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A B S T R A C T

A comprehensive map of the structural connectome in the human brain has been a coveted resource for under-
standing macroscopic brain networks. Here we report an expert-vetted, population-averaged atlas of the structural
connectome derived from diffusion MRI data (N¼ 842). This was achieved by creating a high-resolution template
of diffusion patterns averaged across individual subjects and using tractography to generate 550,000 trajectories
of representative white matter fascicles annotated by 80 anatomical labels. The trajectories were subsequently
clustered and labeled by a team of experienced neuroanatomists in order to conform to prior neuroanatomical
knowledge. A multi-level network topology was then described using whole-brain connectograms, with sub-
divisions of the association pathways showing small-worldness in intra-hemisphere connections, projection
pathways showing hub structures at thalamus, putamen, and brainstem, and commissural pathways showing
bridges connecting cerebral hemispheres to provide global efficiency. This atlas of the structural connectome
provides representative organization of human brain white matter, complementary to traditional histologically-
derived and voxel-based white matter atlases, allowing for better modeling and simulation of brain connectiv-
ity for future connectome studies.
Introduction

The organization of the structural connections in the human brain
determines how neural networks communicate, thereby serving as a
critical constraint on brain functionality and providing potential etiology
for clinical pathology (Bota et al., 2015; Sporns, 2014). Characterizing
this structural organization has relied on either histological slides or
neuroanatomically-validated atlases based on individual subjects
(Amunts et al., 2013; Ding et al., 2016); however, a comprehensive
population-averaged 3-dimensional (3D) structural connectome at the
macroscale level has yet to be constructed. A population-averaged con-
nectome is critical for demonstrating representative topological inter-
connectivity in the general population, a stated objective of the national
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investment in the Human Connectome Project (Setsompop et al., 2013;
Van Essen et al., 2013). If achieved, such a map of the structural con-
nectome could augment existing histological and single-subject atlases,
thus allowing for robust modeling and simulation in both empirical and
theoretical studies.

To date, diffusion MRI is the only non-invasive tool for mapping the
3D trajectories of human macroscopic white matter pathways (Fan et al.,
2016; McNab et al., 2013), with preliminary success at resolving the
normative pattern of several major white matter pathways (Catani et al.,
2002; Guevara et al., 2012; Mori et al., 2008, 2009; Peng et al., 2009;
Thiebaut de Schotten et al., 2011). This has been realized by resolving
local fiber orientations at the voxel level and delineating entire axonal
trajectories by implementing a stepwise tracking algorithm (Basser et al.,
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2000; Mori et al., 1999; Wedeen et al., 2012). Nonetheless, there are
several caveats to the success of diffusion MRI fiber tracking, including
the identification of false tracts and suboptimal coverage of small path-
ways or those with complex geometry (Reveley et al., 2015; Thomas
et al., 2014). Indeed, the percentage of valid connections can range from
3.75% to 92% due to differences in reconstruction methods and tracking
algorithms (Maier-Hein et al., 2016). Improving the quality of resolved
fiber pathways using diffusion MRI can be achieved by
high-angular-resolution modalities (Glasser et al., 2016), a template
averaged across a large number of subjects to facilitate fiber tracking
(Yeh and Tseng, 2011), and neuroanatomical expertise to resolve errors
in the automated fiber tracking process (Meola et al., 2015a).
Template-based approaches have been shown to reliably capture the
morphological characteristics of several major white matter fascicules
when validated against cadaver microdissection approaches (Fernan-
dez-Miranda et al., 2015; Meola et al., 2015a, 2016a, 2016b; Wang et al.,
2012, 2016; Yoshino et al., 2016). Yet building a comprehensive trac-
tography atlas of major and minor white matter pathways is still chal-
lenged by the problem of false fiber pathways, even when relying on high
angular resolution data.

Here we constructed a population-averaged structural connectome,
including both major and minor pathways, using an expert-vetted
approach. We employed high-angular-resolution diffusion MRI data
(n¼ 842) from healthy subjects in the Human Connectome Project (HCP)
database (Van Essen et al., 2012). The data from each subject were
spatially registered and simultaneously reconstructed in the standardized
ICBM-152 (ICBM: International Consortium for Brain Mapping) template
space using q-space diffeomorphic reconstruction (QSDR) (Yeh and
Tseng, 2011). QSDR allows for aggregating diffusion data into an aver-
aged template of voxelwise diffusion distributions while preserving fiber
continuity after nonlinear deformation to enable template space fiber
tracking. The averaged diffusion pattern of the entire sample is thus
representative of non-pathological structural characteristics within
healthy subjects. Based on this template, a total of 550,000 tracks were
generated using a tracking method that was shown to achieve the highest
number of valid connections in an open competition (Maier-Hein et al.,
2016). Generated tracks were subsequently clustered and then labeled by
a team of clinical neuroanatomists, capitalizing on their previous expe-
rience in both cadaveric white-matter and comparative tractography
techniques (Fernandez-Miranda et al., 2015; Wang et al., 2016).
Furthermore, the tracks were categorized into the projection, association,
and commissural pathways to generate multi-level connectograms illus-
trating network topology at the macroscopic level. The strategy of this
approach allowed us to compile a comprehensive atlas of the structural
connectome in the human brain at the population level, allowing for
taxonomical identification of pathways that together comprise the full
macroscopic structural connectome.

Methods

Diffusion MRI acquisitions

We used the minimally-preprocessed data (Glasser et al., 2013) from
Human Connectome Projects (Q1-Q4 release, 2015) acquired by Wash-
ington University in Saint Louis and University of Minnesota (Van Essen
et al., 2012). A total of 842 subjects (372 males and 470 females, age
22–36, demographics available at https://db.humanconnectome.org/)
had diffusion MRI scanned on a Siemens 3T Skyra scanner using a 2D
spin-echo single-shot multiband EPI sequence with a multi-band factor of
3 and monopolar gradient pulse. The spatial resolution was 1.25mm
isotropic. TR¼ 5500ms, TE¼ 89.50ms. The b-values were 1000, 2000,
and 3000 s/mm2. The total number of diffusion sampling directions was
90, 90, and 90 for each of the shells in addition to 6 b0 images. The
preprocessed data were corrected for eddy current and susceptibility
artifact. The matrices for gradient nonlinearity distortion correction were
used in the following diffusion MRI reconstruction.
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Q-space diffeomorphic reconstruction

The diffusion data for each subject was registered and reconstructed
into the ICBM-152 space simultaneously using the q-space diffeomorphic
reconstruction (QSDR) (Yeh and Tseng, 2011). QSDR combines
nonlinear spatial registration and high-angular-resolution reconstruction
of diffusion data to conserve the diffusible spins and preserve the con-
tinuity of fiber geometry for fiber tracking. QSDR used the deformation
field to directly calculate the spin distribution function (SDF) in the
standard space. SDF, denoted as ψðbuÞ, is the empirical distribution of the
density of spins that have diffusion displacement oriented at direction bu
during the diffusion time. The SDF of each voxel were discretely sampled
at 642 directions (8-fold tessellated icosahedron) using the following
formula.

ψðbuÞ ¼ jJφjZ0

X
i

WiðφðrÞÞsinc
�
σ

ffiffiffiffiffiffiffiffiffiffi
6Dbi

p
< bgi;

Jφbu��Jφbuk >
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Where i iterates through each diffusion weighted images Wi. φ is a dif-
feomorphic mapping function that maps ICBM-152 space coordinates r to
the subject's space. Jφ is the Jacobian matrix of the mapping function,
whereas

��Jφ�� is the Jacobian determinant. WiðφðrÞÞ are the diffusion
signals acquired at φðrÞ. bi is the b-value, and bgi is the direction of the
diffusion sensitization gradient. σ is the diffusion sampling ratio con-
trolling the detection range of the diffusing spins. D is the diffusivity of
water, and Z0 is the constant estimated by the diffusion signals of free
water diffusion in the brain ventricle (Yeh and Tseng, 2011). The
nonlinearity of diffusion gradients was corrected using the nonlinear
terms of the magnetic field obtained from gradient coils. The HCP dataset
includes a 3-by-3 gradient deviation matrix for each voxel to estimate the
effective gradient direction and strength. This matrix was applied to the
diffusion sensitization gradient, bgi in Eq. (1) to correct the effect of
gradient nonlinearity.

The registration component in QSDR used Fourier basis as the
deformation function (Ashburner and Friston, 1999). The original setting
used a set of 7-by-9-by-7 Fourier basis at x-y-z directions, and the
computation and memory bottleneck was at the inverse of a
1327-by-1327 matrix (not a sparse matrix). We increased the resolution
of the Fourier basis by 4-fold (i.e. 28-by-36-by-28 Fourier basis), which
required solving an 84676-by-84676 matrix for each optimization iter-
ation. Here instead of solving the large matrix using a standard
Gauss-Jordan method (a complexity of O (n3)), which would increase the
computation time by a factor of (4� 4� 4)3¼ 262,144, we used the
Jacobi method that allowed for parallel processing and could utilize so-
lutions from the previous iteration to speed up the processing. This
greatly reduced the computation complexity to O(n) and only increased
the computation time by a factor of 4� 4� 4¼ 64. The parallel pro-
cessing further reduced the computation time, allowing us to reconstruct
the data using multi-thread resources. The FSL (FMRIB's Software Li-
brary, www.fmrib.ox.ac.uk/fsl) fractional anisotropy (FA) template was
used as a template for ICBM-152 space, and the subjects' anisotropy maps
were used to calculate the deformation parameters. The final SDFs were
generated at 1-mm resolution.

The registration accuracy was evaluated by the coefficient of deter-
mination (i.e., R2) value between each subject and template image. The
distribution of the R2 values, as shown in Fig. S1, is skewed with a left-
ward tail. We therefore looked at subjects with the lowest R2 values at
this tail for identification of outliers. This allowed us to identify two
problematic datasets (#173132 and #103515) that were then reported
to the HCP Consortium. It is noteworthy that we did not use the existing
HCP alignment or other high accuracy diffeomorphic registration
methods in our spatial normalization (Archer et al., 2017; Peng et al.,
2009; Varentsova et al., 2014; Zhang et al., 2011). The alignment of those
methods has good point-to-point matching; however, QSDR requires
sufficient a constraint on the Jacobian matrix in the white matter tissue
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because a large rotation and distortion will disrupt the continuity of fiber
geometry across voxels and cause a fiber tracking algorithm to fail. The
fiber architecture in the white matter can be heavily distorted to match
gyral foldings. A constraint on the Jacobian matrix will avoid this pitfall
and ensure that the local fiber directions will present a coherent geom-
etry. The Fourier basis method (Ashburner and Friston, 1999) used here
intrinsically limits the largest possible rotation and allows for fiber
tracking in the ICBM-152 space.

Construction of an SDF template

The SDFs of all subjects were then averaged, voxel-by-voxel, to obtain
a 1-mm SDF template termed HCP-842. Before averaging, the SDFs of
each subject were scaled by a constant value to ensure that the free water
SDFs were normalized to one (Yeh and Tseng, 2011). The computation
was conducted using the cluster at Center for the Neural Basis of
Cognition, a joint Institute of Carnegie Mellon University and the Uni-
versity of Pittsburgh. The cluster had 24 nodes and 320 CPUs. The total
size of SDF data from 842 subjects was around 1.5 terabytes (after
compression), and the computation took a month of time to complete.

Whole-brain tractography

We used a deterministic fiber tracking algorithm that leverages in-
formation in the SDF (Yeh et al., 2013). Each of the streamlines generated
was automatically screened for its termination location. A white matter
mask was created by applying DSI Studio's default anisotropy threshold
(0.6 Otsu's threshold) to the SDF's anisotropy values. The mask was used
to eliminate streamlines with premature termination in the white matter
region.

To determine the adequate density for whole-brain seeding, previous
work has shown that, on average, there are around 3 fiber populations in
a 2.4-mm cubic voxel (Jeurissen et al., 2013). This indicated that at least
3 seeds points are needed for each voxel with a volume of
2.4-by-2.4-by-2.4mm3, which is 0.2 seeds per mm3. To meet the minimal
requirement, we obtained 500,000 whole-brain streamlines in addition
to 50,000 streamlines to cover the spinal cord connections eliminated by
the white matter mask. The total number of streamlines achieved an
average seeding density of 1.0 seed per mm3, which is 5 times of the
minimum requirement.

The fiber tracking was conducted using angular thresholds of 40, 50,
60, 70, and 80� to capture fiber pathways with different turning
morphology. Each angular threshold generated 100,000 streamlines, and
a total of 500,000 streamlines were obtained. Since the white matter
mask also removed streamlines connecting to/from the spinal cord, an
additional set of whole brain tracking was conducted to allow stream-
lines to terminate at the lowest section of the brainstem. The fiber
tracking was also conducted using angular thresholds of 40, 50, 60, 70,
and 80�. Each angular threshold generated 10,000 streamlines, and a
total of 50,000 streamlines were obtained. We used different parameter
combinations because different fiber trajectories are best resolved by
different tractography schemes. For example, a larger angular threshold
is needed for tracking fiber pathway with abrupt turning (e.g. Meyer's
loop at the optic radiation), whereas some projection pathways do not
have sharp turning (e.g. corticospinal tracts) and thus can rely on lower
angular thresholds.

Initial clustering using Hausdorff distance

The tractography was clustered using single-linkage clustering. We
measured the Hausdorff distance (Huttenlocher et al., 1993; Pujol et al.,
2015) between a pair of streamlines X and Y as

dHðX;YÞ ¼ max
�
max
x2X

min
y2Y

dðx; yÞ;max
y2Y

min
x2X

dðx; yÞ
�

(2)
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X is a set of coordinates, i.e. X¼ {x}, whereas Y is another set of co-
ordinates, i.e. Y¼ {y}. d (x,y) calculates the Euclidean distance between
two coordinates x and y, and the dH (X,Y) calculates the Hausdorff dis-
tance between set X and Y. Different merging thresholds were tested, and
we chose 2-mm as the merging threshold to avoid over-segmentation
(shorter distance) and over-merging (longer distance). The 500 largest
clusters, in terms of track counts, were selected because the remaining
clusters contained less than 0.01% of the total streamlines (i.e.< 50
streamlines). The same cluster selection strategy was applied to our
second set of the 50,000 streamlines (i.e. the streamlines connecting to/
from spinal cords), and the first 50 largest clusters were collected. Since
each cluster may contain streamlines with repeated trajectories, we
removed redundant trajectories that are substantially close to the one
another using a Hausdorff distance of 1mm.
Expert labeling and examination

The 550 clusters were manually labeled by our neuroanatomy teams,
including four senior neuroanatomists (JFM, AM, MY, FY) and junior
neuroanatomists (DF and SP). The labeling was based on evidence from
publicly available white matter atlases, existing literature, microdissection
evidence, and neuroanatomy books (Table S1). The first examination
round was the manual labeling conducted by 3 neuroanatomists (FY, DF,
and SP). Each of the neuroanatomists independently inspected the termi-
nation locations and connecting routes of each of the 550 clusters based on
publications listed in Table S1. The 2009a, nonlinear asymmetric, ICBM-
152 T1-weighted image (The McConnell Brain Imaging Centre, Montreal
Neurological Institute, McGill University) (Fonov et al., 2011) was used to
assist inspection. The anatomical label of each cluster was independently
assigned and subsequently compared to identify inter-observer differ-
ences, including the naming of the cluster and whether the cluster is a false
one. The inter-observer differences were found in 20 clusters (3.6% of the
clusters), mostly involving the branches and segments of fiber pathways,
and resolved in a joint discussion between two junior (DF, SP) and two
senior neuroanatomists (FY, JFM). The clusters with the same neuro-
anatomy name were grouped together to form major fiber bundles. The
merged bundles underwent a second round of inspection by both senior
and junior neuroanatomists to identify missing branches and remove false
connections. The inspection identified missing branches in anterior
commissure (olfactory and occipital connections), corticothalamic tract
(temporal connections), corticostriatal tract (occipital connections), cor-
ticobulbar tract, corticopontine tract (temporal and occipital connections),
and tapetum of the corpus callosum. These branches were specifically
tracked by placing regions of interest at the target area. The same angular
and anisotropy thresholds were used. The seeding density was increased
until a sufficient number of tracks were generated from the tracking al-
gorithm to cover the regions. The final fiber bundles were subsequently
categorized into the projection, association, commissural, cerebellar,
brainstem, and cranial nerve pathways.

The next examination round further checked for other missing minor
pathways that require a dense sampling to form a bundle. This was done
by projecting the fiber bundles back to the white matter and looking for
areas without track coverage. Using a region-based approach, the senior
neuroanatomists (MY, AM, and FY) tracked missing minor pathways
including acoustic radiation, posterior commissure, brainstem pathways
such as rubrospinal tract (RST), spinothalamic tract (STT), dorsal longi-
tudinal fasciculus (DLF), lateral lemniscus (LL), medial lemniscus (ML),
and cranial nerves such as CN VII, CN VIII, and CN X. These pathways
were tracked according to previous microdissection studies (Fernan-
dez-Miranda et al., 2015; Wang et al., 2016). The course of the posterior
column sensory pathway, running within the fascicles gracile and
cuneatus toward the primary sensory cortex, was manually terminated at
the level of the thalamus and labeled as ML. This segment in the brain-
stem corresponds to the second order neurons running from the nucleus
gracile and cuneatus to the thalamus.
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Connectivity matrix, connectogram, and network measures

The expert-vetted tractography was used to generate connectivity
matrices. A weighted connectivity matrix was quantified using a cortical
parcellation based on regions derived from the AAL atlas (Table S2). It is
noteworthy that our tractography atlas can be readily applied to any
cortical parcellation atlas, and currently there is no consensus on how
network nodes should be defined. Here we used only one of the most
popular parcellation from the AAL atlas to illustrate the network
characteristics.

The average of along-track SDF values was used as the connectivity
value. The connectograms of each fiber bundle and whole brain tracks
(both expert-vetted) were generated using CIRCOS (http://mkweb.bcgsc.
ca/tableviewer/visualize/). The network measures such as network
characteristic path length, global efficiency, local efficiency, clustering
coefficient were calculated using the definition formulated in Brain
Connectivity Toolbox (https://sites.google.com/site/bctnet/). The in-
fluence of the projection, association, and commissural pathways was
calculated by calculating the change of network measures (quantified by
percentage of the original) after removing the tracks.

The University of Pittsburgh Institutional Review Board reviewed and
approved the study by the expedited review procedure authorized under
45 CFR 46.110 and 21 CFR 56.11 (IRB#: PRO16080387).

Data and code availability

The processing pipeline (DSI Studio), SDF data of all 842 subjects, and
HCP-842 template are available at http://dsi-studio.labsolver.org. The
SDF template can be reproduced using the HCP data and documentation
on the website. The atlas data, including the track trajectories and con-
nectograms, are available at http://brain.labsolver.org.

Results

A high spatial and angular resolution diffusion template of the human brain

Diffusion MRI data from 842 participants were reconstructed in the
ICBM-152 space to calculate the SDF (Yeh and Tseng, 2011; Yeh et al.,
2010) within each voxel (Fig. 1a). The goodness of fit between the
normalized image and the template was reported as an R2 (Fig. S1). These
values ranged from 0.73 to 0.86, and the quantiles were 0.81 (25%), 0.82
(50%), and 0.83 (75%), suggesting that the distribution of R2 values were
mostly centered around 0.82, and more than 75% subjects had R2 values
greater than 0.80. An SDF is an empirical distribution of the density of
diffusing water orientations, calculated for each voxel to reveal the un-
derlying fiber architectures (Fig. 2a). The SDFs of all subjects were
averaged to build the HCP-842 SDF template, which represents an
average diffusion pattern within a normal population (Fig. 1b and 2a).
Fig. 2b shows the peak orientations of fibers in each voxel, resolved from
the group-averaged SDFs, near the corpus callosum crossing at central
semiovale (red: left-right, green: anterior-posterior, blue:
inferior-superior). The SDF peaks reflect the local orientation of under-
lying fiber bundles, and the magnitudes measured at the peaks provide
anisotropy estimates. The peaks and magnitudes offer the necessary in-
formation for a fiber-tracking algorithm to delineate long-distance white
matter trajectories.

Although the group-averaged SDFs appear smoother due to the
averaging effect, they are still capable of resolving major crossing ar-
chitectures. The number and percentage of voxels that contain more than
one fiber orientations are listed in Table 1. These results were obtained
by re-gridding the template at different resolutions to aggregate infor-
mation about underlying fiber pathways in each voxel. The table shows
that after re-gridding at 2-mm3 and 2.5-mm3 resolution, more than 80%
of the white-matter voxels in the HCP-842 template had more than one
distinct fiber orientation. These percentage values are consistent with
previous estimates of 60–90% of voxels having multiple fiber
60
orientations when sampled and reconstructed at a 2.4 mm3 resolution
(Jeurissen et al., 2013). It is noteworthy that the percentage of
multi-fiber voxels dropped substantially at 1.5-mm3 and 1-mm3 resolu-
tions. This can be explained by Fig. S2 showing how common branching
(red fibers, Fig. S2A), turning (green fibers, Fig. S2A), and superimposing
(yellow fibers, Fig. S2B) configurations can result in multiple fiber pop-
ulations in 2-mm spatial resolution but not in the 1-mm resolution. This is
because a larger voxel at 2-mm isotropic resolution can include a longer
segment of tracks (e.g. Fig. S2A) or include a nearby fiber population (e.g.
Fig. S2B) that results in multiple fiber populations resolved in the voxel.

Qualitatively, the HCP-842 appears to resolve underlying neuroana-
tomical architecture with high fidelity in spatial resolution. Comparing a
coronal slice of the HCP-842 (1-mm resolution, Fig. 2c) with a similar
section from the BigBrain histology image (the 200-μm resolution
version, Fig. 2d), we see that HCP-842 clearly delineates subcortical
structures such as the hippocampus (HIP), substantia nigra (SN), red
nucleus (RN), and thalamus (TH). The high spatial resolution of the
orientation map is even more apparent at the anterior commissure (AC)
(Fig. 2e), a small left-right connecting pathway clamped by the pre-
commissural (PreC) and post-commissural (PostC) branches of fornix
that run in the vertical direction (color-coded by blue). The clamping
structure formed between AC and fornix is a benchmark for examining
the spatial resolution of the template. Fig. 2e resolves AC from the PreC
and PostC branches, whereas Fig. 2f shows the averaged SDFs at the same
region depicting the structural characteristics of AC with the PreC and
PostC branches of the fornix. The ability to resolve branches of fornix
from AC reveals the intricate sensitivity of the HCP-842 to map detailed
brain connections.

Supervised labeling and segmentation of major pathways

To isolate major and minor white matter fascicles, we applied whole-
brain fiber tracking to the HCP-842 group-average template, producing a
total of 550,000 fiber trajectories in the ICBM-152 space to achieve an
average density of 1 track per voxel (Fig. 1c). A white matter mask was
used to remove tracks that have premature terminations in the core white
matter. The remaining whole-brain tracks were then automatically
clustered by a single-linkage clustering algorithm, generating unique
clusters of fiber bundles (Fig. 1d). The trajectories that were proximally
close to one another were grouped. Each cluster could subsequently
contain a different number of trajectories based on the anatomical
proximity of the tracks. Fig. 3 shows the largest 40 out of the 550 clusters
as an example, where the size of a cluster is determined by the number of
its containing tracks. Shorter pathways, such as the uncinate fasciculus,
will receive less seeding counts in the tracking process and thus be
estimated to have a smaller size. Many track bundles were also repre-
sented by more than one cluster component. For example, cluster #1 and
#38 are both labeled as the corpus callosum. A team of clinical neuro-
anatomists then examined and labeled the clusters according to neuro-
anatomical nomenclature. Table S1 lists all labels used in naming the
clusters and the relevant neuroanatomy literature used for examination.
Label “X” indicates a false track, which may arise due to false continu-
ations (Fig. 4a) or premature termination (Fig. 4b). Only the 550 largest
clusters were used because the false rate (either false continuation or
premature termination) increased substantially in clusters with a smaller
size (Fig. 4c). The labeled clusters were subsequently merged according
to their neuroanatomical label. Missing components of the large fiber
bundles were tracked separately and merged to ensure completeness as
per the literature (Fig. 1e).

The high-angular-resolution quality of the atlas can be appreciated in
the corticospinal and corticobulbar tracts generated from our pipeline
(Fig. 5a). These show a fanning projection pathway from the precentral
(motor) cortex along the cortical surface that is consistent with the
anatomical evidence (right, modified from Gray's Anatomy). The lateral
fanning parts are known to cross with the horizontally-passing corpus
callosum and cannot be reliably resolved using the traditional low-
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Fig. 1. Flow chart of the processing steps used to construct a population-averaged structural connectome of the human brain. (a) A total of 842 subjects' diffusion MRI
data were reconstructed in a common standard space to calculate the spin distribution function at each imaging voxel. (b) The spin distribution functions were
averaged to build a template of the diffusion characteristics of the normal population. (c) The template was used to guide a fiber tracking algorithm and generate a
total of 550,000 trajectories. (d) Automatic track clustering was applied to cluster trajectories into fiber bundles. (e) A team of experienced neuroanatomists manually
labeled each cluster and identified false pathways according to the neuroanatomy evidence. The clusters with the same labeled were grouped together as an atlas of
structural connectome. An additional quality check was conducted to ensure complete coverage. (f) The atlas was then used to build the connectogram showing the
connections between brain regions.

Fig. 2. (a) Diffusion MRI allows for quantifying, for each imaging voxel, the orientation distribution of the water diffusion (termed spin distribution function, SDF) to
reveal the underlying structural characteristics of axonal fiber bundles in a color-coded surface (red-blue-green indicates the orientation at the x-y-z axis, respectively).
The protruding points of the SDFs indicate the orientation of fiber bundles. (b) The color sticks represent the peak orientations on SDFs. The coronal view shows that
SDF can resolve crossing fibers at central semiovale, a white matter region where the corpus callosum crosses vertical passing fibers. The SDFs averaged from a total
842 subjects provide orientations of the local axonal connections. The information can be used to drive a fiber tracking algorithm to delineate white matter con-
nections. (c) The SDF template of the human brain averaged from 842 diffusion MRI scans (termed the HCP-842 template) shows structural characteristics of the
human brain. The magnitude map of the HCP-842 template reveals structures such as hippocampus (HIP), thalamus (TH), red nucleus (RN), and substantia nigra (SN),
which are consistent with the histology image from BigBrain slides (d). (e) The orientation map of the HCP-842 template allows for delineating the complicated
structures, such as the clamping structure between the anterior commissures (AC) and the pre-commissural (PreC) and post-commissural (PostC) branches of the
fornix. The structural characteristics are also illustrated by the SDFs of the HCP-842 template in (f).

Table 1
Number of voxels with more than on fiber orientations resolved in different
resolutions.

Resolution Voxels with more than one
fiber orientationsa

Total white
matter voxels

Percentage
(%)a

1mm 76452 606662 12.60
1.5mm 114856 195705 58.69
2mm 74283 89306 83.18
2.5mm 43551 49050 88.789

a May include turning, crossing, or branching fibers.
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angular-resolution approaches due to their limited ability to resolve
crossing fibers (Chenot et al., 2018). In addition, the coronal view of the
corpus callosum (Fig. 5b) also shows a widespread fanning pattern, not
otherwise trackable using the lower-angular-resolution methods. The
midline portion of the corpus callosum tracks (Fig. 5c) shows matching
volume with the ICBM-152 T1-weighted images, suggesting that the atlas
can also provide volumetric measurements. Thus, the atlas appears to
capture more complete portions of major pathways that are typically lost
using traditional approaches.



F.-C. Yeh et al. NeuroImage 178 (2018) 57–68
A population-averaged atlas of macroscopic structural connectome

The full atlas of the structural connectome is shown in Fig. 6
(abbreviation listed in Table S1) and includes the most comprehensive
map of white matter pathways yet reported. This includes the projection
pathways that connect cortical areas with subcortical nuclei and brain-
stem. Acoustic radiation has not been previously reported in tractog-
raphy due to the complicated crossing pattern of the pathway. The
association pathways connect disparate cortical areas, including a set of
U-fibers (U). The commissural pathways connect the two hemispheres
and include the corpus callosum, anterior commissure, and posterior
commissure. Posterior commissure has not been previously reported in
tractography. The cerebellar pathways include the cerebellar tracts (CB)
and peduncles (SCP, MCP, ICP), and they provide the major input,
output, and internal connectivity of the cerebellum.Wewere even able to
resolve several brainstem pathways, such as central tegmental tract
(CTT), dorsal longitudinal fasciculus (DLF), lateral lemniscus (LL).
Finally, we discovered a limit of the current spatial resolution, where a
set of cranial nerves including CN III, CN VII, and CN VIII were suc-
cessfully identified, but CN I, IV, VI, and IX could not be identified due to
insufficient spatial resolution. The detailed connective routes of the
structural connectome atlas are presented in Supporting Information,
including projection pathways (Fig. S3), association pathways (Fig. S4),
commissural pathways (Fig. S5), cerebellar pathways (Fig. S6), brain-
stem pathways (Fig. S7), and cranial nerves (Fig. S8). It is worth noting
that several cranial nerves cannot be found in the HCP-842 template due
to the limitation of its spatial resolution. The full atlas, including the track
trajectories and connectograms, is publicly available at http://brain.
labsolver.org.
Fig. 3. The 40 largest clusters (selected from a total of 550 clusters) generated from
connections are assigned by “X”, whereas the others assigned by their correspondin
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Neuroanatomical constraints on connective topology

Fig. 7 shows region-to-region connectivity matrix weighted by the
SDF magnitude along the fiber pathways, segmented into the projection,
association, and commissural pathways. The abbreviations for brain re-
gion are listed in Table S2. Higher intensity (white) indicates greater SDF
magnitude along the pathway.

The connectograms of the structural connectome are illustrated in a
multi-level approach (Fig. 8). The connectogram of the whole brain
pathways illustrates the first level of the gross network topology (Fig. 8a,
the high-resolution version shown in Fig. S9). The overall figure shows a
dense network topology, and its network characteristics cannot be
readily visualized due to the high complexity of the brain network at this
level. The connectograms of the projection, association, and commissural
pathways in Fig. 8b, c, and 8d depict the second level of the network
topology (high-resolution details in Fig. S10), and within this level, the
connectograms start to reveal important network features. The projection
pathway in Fig. 8b indicates hub structures at thalamus, putamen, and
brainstem, illustrating the role of these regions in integrative sensori-
motor function between the cerebral cortex and corresponding periph-
eral systems. The association pathway, as shown in Fig. 8c, forms clusters
within each hemisphere and contributes a substantial amount of clus-
tering coefficient and local efficiency (Table 2), elucidating its small-
worldness that involves multiple relevant gray matter regions. The
commissural pathways, as shown in Fig. 8d, serve as a bridge connecting
both hemispheres and provide global efficiency (Table 2) to integrate
information across cerebral hemispheres. In Fig. 8e, the connectograms
of each fiber bundle are further divided to show the third level of the
network topology in much more detail, and the illustration reveals a
automatic track clustering and their labels assigned by neuroanatomists. False
g neuroanatomy abbreviations.

http://brain.labsolver.org
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Fig. 4. False connections due to (a) false continuation and (b) premature termination identified by the neuroanatomists. A false continuation is a common cause of
false trajectories and often found in regions with two fiber population cross on top of each other. Premature termination is often due to a failure in resolving crossing or
branching pattern in the white matter. (c) The probability of a cluster labeled as “false” increases substantially with decreased cluster size. This suggests we can discard
smaller clusters as there are mostly false connections.

Fig. 5. The angular resolution of the structure connectome atlas illustrated. (a) The corticospinal and corticobulbar tracks (left) in the structural connectome atlas
present a fanning pattern consistent with the known neuroanatomy (right). Mapping this fanning pattern requires high-angular-resolution scans to resolve the crossing
configuration in the middle the pathway. (b) The coronal view of the corpus callosum mapped by the atlas shows a wide spreading fanning pattern, which cannot be
mapped using a low-angular-resolution approach. (c) The mid portion of the corpus callosum matches well with the ICBM-152 T1-weighted images, suggesting that the
track bundles in the atlas have volumes matching the standard template.
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consistent hub formation for different fiber bundles, albeit with an
alternative connectivity pattern to the cerebral cortex. Fig. 8f also shows
clustering topology within different cortical areas, whereas Fig. 8g shows
bridge-like symmetric structures of inter-hemisphere connections.
Together, these unique topologies based on the class of fiber pathway
highlights the rich taxonomy of structural connectome in the human
brain that reflects unique information processing constraints.

Discussion

Here we present the first complete population-level atlas of the
human structural connectome and its network topology, delineating fiber
pathways within the cerebrum, cerebellum, brainstem, and a subset of
cranial nerves. The fiber trajectories were generated from a group-
averaged template of 842 subjects using a fiber tracking algorithm that
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has been shown to minimize tracking errors relative to other methods
(Maier-Hein et al., 2016). Using an automated clustering approach,
tracks were grouped into small bundles and subsequently labeled by a
team of clinical neuroanatomists and vetted according to their neuro-
anatomic nomenclature. This combination of optimizing strategies
allowed us to construct a high-quality structural connectome atlas of the
human brain. This addresses a critical need in connectivity estimates that
used to suffer from a high false positive error rate in diffusion MRI fiber
tracking. The group average further addresses a common concern in
conventional cadaver studies: whether pathways shown in cadaver
dissection can be representative enough to the general population. A
group-averaged tractography atlas can complement cadaver study by
offering an overview picture of common brain pathways derived from a
large population. The atlas will thus serve as a stepping stone for future
studies to look into individual differences in the structural connectome.



Fig. 6. Overview of the population-averaged structural connectome atlas categorized into the projection, association, and commissural pathways in addition to
cerebellum pathways, brainstem pathways, and cranial nerves. Each pathway contains thousands of trajectories showing the representative connections of the 842
subjects between brain regions in a standard space. The trajectories are color-coded by the local orientation (red: left-right, green: anterior-posterior, blue: inferior-
superior). This connectome atlas provides normative connection routes between brain regions that can facilitate network analysis, simulation and modeling.
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To this end, this HCP-842 tractography atlas and its associated data set
will be made publicly available (http://brain.labsolver.org) to promote
future connectomic studies and assist neuroscientists to gain insight into
the structural topology of the human brain.

We note that several human white matter atlases have been previ-
ously released. These include voxel segmentations on individual subjects
that label the core of major pathways (Mori et al., 2008, 2009; Peng et al.,
2009; Zhang et al., 2011) or tractography atlases based on tracking
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individual subjects data (Catani et al., 2002; Guevara et al., 2012;
Thiebaut de Schotten et al., 2011; Zhang et al., 2008). Our atlas expands
on these currently available resources by providing a comprehensive
characterization of normative major and minor white matter fascicles
constructed from a large sample of 842 individuals who were imaged
using high angular and high spatial resolution diffusion acquisitions,
allowing for the resolution of multiple fiber populations within a white
matter region to delineate the intertwining architecture of human white

http://brain.labsolver.org


Fig. 7. The connectivity matrix constructed from the human connectome atlas. The color division shows the division of three major track systems—projection (blue),
association (green), and commissural (red)—in the human brain. The intensity shows the between region connectivity quantified the magnitude of the along-track
diffusion properties quantified by spin distribution functions.
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matter. This novel population-level description of the structural con-
nectome characterizes both the normative 3D trajectories of white matter
fascicles and delineates how gray matter regions in the cerebrum, cere-
bellum, and brainstem are physically connected by nearly all macro-
scopic white matter pathways. For the first time, this atlas offers
structural detail and network topology of both large and small pathways,
such as the clamping structure between the fornix and the anterior
commissure that cannot be discerned from individual studies due to
lower resolution and signal-to-noise ratio of conventional diffusion MRI.

While overcoming many challenges, our current approach still has
limitations. First, our atlas does not address the variability of the fiber
pathways across subjects. While it is entirely feasible to repeat the fiber
tracking procedures for each of the HCP subjects, the labeling of 550
clusters of all 842 subjects may require a substantial amount of expert
efforts. This labor-intensive approach would require several years worth
of human labor to complete. Thus an automated approach to replace
expert labeling would better assist this future endeavor, but developing
such an automated classifier is well beyond the scope of the current
study. Another issue we did not address in this study is whether 842
subjects is representative enough or whether it could be feasible to get a
normative atlas with fewer or more subjects. We have previously con-
structed templates using 60 subjects (Beukema et al., 2015), 90 subjects
(Yeh and Tseng, 2011), and 488 subjects (Meola et al., 2015) and con-
ducted template-space fiber tracking (Wang et al., 2012, 2016a; Yoshino
et al., 2016). There were substantial differences observed between these
templates that appeared to be due, in large part, to variability in the
averaging. Thus with larger samples, the estimate of the true population
mean should become more stable. Therefore we included the most
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number of subjects from the highest directional resolution data sets that
we could at the time we started the project (i.e., the 900 subject HCP
sample). In addition to issues related to individual variability, there could
be errors in manual labeling of the clusters, and thus there should be
better ways to address the inter-observer differences, as we only resolved
differences by a group discussion with the goal of reaching a consensus
on every track. This would save some time, but not enough to make this
feasible and extensible enough to use in applied studies. Of course, there
are also controversies in neuroanatomical structures (Meola et al.,
2015a) that can be further complicated by individual differences. Thus,
we have made all of the clusters data, their labels, and the entire atlas
publicly available, thereby allowing for future modifications to improve
the atlas as well as the development of better tools for automated
segmentation.

Moreover, the fiber tracking algorithm used in this study could still
have false positive and false negative results. While expert assistancemay
address part of this issue, it cannot handle the false negative problem,
and there could be missing tracks in our atlas. For example, several
cranial nerves that are smaller than 1-mm in width were not detected by
our method. These can only be tracked using images acquired at a much
higher resolution. Of course, the accuracy of spatial registration can be
improved through further algorithmic refinements, and other template
construction methods could be explored in future work (Archer et al.,
2017; Yang et al., 2017). Also, the spatial registration method used in
QSDR only relies on anisotropy information; however, it is possible to
include structural images or the entire diffusion data (Park et al., 2003) to
boost the accuracy of the registration method. The accuracy of track
clustering can also be improved using a more sophisticated method



Fig. 8. The multi-level connectograms of the human structural connectome. (a) The first level of the overall structural connectome shows a dense connections pattern
in the average structure connectome. (b) The second level of the connectogram shows the network characteristics in each pathway system. The projection pathway
forms a hub structure at thalamus, putamen, and brainstem. The association pathway is constituted of numerous clusters in the brain networks. The commissural
pathway has long-range connections between hemispheres that provide global efficiency. (c) The third level of the connectogram reveals the network pattern of each
fiber pathways under the projection, association, and commissural system. The connection patterns inherit the characteristics of their belonging pathway system
shown in the second level connectogram.

Table 2
Change of network measures with/without projection, association, and commissural pathways.

Pathway System Clustering Coefficient (%) Network Characteristic Path Length (%) Global Efficiency (%) Local Efficiency (%) Small
Worldness (%)

Projection �0.30 �5.38 3.35 4.60 5.08
Association 62.27 �7.95 6.88 57.90 66.91
Commissural �18.65 �10.57 8.11 �7.47 �8.24

A positive value indicates an increase of network measures with the pathways added.
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(Siless et al., 2018). We should point out, however, that these re-
finements would only further to improve the reliability and resolution of
the results reported here, rather than point to a critical failing of the
approach described here.

In addition, the expert examination may have its own errors, espe-
cially for identifyingminor pathways and branches. It is also possible that
the branching patterns of the white matter pathways differ person-to-
person, and the population-averaged SDF template for whole-brain
tractography may miss some branches. These missing branches could
be obtained by applying the same tractography algorithm to the non-
averaged or less-averaged datasets. Finally, the atlas reveals only three
levels of the network topology, as more recent studies have focused on
detailed subcomponents of the fiber bundles (e.g. SLF I, II, and III)
(Fernandez-Miranda et al., 2015; Wang et al., 2016). Although the spatial
resolution of the atlas can be improved, it provides a macroscopic
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framework for future connectomic studies to explore microscopic con-
nections under its categorical system.

Despite these limitations, a vetted atlas of the population-level
structural connectome has many benefits for clinical, scientific, and
educational applications. The atlas can be used to derive a representative
pattern of network measures to assist graph theoretical analysis of clus-
ters and hubs in the brain connectome. It can be used to confirm or
explore potential cortical connections from functional measures (e.g.,
functional connectivity), augmenting current functional-structural
correlative inferences or supplementing prior anatomical connectivity
expectations in studies that do not have access to individual dMRI data.
This, for example, may enable future investigations into the correlation of
white-matter lesions with known gross-white matter structures. Another
advantage of the current atlas is that it includes a normative template of
diffusion distribution across the brain. This may allow for future efforts
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comparing normal diffusion patterns with those from the neurological or
psychiatric pathologies. Finally, in science education, the atlas is a novel
resource superseding conventional 2D slice-based histological atlases.
The trajectory information provides panoramic views on the relative
location of each white matter bundle, allowing for an in-depth under-
standing of the white matter structure.
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