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Learning From Number Board Games: You Learn What You Encode
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Robert S. Siegler
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We tested the hypothesis that encoding the numerical–spatial relations in a number board game is a key
process in promoting learning from playing such games. Experiment 1 used a microgenetic design to
examine the effects on learning of the type of counting procedure that children use. As predicted, having
kindergartners count-on from their current number on the board while playing a 0–100 number board
game facilitated their encoding of the numerical–spatial relations on the game board and improved their
number line estimates, numeral identification, and count-on skill. Playing the same game using the
standard count-from-1 procedure led to considerably less learning. Experiment 2 demonstrated that
comparable improvement in number line estimation does not occur with practice encoding the numerals
1–100 outside of the context of a number board game. The general importance of aligning learning
activities and physical materials with desired mental representations is discussed.
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Ensuring that children acquire foundational numerical knowl-
edge by the end of kindergarten is central to improving mathemat-
ics achievement in the United States. Kindergartners’ mathemati-
cal knowledge predicts subsequent mathematics achievement test
scores in elementary, middle, and even high school (Aunola,
Leskinen, Lerkkanen, & Nurmi, 2004; Duncan et al., 2007; Jordan,
Kaplan, Ramineni, & Locuniak, 2009; LeFevre et al., 2010; Ste-
venson & Newman, 1986). The strength of the predictive relations
between early understanding and later achievement is much
greater in math than in other, less hierarchical, domains.

Precise representations of numerical magnitudes are crucial for
effective mathematics learning. The degree to which children’s
estimates of numerical magnitude on a number line increase lin-
early with the size of the numbers being estimated correlates
strongly with the children’s mathematics achievement test scores
at all grade levels from kindergarten through eighth grade (Booth
& Siegler, 2006; Geary, Hoard, Byrd-Craven, Nugent, & Numtee,
2007; Holloway & Ansari, 2009; Schneider, Grabner, & Paetsch,
2009; Siegler & Booth, 2004; Siegler, Thompson, & Schneider,
2011). Moreover, more linear numerical magnitude representa-
tions in first grade are associated with faster growth in math skills

over the elementary school years, even after controlling for alter-
native predictive factors, such as intelligence and working memory
(Geary, 2011). Causal relations have also been established; expe-
riences that improve the numerical magnitude knowledge of ran-
domly selected children also improve their subsequent learning of
arithmetic and other mathematical skills (Booth & Siegler, 2008;
Laski & Siegler, 2007; Siegler & Ramani, 2009; Whyte & Bull,
2008).

In particular, playing linear number board games has been
shown to improve preschoolers’ knowledge of numerical magni-
tudes and a range of other numerical skills (Ramani & Siegler,
2008; Siegler & Ramani, 2008, 2009; Whyte & Bull, 2008). How
these board games produce learning is poorly understood, how-
ever. This is unfortunate, because identifying the mechanisms
through which number board games exercise their effects could
provide information about general learning principles, as well as
how to optimize and extend the benefits of playing such games.

In the present study, we propose a theoretical framework—the
cognitive alignment framework—for identifying how physical ma-
terials and mental and physical actions with those materials pro-
duce learning. Guided by this framework, we used a microgenetic
design to test the hypothesis that a seemingly minor difference in
the type of counting during game playing influences encoding of
the numerical–spatial relations on the game board and thus con-
tributes to learning. This approach allowed us to describe the
process of change during game playing, to test a framework for
designing instructional materials, and to explore the usefulness of
developmental psychology methods for understanding educational
interventions.

The Cognitive Alignment Framework

Although the use of physical materials and games in mathemat-
ics instruction is often advocated (Ainley, 1990; Ball, 1992),
empirical support for their effectiveness is mixed (McNeil &
Jarvin, 2007). For instance, when Din and Calao (2001) provided
kindergartners from low-income backgrounds with educational
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games aimed at improving mathematical knowledge, the children’s
mathematics abilities did not improve relative to peers who were
not given the games.

The cognitive alignment approach provides a theoretical frame-
work for considering how and when physical materials are most
likely to produce effective learning. Its basic principle is this: The
more precisely that physical materials and learning activities are
aligned with the desired mental representation, the more likely
students are to acquire that representation. One source of support
for this framework comes from research on the development of the
use of symbols and analogical reasoning. This research has sug-
gested that physical materials that are closely aligned to the desired
mental representation increase analogical transfer (Chen, 1996;
DeLoache, Kolstad, & Anderson, 1991; Gentner & Markman,
1997; Goswami, 1996).

In another application of this principle, Siegler and Ramani
(2009) reasoned that a linear board game would be more closely
aligned with the desired linear mental representation of numerical
magnitudes than would a circular board game and therefore would
produce greater acquisition of the desired linear representation.
Consistent with the cognitive alignment framework, the linear
board game produced greater learning of numerical magnitudes, as
measured by both number line estimation and numerical magni-
tude comparison.

Even with the most highly aligned learning materials, however,
learning can fail. This possibility is especially likely in situations
where children can interact with the materials in ways that do not
require the desired encoding (Uttal, O’Doherty, Newland, Hand, &
DeLoache, 2009). Findings from numerous domains indicate that
learners often fail to encode relevant dimensions, that inadequate
encoding impairs learning, and that instructions that improve en-
coding of key features or relations improve learning (Alibali, 1999;
Barrett, Abdi, Murphy, & Gallagher, 1993; Blaxton, 1989; Brown,
Kane, & Echols, 1986; Chi, 1978; McCloskey & Kaiser, 1984;
Ornstein et al., 1998; Siegler, 1976; Siegler & Chen, 1998; Stasze-
wski, 1988). Thus, the cognitive alignment framework posits that
there is a need, even with the best designed learning materials, for
activities that direct learners’ behaviors in ways that promote the
encoding of the features relevant to the desired mental represen-
tation.

Analysis of Number Board Games

Siegler and Booth (2004) hypothesized that experience playing
a linear number board game such as Chutes and Ladders contrib-
utes to knowledge of numerical magnitudes. Their reasoning was
that such games provide visual, kinesthetic, auditory, and temporal
cues to the linear structure of the number system. Imagine a board
game similar to the first row of Chutes and Ladders, that is, with
the numbers 1–10 arranged in equal-size squares progressing from
left to right. Such a game would allow computation of correlations
between numerals and the magnitudes they represent. For exam-
ple, it takes twice as many physical movements and roughly twice
as much time to move one’s token from the origin to 6 as to 3;
reaching 6 also requires the child to move the token twice as far
from the origin and to say and hear twice as many number words.

Consistent with this analysis, experience playing a linear num-
ber board game that has a setup similar to the first row of Chutes
and Ladders helps preschoolers from low-income backgrounds

learn the magnitude of the numbers 0–10. Preschoolers who
played such a game improved on two tasks that measure numerical
magnitude knowledge—number line estimation and numerical
magnitude comparison—as well as on counting, numeral identifi-
cation, and ability to learn the answers to arithmetic problems
(Ramani & Siegler, 2008; Siegler & Ramani, 2008, 2009; Whyte
& Bull, 2008). In contrast, peers who engaged in other numerical
activities (e.g., counting and identifying numerals) improved on
those tasks but not on knowledge of numerical magnitudes (Siegler
& Ramani, 2009; Whyte & Bull, 2008). The gains of children who
played the linear number board game endured for at least 2 months
(Ramani & Siegler, 2008), and playing the game helped children
from middle-income as well as low-income families (Ramani &
Siegler, 2011).

One feature of the number board game that differentiated it from
the way that such games are usually played was that children were
required to say the names of the numbers in the squares as they
moved their token on each turn. Thus, children who were on the
square that contained the number 5 and who spun a 2 were
required to count-on by saying “6, 7.” If they were unable to
count-on from a given number, the experimenter modeled the
correct procedure and then asked the child to repeat it until the
child executed it correctly. This procedure differs from the typical
procedure of counting-from-1 the number of spaces indicated on
the spinner or dice regardless of the token’s initial position (e.g.,
children on 5 who spin a 2 typically say, “1, 2”).

Whether children count-on from the number in the square of
their current position on the game board or count-from-1 might
seem like a minor procedural detail, but the cognitive alignment
framework suggested that it is crucial to the effects of playing the
number board game. Children can easily play number board games
without encoding the numbers on the game board or their associ-
ated magnitudes; they can spin the spinner, count-from-1 to what-
ever number they spun, and ignore the numbers in the squares.

It is uncertain when children begin to automatically activate
numerical magnitude representations when seeing Arabic numer-
als between 0 and 9. Results of some studies have suggested that
children may do so by the age of 7 years (Bugden & Ansari, 2011);
results of others have suggested it is not until age 8 or 9 (Berch,
Foley, Hill, & McDonough-Ryan, 1999; Girelli, Lucangeli, &
Butterworth, 2000; van Galen & Reitsma, 2008). In either case, the
findings have suggested that kindergartners, who generally are 5-
or 6-year-olds, are unlikely to automatically encode the magnitude
of all the numerals through 100. Thus, maximizing the likelihood
of acquiring a linear representation requires learning activities that
promote encoding of the numbers on the board, so that children
can connect these numbers to the magnitude cues that accompany
them (e.g., the time required to reach each number).

The Present Study

The present study had three main goals. One was to explore the
generality of the benefits of playing numerical board games:
Would activities that produced substantial gains in knowledge of
numbers in the 0–10 range produce similar gains for numbers in
the 0–100 range? This latter range is more challenging not only
because it includes 10 times as many numbers but also because
logistical constraints make it impractical to use a strictly linear 1 �
100 game board. Forming a linear representation from experience
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with a semilinear board, such as the 10 � 10 matrix used in Chutes
and Ladders, requires learners to integrate their knowledge across
the rows of the board, which might be difficult or impossible for
children as young as the kindergartners who participated in the
present study. As noted previously, nonlinearly (circularly) orga-
nized boards produced little learning of numerical magnitudes in
previous studies (Ramani & Siegler, 2011; Siegler & Ramani,
2009). On the other hand, the 10 � 10 game board has the
advantage of embodying the base-10 system in a transparent way,
with the rows representing decades and the columns representing
units (e.g., in the present board, 47 was located at the fourth row,
seventh column). The present study tested the generality of the
board game’s effects not only for improving knowledge of a larger
range of numbers but also for improving counting-on skill and
number identification.

The second goal of the study was to identify specific aspects of
the number board game that promote learning. In particular, we
hypothesized that counting-on while moving the token promotes
greater encoding of numerals and their positions on the game
board than counting-from-1. This greater encoding, in turn, was
predicted to increase the extent to which children extracted the
correlations between the number and the several cues to magnitude
associated with reaching that number and thus to increase the
linearity of their representation of numerical magnitudes. This
hypothesis was tested in Experiment 1 by manipulating the type of
counting during game playing—children either counted-on from
the number in the square of their current position on the game
board or counted-from-1 the number of spaces moved. Experiment
2 tested the benefit of encoding numerals outside of a numerical
board game context to separate out the benefit of encoding numer-
als while counting sequences of them from the benefit of engaging
in the same process in the context of a number board game with a
semilinear spatial layout.

The third goal of the study was to examine how changes in
numerical knowledge occur while playing board games. In Exper-
iment 1, a microgenetic design was used to address this goal. The
central feature of microgenetic designs is frequent assessment of
knowledge and cognitive processes during the period in which
learning is occurring (Siegler, 2006). Such a design makes it
possible to examine how changes in cognitive processes, in this
case encoding, are related to changes in the desired knowledge, in
this case linear representations of numerical magnitudes. Experi-
ment 1 included a pretest session, four game playing sessions, and
a posttest session; in each of the game-playing sessions, children
played the 0–100 board game twice. Encoding was measured after
the first and third game-playing sessions (the second and fourth
sessions overall); numerical magnitude representations were mea-

sured after the second and fourth game-playing sessions (the third
and fifth sessions overall). This microgenetic design allowed ex-
amination of the process as well as the products of change.

Experiment 1

Method

Participants. Of the 42 kindergartners who participated
(mean age � 5.8 years), 42% were African American, 52% Cau-
casian, and 7% Other. The children were recruited from two
charter schools serving low- to lower-middle-income families; the
percentages of children eligible for the free or reduced-fee lunch
program in the two schools were 93% and 55%, respectively.

Children within each classroom at each school were randomly
assigned to one of two conditions: count-from-1 or count-on. The
count-from-1 condition included 21 children (mean age � 5.80,
33% female, 33% African American, 52% Caucasian, and 15%
Other). The count-on condition also included 21 children (mean
age � 5.80, 52% female, 48% African American, 52% Caucasian,
and 0% Other). An additional three children (one in the count-
from-one condition and two in the count-on condition) were pre-
sented the pretest but did not complete the experiment because of
extended absences or refusal to participate.

All children were tested in the spring of their kindergarten year
by the same experimenter. Testing of the children in the two
conditions was interleaved, so that children in them were matched
for the time of year of their participation.

Design. Children met individually with an experimenter for
two sessions per week for 3 weeks. As Table 1 illustrates, in
Sessions 1 and 6, children completed the pretest and posttest; in
Sessions 2–5, they played the board game.

Pretest/posttest sessions (Sessions 1 and 6). In these ses-
sions, children were presented five tasks designed to measure
numerical knowledge and encoding of the game board. On the
number line estimation task, participants were read a numeral and
asked to mark its position on a number line that included labeled
endpoints (0 and 100) but no other markings. Previous estimates
were not visible on later trials. Following two practice trials on
which children were asked to indicate the positions of 0 and 100
and shown their location if needed, children were presented 22 test
trials without feedback. The numbers presented were 2, 3, 5, 8, 12,
17, 21, 26, 34, 39, 42, 46, 54, 58, 61, 67, 73, 78, 82, 89, 92, and
97. A different random order of the numbers was generated for
each child at pretest and posttest. The interitem reliability, based
on children’s percentage of absolute error (PAE) on each trial, was
� � .82 at the first administration.

Table 1
Experiment 1: Constructs, Measures, and Time Points of Measurement

Construct and measure

Pretest Board game experience Posttest

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6

Number line estimation X X X X
Numeral identification X X
Count-on X X
Game board reproduction X X
Numeral position encoding X X X X
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On the numeral identification task, children were presented 28
numerals between 0 and 100 on a computer screen and asked to
name them. The numerals were 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 15, 24,
27, 31, 33, 40, 43, 51, 57, 64, 66, 72, 77, 85, 86, 90, 95, and 100.
The interitem reliability was � � .93 at the first administration.

On the counting-on task, children were asked to “start counting
with a and count up N more numbers” with a being 7, 18, 37, or
84 and N being 3, 5, or 8. The 12 trials were presented in one of
two counterbalanced, semirandom orders (random except for the
stipulation that the same starting point was not used on consecutive
trials). The interitem reliability was � � .85 at the first adminis-
tration.

The game board reproduction task provided a measure of en-
coding of the base-10 structure of the board. Children were shown
the board for 30 s and then were given 5 min to draw it on a tablet
PC. At the outset, children were told that they should look care-
fully at the board and notice what was really important, because
they were going to draw it afterward. Because limited fine motor
skill and ability to write numerals could interfere with the intended
depiction, children were asked to explain what they intended in
their drawings and to describe what else they might include if they
had more time. The final drawings and videotaped explanations
were coded according to whether children drew or described 12
features of the game board relevant to its base-10 organization:
gridlike pattern, 10 � 10 grid, numbers arranged in rows, at least
one row with 10 boxes or with labeling that stopped at a decade,
two or more rows with 10 boxes or labeling that stopped at a
decade, numbers increasing from bottom to top, numbers increas-
ing from left to right, 0 labeled, 100 labeled, 0 labeled in correct
position (bottom left corner), 100 labeled in correct position (top
right corner), and some numerals between 0 and 100 written.
Children received 1 point for each feature included. A subset
(10%) of the drawings was scored by a second rater. The scoring
of the drawings was highly reliable: Experiment 1 � � .85, p �
.01, and Experiment 2 � � .87, p � .01.

On the numeral position encoding task, children were presented
a computer screen with a 10 � 10 matrix, with all squares in the
matrix being blank, except for 0 and 100, which were labeled with
those numerals. Before the first trial, children were allowed to look
at the physical game board for 30 s. Then they were asked to move
their cursor on the computer screen to the square where a number
at the top of the screen on that trial belonged and to click their
mouse when the cursor was on it. Immediately after their response,
a new number appeared. In all, 23 numbers were presented in
random order: 5, 8, 10, 12, 15, 16, 21, 28, 31, 39, 40, 46, 51, 54,
65, 67, 73, 75, 77, 82, 85, 90, and 92. The interitem reliability was
� � .68 at the first administration.

Game-playing sessions (Sessions 2–5). In each of these ses-
sions, children twice played the board game Race to Space with the
experimenter. All children used a game board on which the num-
bers 1–100 were arranged in a 10 � 10 matrix (see Figure 1). The
blue background color of the board deepened every two rows,
providing an added cue to numerical magnitude. The spinner,
which determined how far participants would move their tokens on
each turn, had five sections labeled 1–5.

Children participated in one of two experimental conditions that
differed only in the type of counting required as children moved
their token. In the count-from-1 condition, children counted aloud
from 1 as they moved their token until they reached the number

indicated on the spinner (e.g., children on 17 who spun a 2 said “1”
as they put their token on the square labeled 18 and “2” as they put
their token on the square labeled 19). In the count-on condition,
children counted-on from the number on the square where they
began the turn (e.g., children on 17 who spun a 2 said “18, 19”).
In both conditions, if the child could not perform the requested
activities, the experimenter helped with the counting and with
moving the token the appropriate number of squares. To equalize
exposure to the counting sequence and the support provided,
kindergartners in the count-from-1 condition were asked to count
aloud to 100 before playing each game and were helped whenever
they made a counting error or were unable to produce the next
number in the counting sequence.

In both conditions, the experimenter introduced the game by
saying that its purpose was to help children learn more about the numbers
between 0 and 100. Once in each 10 numbers, the experimenter drew
children’s attention to their position on the game board (e.g.,
“Look! You’re on 22”). Other incidental comments were kept to a
minimum and were made only when the child asked a question or
made a comment (e.g., “I’m winning”).

No set time was imposed on the time of the training sessions;
the training sessions went as long as was needed for the child to
play the board game to completion twice. Playing each game to
completion (i.e., until both players reached 100) ensured that
children were exposed to the entire range of numbers. The mean
time of the four training sessions was 19.36 min (SD � 1.90) in
the count-from-1 condition and 25.28 min (SD � 5.85) in the
count-on condition, thus necessitating statistical controls for
time on task.

Results

Preliminary analyses found no gender, classroom, or school
effects. Thus, these variables were not considered in subsequent
analyses. Because the count-on condition led to longer game-
playing sessions, the average time of each child’s training sessions

Figure 1. Number board game used with children in both conditions of
Experiment 1 and in Experiment 2.
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was used as a covariate in the analyses of variance and regression
analyses.

Effects of experimental condition.
Multivariate analyses. The first analysis examined the effects

of type of counting on the five outcome measures. For the count-
on, numeral identification, and numeral position encoding tasks,
the dependent measure was the percentage of correct answers. For
the game board reproduction task, the dependent measure was the
number of relevant features included in children’s drawings or
cited by the children when explaining their intention. For the
number line estimation task, the dependent measure was a com-
posite score calculated by summing individuals’ z scores for the
percentage of absolute error � (|estimate-estimated quantity|/scale
of estimates) � 100, linearity, and slope of the best fitting linear
function.

A 2 (condition: count-from-1 or count-on) � 2 (session: pretest
or posttest) repeated-measures multivariate analysis of variance
was conducted on the five measures, controlling for the average
time of individuals’ training sessions. Effects emerged for session,
F(5, 34) � 3.76, p � .01, �p

2 � .36, and for the condition by
session interaction, F(5, 34) � 5.54, p � .01, �p

2 � .45.
To better understand the interaction, and to examine the consis-

tency of results across tasks, repeated-measures analyses of
variance (ANCOVAs) were conducted for each task. Consistent
with the hypothesis that counting-on would produce greater
learning than counting-from-1, a condition by session interac-
tion was found for all tasks, except for numeral identification,
on which both groups performed near ceiling at pretest and
posttest (see Figure 2).

Number line estimation. A repeated-measures ANCOVA on
the number line estimation composite score indicated that chil-
dren’s number line estimates varied with the condition by session
interaction, F(1, 38) � 7.72, p � .01, �p

2 � .17. To better under-
stand this interaction, t tests were used to examine differences
between conditions at pretest and posttest for each measure of
number line estimation: percentage of absolute error, linearity, and
slope. Condition affected improvement on each indicator. As
shown in Figure 2a, the count-from-1 condition produced no
pretest–posttest change in number line PAE: 21% (SD � 7%) at
pretest and 20% (SD � 7%) at posttest. In contrast, the count-on
condition produced pretest–posttest improvement, 20% (SD �
7%) at pretest versus 14% (SD � 7%) at posttest, t(20) � 5.60,
p � .0005, d � 0.86. The two conditions did not differ at pretest
(21% and 20%, respectively) but did differ at posttest: 19% versus
14%, respectively, t(40) � 2.20, p � .03, d � 0.71.

The count-from-1 condition also produced no pretest–posttest im-
provement in the linearity of number line estimates (see Figure 2b).
Mean percentage of variance in individual children’s estimates that
was accounted for by the best fitting linear function was 46% (SD �
23%) at pretest and 47% (SD � 29%) at posttest. In contrast, the
count-on condition produced substantial pretest–posttest improve-
ment in the linearity of individual children’s estimates, 49% (SD �
29%) at pretest versus 69% at posttest (SD � 22%), t(20) � 4.53,
p � .0005, d � 0.77. The two conditions did not differ at pretest (46%
and 49%, respectively) but did differ at posttest, 47% versus 69%,
respectively, t(40) � 2.80, p � .01, d � 0.87.

The count-from-1 condition again produced no pretest–posttest
improvement in the mean slopes of individual children’s number
line estimates, .54 (SD � .20) at pretest and .48 (SD � .24) at

posttest (see Figure 2c). In contrast, the count-on condition pro-
duced substantial pretest–posttest improvement, .47 (SD � .25)
versus .67 (SD � .17), t(20) � 4.81, p � .0005, d � 0.93. The
mean slopes of number line estimates of children in the two
conditions did not differ at pretest (.54 and .47, respectively) but
differed at posttest, .48 versus .67, respectively, t(40) � 2.94, p �
.01, d � 0.91.

Numeral identification. Percentage of correct numeral iden-
tifications varied with session, F(1, 38) � 10.5, p � .01, �p

2 � .22,
but not with the session by condition interaction.

Count-on. Number of correct count-on sequences varied with
the condition by session interaction, F(1, 38) � 13.55, p � .01,
�p

2 � .26. Count-on accuracy of children in the count-from-1
condition did not improve: 23% (SD � 25.30%) on pretest and
23% (SD � 26.82%) on posttest (see Figure 2e). In contrast,
accuracy of children in the count-on condition improved from
pretest to posttest from 25% (SD � 22.89%) to 54% (SD �
29.54%), t(20) � 4.37, p � .0005, d � 1.10. The two conditions
did not differ at pretest (23% and 25%, respectively) but did differ
at posttest, 23% versus 54%, respectively, t(40) � 3.56, p � .01,
d � 1.10.

Numeral position encoding. Correct locations of the position
of numerals in the matrix varied with session, F(1, 38) � 10.81,
p � .01, �p

2 � .22, and with the condition by session interaction,
F(1, 38) � 12.61, p � .01, �p

2 � .25. Children in the count-from-1
condition improved from 16% (SD � 13.13%) correct locations of
numerals on the pretest to 28% (SD � 20.05%) on the posttest,
t(20) � 4.16, p � .0005, d � 0.71. Children in the count-on
condition, however, made larger improvements, from 17% (SD �
13.23%) to 44% (SD � 22.53%), t(20) � 6.79, p � .0005, d �
1.46 (see Figure 2f). The two conditions did not differ at pretest
(16% and 17%, respectively) but did differ at posttest, 28% versus
44%, respectively, t(40) � 2.42, p � .05, d � 0.75.

Game board reproduction. Accuracy of encoding of the rel-
evant features and base-10 organization of the game board varied
with the condition by session interaction, F(1, 38) � 4.98, p � .03,
�p

2 � .12 (see Figure 2g). The mean of the 12 relevant features
cited by children in the count-from-1 condition did not change
significantly: 7.62 (SD � 2.78) on the pretest and 8.38 (SD �
2.18) on the posttest. In contrast, children in the count-on condition
improved from naming a mean of 6.76 (SD � 2.79) features on the
pretest to naming a mean of 9.48 (SD � 2.68) on the posttest,
t(20) � 7.41, p � .0005, d � 1.00. The number of features named
by children in the two conditions did not differ significantly on
either pretest (7.62 and 6.76, respectively) or posttest (8.38 and
9.48, respectively), though the increase from pretest to posttest was
larger in the count-on condition (2.72 versus .76 features, respec-
tively).

Rate of learning. The microgenetic design allowed us to
examine changes in number line estimation and encoding of the
positions of the numerals on the board during training. Changes in
the two conditions are shown in Figure 3.

Number line estimation. In the count-from-1 condition, there
was no significant improvement in PAE, linearity, or slope of
number line estimates between any of the assessments. PAE was
21% (SD � 7%) at pretest, 20% (SD � 8%) at the end of the
second training session, and 19% (SD � 7%) at both the end of the
fourth training session and at posttest. The amount of variance in
each child’s estimates accounted for by the linear function did not
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change over the course of training; it averaged 46% (with a SD
ranging from 23% to 30% at the four points of measurement). The
slope of the best fitting linear function also changed little from
pretest .54 (SD � .20) to the end of the second training session, .49

(SD � .19) to the fourth training session, and .50 (SD � .23) to the
posttest .48 (SD � .24).

In contrast, in the count-on condition, there was more rapid
and substantial improvement, particularly at the beginning of

Figure 2. Experiment 1: Pretest and posttest performance of children in each condition for each outcome
measure. Lin � linear function.
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training. Mean PAE of number line estimates decreased sub-
stantially at the beginning of training, from 20% (SD � 7%) at
pretest to 15% (SD � 7%) at the end of the second training
session, t(20) � 4.13, p � .01, d � 0.71. No further changes
occurred in the fourth training session and posttest, both
PAEs � 14% (SD � 7%).

The same pattern of improvement was found for linearity and
slope. Mean percentage of variance in individual children’s esti-
mates that was accounted for by the best fitting linear function
increased substantially at the beginning of training, from 49%
(SD � 29%) at pretest to 64% (SD � 28%) at the end of the second
training session, t(20) � 3.04, p � .01, d � 0.58. There was no
significant change in the linearity of children’s estimates between
the ends of the second and fourth training sessions, 64% and 69%
respectively (SD � 25%), nor from the end of the fourth training
session to the posttest, both � 69% (SD � 22%). Similarly, mean
slope of individual children’s number line estimates increased
from pretest to the end of the second training session, .47 (SD �
.25) to .62 (SD � .19), t(20) � 3.64, p � .01, d � 0.68, but did not
change between the second and fourth training sessions, .62 and
.64, respectively (SD � .17), nor between the fourth training
session and the posttest, .64 and .67, respectively (SD � .17).

Numeral position encoding. In the count-from-1 condition,
children’s encoding of the position of the numerals on the game

board improved from pretest to the end of the first training session,
from 16% (SD � 13.13%) to 23% (SD � 16.15%), t(20) � 2.43,
p � .05, d � 0.45. There was no further significant change in the
percentage of correct locations between the ends of the first and
third training sessions, 23% and 24%, respectively (SD �
14.97%), nor between the end of the third training session and the
posttest, 24% and 28%, respectively (SD � 20.04%). Learning in
the count-on condition was similar but with two differences. One
was that learning was greater at the beginning of training. Between
pretest and the end of the first training session, percentage of
correct locations of numerals more than doubled, increasing from
17% (SD � 13.23%) to 35%, respectively (SD � 21.27%), t(20) �
4.51, p � .0005, d � 1.02. The second difference was that correct
identifications of numbers’ locations increased between the end of
the first training session and the posttest, 35% to 44%, respectively
(SD � 22.53%), t(20) � 4.35, p � .0005, d � 0.41.

Encoding as a mediator. A simple mediation analysis was
conducted, using the causal steps strategy (Baron & Kenny, 1986)
to test the hypothesis that improvement in encoding mediated
acquisition of more linear and accurate number line estimates. We
controlled for the mean time of training sessions, as well as pretest
performance in number line estimation, numeral position encod-
ing, and numeral identification. Pretest performance in counting
from a number other than 1 on was not included as a covariate

Figure 3. Experiment 1: Rate of improvement in number line estimation and encoding of numeral positions
across training for each condition. Lin � linear function.
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because it was not related to improvement in number line estima-
tion in either condition. Numeral position encoding was used as the
measure of encoding because it was the measure most closely
related to our ideas about encoding spatial–numerical relations.

The regression analyses indicated that (a) experimental condi-
tion was related to posttest numeral position encoding accuracy
(� � .43, p � .01), (b) experimental condition was related to
posttest number line estimation (� � .50, p � .01), and (c) posttest
numeral position encoding accuracy was related to posttest number
line estimation (� � .57, p � .01). The relation between condition
and posttest number line estimation decreased and was no longer
significant when both condition and posttest numeral position
encoding accuracy were included in a single model predicting
posttest number line estimation (� � .32, p � .09). The Sobel test
z value was 2.15, p � .03.

We then used the bootstrapping method with bias-corrected
confidence estimates to determine the indirect effects (Preacher &
Hayes, 2008). The product of the coefficients (ab) for the indirect
path from condition to posttest number line linearity through
posttest numeral position encoding accuracy, controlling for initial
performance on both tasks and mean time of training sessions, was
significant (bias-corrected confidence interval � 0.08 to 1.41).
Thus, both the Sobel test and the bootstrapping method indicated
that improved encoding of the numerical–spatial relations on the
game board mediated the beneficial effects of the count-on con-
dition.

Discussion

The results were consistent with the hypothesis that counting-on
while moving the token in a numerical board game promotes
greater encoding of numerals’ spatial positions and, thus, greater
learning about the numerical magnitudes of numbers. Counting-on
led to improvements in number line estimation and encoding of the
structure of the game board that were roughly twice as great as
those made by children who counted-from-1 while playing the
game.

However, there were two potentially important differences be-
tween the conditions other than the intended theoretical contrast.
One was that children in the count-on condition had practice
counting-on from numbers other than 1; counting-on per se, rather
than counting-on in the context of the number board game, could
have produced the gains observed in the experiment. The other
potentially important difference was that children in the count-on
condition could encode the printed Arabic numerals as they
counted to 100, whereas children in the count-from-1 condition did
so in the absence of printed numerals. Thus, it was unclear whether
it was practice encoding numerals within the structure of a number
board game or one or both of these other factors that benefited
children’s numerical magnitude knowledge.

Experiment 2 was designed to test whether practice counting-on
and encoding printed numerals outside the context of a number
board game would generate improvement in numerical magnitude
knowledge comparable to that produced by playing the number
board game using the count-on procedure. We expected that prac-
tice encoding numerals outside of the game context would produce
improvement in numeral identification and counting-on similar to
those shown by children in the count-on condition in Experiment
1, because the experience relevant to those two skills would be

highly similar or identical. However, it also was expected that this
practice outside the board game context would not produce com-
parable improvement in number line estimation and encoding,
because that experience would not produce the correlations be-
tween numerical magnitudes and kinesthetic, temporal, auditory,
and visual cues that are present in the board game context.

Experiment 2

Method

Participants. Experiment 2 included 21 kindergartners (mean
age � 5.9 years) of whom 57% were African American, 29%
Caucasian, and 14% Other. All of the children were recruited from
the same two charter schools as in Experiment 1. As in Experiment
1, all children were tested in the spring of their kindergarten year
by the same experimenter.

Design. The design was the same as that in Experiment 1, but
children did not complete the number line estimation and the
numeral encoding tasks during Sessions 2–5.

Pretest/posttest sessions (Sessions 1 and 6). Children in Ex-
periment 2 completed the same five tasks of numerical knowledge
and encoding of the game board used in Experiment 1: number line
estimation, numeral identification, counting-on, game board repro-
duction, and numeral position encoding.

Game-playing sessions (Sessions 2–5). The Experiment 2
game-playing sessions were similar to those in the count-from-1
condition in Experiment 1 but included an additional activity.
After playing Race to Space as in the count-from-1 condition in
Experiment 1, children named all of the Arabic numerals between
0 and 100 in order. The numerals were printed on individual cards
and randomly divided into 34 sequences, varying between one and
five numbers in length (a different set of 34 number sequences was
used after each game). Summing across the cards in the 34 se-
quences, the children each counted from 1 to 100 in order with the
printed numbers visible, as in the board game, but without the
board being present. Except when presented the first sequence,
children were required to count up from a number other than 1. For
example, if the first sequence was 1, 2, then the next sequence was
3, 4, 5, 6. Children needed to read the numbers in the sequence and
were corrected if they erred until they read them correctly. The
experimenter and the children each took a turn naming the numer-
als in each sequence before starting the next sequence. The mean
time of the four training sessions in Experiment 2 (28.91 min,
SD � 5.39) was very similar to that in the count-on condition in
Experiment 1 but slightly longer.

Results

Paired-samples t tests were used to examine differences in
performance from pretest to posttest. All dependent measures were
the same as in Experiment 1.

Number line estimation. Unlike the children in the count-on
condition in Experiment 1, children in Experiment 2 demonstrated
no significant pretest–posttest improvement on any of the mea-
sures of number line estimation. Number line PAE was 16%
(SD � 9%) at pretest and 14% (SD � 6%) at posttest, t(20) � 2.02,
p � .06, d � 0.30. Mean percentage of variance in individual
children’s estimates that was accounted for by the best fitting
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linear function was 58% (SD � 29%) at pretest and 61% (SD �
24%) at posttest, t(20) � 0.84, p � .41, d � 0.15. The mean slopes
of individual children’s number line estimates was .56 (SD � .26)
at pretest and .61 (SD � .18) at posttest, t(20) � 1.22, p � .24, d �
0.22.

Numeral identification and count-on. As expected, children
did demonstrate pretest–posttest improvement on numeral identi-
fication and count-on. Accuracy of correct numeral identifications
improved from 82% (SD � 18.76%) at pretest to 90% (SD �
13.94%) at posttest, t(20) � 3.18, p � .01, d � 0.48. Counting-on
accuracy improved from 18% at pretest (SD � 13.45%) to 24% at
posttest (SD � 14.59%), t(20) � 2.14, p � .05, d � 0.45

Encoding. Children’s improvement on the numeral position
encoding task was comparable to that of children in the count-
from-one condition in Experiment 1: from 17% (SD � 11.47%)
correct locations of numerals on the pretest to 26% (SD � 13.32%)
on the posttest, t(20) � 4.48, p � .0005, d � 0.73. Similarly, like
children in the count-from-1 condition in Experiment 1 and unlike
those in the count-on condition of Experiment 1, children in
Experiment 2 demonstrated no significant improvement in accu-
racy of encoding of the relevant features and base-10 organization
of the game board measured by the game board reproduction task.
The mean was 4.62 (SD � 2.73) on the pretest and 4.38 (SD �
2.67) on the posttest, t(20) � 0.45, p � .66, d � 0.09. This was the
anticipated pattern, because experience with the game board was
identical for children in Experiment 2 and children in the count-
from-1 condition of Experiment 1.

Discussion

The present findings demonstrate that benefits of playing nu-
merical board games are not limited to preschoolers, to the nu-
merical range 1–10, or to games with a strictly linear organization.
Substantial learning was observed in kindergartners playing a
0–100 number board game organized as a semilinear 10 � 10
matrix. The findings also indicated that the most rapid and sub-
stantial improvement from playing board games occurs during the
first two sessions playing the game.

In addition, the findings suggest that encoding is a key process
in generating learning from number board games. These results
converge with those of previous research that have demonstrated
the importance of encoding for mathematics learning (e.g., McNeil
& Alibali, 2004; Prather & Alibali, 2011). Experiment 1 demon-
strated that a subtle difference between two ways of playing a
number board game—whether children counted-from-1 or
counted-on from the larger number—had a large impact on learn-
ing. Counting-on led to improvements in number line estimation,
numeral identification, counting from numbers other than 1, and
encoding of the structure of the game board that were roughly
twice as great as the gains of children who counted-from-1 while
playing the game. It is especially noteworthy that counting-on led
to greater improvements in number line estimation and encoding
of positions of numerals on the game board, skills for which
counting-on did not provide practice.

Differences between the findings of Experiments 1 and 2 sug-
gest that greater learning of numerical magnitudes occurs when
encoding of numbers occurs within the context of a number board
game where children can connect the numbers to visual, auditory,
kinesthetic, and temporal magnitude cues than when the encoding

of numbers occurs outside the game context. Encoding numerals
outside of a game context produced improvement in numeral
identification and counting from numbers other than 1 but no
significant improvement in number line estimation. Thus, gains
from counting-on while playing the board game could not be
attributed to counting-on from numbers other than 1 or to counting
in the presence of printed numbers.

General Discussion

In this concluding section, we examine several implications of
these findings.

The Cognitive Alignment Framework

The cognitive alignment framework proposes that the more
precise the alignment among the desired mental representation, the
physical materials being used to promote learning, and the activ-
ities that direct learners’ thoughts and actions during the acquisi-
tion process, the greater the learning is likely to be. Key features
of desired mental representations must be instantiated in the phys-
ical materials for learning of that representation to occur. The
presence in the physical materials of relevant information, how-
ever, does not guarantee its encoding. Even simple well-designed
physical materials include irrelevant cues and can be used without
the desired encoding.

One way to increase encoding of key structural features is to
organize activities in ways that promote the desired encoding. The
advantage of the count-on condition was predicted, because nam-
ing the number in each square requires its encoding, which pro-
vides the data needed to correlate numbers in different squares
with the visuo-spatial, auditory, kinesthetic, and temporal cues that
accompany reaching that square. In contrast, the counting-from-1
procedure does not require, or even encourage, attention to the
numbers in the squares. Consistent with this interpretation, the
numeral position encoding of children in the count-on condition
improved about twice as much as that of children in the count-
from-1 condition. Moreover, results of the mediation analyses
indicated that improved encoding in the count-on condition medi-
ated the acquisition of more linear number line estimates. Finally,
the results of Experiment 2 indicated that encoding numerals
outside of the context of the game did not lead to improvement in
number line estimation. This finding provides further evidence for
the idea that naming the number in each square facilitated the
encoding of the numerical–spatial relations on the game board that
offer information about numerical magnitude. The current data did
not allow us to determine which cues most facilitated learning
about numerical magnitudes, but the data do indicate that the cues
to numerical magnitude are insufficient to promote learning with-
out activities that promote encoding of the numbers.

If young children had spontaneously encoded the numbers in the
squares, the count-on procedure would have been unnecessary.
However, 5- and 6-year-olds do not automatically encode numbers
from 1 to 100 in situations that do not demand it (Girelli, Lucan-
geli, & Butterworth, 2000; van Galen & Reitsma, 2008) or when
learners have limited numerical knowledge (Barrett et al., 1993;
Ornstein et al., 1998). Better numeral identification skills might
have reduced the working memory demands of the count-on pro-
cedure, thus facilitating formation of a linear representation of the
game board.
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These results suggest that additional testing of the cognitive
alignment framework would be worthwhile. For example, the
framework suggests that to the extent that kinesthetic cues influ-
ence learning, having children observe an experimenter moving
the token while counting-on should produce less learning than
having children move the token while counting-on themselves.

A further prediction of the cognitive alignment framework is
that procedures that lead children to note their token’s position
relative to that of other players’ tokens, and relative to the starting
and ending points on the board, would facilitate the formation of
linear representations of numerical magnitudes. Such procedures
could help children learn relations among numbers, just as proce-
dures that encourage structurally relevant comparisons of the prop-
erties of objects do in analogical reasoning (Gentner & Markman,
1997; Namy & Gentner, 2002). For example, children might be
told, “The closer to the goal (i.e., 100) the token is, the greater the
number in that square,” and “The more squares between one’s
current position and that of an opponent, the greater the difference
between the numbers on which the tokens sit.” If these predictions
prove accurate, they will illustrate the usefulness of the cognitive
alignment framework, in particular, and of developmental psychol-
ogy theory, in general, for understanding and designing educa-
tional interventions.

Effects of Spatial Organization of Physical Materials

Not all spatial arrangements of numbers within board games
produce comparable learning. Siegler and Ramani (2009) found
that preschoolers learned little about numerical magnitudes from
playing a 0–10 number board game when the 10 numbers were
displayed in a circular pattern. The current data provide evidence
that playing a 0–100 number board game with the numbers orga-
nized semilinearly in a 10 � 10 grid akin to that used in Chutes
and Ladders improves kindergartners’ knowledge of numerical
magnitudes, counting-on, and numeral identification. These results
indicate that a game board does not need to be strictly linear for
acquisition of a linear representation of numbers in that range to be
acquired.

One possible explanation of the difference between the lack of
learning with the circular arrangement and the substantial learning
from the 10 � 10 matrix is that the matrix was easier to transform
into a strictly linear array. Another interpretation was that the
circular organization of the boards in Siegler and Ramani (2009)
interfered with a nascent linear organization that the preschoolers
had begun to form but that was not too weak to yield good
outcomes on magnitude comparison and number line estimation
tasks. A third interpretation was that the older children (kinder-
gartners rather than preschoolers) in this study were better able to
make the transformation needed to represent the 10 � 10 matrix as
a strictly linear array.

A fourth interpretation, and in many ways the most intriguing, is
that the 10 � 10 matrix might have helped children learn the
base-10 structure of the number system, which, in turn, might be
important for understanding numerical magnitude of numbers
greater than 10. Within the present board game, the rows reflected
the decade structure and the columns the unit structure of the
base-10 system (1 was in the leftmost bottom square, 11 directly
above 1, 21 directly above 11, etc.) This organization differs from
that of Chutes and Ladders, which snakes around with 11 directly

above 10 and 21 directly above 20. We adopted the present
organization because it seemed more likely to convey to children
the base-10 structure of the number system. The improved perfor-
mance on the encoding tasks shown by all the children, but
especially by those in the count-on condition, suggests that this
goal was realized. It was of course possible that children might
have remembered the exact location of individual numbers without
abstracting the game’s structure, but observations of children
counting the decades (“10, 20, 30”) and then the units (“31, 32,
33), together with the difficulty of remembering 100 locations after
only eight exposures to each, made this unlikely.

These findings raise the question of whether the present orga-
nization is more useful for abstracting the structure of the base-10
system than the traditional organization of the Chutes and Ladders
board. If the present organization proves to promote greater learn-
ing of the base-10 system, toy companies that produce games such
as Chutes and Ladders might want to incorporate this design
feature into future versions of the game.

Limitations

Board games can increase children’s numerical knowledge, but
their effects may vary with children’s engagement with the games.
Such engagement was not measured in the present study, but it is
possible that the count-on condition was more engaging than the
count-from-1 condition because it was more challenging. Alterna-
tively, it is possible that the count-from-1 condition was more
engaging because the opportunity to win came at a lower cognitive
cost. Future studies could include a larger sample and a measure of
individuals’ effortful control to test the relation between the type
of counting used and engagement in the game. If counting-on was
more demanding, children higher in effortful control might benefit
more from that condition, because they would be engaged despite
its challenges. Effortful control would be expected to matter less
for children in the count-from-1 condition because of that condi-
tion’s lower cognitive demands. Future studies also could include
a measure of engagement to examine which features of games
produce high levels of engagement and whether level of engage-
ment influences learning.

Another limitation of the present study is that it did not test the
long-term benefits of playing the 0–100 game. Ramani and Siegler
(2008) demonstrated that playing a similar 0–10 linear number
board game produced gains in mathematical knowledge that en-
dured for at least 2 months. Including delayed posttests in a future
experiment would allow examination of how long benefits of more
complex board games endure.

Conclusion

Identifying general principles that predict when and explain how
games produce learning is a worthy goal of future research. Over
$2 billion a year is spent on games and puzzles in the United States
(Toy Industry Association, 2012). Many of these games are used
by parents and teachers as tools for inculcating knowledge of
colors, numbers, letters, and words, as well as a wide range of
facts, concepts, modes of reasoning, and problem-solving tech-
niques. Research on what and how children learn from such games
can suggest simple, inexpensive ways to modify the games to
increase learning. The present study provides one example of how
this can be done.
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