# **Dissociable effects of fat mass and non-fat mass on neuromorphology in children**

Brighid Lynch<sup>1</sup>, Timothy Verstynen<sup>12</sup>, Andrea M. Weinstein<sup>23</sup>, Naiman A. Khan<sup>45</sup>, Lauren Raine<sup>45</sup>, Mark R. Scudder<sup>45</sup>, Eric S. Drollette<sup>45</sup>, Arthur F. Kramer<sup>5</sup>, Charles H. Hillman<sup>45</sup>, Kirk I. Erickson<sup>3</sup>. <sup>1</sup>Dept. of Psychology, Carnegie Mellon University; <sup>3</sup>Dept. of Psychology, University of Pittsburgh; <sup>5</sup>Dept. of Psychology and Beckman Institute, University of Illinois;

# **Obesity and The Brain**

### Obesity

- 55.1% of children between the ages of 6 and 11 years old have a body mass index (BMI) in the overweight (17<BMI<21) or obese (BMI>21) range. (Ogden, et al. 2010)
- Childhood obesity has been linked to increased psychiatric problems, reduced cardiovascular integrity, increased insulin resistance, metabolic syndrome, permanent cardiovascular damage and an increased risk for early mortality. (Power, et al. 1997)

### **Hippocampus and Amygdala**

- In adults, the hippocampus has been implicated in cognitive deficits associated with obesity. (Erickson, et al. 2012)
- The amygdala is involved in the formation and storage of memories associated with emotional events, especially fear responses. It is also implicated in mood and anxiety disorders, like bipolar and depression. (Rauch, et al. 2003)
- The acute impact of childhood obesity on brain health and function are not well understood.

### Methods

### **Participants:**

116 students from East Central, Illinois

| ,               |       |       |         |              |  |
|-----------------|-------|-------|---------|--------------|--|
| Variable        | Min   | Max   | Mean    | Standard Dev |  |
| Age             | 7.7   | 9.9   | 8.6814  | 0.5          |  |
| BMI             | 13.35 | 30.33 | 18.2966 | 3.4          |  |
| Pubertal Timing | 1     | 2.5   | 1.2888  | 0.3          |  |
|                 |       |       |         |              |  |

| Variable              |                  | Frequency | Percen |
|-----------------------|------------------|-----------|--------|
| Sex                   | Female           | 57        |        |
|                       | Male             | 56        |        |
| Race                  | Not Reported     | 1         |        |
|                       | Asian            | 11        |        |
|                       | African American | 16        |        |
|                       | White            | 65        |        |
|                       | Other            | 18        |        |
| Socieoeconomic Status | Low              | 38        |        |
|                       | Moderate         | 34        |        |
|                       | High             | 40        |        |

# **DXA Collection**

Whole body, regional adipose, and non-fat tissue was quantified by Dualenergy X-ray Absorptiometry.

# **MRI Analysis**

High-resolution magnetic resonance images were collected on all participants and voxel-based morphometry (VBM) was used to measure voxel-wise integrity of gray matter across subjects.

# **Statistical Analysis**

Whole-brain, voxel-wise correlations between DXA measures and VBM measures were performed using the BRAVO Toolbox (https:// sites.google.com/site/bravotoolbox/), controlling for age, sex, pubertal timing, and total body mass.



The accumulation of fat tissue, throughout the body, is globally associated with grey matter integrity throughout the brain. Children with more body fat had increased gray matter integrity in areas associated with emotional regulation (amygdala), memory (hippocampus), and spatial attention (parietal lobe). In contrast, children with more body fat had diminished gray matter integrity in networks associated with reward (orbitofrontal cortex) & executive control (cingulate and dorsolateral prefrontal cortex). At this age adiposity seems to drive this non-uniform grey matter variability.

hippocampus: interactions between exercise, depression, and BDNF. Neuroscientist.

Ogden, C. L., Carroll, M. D., Curtin, L. R., Lamb, M. M., & Flegal, K M. (2010). Prevalence of high body mass index in US children and adolescents, 2007-2008. Jama, 303(3), 242-249.

Power, C., Lake, J. K., & Cole, T. J. (1997). Review: Measurement and long-term health risks of child and adolescent fatness. International Journal of Obesity & Related Metabolic Disorders, 21(7).

Rauch, S. L., Shin, L. M., & Wright, C. I. (2003). Neuroimaging studies of amygdala function in anxiety disorders. Annals of the New York Academy of Sciences.