Structural brain network topologies associate with aspects of value-based decision-making

. Department of Biological Sciences, Carnegie Mellon University 3. Department of Psychology, University of Pittsburgh School of Medicine 2. Department of Psychology, Carnegie Mellon University 4. Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh

Background & Motivation

- Most complex tasks require coordinating across macroscopic brain networks
- These large brain networks rely on white matter pathways to communicate
- It remains unclear how individual differences in the topological pattern of structural brain networks influences individual differences in complex behaviors like value-based decision-making

Hypothesis

Individual differences in brain network topology predict differences in value-based decision making

Methods

Participants

Sample consisted of 124 community dwelling adults (27 male; M = 44.38years of age, SD=8.49; M=16 years of education, SD=2.67)

Iowa Gambling Task (IGT)

- The goal of the IGT is to maximize profit with a set amount of number of draws possible from 4 decks of cards that vary in the amount and frequency of rewards and punishments
- Payoff: P = (C + D) (A + B)
- Sensitivity to frequency of gain: Q = (B + D) - (A + C)

Structural connectivity

- 64 direction DTI acquisition
- (2.4mm³ voxels, v=2000s/mm²). Data was reconstructed into MNI-space using QSDR (Yeh et al., 2011) and connectivity was estimated using a deterministic fiber tracking method (Yeh et al. 2013) to find the number of streamlines that connected gray matter targets (AAL template, 90 regions)

Cristina Bañuelos^{1,2}, Alexis Porter², Kirk I. Erickson, Ph.D.^{3,4}, Timothy Verstynen, Ph.D.^{2,4}

For each subject we looked at 8 measures of structural network topology, related to the "small worldness" of the brain networks (Rubinov & Sporns 2010; Bassett & Bullmore 2006)

Results: Dimensionality

Correlation in topologies

Topology metrics were partially correlated across individuals, with particularly strong correlations between Small Worldness and Density, Small Worldness and Characteristic Path Length, Global Efficiency and Density, Global Efficiency and Characteristic Path Length, Global Efficiency and Small Worldness, Local Efficiency and Clustering Coefficient, and Local Efficiency and Small Worldness

Principal Components Analysis (PCA)

The PCA revealed a lower dimensional structure to the correlations, with 5 components explaining more than 95% of the variance

\$ +135

Correlation Matrix for Structural Topology Measures 0.06

Payoff (P)

Sensitivity (Q)

One component relial associated with Sens (Q) to high frequency rewards. When this association was proje back into topology sp we found that Density Transitivity, Global Efficiency, & Assortat all were strongly associated with Q

Summary

- topological organization
- frequency rewards.

Applications

- Neuroimaging markers of decision-types
- addiction)

Experimental directions

References & Acknowledgements

- anisotropy. *PloS one*, 8(11), e80713
- Bassett, D. S., & Bullmore, E. D. (2006). Small-world brain networks. The neuroscientist, 12(6), 512-523.

Results: Associations with P&Q

None of the components reliably associated with Payoff (P)

		Coefficient Estimate (Std. Error)				
		P Score		Q Score		
ably sitivity	Intercept	21.41(2.48	21.41(2.48)***		31.44(2.59)***	
	Component 1	1.86(1.35	1.86(1.35)		-0.81(1.41)	
	Component 2	2.86(1.75)		2.30(1.83)		
/	Component 3	0.55(2.35	5(2.35)		3.37(2.46)	
	Component 4	-3.56(2.6	2) 3		.23(2.74)	
ootod	Component 5	3.51(3.37	7) 7.		46(3.52)*	
		Weights in Topology Space				
pace,		Weight	Lower	Bound	Upper Bound	
Σy,	Density	5.8887	0	.436	11.3414	
tivity	Clustering Coefficient	-0.4626	-0.8909		-0.0342	
	Transitivity	-2.4371	-4.6937		-0.1804	
	Characteristic Path Length	1.5615	0.1156		3.0073	
	Small Worldness	-1.0107	-1.9	9465	-0.0748	
	Global Efficiency	-2.0043	-3.8	3602	-0.1484	
	Local Efficiency	-0.2793	-0.	5379	-0.0207	
	Assortativity	-2.6949	-5.1	1904	-0.1995	

Conclusion

White matter networks have a low dimensional structure in their

2. None of the components were found to associate with individual difference in the ability to use feedback to maximize long-term rewards. 3. One component, linked to several small-world network measures, reliably correlated with individual differences in sensitivity to high-

Future Directions

Diagnostic tools for possible pathologies in decision-making (e.g.,

Similar analysis on other complex decision tasks (e.g., Stroop) More detailed focus on regions of interest such as the striatum Integration with functional connectivity measures

resolution brain atlas constructed by a-space diffeomorphic reconstruction. Neuroimage. 58(1) Yeh, F. C., Verstynen, T. D., Wang, Y., Fernández-Miranda, J. C., & Tseng, W. Y. I. (2013). Deterministic diffusion fiber tracking improved by quantitative Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. Neuroimage, 52(3), 1059-1069.