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Background and motivation
• Existing evidence suggests that atherosclerotic cardiovascular disease (CVD) risk may relate to individual differences in the cortical and limbic brain systems that

are implicated in encoding, processing, and responding to affective cues and contexts.

• One limitation of most studies of the neural correlates of CVD risk is their small sample sizes, which constrain attempts to cross-validate and replicate candidate
brain biomarkers that are (a) stable across individuals and (b) generalize to predict CVD outcomes in new and different samples. Another problematic issue is
that few studies have explored the psychometric properties of brain metrics (e.g., activation values) derived from neuroimaging tasks that are then used to predict
CVD risk markers in statistical models.

Goal
Use of whole-brain and machine-learning methods to test whether individual differences in an indicator of preclinical atherosclerosis and CVD risk (carotid artery
intima-media thickness; CA-IMT) are reliably associated with distributed brain activity patterns assessed by functional magnetic resonance imaging (fMRI) during
affective information processing tasks.

Participants
• Data derived from baseline (cross-sectional) as-

sessments of participants from two studies: the
Adult Health and Behavior project - Phase 2
(AHAB-2) and the Pittsburgh Imaging Project
(PIP).

• The final total samples were N = 490 (AHAB-
2) and N = 331 (PIP).

• Across both cohorts, participants’ ages ranged
from 30 to 54 years, with an approximate bal-
ance of men and women.

FACES fMRI task
• 4 blocks of a facial-expression matching-to-

sample condition, interleaved with 5 blocks of
a shape-matching (sensorimotor) control condi-
tion.

• In the facial-expression matching condition,
participants saw 3 same-sex faces in an array
for each trial, all expressing either fear or anger.
Participants chose 1 of 2 faces at bottom that
was identical to a center target at top

• During the control condition, participants also
matched-to-sample, but instead used images of
circles, vertical ellipses, and horizontal ellipses.
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IAPS fMRI task
• Cue of 30 unpleasant and 15 neutral images (15

"Look neutral" trials; 15 "Look negative" tri-
als; 15 "Decrease negative" trials).

• Participants were first trained and then in-
structed to either (a) "Look" and attend to im-
ages or (b) "Decrease" and change their think-
ing about the image to feel less negative.

• After image viewing, participants rated their
emotional state ("How negative do you feel?")
on a 5-point Likert-type scale in a 4-sec rating
period (1 = neutral, 5 = strongly negative).

• A variable (1-3 sec) rest period preceded each
cue.
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Methodology
CA-IMT (y) was predicted from the evoked responses within gray matter voxels from all participant contrast
maps (X) using a principal component regression with a L1 regularization (LASSO-PCR).

LASSO-PCR

1. The predictor matrix X is decomposed into orthogonal components X = USV T .

2. The Z ≡ US matrix is fed onto a lasso regression, ~̂β = arg minβ ||y − Zβ||2 + λ||Z||.

3. This ~̂β is projected back to voxel space using V and yielding a weight map ~̂w = V Tβ.

4. This weight map is then used to produce a holdout prediction on y = ~wx.

Both model optimization and generalization error estimation have been
achieved using a nested cross-validation. For the outer loop, FACES
task adopted a 5-Fold cross-validation, whereas IAPS task adopted a 2-
Fold cross-validation based on study (PIP and AHAB-2). The inner loop
for optimization was a 5-Fold cross-validation for either case.

Ancillary analyses included testing prediction power restricting and excluding the amygdala. Confounding
effects were also studied, including age and sex as moderators of associations between predicted and observed
CA-IMT, as well as similar tests of age, sex, and components of the metabolic syndrome as covariates.

FACES task results
• Predicted CA-IMT by a model trained on the contrast of "Faces

vs. Shapes" (inclusive of angry and fearful faces) correlated with
observed CA-IMT, r(425) = 0.13 (95% CI = 0.04 to 0.22, p =
0.005, BF10 = 5.16, BF01 = 0.19).

• Predictive contributions of the amygdala were predominately neg-
ative (94 negative vs. 17 positive voxel out of 468 possible voxels).

• The internal consistency of this weight map was 0.73.

• Voxels restricted to the amygdala predicted CA-IMT with a
smaller effect size, r(425) = 0.10 (95% CI 0.003 to 0.19, p = 0.044,
BF10 = 0.84, BF01 = 1.19). In contrast, amygdala exclusion yields
an association r(425) = 0.13 (95% CI 0.04 to 0.22, p = 0.007, BF10
= 4.16, BF01 = 0.24.

• This association was not moderated by age (β= 0.04, SE = 0.04,
p = 0.340, BF10 = 0.16, BF01 = 6.25) or sex (β = 0.06, SE =
0.05, p = 0.187, BF10 = 0.43, BF01 = 2.33).

• Adjustment for age, sex, and the composite cardiometabolic risk
score demonstrated that predicted and observed CA-IMT no
longer correlated (β = 0.03, SE = 0.04, t = 0.88, p = 0.378, BF10
= 0.15, BF01 = 6.66).

IAPS task results
• CA-IMT was predicted by a whole-brain multivariate pattern de-

rived from the "Look negative vs. Look neutral" r(336) = 0.19
(95% CI = 0.10 to 0.28, p < 0.001, BF10 = 47.10, BF01 = 0.02).

• Predictive weights within the amygdala were uniformly negative
(90 negative vs. 0 positive voxel weights out of 468 possible voxels).

• The internal consistency of the weight map was 0.82.

• After amygdala exclusion, association between predicted and ob-
served CA-IMT across participants is still observed r(336) = 0.19
(95% CI = 0.10 to 0.28, p = 0.001, BF10 = 45.70, BF01 = 0.02),
indicating that the amygdala activation might not be necessary to
predict CA-IMT across individuals.

• This association was not statistically moderated by age (β = 0.07,
SE = 0.05, p = .155, BF10 = BF10 = 0.33, BF01 = 3.03) or sex
(β = -0.05, SE = 0.05, p = .384, BF10 = 0.29, BF01 = 3.45).

• Simultaneous adjustment for age, sex, and the composite index
of cardiometabolic risk demonstrated that predicted and observed
CA-IMT continued to correlate at a conventional threshold of p <
0.05, (β = 0.18, SE = 0.04, t = 4.13, p < 0.001, BF10 = 444.00,
BF01 < 0.01).
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Conclusion
The present findings underscore the relevance of multivariate and cross-validation methodologies, as well as
psychometric characteristics of fMRI tasks, for building predictive models that characterize replicable affective
neural correlates of CVD risk. In these regards, the present findings suggest a possible affective neural correlate
of preclinical atherosclerosis comprised of multivariate, whole-brain activity evoked by the visual processing of
complex affective cues.

Take-home message
We report the first cross-validated evidence in two
large samples of adults for a specific and multivariate
affective pattern of human brain activity that relates
to individual differences in a vascular marker of car-
diovascular disease (CVD) risk


