Stacking Learning of Multimodal Neuroimaging data enhances cognitive prediction

Carnegie Mellon University

Javier Rasero¹, Amy Sentis¹, Fang-Cheng Yeh², Timothy Verstynen¹

Carnegie Mellon University, ²University of Pittsburgh

GOAL

Assess and quantify how unique variability in multimodal neuroimaging data contributes and aids to enhance predictive accuracies of individual cognitive performance.

DATASET

Observations:

-1050 subjects from the Human Connectome Project.

Independent Variables:

- -Functional data (Resting-state connectivity)
- -Structural data (Cortical Surface Areas, Cortical Thickness, Global and Sub-cortical volumes)
- -Diffusion data (Local Connectome fingerprints)

Dependent Variables:

- -NIH Toolbox Cognition Total Composite Score (Global cognition)
 -NIH Toolbox Cognition Fluid Composite test score (Fluid intelligence)
- -NIH Toolbox Cognition Crystallized Composite test (*Crystallized intelligence*)
- -Short Penn Continuous Performance Test (Sustained attention) -Area Under the Curve for Discounting of \$200 (Self-regulation)
- -Total Number of Correct Responses in a Penn Word Memory test (Verbal episodic memory)
- -Total number of correct responses in a Variable Short Penn Line Orientation test (*Spatial orientation*)

METHODOLOGY

Two-level stacking learning approach where each group of features (channels) is trained individually and then these predictions stacked to feed a second classifier that allows to account for redundant effects

SINGLE CHANNEL AND STACKING PREDICTIVE SCORES

CORTICAL

CORTICAL

Cognitive areas where stacking improves accuracies with respect to best single channel: Global cognition, Fluid intelligence, Crystallized intelligence, Spatial orientation and Self-regulation

Experiment setup:
-Training/test configuration:
70%-30% splitting
-100 hundred splittings with
different seeds
-Performance: median

Crystallized Cognition Composit

Cognitive areas where stacking does not enhance performance:

Sustained attention, Verbal memory

CHANNEL CONTRIBUTION TO STACKING LEARNING

Measurement	Resting-state connectivity	Cortical	Cortical	Global and sub-	Local
Cognitive score		Surface Areas	Thickness	cortical Volumes	Connectome
NIH Cognition Total	0.360	0.508	0.193	n.s.	0.560
Composite Score	95% CI [0.337, 0.386]	95% CI [0.483, 0.526]	95% CI [0.154, 0.223]		95% CI [0.531, 0.584]
NIH Fluid	0.514	0.462	0.247	n.s.	0.571
Composite score	95% CI [0.474, 0.559]	95% CI [0.397, 0.517]	95% CI [0.163, 0.297]		95% CI [0.535, 0.609]
NIH Crystallized	0.224	0.535	0.290	n.s.	0.469
Composite score	95% CI [0.148, 0.285]	95% CI [0.510, 0.566]	95% CI [0.260, 0.334]		95% CI [0.431, 0.497]
AUC for Discounting of \$200	n.s.	0.452 95% CI [0.429, 0.534]	n.s.	0.442 95% CI [0.332, 0.477]	0.344 95% CI [0.294, 0.419]
Variable Short Penn Line Orientation test	n.s.	0.512 95% CI [0.482, 0.545]	0.175 95% CI [0.100, 0.224]	n.s.	0.504 95% CI [0.478, 0.527]

- *Median Lasso weights from the second level learning. Only shown those scores where stacking enhanced accuracies.
- Local Connectome and Cortical Surface Areas are the most powerful channels, consistently contributing across all cognitive scores.
- Resting-state connectivity contributes particularly during Fluid Intelligence cognitive assessment.
- Cortical Thickness factors are a sub-leading contributing channel.
- Global and Sub-cortical volume Information only contributes non-redundantly to prediction in Impulsivity/self-regulation domain.

CONCLUSIONS

Stacking Learning shows that each neuroimaging modality provides unique and complementary information about cognitive functioning.

These results establish a solid and reliable lower bound for cognitive prediction in different domains using multimodal neuroimaging data.

Prospect: Decompose input channels into a larger number of orthogonal representations for a better cognitive prediction.

REFERENCES

- [1] Rahim, Mehdi et al. "Transmodal Learning of Functional Networks for Alzheimer's Disease Prediction." IEEE journal of selected topics in signal processing vol. 10,7 (2016): 120-1213.
- [2] Wolpert, David H. "Stacked generalization" Neural Networks, vol. 5 (1992): 241 259.
- [3] Liem, Franziskus et al. "Predicting brain-age from multimodal imaging data captures cognitive impairment." NeuroImage vol. 148 (2017): 179-188.