Highway from the Danger Zone: Interactions between uncertainty and cost in spatial estimation

Kevin Jarbo¹ (kjarbo@andrew.cmu.edu), Rory Flemming² \& Timothy Verstynen¹
1 Dept of Psychology \& Center for the Neural Basis of Cognition
Carnegie Mellon University
Reprints can be downloaded here: www.psy.cmu.edu/~coaxlab/posters/Jarbo_SFN14.pdf

Background

Costs are incorporated during the spatial estimation and selection of a target stimulus (Wu, Delgado \& Maloney, 2009). As spatial variability (i.e., sensory uncertainty) of target stimuli increases, selection variability also increases (van Beers, Baraduc \& Wolpert, 2002). Furthermore, selections are biased away from optimal estimations when a penalizing distractor is simultaneously presented with a target (Landy, Trommershäuser \& Daw, 2012). While spatial variability and reinforcement signals affect target estimations, it is unclear what influence sensory uncertainty may have on cost calculations during spatial sensorimotor decisions.

Hypotheses

If sensory uncertainty influences cost calculations during spatial sensorimotor decisions, then...

1) Estimation variance should be greater for high variability (i.e., high sensory uncertainty) targets
2) Estimations should be biased away from penalty sources
3) High sensory uncertainty and penalty should interact to strongly bias estimations

Alternatively, if there is no interaction, then there should be no significant difference in bias between penalty conditions

High sensory uncertainty \& penalty increase estimation variance

Results

Estimation Variance (Left) Significant main effects of target Variance \& Penalty on estimation variability

Nonsignificant Variance by Penalty interaction

Greater estimation precision in low variance or no penalty conditions

Estimation Bias (Right) Nonzero bias away from Danger Zone
Penalty significantly biases estimation within conditions

Significant Variance by Penalty interaction in High σ condition

High variance strongly bolsters penalty

Sensory uncertainty \& penalty interact to strongly bias estimation

Participants

8 blocks (random) $\times 100$ self-paced trials 80 estimation +20 catchbhlock
160 estimation trials condition

Dependent Variables
Dependent Variables
X-coordinate estimation variance
Bias $=$ distanceawayy from Danger Ione
2-way ANOVA w/post-hoc paired t Tests
Low on No Penalty vis low

Low ow PRenalty vs. Higho o/Penalty
High o/No Penaly vs. High o/Penalty
 Estimation Trial

Bias Calculations

Summary

High sensory uncertainty increases spatial selection variance
Spatial selections are biased away from distractors

Penalty signals interact with high and low sensory uncertainty to bias selections

Conclusion

Sensory variance influences cost calculations during spatial estimation

References

Wu, S.W., Delgado, M. R., \& Maloney, L. T. (2009). Economic decision-making compared with an equivalent motor task. Proceedings of the National Academy of Sciences of the United States of America, 106(15), 6088-93.
van Beers, R. J., Baraduc, P., \& Wolpert, D. M. (2002). Role of uncertainty in sensorimotor control. Phil. Trans. R. Soc. Lond. B, 357, 1137-1145.

Landy, M. S., Trommershäuser, J, \& Daw, N. D. (2012). Dynamic estimation of task-relevant variance in movement under risk. The Journal of Neuroscience, 32(37), 12702-11.

