether
the contributions of different MTL subregions (amygdala, hippo-
campus [HPC], parahippocampal [PHc], perirhinal cortex [PRc], and
temporal polar cortex [TPc]) shift across multiple presentations
during associative encoding. We examined this issue using event-
related functional magnetic resonance imaging and a multivoxel
pattern classification analysis. Subjects performed a visual search
task, becoming faster with practice to locate objects whose
locations were held constant across trials. The classification
analysis implicated right HPC and amygdala early in the task when
the speed-up from trial to trial was greatest. The same analysis
implicated right PRc and TPc late in learning when speed-up was
minimal. These results suggest that associative encoding relies
on complex patterns of neural activity in MTL that cannot be
expressed by simple increases or decreases of blood oxygenation
level—dependent signal during learning. Involvement of MTL
subregions during encoding of object--location associations
depends on the nature of the learning phase. Right HPC and
amygdala support active integration of object and location
information, while right PRc and TPc are involved when object
and spatial representations become unitized into a single
representation.

Keywords: associative memory encoding, fMRI, multivoxel pattern
classification, medial temporal lobe, object--location associations

Introduction

Modern theories of the medial temporal lobe functioning are in

agreement that the hippocampus (HPC) is critical for learning

of new associations. The HPC binds together distinct pieces of

information to form relational representations that are domain

general and flexible in nature (e.g., Norman and O’Reilly 2003;

Davachi 2006; Diana et al. 2007; Eichenbaum et al. 2007; Squire

et al. 2007; Henke 2010). The role of amygdala in binding is not

as well defined. While some studies reported greater amygdala

activation for processing of items compared with associations

(e.g., Achim and Lepage 2005), others found greater in-

volvement of the amygdala in formation of associations

compared with processing of items (e.g., Killgore et al. 2000;

Kirwan and Stark 2004).

Several recent studies identified perirhinal cortex (PRc) and

parahippocampal cortex (PHc) as the regions important for

associative learning and memory. For example, PRc was

engaged in processing of intraitem associations (Staresina and

Davachi 2006, 2008), novel pairs of pictures (Pihlajamäki et al.

2003), and unitized associations (Haskins et al. 2008). PHc was

shown to be involved in processing of spatial and nonspatial

associations (e.g., Goh et al. 2004; Aminoff et al. 2007; Peters

et al. 2009). One recent study reported the anterior/posterior

differentiation in the PHc with anterior regions involved in

encoding of location information and posterior regions in-

volved in encoding of both location and object information

(Buffalo et al. 2006).

Temporal polar cortex (TPc) is critical for semantic memory

(e.g., Patterson et al. 2007). The degeneration of TPc results in

the semantic dementia, an inability to name and remember

properties of objects (e.g., Martin 2007; Patterson et al. 2007).

Recent work suggests that this region may also be critical for

rapid acquisition of novel associations (Sharon et al. 2011). The

subjects in that study learned associations between objects and

their names either in the ‘‘fast mapping’’ experimental

paradigm or in the explicit encoding paradigm. The subjects

with the damage to HPC successfully recognized associations

acquired through the fast mapping but not through explicit

encoding. Noteworthy, the subject who had spared HPC but

impaired TPc performed comparably to controls on the explicit

encoding task but performed worse than the controls on the

fast mapping task.

While the studies described above suggest the importance of

all MTL subregions for associative memory, there has been little

discussion of whether the contributions of these MTL

subregions might change across multiple presentations during

associative encoding. The present study addresses this question

using event-related functional magnetic resonance imaging

(fMRI) during a visual search task: Subjects search for a target

that is repeatedly presented either in a fixed location or in

varied locations.

Most of the studies that examined associative memory

encoding used univariate methods of neuroimaging data

analysis and, as such, only allow identifying the average level

of neural activation in a brain region. This raises a question of

whether repetition-related changes of neural activation in

a specific MTL subregion reflect qualitatively different patterns

of activation on 2 consecutive presentations or smaller

modifications within the same pattern (e.g., the same neurons

have a lower firing rate). While not many researchers have tried

to address this question, those who did have found that the

activation patterns in MTL are indeed more complex (Hassabis

et al. 2009). In the current study, we explore the multivariate

nature of neuroimaging data by using a multivoxel classification

approach that detects the patterns of activity across multiple

voxels (Haxby et al. 2001; Hanson et al. 2004; Hanson and

Halchenko 2008; O’Toole et al. 2007). Classification methods
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examine ‘‘the statistical relationship between patterns of brain

activity and the occurrence of particular experimental con-

ditions’’ (O’Toole et al. 2007, p. 1736). They are more sensitive

to the changes in neural activity than the standard univariate

methods (e.g., GLM [General Linear Model]) in that they can

pick up differences among experimental conditions even when

GLM cannot (Diana et al. 2008). This is especially important

for studies of HPC, the region that is often difficult to image

due to an inherent low signal-to-noise ratio (Greicius et al.

2003; Zeineh et al. 2003).

Hippocampal encoding isusually rapid (e.g.,Nakazawaet al. 2004;

Bast 2007). Some types of associative encoding (e.g., object--color

associations) that engage PRc may also occur in one trial (e.g.,

Staresina and Davachi 2008). However, other studies indicate that

cortical MTL subregions are often engaged over the course of

learning (Aminoff et al. 2007; Yassa and Stark 2008; Voss et al. 2009).

For example, Voss et al. (2009) compared repeated words (5

repetitions before scanning and 4 presentations in the scanner) to

new words and found robust positive correlation between the

magnitude of behavioral priming and repetition-related reduction in

left PRc. Aminoff et al. (2007) observed a similar effect in PHc for the

stimuli that were practiced before suggesting that PHc can be

engaged later in learning. These latter findings are consistent with

the view that memories that were initially dependent on HPC may

become HPC independent later in learning when memory

representations formed in HPC are stored in cortical regions (e.g.,

Eichenbaum 2004; Duff et al. 2006).

The notion that HPCmay be important for themaintenance of

object--location associations (Ramsøy et al. 2009) and that

learning is rapid in HPC suggest that the changes in the patterns

of HPC activity during encoding of object--location associations

may occur early in learning (e.g., Nakazawa et al. 2004; Bast 2007)

and, according tomanyneuropsychological studies,may bemore

pronounced in the right hemisphere (e.g., Smith and Milner

1989; Baxendale et al. 1998; Nunn et al. 1999). Similarly, the data

recorded from individual MTL neurons in vivo in human epilepsy

surgery patients (Rutishauser et al. 2006) suggest that the

beginning of learning may also be supported by the amygdala.

The fact that Sharon et al. (2011) repeated their associative

stimuli only once may be evidence that acquisition of associa-

tions also may involve TPc at the beginning of learning.

While wemay expect changes in PHc, a region critical for spatial

memory (Bohbot et al. 2000; Ploner et al. 2000), changes in PRc are

difficult to predict. PRc is mostly involved in the encoding of

intraitemassociations andwithin-domainobject--object associations

(Pihlajamäki et al. 2003; Staresina andDavachi 2006, 2008).Does this

mean that PRc is not involved during encoding of between-domain

object--location associations? The most intuitive answer is ‘‘yes’’;

however, one recent study (Buffalo et al. 2006) provides evidence

for possible involvement of PRc in formation of between-domain

associations. In that study, subjects encountered objects in 1 of 16

locations and were instructed to memorize either objects or

locations for a subsequentmemory test. Buffalo et al. found that PRc

was active during both object encoding and location encoding. One

explanation for this result is that even though subjects were

instructed to memorize just objects or just locations, they instead

encoded object--location associations (e.g., Hasher andZacks 1979).

In addition, some studies have shown that object and location

components of an association may become unitized (i.e., to form

a single representation)during the course of learning (Musen1996).

If this turns out to be the case with our study, then, according to

earlier work (e.g., Haskins et al. 2008), we may find changes in the

patterns of neural activity in PRc appear later in learning.

Materials and Methods

Participants
Ten undergraduates (M = 20 years, standard deviation = 2.5, 7 females)

from Rutgers University participated in this fMRI study for course

credit. All subjects were treated in accordance with Rutgers University

and University of Medicine and Dentistry of New Jersey Institutional

Review Board (IRB) guidelines. They were unaware of the specific

design or hypotheses concerning the experiment prior to their

participation but were fully debriefed after they completed the

experiment.

Design and Procedure
Subjects were scanned during the visual search task. This task required

that subjects locate a target object on a grid as quickly and accurately as

possible. Figure 1 illustrates a trial in this task. At the beginning of each

8-s period, subjects were shown a target object for 2 s. An empty 4 3 4

matrix then appeared for 1 s followed by a matrix that contained 12

objects (including the target). These objects always appeared on the

perimeter such that the center 4 cells of the matrix were empty.

Subjects had 4 s to locate the target in the display and click on the

correct object. They responded by clicking on an MRI-compatible

trackball. After 4 s, the display cleared regardless of whether or not the

object had been located. When a subject clicked on a wrong object

within the allowed 4-s period, the display would not disappear

indicating that the subject erred and needed to try again. This strategy

discouraged subjects from selecting nontarget objects and forced

subject accuracy to be 100%. When subjects failed to make a response

or used more than one attempt to find the target, the trial was removed

from the behavioral and neuroimaging data analyses. If the response

was correct, the display cleared and a blank matrix was shown for the

rest of the 8-s period. The length of this rest period (intertrial interval)

could vary between 1 and 4.5 s.

There were 12 blocks of trials with 8 search trials in each block. All

blocks were separated from each other with 16 s of rest. During the

rest periods, a ‘‘Wait’’ sign appeared on the screen. Subjects did not

make any manual responses during the rest periods but had to stay alert

to start the task as soon as the sign Wait disappeared from the screen.

Subjects were presented with constant and variable object--locations

associations. A ‘‘constant’’ object appeared in only one location assigned

to that object. A ‘‘variable’’ object could appear in one of several

locations that did not include locations assigned to ‘‘constant’’ objects.

Each search display contained all 6 ‘‘constant’’ objects and 6 of the

8 ‘‘variable’’ objects. Distractor stimuli in a given display were targets

on other trials and were always presented in valid locations for these

Figure 1. Illustration of a trial sequence.
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objects. Thus, if an object ‘‘A’’ appeared in the locations ‘‘a,’’ ‘‘b,’’ and ‘‘c’’

as a target, it could never appear in locations ‘‘d’’ or ‘‘e’’ as a distractor.

For each block, 3 ‘‘constant’’ and 5 ‘‘variable’’ objects served as targets

with the constraint that no object was repeated as a target within

a block.

Order of trials within the block as well as the order of the blocks was

randomly determined for each subject. Over the course of the

experiment, each ‘‘constant’’ object was the target 6 times and each

‘‘variable’’ object was the target 4--12 times. The 8 objects belonging

to the variable condition appeared twice in each location. These

objects were seen as targets different numbers of times. Two objects

appeared as a target 12 times (20% of variable trials), 3 objects appeared

as a target 4 times (6.7% of variable trials), and the other 3 objects

served as a target on 10, 8, and 6 trials (16.7%, 13.3%, and 10% of

variable trials, respectively). This manipulation allowed us to use all

6 variable locations with equal frequency (10 times each) but still vary

the display appearance. By manipulating the locations and the presence

of variable objects, we made the constant object--location associations

less obvious to the subjects. Subjects were neither instructed that

some of the object--location pairings would be repeated nor they

were informed that they would be tested later on their memory for

object--location associations.

Image Acquisition
The event-related fMRI data were acquired using a Siemens 3-T Allegra

head-only MR system. At the beginning of the experiment, a high-

resolution structural image (time repetition [TR] = 2000 ms, time echo

[TE] = 4.38 ms, slice thickness = 1 mm, field of view [FOV] = 220,

number of slices = 176, resolution = 0.8594 3 0.8594 3 1) was acquired

using a magnetization prepared rapid gradient echo (MP-RAGE)

sequence. Functional data (blood oxygenation level—dependent [BOLD]

signal) were collected using a gradient echo, echo-planar sequence

(TR = 2000 ms, TE = 30 ms, slice thickness = 4 mm, FOV = 220, number

of slices = 32, resolution = 3.4375 3 3.4375 3 4.0). A total of 800 volumes

were collected during the search task.

fMRI Data Analysis
The images were preprocessed and analyzed with FSL 4.1.5 (FMRIB’s

Software Library, www.fmrib.ox.ac.uk/fsl software. For each raw BOLD

data set, we applied nonlinear noise reduction (smallest univalue

segment assimilating nucleus), motion correction (MCFLIRT [Jenkinson

et al. 2002]), nonbrain removal using BET (Smith 2002), spatial

smoothing using a Gaussian kernel of full-width at half-maximum

(FWHM) 9 mm, multiplicative mean intensity normalization of the

volume at each time point, and high-pass temporal filtering (Gaussian-

weighted least-squares straight line fitting, with sigma = 25.0 s).

A hemodynamic response function was modeled using a Gamma

function.

The 2-stage registration of the low-resolution BOLD images to

standard Montreal Neurological Institute (MNI) template was carried

out using FLIRT (FMRIB’s Linear Image Registration Tool; Jenkinson

and Smith 2001; Jenkinson et al. 2002) using the following parameters:

a 9-DOF parameter model, normal search (±90�), a correlation ratio cost

function and trilinear interpolation. First, BOLD images were registered

to the high-resolution structural (MPRAGE) images. Second, the high-

resolution images were registered to the MNI152_T1_2mm template.

Finally, the 2 resulting transformations were concatenated and applied

to the original BOLD image (http://www.fmrib.ox.ac.uk/fsl/flirt/

gui.html) to transform it to the MNI space.

A GLM analysis with target types (constant object location, variable

object location, etc.) and target repetitions (presentation 1, pre-

sentation 2, etc.) as explanatory variables was conducted using FEAT

(FMRI Expert Analysis Tool). The length of each event (or trial) for

a GLM model was calculated as 2 s (target presentation) + 1 s

(interstimulus interval) + search RT [Response Time]. The first-level

analysis contrasted 2 consecutive presentations for each subject

(presentation 1 vs. presentation 2, presentation 2 vs. presentation 3,

etc.). Group means for each contrast of interest were computed using

ordinary least square mixed effects. Z-statistic images were thresholded

at P < 0.005 (voxel-wise, uncorrected). While we conducted the

whole-brain GLM analyses, we were only interested in the activations

pertaining to the regions of interest (ROIs). Therefore, a corrected

threshold for each cluster (i.e., Pcorrected) was determined by Monte

Carlo simulation using the AlphaSim program (http://afni.nimh.nih.gov/

pub/dist/doc/manual/AlphaSim.pdf) with the functional ROI as a mask

and FWHM = 9 mm. We will only report the results pertaining to 5

regions: HPC, amygdala, PHc, PRc, and TPc.

Functional Localization
Functional localization of the ROIs was determined using the Harvard-

Oxford cortical and subcortical structural probability atlases

(developed by the Harvard Center for Morphometric Analysis and are

included with the FSL software) (The atlases were created based on the

analysis of T1-weighted images of 21 healthy male and 16 healthy female

subjects [ages 18--50]. The images were individually segmented by the

Harvard Center for Morphometric Analysis using semiautomated tools

developed in-house, affine-registered to MNI152 space using FLIRT

[FSL], and the transforms were then applied to the individual labels.

Finally, these maps were combined across subjects to form population

probability maps for each label [http://www.fmrib.ox.ac.uk/fsl/data/

atlas-descriptions.html].). Probabilistic atlases were successfully used in

recent studies of MTL functioning (e.g., Lehn et al. 2009; Robinson et al.

2010) and can be considered as an alternative to the individual ROI

drawing procedure. Probabilistic atlases are thought to be beneficial for

neuroimaging studies because they allow for consistency across studies

by eliminating between-study variability in terms of localization of the

geometrically or functionally defined ROIs (Robinson et al. 2010). Using

these atlases may be especially beneficial for neuroimaging studies that

involve ‘‘between-subject’’ multivoxel pattern classification analyses

because these analyses often require that subjects have equal number

of voxels in the ROIs under investigation.

In probability atlases, each structure is represented as a standard

space image with values from 0:100, according to the cross-population

probability of a given voxel being in that structure (http://www.fmri-

b.ox.ac.uk/fsl/fslview/atlas.html). In the present study, we used a 50%

probability threshold to included voxels in the specific ROI. This

procedure enabled each voxel of interest to be assigned to only one

ROI (Voss et al. 2009). Right HPC was comprised of 531 voxels, left

HPC—501 voxels, right amygdala—278 voxels, left amygdala—227

voxels, right PHc—139 voxels, left PHc—154 voxels, right PRc—311

voxels, and left PRc—272 voxels.

Classification Analysis
A first-level GLM analysis (at the subject level) was used to compute the

contrasts between a specific trial type/presentation and baseline

(presentation 1 vs. baseline, presentation 2 vs. baseline, etc.). Pairs of

resulting contrast of parameter estimates images with the elements of

a pair corresponding to the 2 consecutive presentations were

registered to the MNI template (2 mm) and then used as inputs to

the multivoxel pattern classification analyses. These analyses examined

the patterns of activation that distinguish the 2 contrasts that

correspond to the 2 consecutive presentations (e.g., [presentation 1 --

baseline] vs. [presentation 2 -- baseline], [presentation 2 -- baseline] vs.

[presentation 3 -- baseline]) of object--location pairings in the 10

extended MTL subregions (i.e., left and right HPC, amygdala, PHc, PRc,

and TPc).

We ran classifiers on both the constant object--location pairs and the

variable object--location pairs in order to assure that any success of

classification was due to learning the association of the object with its

location as opposed to familiarity with the objects or practice with the

task. Given our interest is in the constant--location pairs, we restricted

our test of variable location pairs to those classification conditions that

were above chance for the constant--location pairs. Please note

that a failure to classify 2 consecutive presentations does not imply

that a specific region was not activated in the task. Rather it means that

the activation patterns for 2 presentations are similar (or that the

classifier was not sensitive enough to detect existing differences).

The stability of classification performance was ensured by testing the

same pairs of trials using 3 classifiers: a sparse multinomial logistic

regression (SMLR; Krishnapuram et al. 2005), a linear support vector

machine (SVM; Vapnik 1995) on the features (voxels) selected by SMLR

and SVM on all features in a specific ROI. The latter was used to explore
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the sensitivity of the classifier to sparse feature selection. All classifiers

were implemented using the multivariate pattern analysis in python

software http://www.pymvpa.org; Hanke, Halchenko, Sederberg, Han-

son, et al. 2009; Hanke, Halchenko, Sederberg, Olivetti, et al. 2009).

Monte Carlo simulation with 5000 replications (Schaffera and Kima

2007) using R statistical package (http://www.r-project.org/) indicated

that classification accuracy should be at or above 80% to be considered

significant.

SMLR And Nested Cross-Validation

Feature selection is an important step in a classification procedure (e.g.,

Haxby et al. 2001; Hanson et al. 2004). The SMLR classifier allows

optimizing for the number of features in the data set by adjusting the lm

parameter (Krishnapuram et al. 2005). Such adjustment (or ‘‘tuning’’)

may result in a bias in error estimation and, consequently, in poor

generalizability of results (Varma and Simon 2006). To avoid this bias,

we used a 2-level nested cross-validation (CV) method. Nested CV is an

unbiased procedure to select the optimization parameters for a classifier

(in the case of SMLR—the number of features in the data set). Every

time a classifier is optimized, there is the danger that the ‘‘best’’

performance is due to chance and that it is specific to a subset of

subjects. Nested CV helps to avoid this by first pulling out one subject

successively for a global validation test. In our case, we created 10 data

sets involving 10 – 1 = 9 subjects in each training data set, with

a different subject removed for each one. These training sets are then

split again to optimize the number of selected voxels. We refer to this

first level of CV as the ‘‘inner loop.’’ The second level of CV, referred to

here as the ‘‘outer loop,’’ was used to compute an estimate of an error.

The best classification parameter selected through the nested CV

procedure is used in the training on the full training data set and is

tested against the global test subjects.

In the inner loop, we used 10 subsets of 9 subjects taken from a total

set of 10. The SMLR classifier was trained on 8 subjects and tested on 1.

Eight optimization parameters (lm = 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1,

2; a smaller lm parameter corresponds to a larger number of features

left in the data set) were examined for each ROI for each comparison

condition. The classification accuracies and a number of features in the

model were then averaged across 10 subsets of data separately for each

lm parameter (see Supplementary material). The lm parameter with the

highest average classification accuracy and the largest average number

of features (voxels) left in the data set was chosen as the best

parameter and was used to estimate the classification error in the outer

loop. The outer loop SMLR used all 10 subjects. The classifier was

trained on 9 subjects and tested on 1 (using a leave-one-out CV

approach). It was repeated for each ROI for each comparison

condition.

Results

Behavioral

Figure 2 plots the mean RT for each successive trial as a function

of whether the trials were constant or variable object--location

pairs. Subjects were able to locate the target object on the first

trial 96% of the time. Only these correct trials were used for the

analyses of search RT and fMRI data. Consistent with previous

findings (Musen 1996; Manelis et al. 2011), search RTs became

faster with successive repetitions of a target provided that it

appeared in fixed spatial location, F5,45 = 9.2, P < 0.001; however,

when a target was repeated in variable locations, the RTs did not

differ across repetitions, P > 0.1. The decrease in search RT

across the 6 presentations of an object in a constant location was

best fit by a power function, y = 1557.5 3 x
–0.3, R-square = 0.97

(Anderson 1982; Logan 1988).

Classification Analysis of Neuroimaging Data

The best optimization parameter for SMLR was selected based

on the results of nested CV (for more details, see Tables S1--S5

in Supplementary Data). This parameter defined the sparseness

of the SMLR classifier (i.e., the number of features in the data

set). Please note that the same features that were selected for

SMLR were also used for SVM (i.e., SVM on SMLR features).

Another SVM classifier was run on the full data set. Figure 3

displays the training and cross-validation accuracy (ACC) for

SMLR and SVM classifiers. CV accuracies in all ROIs for all

conditions of interest are also presented in Table S6 in

Supplementary Data. The training accuracy for classifiers that

were run on different comparison conditions for different ROIs

ranged from 67% to 100%. However, more than 80% of all

classification conditions had a training accuracy that ranged

between 90% and 100%. CV accuracy at or above 80% was

achieved in right HPC, right amygdala, right PRc, and right TPc.

Right HPC and amygdala exhibited distinctive activation

patterns at the beginning of learning that distinguished the first

Figure 2. Mean correct RT for locating targets that appeared in constant locations
(Constant) versus variable locations (Variable). Black dots on the plot show a power
function fit (y 5 1557.5 3 x�0.3) to search RT for ‘‘constant’’ targets.

Figure 3. Training and CV accuracy for SMLR and SVM classifiers. The darker the
square, the higher the classification accuracy. The MTL subregions are shown on the
x-axis. The classification conditions are shown on the y-axis. ‘‘C’’ stands for a constant
object--location association (e.g., C1-C2 refers to classification of the first
presentation of a target in a constant location vs. the second presentation of the
target in the same location). ‘‘R’’ stands for right, ‘‘L’’ stands for left. Am; amygdala.
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from the second presentation. This result was replicated using

all 3 classifiers (SMLR, SVM on SMLR features, and SVM on all

features) in HPC, SMLR(ACC) = 90%, number of features = 440,

SVM on SMLR(ACC) = 80% and SVM on all features = 80%. In

the amygdala, SMLR classified the 2 conditions with 80%

accuracy (278 features). The SVM classifiers showed lower

classification performance (ACC = 70%), which was below our

80% threshold. Right PRc and TPc revealed distinct activation

patterns in the end of learning for the fifth compared with the

sixth presentation. This pattern was stable across classifiers in

the PRc, SMLR(ACC) = 80%, number of features = 32, SVM on

SMLR(ACC) = 80% and SVM on all features = 85% but not in the

TPc. While SVM on SMLR features classified the 2 presentations

in the TPc with 80% accuracy, SMLR classification accuracy was

slightly below the significance level (ACC = 75%, number of

features = 51) and SVM accuracy was at chance (ACC = 55%).

CV performance for classification of the intermediate (2 vs.

3; 3 vs. 4, and 4 vs. 5) constant object--location trials was below

the 80% threshold. CV accuracy in left HPC, left amygdala, and

bilateral PHc at the beginning of learning (presentation 1 vs.

presentation 2 and presentation 2 vs. presentation 3) was at

65--70%, which is nominally above chance but below the

significance level.

In order to test whether high classification performance is

due to learning of object--location associations as opposed to

merely becoming more familiar with the objects, we ran

classifiers on the variable object--location pairings for those

conditions that were successfully classified for constant

pairings. For variable object--location pairings, classification

was not above chance for either presentation 1 versus 2 in right

HPC (SMLR(ACC) = 60%, SVM on SMLR(ACC) = 55% and SVM

on all features = 45%) nor for presentation 1 versus 2 in right

amygdala (SMLR(ACC) = 40%, SVM on SMLR(ACC) = 35% and

SVM on all features = 40%). Presentations 5 and 6 for variable

object--location pairings were also classified at chance in right

PRc (SMLR(ACC) = 50%, SVM on SMLR(ACC) = 45%, and SVM

on all features = 45%) and in right TPc (SMLR(ACC) = 50%, SVM

on SMLR(ACC) = 55%, and SVM on all features = 55%).

Comparison Of Bold Signal Changes Between 2
Consecutive Presentations

We examined the BOLD signal increases and decreases in each

of ROIs using 2 methods. A conventional univariate GLM

approach identified voxels differentially activated for 2

consecutive presentations. The second approach investigated

the BOLD signal changes in the voxels that were diagnostic for

a specific classification condition as shown by the SMLR

classifier.

Univariate Method

The results of a univariate analysis are illustrated in Figure 4A.

Greater activation on the first compared with the second

presentation of constant object--location associations was

revealed in the cluster of 10 voxels in the intersection of right

Figure 4. (A) The results of the GLM analysis in right amygdala (R Am) and left hippocampus (L HPC). ‘‘C’’ stands for constant object--location associations. A number next to the
‘‘C’’ indicates the presentation number (e.g., C1 means the first presentation of constant pairings). (B) Top images represent diagnostic sensitivity of voxels to comparison
conditions as revealed by the SMLR classifier (C1 vs. C2 in right HPC and amygdala, C5 vs. C6 in right PRc and TPc). A bottom figure illustrates BOLD signal changes relative to
a resting baseline in right HPC, amygdala, PRc, and TPc as a function of repetition and voxel sensitivity. A tan mask represents amygdala, a green mask and a contour represent
HPC, a white mask and a contour represent PRc, a yellow mask represents PHc, a magenta contour represents TPc. All regions are presented according to the Harvard-Oxford
cortical and subcortical structural probability atlases with the probability for a voxel to be in a specific region at 50--100%.
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amygdala (47%) (The number in the parenthesis refers to

a probability of a peak voxel in the cluster to be located in the

ROI according to the Harvard-Oxford cortical and subcortical

structural probability atlases.), right PRc (32%) and right HPC

(15%) with a peak activation at (22, –2, –28), z = 2.78, Pcorrected
< 0.05. (Please note that we computed Pcorrected using the right

amygdala as a mask in the AlphaSim program because the

probability of a peak voxel to be in the right amygdala was the

largest and the closest to 50% threshold.) There was less

activation on the fifth relative to the sixth presentation of

constant pairings in the right amygdala (63%) ([18, –6, –20], z =
3.66, number of voxels = 16). Less activation on the second

relative to the third presentation of constant associations was

observed in the left HPC (58%) ([–28, –32, –12], z = 2.91,

number of voxels = 16, Pcorrected < 0.05). Finally, right TPc

(69%) showed less activation on Presentation 4 compared with

Presentation 5 ([30, 18, –32], z = 2.86, number of voxels = 10,

Pcorrected > 0.1). Given that the Pcorrected is greater than

a conventional a < 0.05, which increases the probability of

a false detection, we will not discuss this result further in the

manuscript.

Bold Signal Changes In The Voxels Diagnostic For A Specific

Condition

Classifiers provided us with the diagnostic sensitivity to

a particular classification condition in each voxel. These

positive and negative sensitivities (positive were pertaining

the one classification condition and negative were pertain-

ing to another) computed by the SMLR classifier were used

to test whether voxels that were differentially sensitive to

each of comparison conditions during classification would

show distinct increase/decrease patterns for these condi-

tions (Fig. 4B).

A two-way analysis of variance with repetition and sensitivity

directionality as repeated measures was conducted on BOLD

signal changes for the first versus second presentations in right

HPC and right amygdala and for the fifth versus sixth

presentations in right PRc. We found no significant main

effects but a significant interaction between stimulus repetition

and SMLR sensitivity for a given condition (right HPC: F1,9 =
18.0, P < 0.005, right amygdala: F1,9 = 9.5, P < 0.05, right PRc:

F1,9 = 43.2, P < 0.001, right TPc: F1,9 = 19.9, P < 0.005). In right

HPC, voxels that were diagnostic for the first presentation of

object--location associations decreased neural response to the

second, relative to the first presentation. In contrast, voxels

that were diagnostic for the second presentation increased

their neural response to the second, relative to the first

presentation. In right amygdala, voxels diagnostic for the first

presentation showed greater repetition-related decreases

compared with voxels diagnostic for the second presentation.

In right PRc, voxels that were diagnostic for the fifth

presentation of object--location associations showed repeti-

tion-related decreases while voxels sensitive to the sixth

presentation showed repetition-related increases. A lack of

significant main effects as well as a low magnitude of changes

between comparison conditions in specified voxels suggests

why we often fail to detect significant differences using GLM.

Discussion

The goal of this study was to examine whether and how

involvement of HPC, amygdala, PHc, PRc, and TPc change over

the course of learning in an incidental, spatial-localization task.

If a specific MTL subregion is dynamically involved in

associative memory encoding, then it is reasonable that the

patterns of neural activity corresponding to the 2 consecutive

presentations of associations will differ. By using SMLR and SVM

classifiers, we found evidence that involvement of different

MTL regions changes during the course of incidental learning

of object--location pairs. We will discuss these finding and their

implications below for each of the individual MTL subregions.

Hippocampus and Amygdala

Previous work has implicated HPC in binding of new object--

location associations (e.g., Burgess et al. 2002). HPC involve-

ment in cognitive tasks was rarely explored using a classifica-

tion approach; however, one recent study suggests that this

method may help to reveal novel information about HPC

functioning (Hassabis et al. 2009). Similar to our study, Hassabis

et al. (2009) used a multivariate pattern classification approach

to decode the patterns of neural activity in MTL. The difference

between our 2 studies is that their task involved spatial

navigation rather than visual search. Hassabis et al. (2009)

found that a subject’s positions in a room were accurately

predicted by many voxels in the posterior bilateral HPC but by

only a few voxels in cortical MTL subregions.

The present study extends these findings and offers new

insights into the nature of spatial learning. Specifically, we

found that the initial processing of an object in a location relies

on ‘‘qualitatively’’ different patterns of activity in right HPC and

amygdala than ‘‘reencoding’’ of the same object--location

association on the subsequent trial. This result is comple-

mented by the finding from the GLM analysis that revealed

decreases in BOLD signal on the second presentation com-

pared with the first presentation in the region located on the

border of right amygdala, PRc and HPC, and the finding that the

largest behavioral change (i.e., speedup in RT) between trials

also occurs between the first and second presentations.

Furthermore, the ‘‘quantitative’’ changes were observed in the

left HPC with greater activation for Presentation 3 compared

with Presentation 2. Taken together, these new findings refine

earlier conclusions concerning the involvement of MTL in

learning (e.g., Poldrack et al. 2001) suggesting that HPC and

the amygdala, but not cortical MTL subregions, are engaged in

the early stage of learning. These results also support evidence

coming from animal research (e.g., Nakazawa et al. 2004; Bast

2007) and human recordings from individual MTL neurons

(Rutishauser et al. 2006) that indicate that learning in HPC and

amygdala is rapid and can occur in one trial.

Previous studies implicated the amygdala in regulation of

attention (Gallagher and Holland 1994) and showed that the

amygdala is more active for trials with a larger memory load

(Schon et al. 2009) and during encoding of objects rather than

locations (Ramsøy et al. 2009). Our study provides support for

the idea that the amygdala is also engaged in associative

memory encoding (e.g., Killgore et al. 2000). One recent study

(Rutishauser et al. 2006) reported that there are 2 classes of

neurons in the amygdala: one class of neurons increases firing

rate for novel stimuli, another class of neurons increases firing

for familiar stimuli. Our study provides clear support for these

findings by showing that the engagement of the amygdala is not

limited to the beginning of learning as described above but

extends to the later stages of learning as well. Univariate

analyses of repeated trials revealed that the right amygdala
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significantly increases its activation from Presentation 5 to

Presentation 6. In light of Rutishauser et al. (2006) findings, the

increase in activation later in learning may indicate that the

object--location associations became sufficiently familiar to the

subjects by the sixth presentation. It is noteworthy that the

classification analyses provided some additional support for this

interpretation: SVM on SMLR features was able to distinguish

Presentations 5 and 6 in the right amygdala with 70% accuracy

which is nominally above chance but below the significance

level.

Poor generalization performance does not mean that a region

is not involved in learning of object--location associations

(especially if a univariate method of analysis shows that it is

involved), but it may mean that the patterns of neural activity

differ across subjects. If so, then this variation precludes the

classifier from finding common patterns of neural activity for

a specific classification condition. Arguably, between-subject

variability may be one reason for the nonsignificant classifica-

tion result in the right amygdala late in learning. The same

argument may be applied to the left HPC where the GLM

detected significant change in the BOLD activation but the

classification accuracy was not significantly above chance (65--

70%).

Parahippocampal Cortex

Multiple studies have demonstrated the role of PHc in

processing of spatial information (e.g., Epstein and Kanwisher

1998; Bohbot et al. 2000; Ploner et al. 2000) and, specifically,

object--location associations (e.g., Sommer et al. 2005). There-

fore, it was surprising to find that the PHc was not involved in

this study. One difference between our study and that of

Sommer et al. (2005) is that our subjects learned these pairings

incidentally while their subjects were required to intentionally

learn object--location associations. Conceivably, the intentional

learning of object--location associations requires more PHc

processing that incidental binding.

Another explanation for the difference in findings is that our

multivariate method involved finding patterns of activation that

were not only diagnostic for comparison conditions but also

common across all subjects. Therefore, if activation patterns

from trial to trial in PHc are not in sync across subjects, there

will be poor generalization performance of the classifiers. Some

support for this view comes from our finding that, during the

early stages of learning, classification accuracy in PHc was 65--

70%, which is nominally above chance (50%) but below our

80% threshold.

Perirhinal Cortex

Recent studies suggest that the PRc may be involved in

association of intraitem elements of a stimulus (e.g., Staresina

and Davachi 2008) and object--object associations (Pihlajamäki

et al. 2003). Here, we provide further evidence that the PRc

plays a role in associative encoding but suggest that this

encoding need not be limited to within-domain associations.

While our findings implicated both HPC and PRc in associative

memory encoding, consistent with previous studies (e.g.,

Danckert et al. 2007), the role of PRc was clearly dissociable

from that of HPC. In contrast to the right HPC, right PRc

became engaged late in learning, when the speedup in time to

locate the object had approached asymptote.

In trying to account for these data, there are several views of

PRc function that should be considered. A number of studies

have identified PRc involvement in item recognition based on

a familiarity process (e.g., Brown and Aggleton 2001; Ranganath

et al. 2004). Conceivably then, our PRc data reflect subjects’

increased familiarity with the objects they must locate. The

problem with this interpretation is that the classification

performance was at chance for the variable object--location

pairings for the same conditions that were above chance for

the constant object--location pairings. Presumably familiarity

with the objects, per se, should not depend on the consistency

of the search location.

Another view suggests that learning in cortical MTL regions

is slow because they integrate experiences over multiple trials

(e.g., O’Reilly and Rudy 2001). From this point of view, the

change in the pattern of PRc activation later in the task may

simply reflect slower learning. The problem with this account

is that search RT reached asymptote on the fourth presentation

of object--location pairs but the pattern of neural response in

PRc changed only on the sixth presentation.

In our view, the qualitative change in the PRc activation

pattern late in learning reflects PRc processing of the newly

unitized object--location representations. Our view is consis-

tent with a recent study of Staresina and Davachi (2010). They

proposed that the process of unitization occurs in non-MTL

cortical regions before information reaches the PRc and that

PRc activation increases when the representation of a stimulus

is enhanced.

The unitization account of PRc functioning fits well with

previous findings from patient studies that suggest a general

role of cortical regions for encoding of unitized representa-

tions. Amnesiacs with damage to HPC were able to learn

associations if components of those associations were unitized

(e.g., Quamme et al. 2007). In the Duff et al. (2006) study,

amnesic patients learned associations between abstract pic-

tures (tangrams) and labels that patients themselves generated

for those pictures. These patients were, however, unable to

learn associations between tangrams and unrelated words that

they had not generated. We suspect that the self-generated

labels and the tangrams formed unitized representations that

were successfully encoded in the cortical regions rather than in

HPC.

The notion that units or chunks are formed with practice has

a long history in psychology (e.g., Miller 1956; Chase and Simon

1973; Gobet et al. 2001). As with all other learning processes,

formation of unitized representations occur gradually: in-

creasing in strength with practice and losing the strength with

disuse, over time. During the course of the experiment, the

association of objects to repeated locations gradually strength-

ened and at some point this ever-stronger representation was

sufficiently strong to be processed by the PRc. We believe that

searching for objects in constant locations results in their

unitization, an idea put forward by Musen (1996).

The behavioral evidence for the strengthening of object--

location associations into chunks comes from an additional

phase of our experiment, not described in previous sections

(but see Manelis et al. 2011). After completing the 12 blocks of

visual search in which some objects were always shown in

constant locations and other objects were shown in varied

locations, the mappings changed such that ‘‘constant’’ objects

were now shown in locations that had been reserved for

variable location items and ‘‘variable’’ objects were now pre-

sented in locations that had been reserved for ‘‘constant’’

objects. Time to search for the former ‘‘constant’’ objects was
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significantly slowed when they were presented in new

locations (t9 = –3.8, P < 0.005). In contrast, the search times

for variable location objects were unaffected by the swap, P >

0.1. It is likely that a large behavioral cost for location swap in

the constant but not variable condition occurred because

subjects have unitized constant, but not variable, object--

location representations during the first phase of the experi-

ment.

Temporal Polar Cortex

Sharon et al. (2011) reported that patients with damage to the

HPC, but intact TPc, were able to acquire novel semantic

associations between objects and their names provided they

were assigned to the fast mapping condition. In the fast

mapping condition, encoding the relationship between fea-

tures is an automatic aspect of the task and as a consequence

novel associations are created within ‘‘a pragmatic communi-

cation situation and an existing semantic context’’ (Sharon et al.

2011, p. 1146). From this perspective, our study also may be

considered a fast mapping experiment and, therefore, might

replicate the Sharon et al. (2011) findings. In other words, if

TPc is critical for rapid acquisition of associations, we should

observe either quantitative or qualitative changes in this region

at the beginning of our task. The fact that neural activation in

this region was not modulated early in learning suggests that

TPc involvement is specific for acquisition of semantic but not

object--location associations. Indeed, in his review of semantic

dementia, Patterson et al. (2007) describes Mr. M, a patient

with the degeneration in the anterior temporal lobes, who had

profound semantic dementia but spared spatial memory that is

required for route navigation.

While our study does not support the idea that TPc is critical

for formation of new associations, it provides new insights

concerning the contributions of this region during multiple

presentations of elements that may become associated.

Evidence from the study of patients with anterior temporal

lobectomy (Glosser et al. 2003) offers an explanation for the

modulation in right TPc activation that is observed later in

learning. According to Glosser et al. (2003), damage to the right

TPc impairs learning of new faces and recognition of familiar

ones. Along with the more general finding that both item

encoding and retrieval engage right TPc (Persson and Nyberg

2000), this finding suggests the importance of this region for

object processing. If, in our study, TPc involvement was related

solely to processing of items, we would be able to classify

Presentations 5 and 6 not only for constant pairings but also for

variable object--location association. As in the case with PRc,

we failed to classify variable pairings. Therefore, given the

proximity and connectivity of TPc and PRc (Blaizot et al. 2010),

it is reasonable to suggest that the change in the activation

pattern in the right TPc later in learning could be related to

processing of already unitized associations.

Using The Multivariate Pattern Classification Approach
As A Method To Study Mtl

It is worth emphasizing that multivariate classification methods

and univariate methods of fMRI data analysis (i.e., GLM) often

played a complementary role in this study. Sometimes

classifiers were able to accurately predict a comparison

condition in MTL subregions when univariate methods failed.

However, sometimes the classifiers failed to show above

chance CV performance when the GLM analysis revealed

repetition-related decreases or increases. These suggest that in

order to understand both qualitative and quantitative changes

in brain activation, one need to use both multivariate and

univariate approaches because the nature of the information

provided by the 2 methods may differ. Thus, GLM indicates the

magnitude of changes in each voxel as a function of

experimental condition. A multivoxel classification analysis

reveals different subsets of voxels diagnostic for each condition

of interest. These subsets of voxels can be used later for

exploration of BOLD signal changes. For example, using results

from our classification analysis, we discovered that voxels

located in the middle part of the right HPC exhibited the

repetition-related decreases, while voxels located in the right

posterior and anterior HPC showed an increased activation for

repetition of object--location associations.

Conclusions

The take-away message from this study is that learning of

object--location associations starts with active integration of

object and location information in right HPC and amygdala.

Subsequent repetitions strengthen this association on a cortical

level, possibly by strengthening the connections between

cortical regions. Behaviorally, strengthening is expressed as

facilitation of search (decreased RT to locate objects) for the

objects that appear in fixed locations. Neurally, this strength-

ening of object--location associations leads to their unitization

as single entities with each representation reflecting the

integration of this object--location information. Once the

association becomes a unit, it is processed in the right PRc

and TPc.
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Pihlajamäki M, Tanila H, Hänninen T, Könönen M, Mikkonen M,

Jalkanen V, Partanen K, Aronen HJ, Soininen H. 2003. Encoding of

novel picture pairs activates the perirhinal cortex: an fMRI study.

Hippocampus. 13:67--80.
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