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a b s t r a c t 

In natural environments, mammals can efficiently select actions based on noisy sensory 

signals and quickly adapt to unexpected outcomes to better exploit opportunities that 

arise in the future. Such feedback-based changes in behavior rely, in part, on long term 

plasticity within cortico-basal-ganglia-thalamic networks, driven by dopaminergic modu- 

lation of cortical inputs to the direct and indirect pathway neurons of the striatum. While 

the firing rates of striatal neurons have been shown to adapt across a range of feed- 

back conditions, it remains difficult to directly assess the corticostriatal synaptic weight 

changes that contribute to these adaptive firing rates. In this work, we simulate the evo- 

lution of corticostriatal synaptic weights based on a spike timing-dependent plasticity rule 

driven by dopamine signaling that is induced by outcomes of actions in the context of a 

two-alternative forced choice task. Our results establish 1) that this plasticity model can 

successfully learn to select the most rewarding actions available, 2) that in the effective 

regime plasticity predominantly impacts direct pathway weights, evolving to drive action 

selection toward a more-rewarded action, and 3) that there can be coactivation of oppos- 

ing populations within selected action channels, as observed experimentally. The model 

performance also agrees with the results of behavioral experiments carried out previously 

in human subjects using probabilistic reward paradigms. 

© 2019 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

The flexible range of mammalian behavior in dynamic and often volatile environments suggests that the neural circuits

associated with action selection must be highly modifiable. This adaptive behavior requires that the outcomes of past experi-

ences influence neural circuits in a principled way that maximizes the chances of success in the future [1] . A significant body

of experimental work has established that corticostriatal synapses represent one site of such plasticity, which is triggered

when a behavior followed by an unexpected reward leads to a change in dopamine levels [2–4] . Because the corticostriatal

synapses represent a key input pathway to the cortico-basal ganglia-thalamic (CBGT) circuits, these dopaminergic changes

have been shown to have a critical impact on global network computations related to action selection [5–11] . 
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Fig. 1. Spike timing-dependent plasticity (STDP) network. A schematic representation of the implemented neural network model with dopamine (DA) 

effects on corticostriatal synapses. The L and R notation denotes the population that influences the choice of the left and right action, respectively. The 

populations involved are, with j ∈ { L, R }, j − C ort ex : cortical population, j − dMSN: direct pathway striatal neurons, and j − iMSN: indirect pathway striatal 

neurons. The strengths of corticostriatal synapses are encoded as weights that evolve over time. Each synapse has its own weight; weights to dMSNs ( w D ) 

obey different plasticity rules than weights to iMSNs ( w I ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cortical signals to the striatum infiltrate the overall basal ganglia network dynamics via at least two distinct routes, the

direct and indirect pathways, each targeted by a corresponding population of striatal medium spiny neurons (MSNs). While

these populations are sometimes called D1 (direct) and D2 (indirect) MSNs based on the predominant dopamine receptors

that they express, we will refer to these neuron types as dMSNs and iMSNs, respectively. A classic hypothesis posits that

the direct pathway provides a “go” signal that permits an action to be implemented, by disinhibiting downstream targets of

inhibitory basal ganglia outputs [12] . Different actions may be driven by dMSNs in different channels, and selection of an

action involves cortical activation of the corresponding channel. According to this framework, the indirect pathway promotes

inhibitory outputs, leading it to be classically referred to as a “no-go” pathway. When an action associated with one channel

is selected, the activity of iMSNs in other channels prevents simultaneous activation of competing actions. According to this

theory, if they are active after dMSNs, then the iMSNs in the same channel can terminate previously selected actions [13] . 

Recent experiments, however, have shown that both the dMSNs and the iMSNs linked with a particular action are simul-

taneously active during action selection [14–17] . This co-activation of dMSN and iMSN populations has challenged the tra-

ditional model of a strict isomorphism between dMSN activity and excitation and iMSN activity and inhibition [12] . Indeed,

more recent theoretical models have proposed that, within an action channel, the dMSN and iMSNs work in a competitive

manner to regulate the certainty of a given action decision [10,18–20] . For example, Dunovan & Verstynen (2016) proposed

a Believer-Skeptic framework for understanding CBGT circuit computations [10] . In this model the direct pathway is cast as

the Believer, activated by evidence supporting the favorability of a given action, while the indirect pathway serves as the

Skeptic, activated by inputs not in favor of that action. The greater the Believer-Skeptic competition within an action chan-

nel, the slower the accumulation of evidence in favor of that action. While this viewpoint shares some similarities with the

more classic model [12] , it allows for simultaneous increases in activity of dMSN and iMSN populations in a single action

channel, corresponding to the accumulation of all types of information relating to that action. 

Previous work has developed a computational representation of corticostriatal plasticity in the context of action learning

and extinction within the full CBGT circuit [21,22] . In this framework, corticostriatal synapses are updated based on a spike

timing-dependent plasticity (STDP) rule, determined by the timing of a striatal neuron’s spikes relative to the cortical inputs

it receives, and on dopamine signals related to reward prediction errors. While the dopamine is shared across neurons

and their synapses, the STDP rule sets a synapse-specific eligibility [23–25] , such that only those synapses active with the

appropriate timing relative to changes in dopamine are modified. 

Here we attempt to adapt and update previous models of dopaminergic learning at the corticostriatal synapses to study

how, with repeated evidence presentation, dopamine continuously sculpts synaptic weights at dMSNs and iMSNs in order to

influence their relative firing patterns and subsequent behavior. We incorporate dynamically evolving dopamine levels in the

setting of either constant or probabilistic rewards delivered in a two-alternative forced choice scenario. In our model, spik-

ing activity of striatal neurons in each action channel is driven by ongoing cortical spike trains ( Fig. 1 ), with action selection

based on spike patterns at the striatal level resulting from learning-induced weight asymmetries, not from differences in

cortical patterns between action channels. With this set-up we asked: Can spike timing-dependent plasticity of corticostri-

atal synapses, linked to reward-related dopamine levels and learned action values, learn to select more-rewarded actions in

ways that mimic the dynamics observed in human participants? If so, what corticostriatal synaptic weight changes support

this performance? 

Our results yield a positive answer to the first question and generate the prediction that the predominant site of corti-

costriatal plasticity arises at synapses to dMSNs. Moreover, we observe that the emergent striatal activity patterns produced

by our model involve significant spiking in both dMSN and iMSN populations associated with a selected action, consistent

with both experimental findings [14–16] and with competing pathway models [19,20] like the Believer-Skeptic hypothesis

[10] . 

The remainder of this paper is organized as follows. In Section 2 , we describe our neural model, including cortical spike

trains, MSN dynamics, synaptic plasticity, action selection, and reward delivery. We also illustrate how the model effectively

functions to update synaptic weights and how it is implemented computationally. In Section 3 , we describe the model

performance when rewards associated with each action are at a fixed level, when rewards are generally fixed but switch

after a specific condition is met, and when rewards are probabilistic. The latter scenario allows us to compare our results

to experiments with human subjects. Finally, we conclude with a discussion in Section 4 where we summarize our findings

and describe how our model compares to contemporary theoretical models and to emerging empirical observations. 
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2. Methods 

The focus of this work is on a computational model of striatal medium spiny neurons (MSNs) receiving cortical inputs

via synapses with plastic weights that determine either a left ( L ) or a right ( R ) action decision. In this section we describe

the model network ( Section 2.1 ) and how the corticostriatal synapses change according to spike timing-dependent plasticity

(STDP), which is driven by phasic reward signals resulting from simulated actions and their consequent dopamine release

( Sections 2.2 and 2.3 ). An example simulation to illustrate the mechanics of the plasticity rule is also presented ( Section 2.4 ).

2.1. Neural model 

We consider a computational model of the striatum consisting of two different populations that receive distinct streams

of inputs from the cortex (see Fig. 1 ). We assume that the two cortical input streams are statistically identical, representing

equivalent levels of evidence for what the cortical streams encode. Although they do not interact directly, the two striatal

populations compete with each other to be the first to select a corresponding action. 

Each population contains two different types of units: (i) dMSNs, which facilitate action selection, and (ii) iMSNs, which

suppress action selection. Each of these neurons is represented with the exponential integrate-and-fire model, a simpli-

fied model that captures the fundamental properties of conductance-based models [26] , such that each neural membrane

potential obeys the differential equation 

C 
dV 

dt 
= −g L (V − V L ) + g L �T e 

(V −V T ) / �T − I syn (t) (1)

where g L is the leak conductance and V L the leak reversal potential. In terms of a neural I − V curve, V T denotes the voltage

that corresponds to the largest input current to which the neuron does not spike in the absence of synaptic input, while

�T stands for the spike slope factor, related to the sharpness of spike initialization. I syn ( t ) is the synaptic current, given by

I syn (t) = g syn (t)(V (t) − V syn ) , where the synaptic conductance g syn ( t ) is impacted by a learning process (see Section 2.2 ). A

reset mechanism is imposed that represents the repolarization of the membrane potential after each spike. Hence, when the

neuron reaches a boundary value V b , the membrane potential is reset to V r . 

The inputs from the cortex to each MSN neuron within a population are generated stochastically, in order to simulate

the upstream sensory or planning signals for the targets of either a left or right action. To start, we generate a baseline

oscillatory Poisson process { X ( t n )} n , which we call the mother train. This process has rate λ such that the spike probability at

time point t n is P (X(t n ) = 1) ∝ λδt, where δt := t n − t n −1 is the time step. From this mother train, we generate the daughter

trains, each representing the spikes coming to a corresponding MSN neuron. Specifically, each mother spike is transferred to

each daughter with probability p , checked independently for each daughter. As discussed below, we take advantage of this

construction to assign different p values for different post-synaptic cell types. 

Now, the parameters that are relevant to our model are those associated with the daughter trains, namely the rate ν of

each daughter train and the pairwise correlation c between daughter trains. We select λ and p to achieve the desired ν and

c ; to do so, we take the mother train’s rate to be λ = ν/ (p ∗ δt) where 

p = ν + c(1 − ν) . (2)

Since the mother process generates a spike with probability λδt in time step δt (when A = 0 ), and λδt = ν/p is independent

of δt , it follows that this choice of λ allows us to maintain our desired daughter spike rate ν , even if we change the time

step of our mother Poisson process. Note from Eq. (2) that the way that we can achieve c = 1 is to have p = 1 , such that

daughters are fully correlated because they all receive all of the mother spikes. On the other extreme, if no spikes are

transferred from the mother train, then this will result in the daughter train having no spikes in it, which means that p = 0

should correspond to ν = 0 and c = 0 , and this is exactly what is given by equation (2). The other way to get c = 0 is to

have a mother spike rate of one per time step, λ = 1 /δt, and to have p = ν, and this is also exactly what emerges from our

formulas. 

In the STDP network (see Fig. 1 , left) for each possible action, we instantiate a corresponding mother train to generate

the cortical daughter spike trains for the MSN populations corresponding to that action. Each dMSN neuron or iMSN neuron

receives input from a distinct daughter train, with the corresponding transfer probabilities p D and p I , respectively. As shown

in [27] , the cortex to iMSN release probability exceeds that of cortex to dMSN. Hence, we set p D < p I . 

Striatal neuron parameters. We set the exponential integrate-and-fire model parameter values as C = 1 μF /cm 

2 , g L =
0 . 1 μS/cm 

2 , V L = −65 mV, V T = −59 . 9 mV, and �T = 3 . 48 mV (see [26] ). The reset parameter values are V b = −40 mV and

 r = −75 mV . The synaptic current derives entirely from excitatory inputs from the cortex, so the synaptic reversal potential

 syn = 0 mV . For these specific parameters, synaptic inputs are required for MSN spiking to occur. 

Cortical neuron parameters. To compute p , we set the daughter Poisson process parameter values as ν = 0 . 002 and c = 0 . 5

and apply Eq. (2) . Once the mother trains are created using these values, we set the iMSN transfer probability to p I = p and

the dMSN transfer probability to p D = 2 / 3 p I . We have also tested the learning rule with small oscillations in the cortical

spike rate and obtained similar results as in the constant rate case. 

Numerical details. The network was integrated computationally using the Runge-Kutta (4,5) method in Matlab (ode45)

with the time step δt = 0 . 01 ms . Different realizations lasting 15 s were computed to simulate variability across different

subjects in a learning scenario. 
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Every time that an action is performed (see Sections 2.3 and 2.4 ), all populations stop receiving inputs from the cortex

until 50 ms pass without any striatal spikes. During these silent periods, since no MSN spikes occur, no new actions are

performed (i.e., they are action refractory periods). After these 50 ms , the network starts receiving synaptic inputs again and

we consider a new trial to be underway. 

2.2. Learning rule 

During the learning process, the corticostriatal connections are strengthened or weakened according to previous expe-

riences. In this subsection, we will present equations for a variety of quantities, many of which appear multiple times in

the model because they can take different values for different synapses, cells or spike trains. Specifically, there are variables

g syn , w for each corticostriatal synapse, A PRE for each daughter train, and A POST and E for each MSN. For all of these, to avoid

clutter, we omit subscripts that would indicate explicitly that there are many instances of these variables in the model. 

We suppose that the conductance for each corticostriatal synapse onto each MSN neuron, g syn ( t ), obeys the differential

equation 

dg syn 

dt 
= � j w (t j ) δ(t − t j ) − g syn /τg , (3) 

where t j denotes the time of the j th spike in the cortical daughter spike train pre-synaptic to the neuron, δ( t ) is the Dirac

delta function, τ g stands for the decay time constant of the conductance, and w ( t ) is a weight associated with that train

at time t . The weight is updated by dopamine release and by the neuron’s role in action selection based on a similar

formulation to one proposed previously [22] , which descends from earlier work [24] . The idea of this plasticity scheme

is that an eligibility trace E (cf. [25,28] ) represents a neuron’s recent spiking history and hence its eligibility to have its

synapses modified, with changes in eligibility following a spike timing-dependent plasticity (STDP) rule that depends on

both the pre- and the post-synaptic firing times. Plasticity of corticostriatal synaptic weights depends on this eligibility

together with dopamine levels, which in turn depend on the reward consequences that follow neuronal spiking. 

To describe the evolution of neuronal eligibility, we first define A PRE and A POST to represent a record of pre- and post-

synaptic spiking, respectively. Every time that a spike from the corresponding spike train or cell occurs, the associated

variable increases by a fixed amount, and otherwise, it decays exponentially. That is, 

dA PRE 

dt 
= ( �PRE X PRE ( t ) − A PRE (t) ) /τPRE , 

dA POST 

dt 
= ( �POST X POST ( t ) − A POST (t) ) /τPOST , 

(4) 

where X PRE ( t ) and X POST ( t ) are delta functions with support at times when, respectively, a neuron that is pre-synaptic to the

post-synaptic neuron, or the post-synaptic neuron itself, fires a spike. �PRE and �POST are the fixed increments to A PRE and

A POST due to this firing. The additional parameters τ PRE , τ POST denote the decay time constants for A PRE , A POST , respectively. 

The spike time indicators X PRE , X POST and the variables A PRE , A POST are used to implement an STDP-based evolution equa-

tion for the eligibility trace, which takes the form 

dE 

dt 
= ( X POST ( t ) A PRE (t) − X PRE ( t ) A POST (t) − E ) /τE . (5) 

According to this equation, if a pre-synaptic neuron spikes and then its post-synaptic target follows, such that A PRE > 0 and

X POST becomes non-zero, then the eligibility E increases, while if a post-synaptic spike occurs followed by a pre-synaptic

spike, such that A POST > 0 and X PRE becomes non-zero, then E decreases. At times without spikes, the eligibility decays expo-

nentially with rate τ E . 

In contrast to some previous work [22] , we propose an update scheme for the synaptic weight w ( t ) that depends on the

type of MSN neuron involved in the synapse. It has been observed [29–32] that dMSNs tend to have less activity than iMSNs

at resting states, consistent with our assumption that p D < p I , and are more responsive to phasic increases in dopamine

than iMSNs. In contrast, iMSNs are largely saturated by tonic dopamine. In both cases, we assume that the eligibility trace

modulates the extent to which a synapse can be modified by the dopamine level relative to a tonic baseline (which we

without loss of generality take to be 0), consistent with previous models. Hence, we take w ( t ) to change according to the

equation 

dw 

dt 
= αw 

E f (K DA )(w 

X 
max − w ) , (6) 

where the function 

f (K DA ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

K DA , if the target neuron is a dMSN, 

K DA 

c + | K DA | , if the target neuron is an iMSN 

represents sensitivity to phasic dopamine, αw 

refers to the learning rate, K DA denotes the level of dopamine available at the

synapses, w 

X 
max is an upper bound for the weight w that depends on whether the postsynaptic neuron is a dMSN ( X = D )



C. Vich, K. Dunovan and T. Verstynen et al. / Commun Nonlinear Sci Numer Simulat 82 (2020) 105048 5 

Fig. 2. Evolution of the learning rule variables. Learning-related variables were computed for dMSNs in each action channel, one promoting the L action 

(black, actual reward value 0.7) and one promoting the R action (red, actual reward value 0.1). Each panel represents corresponding variables for both 

neurons except K DA ( t ), which is common across all neurons. For each example neuron, the top panel shows its membrane potential (dark trace) and the 

cortical spike trains it receives (light trace with many spikes). This panel also represents the action onset times: green and orange dots if actions L and R 

occur, respectively. Different example cases labeled with letters (A,B,C,D,E,F) are described in the text in Section 2.4 . (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or an iMSN ( X = I), c controls the saturation of weights to iMSNs, and | · | denotes the absolute value function. Importantly,

we follow past work and take αw 

> 0 for dMSNs and αw 

< 0 for iMSNs [22] . The form of f , chosen to be an odd function

for simplicity, may underestimate iMSN sensitivity to decreases in dopamine (e.g., see [19] ); because αw 

< 0 for iMSNs, this

underestimation translates into a weakened increase in weights onto iMSNs, but we shall see that this is not an important

factor in our simulation results. 

The dopamine level K DA itself evolves as 

dK DA 

dt 
= 

∑ 

i 

(DA inc (t i ) − K DA ) δ(t i ) − K DA /τDOP , (7)

where the sum is taken over the times { t i } when actions are performed, leading to a change in K DA that we treat as in-

stantaneous, and τDOP is the dopamine decay constant. The DA update value DA inc ( t i ) depends on the performed action as

follows: 

DA inc (t) = r i (t) − max i { Q i (t) } , 
Q i (t + 1) = Q i (t) + α( r i (t) − Q i (t) ) , 

(8)

where r i ( t ) is the reward associated to action i at time t, Q i ( t ) is an estimate of the value of action i at time t such that

r i (t) − Q i (t) is the subtractive reward prediction error [33] , and α ∈ [0, 1] is the value learning rate. This rule for action

value updates and dopamine release resembles past work [19] but uses a neurally tractable maximization operation (see

[34,35] and references therein) to take into account that reward expectations may be measured relative to optimal past

rewards obtained in similar scenarios [36,37] . In fact, we obtained similar results without the max operation in Eq. 8 , but

with slower convergence time (data not shown). The evolution of these variables is illustrated in Fig. 2 , which is discussed

in more detail in Section 2.4 . 

2.3. Actions and rewards 

Actions. Each dMSN facilitates performance of a specific action. We specify that an action occurs, and so a decision is

made by the model, when at least three different dMSNs of the same population spike in a small time window of duration

�DA . This action selection rule is designed to reflect a high enough dMSN rate relative to the iMSN rate in some relevant

time window. When this condition occurs, a reward is delivered and the dopamine level is updated correspondingly, impact-

ing all synaptic weights in the network in a way that depends on eligibility as specified in Eq. (6) . Then, the spike counting
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and the initial window time are reset, and cortical spikes to all neurons are turned off over the next 50 ms before resuming

again as usual. 

We assume that iMSN activity within a population counters the performance of the action associated with that popula-

tion [38] . We implement this effect by specifying that when an iMSN in a population fires, the most recent spike fired by

a dMSN in that population is suppressed. Note that this rule need not contradict observed activation of both dMSNs and

iMSNs preceding a decision [14] , see Section 3 . We also implemented a version of the network in which each iMSN spike

cancels the previous spike from both MSN populations. Preliminary simulations of this variant gave similar results to our

primary version but with slower convergence (results not shown). 

For convenience, we refer to the action implemented by one population of neurons as “left” or L and the action selected

by the other population as “right” or R . 

Rewards. In our simulations, we present results from different reward scenarios. In one case, we use constant rewards,

with r L = 0 . 7 and r R = 0 . 1 . In tuning the model, we also considered a regime with reward switches: reward values were as

in the constant reward case but after a certain number of actions occurred, the reward-action associations were exchanged.

We consider two different switching cases: a single switch, changing the rewards after 20 L actions occurred; and multiple

switches, changing the rewards after 15 preferred actions occurred. Finally, we tune and test the learning rule in more

challenging contexts, where rewards for both choices could either excede or fall short of their expected values, by comparing

model performance with previously obtained experimental data [39] . For this case we implemented probabilistic rewards:

every time that an action occurs, the reward r i is set to be 1 with probability p i or 0 otherwise, i ∈ { L, R }, with p L + p R = 1

and p L > p R , keeping the action L as the preferred one. Specifically, we consider the three different cases of p L = 0 . 85 , p L =
0 . 75 , and p L = 0 . 65 to allow comparison with previous results [39] . 

2.4. Example implementation 

The algorithm for the learning rule simulations is found in Algorithm 1 . 

Algorithm 1 Dopamine plasticity algorithm. 

First, generate cortical mother spike trains and extract daughter trains to be used as inputs to the MSNs from the mother

trains.Next, while t < t end , 

1. use RK45, with step size dt = 0 . 01 ms , to compute the voltages of the MSNs in the network at the current time t from

Eqs.~(1) and (3), 

2. determine which dMSNs and iMSNs have reached spike threshold and fired in the current time step 

3. update the action condition by checking sequentially for the following two events: 

• if any iMSN neuron in population i ∈ { L, R } spikes, then the most recent spike performed by any of the dMSNs of

population i is cancelled; 
• for each i ∈ { L, R } , count the number of non-cancelled spikes of the dMSNs in the i th population inside a time window

consisting of the last �DA ms ; if at least n act non-cancelled spikes have occurred in this window, then action i has

occurred and we update DA inc and Q i according to Eq.~(8), 

4. for each MSN, update the support for the delta function X POST (t) to time t if the cell fired a spike in the current time

step or else take X POST (t) = 0 ; similarly, for each daughter spike train, update the support for X PRE (t) to time t if a spike

occurred in the time step or else take X PRE (t) = 0 , 

5. use RK45, with step size dt = 0 . 01 ms , to solve Eqs.~(4)-(6) for each synapse, along with Eq.~(7) shared by all synapses,

yielding an update of DA and all synaptic weight levels; for neurons that received an input spike, update synaptic con-

ductance using g(t) = g(t) + w (t) , 

6. set t = t + dt . 

Fig. 2 illustrates the evolution of all of the learning rule variables over a brief time window. Cortical spikes (thin straight

light lines, top panel) can drive voltage spikes of dMSNs (dark curves, top panel), which in turn may or may not contribute

to action selection (green – for L – and orange – for R – dots, top panel). Each time a dMSN fires, its eligibility trace will

deviate from baseline according to the STDP rule in Eq. (5) . In this example, the rewards are r L = 0 . 7 and r R = 0 . 1 , such that

every performance of L leads to an appreciable surge in K DA , with an associated rise in Q L , but performances of R do not

cause such large increases in K DA and Q R . 

Various time points are labeled in the top panel of Fig. 2 . At time A, R is selected. The illustrated R -dMSN fires just before

this time and hence its eligibility increases. There is a small increase in K DA leading to a small increase in the w for this

dMSN. At time B, L is selected. Although it is difficult to detect at this resolution, the illustrated L -dMSN fires just after the

action, such that its E becomes negative and the resulting large surge in K DA causes a sizeable drop in w L . At time C, R is

selected again. This time, the R -dMSN fired well before time C, so its eligibility is small, and this combines with the small

K DA increase to lead to a negligible increase in w R . At time D, action L is selected but the firing of the L -dMSN is sufficiently

late after this that no change in w results. At time E, L is selected again. This time, the L -dMSN fires just before the action
L 
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leading to a large eligilibity and corresponding increase in w L . Finally, at time F, L is selected. In this instance, the R -dMSN

fired just before selection and hence is eligible, causing w R to increase when K DA goes up. Although this weight change does

not reflect correct learning, it is completely reasonable, since the physiological synaptic machinery has no way to know that

firing of the R -dMSN did not contribute to the selected and rewarded action L . 

2.5. Learning rule parameters 

The learning rule parameters have been chosen to capture various experimental observations, including some differences

between dMSNs and iMSNs. First, it has been shown that cortical inputs to dMSNs yield more prolonged responses with

more action potentials than what results from cortical inputs to iMSNs [40] . Moreover, dMSNs spike more than iMSNs when

both types receive similar cortical inputs [41] . Hence, the effective weights of cortical inputs to dMSNs should be able to

become stronger than those to iMSNs, which we encode by selecting w 

D 
max > w 

I 
max . This choice is also consistent with the

observation that dMSNs are more sensitive to phasic dopamine than are iMSNs [29–32] . On the other hand, the baseline

firing rates of iMSNs exceed the baseline of dMSNs [42] , and hence we take the initial condition for w ( t ) for the iMSNs

greater than that for the dMSNs. 

The relative values of other parameters are largely based on past computational work [22] , albeit with different magni-

tudes to allow shorter simulation times. The learning rate αw 

for the dMSNs is chosen to be positive and larger than the

absolute value of the negative rate value for the iMSNs. The parameters �PRE , �POST , τ E , τ PRE , and τ POST have been assigned

the same values for both types of neurons, keeping the relations �PRE > �POST and τ PRE > τ POST . Finally, the rest of the pa-

rameters have been adjusted to give reasonable learning outcomes. This tuning was done by hand. Because we have a fairly

complete understanding of the mechanisms that interact to produce the desired plasticity outcomes, we do not expect that

there is a completely different parameter regime that would give similar results, except that a simple time rescaling would

yield similar behavior but with a different simulation time needed. Our parameter investigations support this claim, but

we did not check it systematically. As for local robustness, we systematically varied several of the key parameters in the

model. We found that although there was significant variability from trial-to-trial, the average weight values and rates of

action selection remained within approximately ± 5% of those obtained for our baseline parameter values over the following

ranges: αD 
w 

∈ [60 , 80] , αI 
w 

∈ [ −75 , −35] , τE ∈ [1 , 9] , �DA ∈ [3 , 10] . In some cases, the robustness extended to the edge of the

parameter range explored, so the actual robust range could be even broader. 

Parameter values. We use the following parameter values in all of our simulations: τDOP = 2 ms, �DA = 6 ms, τg = 3 ms,

α = 0 . 05 and c = 2 . 5 . For both dMSNs and iMSNs, we set �PRE = 10 (instead of �PRE = 0 . 1 ; [22] ), �POST = 6 (instead of

�POST = 0 . 006 ; [22] ), τE = 3 (instead of τE = 150 ; [22] ), τPRE = 9 (instead of τPRE = 150 ; [22] ), and τPOST = 1 . 2 (instead

of τPOST = 3 ; [22] ). Finally, αw 

= { 80 , −55 } (instead of αw 

= { 12 , −11 } ; [22] ) and w max = { 0 . 1 , 0 . 03 } (instead of w max =
{ 0 . 0 0 045 , 0 } ; [22] ), where the first value refers to dMSNs and the second to iMSNs. Note that different reward values,

r i , were used in different types of simulations, as explained in the associated text. 

Learning rule initial conditions. The initial conditions used to numerically integrate the system are w = 0 . 015 for weights

of synapses to dMSNs and w = 0 . 018 for iMSNs, with the rest of the variables relating to value estimation and dopamine

modulation initialized to 0. 

2.6. Definitions of quantities computed from the STDP model 

Averaged population firing rate. We compute the firing rate of a neuron by adding up the number of spikes the neuron

fires within a time window and dividing by the duration of that window. The averaged population firing rate is computed

as the average of all neurons’ firing rates over a population, given by 〈∑ 

i s i 
�t 

〉
n 

where �t is the time window in ms, s i is the spike train corresponding to neuron i , and 〈 · 〉 n denotes the mean over the n

neurons in the population, The time course of the population firing rate is computed this way, using a disjoint sequence of

time windows with �t = 500 ms . 

Action frequency. We compute the rate of a specific action i in a small window of �t = 500 ms as the number of occur-

rences of action i within that window divided by �t . 

Mean behavioral learning curves across subjects. The behavioral learning curves indicate, as functions of trial number, the

fraction of trials on which the more highly rewarded action is selected. Within a realization, using a sliding trial count

window of 5 trials, we computed the fraction of preferred actions selected (number of preferred actions divided by the total

number of actions). Then we averaged over N realizations. 

Evolution of the mean (across subjects) difference in model-estimated action values. Using N different realizations (simulating

subjects in a behavioral experiment), we computed the difference of the expected reward of action L and the expected re-

ward of action R at the time of each action selection (that is, Q L (t ∗) − Q R (t ∗) , where t ∗ is the time of action selection). Notice

that Q i ( t 
∗), for i ∈ { L, R }, only changes when an action occurs. Moreover, to average across realizations, we only considered

the action number rather than the action onset time. 
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3. Results 

To evaluate how dopaminergic plasticity impacts the efficacy of corticostriatal synapses, we modeled learning using a

spike timing-dependent plasticity (STDP) paradigm in a simulation of corticostriatal networks implementing a simple two-

alternative forced choice task. In this scenario, one of two available actions, which we call left ( L ) and right ( R ), was selected

by the spiking of model striatal medium spiny neurons (MSNs; Section 2.3 ). These model MSNs were grouped into action

channels receiving inputs from distinct cortical sources ( Fig. 1 ). Every time an action was selected, dopamine was released,

after a short delay, at an intensity proportional to a reward prediction error [ Eqs. (7) and (8) ]. All neurons in the network ex-

perienced this non-targeted increase in dopamine, emulating striatal release of dopamine by substantia nigra pars compacta

neurons, leading to plasticity of corticostriatal synapses [ Eq. (6) ; see Fig. 2 ]. 

The model network was initialized so that it did not a priori distinguish between L and R actions. We first performed

simulations in which a fixed reward level was associated with each action, with r L > r R , to assist in parameter tuning and

verify effective model operation. Next, we continued with the constant reward scenario but with reward values exchanged

(i.e., L becomes the non-preferred action while R becomes the most rewarded one) after a certain number of actions, to see

if the network is capable of learning that the reward switch has occurred and representing how long it lasts. We finally turn

to results obtained with probabilistic rewards, as described in the last paragraph in Section 2.3 , to compare with data from

experiments with human subjects. 

3.1. Constant rewards scenario 

In this first scenario, where r L = 0 . 7 and r R = 0 . 1 , a gradual change in corticostriatal synaptic weights occurred ( Fig. 3 A)

in parallel with the learning of the actions’ values ( Fig. 3 B). 
Fig. 3. STDP simulations with constant reward feedback . Time courses of corticostriatal synapse weights and firing rates are shown for simulations per- 

formed with a constant (i.e., non-probabilistic) reward schedule, where ( r L (t) = 0 . 7 and r R (t) = 0 . 1 ). A: Averaged weights over 7 different realizations and 

over each of the four specific populations of neurons, which are dMSN selecting action L (solid black); dMSN selecting action R (solid red); iMSN coun- 

tering action L (dashed black); iMSN countering action R (dashed red). B: Averaged evolution of the action values Q L (black trace) and Q R (red trace) over 

7 different realizations. C: Firing rates of the dMSN populations selecting actions L (black) and R (red) over time. D: Firing rates of the iMSN populations 

countering actions L (black) and R (red) over time. Data in C,D was discretized into 50 ms bins. The transparent regions depict standard deviations. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. Constant reward task. A: Frequency of performance of L (black) and R (red) actions is plotted over time (discretized each 50 ms ) when the re- 

wards are held constant ( r L = 0 . 7 , r R = 0 . 1 ). Both traces are averaged across 7 different realizations. The transparent regions depict standard deviations. B: 

Estimates of the values of L ( Q L ) and R ( Q R ) versus the ratio of the corticostriatal weights to those dMSNs that facilitate the action and those iMSNs that 

interfere with the action. Each trajectory is colored to show the progression of time; each trajectory evolves from the blue points through the green to the 

yellow. Even without full convergence of the action values Q R and Q L to their respective actual reward levels (B), a clear separation of action selection rates 

emerges (A). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These changes in synaptic weights induced altered general MSN firing rates ( Fig. 3 C,D), reflecting changes in the sensitiv-

ity of the MSNs to cortical inputs in a way that allowed the network to learn over time to select the more highly rewarded

action ( Fig. 4 A). That is, firing rates in the dMSNs associated with the more highly rewarded action increased, leading to a

more frequent selection of that action. On the other hand, firing rates of the iMSNs remained quite similar ( Fig. 3 C,D). This

similarity is consistent with recent experimental results [43] , while the finding that dMSNs and iMSNs associated with a

selected action are both active has also been reported in several experimental works [14–16] . 

In this model, indirect pathway activity counters action selection by cancelling direct pathway spiking ( Section 2.3 ). Based

on this cancellation, the ratio of direct pathway weights to indirect pathway weights provides a reasonable representation

of the extent to which each action is favored or disfavored. In Fig. 4 B, we show how this ratio evolves in parallel with

value learning. Here the color code denotes time, and evolution progresses from the blue starting point to the yellow zone

corresponding to the end of our simulations. In our simulations, after a long period of gradual evolution of weights and

action values, the direct pathway versus indirect pathway weight ratio of the channel for the less favored action started to

drop more rapidly, indicating the emergence of certainty about action values and a clearer separation between frequencies

with which the two actions were selected ( Fig. 4 ). 

3.2. Reward switching scenario 

To test whether the network remains flexible after learning a specific action-value relation, we ran additional simulations

using a variety of reward schedules in which the reward values associated with the two actions were swapped after the

performance of a certain number of actions. 

We first performed a simulation in which the rewards associated with the L and R actions were switched only one time

after 5 s . In Fig. 5 , we can see that when the L -action is rewarded (up to time t ≈ 5 s ), the firing rate, action frequency and

the action values Q ( t ) for the L -dMSNs become higher than those for the R -dMSNs, showing a learning of the L action. Up

to time 5 s , 20 L actions have been performed and the learning is almost consolidated, since Q L ( t ) and Q R ( t ) are close to the

actual reward values, r L = 0 . 7 and r L = 0 . 1 , respectively (see top panel of Fig. 5 ). 

At this time, the reward values are swapped. Afterwards, the network is able to learn that the R action elicits the prefer-

able reward. Specifically, as we can see in the top panel of Fig. 5 , Q L and Q R begin evolving toward the new reward levels,

switching their relative magnitudes relatively quickly (i.e., in less than 3 s ) along the way. Although the weights of corticos-

triatal synapses to L -dMSNs ( R -dMSNs) correspondingly weaken (strengthen), it takes longer, at least 5 s , until the R action

is reliably performed more frequently than the L action. Thus, the network is able to overcome previously learned contin-

gencies and adaptively learn new ones, yet there is a delay relative to the learning that occurs without the previous bias. 

On the other hand, given that the network is capable of learning new optimal actions after the switch, we also wanted

to see what happens if the rewards are swapped back and forth before the new learning is consolidates. In Fig. 6 , we plot

the results of a simulation where the reward values are switched each time that 15 preferred actions take place. 

In Fig. 6 , after each switch, the estimated action value Q ( t ) for the (now) non-preferred action starts to gradually fall off,

causing small decreases in the weights of synapses to dMSNs associated with that action and in the mean firing rate of the

dMSNs. At the same time, the weights of synapses onto the dMSNs that allow the (now) preferred action and their firing

rates increase. In contrast to the action value estimates, which switch quickly, the STDP rule yields a delay in switching of

relative synaptic weight values onto dMSNs (top panel of Fig. 6 ), such that the reward changes are not clearly encoded in
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Fig. 5. STDP effects following change in action-value associations. The STDP model was simulated on a task in which the associated rewards for L and 

R actions are flipped after an initial learning period. The first three panels represent, from top to bottom, the action values ( Q ( t )), the firing rates of dMSN 

neurons for each action ( L , black; R , red), and the action frequency for the dMSN population of neurons that produces the L action (black) and the R action 

(red). The bottom panel represents the actual reward values for L (black) and R (red). The reward values switch when 20 L actions have occurred. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. STDP effects after repeatedly switching the highest rewarded action. The STDP model was simulated on a task in which the associated rewards 

for L and R actions are flipped each time that 15 preferred actions have occurred. The first three panels represent, from top to bottom, the weights ( w ( t )) 

for the different populations averaged over the number of neurons in each population, the estimates of the action values ( Q ( t )), and the firing rates for 

the different populations averaged over the neurons in each population. The bottom panel represents the actual reward values (thin curves) and the time 

intervals where an specific action has higher frequency (thick curves). In all panels, black traces refer to the left ( L ) action while red traces indicate the 

right ( R ) action. In the weight and firing rate plots, the solid lines refer the dMSN neurons while dashed lines refer to iMSN neurons. Vertical dashed lines 

indicate the times when reward values are switched. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

 

 

 

the action selection outcomes (bottom panel of Fig. 6 ). As weights come closer before the next switch, action selection rates

equalize. These results illustrate the lag in the STDP rule, which is advantageous for avoiding changes in action policy due

to occasional spurious outcomes but requires repeated exposure to learn new reward contingencies, and suggest that some

other plasticity mechanism is likely involved in more rapid or one-shot learning. 

3.3. Probabilistic rewards scenario 

While our previous simulations show that applying a dopaminergic plasticity rule to corticostriatal synapses allows for

a simple network to learn action values linked to reward magnitude, many reinforcement learning tasks rely on estimating
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Fig. 7. Corticostriatal synaptic weights with probabilistic reward feedback. First column: p L = 0 . 65 ; second column: p L = 0 . 75 ; third column: p L = 0 . 85 case. 

A, B, and C: Averaged weights over each of four specific populations of neurons, which are dMSN neurons selecting action L (solid black); dMSN neurons 

selecting action R (solid red); iMSN neurons countering action L (dashed black); iMSN neurons countering action R (dashed red). D, E, and F: Evolution 

of the estimates of the value L ( Q L ) and R ( Q R ) versus the ratio of the corticostriatal weights to those dMSN neurons that facilitate the action versus the 

weights to those iMSN that interfere with the action. As in Fig. 4 , each trajectory is colored to show the progression of time, evolving from the blue points 

through the green to the yellow. Both the weights and the ratios have been averaged over 8 different realizations. The jump in Q R for p L = 0 . 65 , joined by 

a horizontal dashed line, comes from the time discretization and averaging. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reward probability (e.g., two-armed bandit tasks). To evaluate the network’s capacity to learn from probabilistic rewards,

we simulated a variant of a probabilistic reward task and compared the network performance to previous experimental

results on action selection with probabilistic rewards in human subjects [39] . For consistency with experiments, we always

used p L + p R = 1 , where p L and p R were the probabilities of delivery of a reward of size r i = 1 when actions L and R were

performed, respectively. Moreover, as in the earlier work, we considered the three cases p L = 0 . 65 (high conflict), p L = 0 . 75

(medium conflict) and p L = 0 . 85 (low conflict). 

As in the constant reward case, the corticostriatal synaptic weights onto the two dMSN populations clearly separated out

over time ( Fig. 7 ). The separation emerged earlier and became more drastic as the conflict between the rewards associated

with the two actions diminished, i.e., as reward probabilities became less similar. Interestingly, for relatively high conflict,

corresponding to relatively low p L , the weights to both dMSN populations rose initially before those onto the less rewarded

population eventually diminished. This initial increase likely arises because both actions yielded a reward of 1, leading to

a significant dopamine increase, on at least some trials. The weights onto the two iMSN populations remained much more

similar. One general trend was that the weights onto the L -iMSN neurons decreased, contributing to the bias toward action

L over action R . 

In all three cases, the distinction in synaptic weights translated into differences across the dMSNs’ firing rates ( Fig. 8 ,

first row), with L -dMSN firing rates ( D L ) increasing over time and R -dMSN firing rates ( D R ) decreasing, resulting in a greater

difference that emer ged earlier when p L was larger and hence the conflict between rewards was weaker. Notice that the D L

firing rate reached almost the same value for all three probabilities. In contrast, the D R firing rate tended to decrease more

over time as the conflict level decreased. As expected, based on the changes in corticostriatal synaptic weights, the iMSN

population firing rates remained similar for both action channels, although the rates were slightly lower for the population

corresponding to the action that was more likely to yield a reward ( Fig. 8 F). 

Similar trends across conflict levels arose in the respective frequencies of selection of action L . Over time, as weights to

L -dMSN neurons grew and their firing rates increased, action L was selected more often, becoming gradually more frequent

than action R . Not surprisingly, a significant difference between frequencies emerged earlier, and the magnitude of the

difference became greater, for larger p L ( Fig. 9 ). 

To show that this feedback learning captured experimental observations, we performed additional probabilistic reward

simulations to compare with behavioral data in forced-choice experiments with human subjects [39] . Each of these simula-

tions represented an experimental subject, and each action selection was considered as the outcome of one trial performed

by that subject. After each trial, a time period of 50 ms was imposed during which no cortical inputs were sent to striatal
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Fig. 8. Firing rates when the reward traces are probabilistic . First column: p L = 0 . 65 ; second column: p L = 0 . 75 ; third column: p L = 0 . 85 case. A, B and C: Time courses of firing rates of the dMSNs selecting 

the L (black) and R (red) actions (50 ms time discretization). D, E, and F: Time courses of firing rates of the iMSNs countering the L (black) and R (red) actions (50 ms time discretization). In all cases, we depict 

the mean averaged across 8 different realizations, and the transparent regions represent standard deviations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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Fig. 9. Action frequencies when reward delivery is probabilistic . All panels represent the number of L (black) and R (red) actions performed across time (discretized each 50 ms ) when action selection is 

rewarded with probability p L = 0 . 65 (A), p L = 0 . 75 (B), or p L = 0 . 85 (C) with p L + p R = 1 . Traces represent the means over 8 different realizations, while the transparent regions depict standard deviations. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 10. Relative action value estimates and action selection probabilities. Action value and selection probabilities were estimated over simulated trials 

given probabilistic reward schedules, with p L = 0 . 65 (red), p L = 0 . 75 (purple), p L = 0 . 85 (blue) and p L + p R = 1 . A: Difference in action value estimates over 

trials in a collection of individual simulations. B: Means and standard deviations of difference in action value estimates across 8 simulations. C: Percent 

of trials on which the L action with higher reward probability was selected. B1 and C1 are the results obtained by Frank et al. in [39] , collected from 15 

human subjects. B2 and C2 are the results obtained using our learning rule, combined across 8 simulations. Note that the y-axis scales differ between 

panels C1 and C2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

neurons such that no actions would be selected, and then the full simulation resumed. For these simulations, we considered

the evolution of the value estimates for the two actions either separately for each subject ( Fig. 10 A) or averaged over all

subjects experiencing the same reward probabilities ( Fig. 10 B2), as well as the probability of selection of action L averaged

over subjects ( Fig. 10 C2). 

The mean in the difference between the action values gradually tended toward the difference between the reward prob-

abilities for all conflict levels. Although convergence to these differences was generally incomplete over the number of trials

we simulated (matched to the experiment duration), these differences appear to be close to the actual values for many indi-

vidual subjects as well as in mean ( Fig. 10 A,B2). Indeed, visual inspection shows that the levels obtained in our simulations

agree well with the behavioral data in [39] ( Fig. 10 B1) obtained from 15 human subjects, as well as with observations from

similar experiments with rats [44] , although the initial slopes of our trajectories ( Fig. 10 B2) underestimate those from the

experimental data ( Fig. 10 B1). 
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Also as in the behavioral experiments, the probability of selection of the more rewarded action grew across trials for

all three reward probabilities and then saturated, with less separation in action selection probability than in action values

across different reward probability regimes ( Fig. 10 C2). Although our actual values for the probabilities of selection of higher

value actions did not reach the levels seen experimentally ( Fig. 10 C1), this likely reflected the non-biological action selection

rule in our STDP model (see Section 2.3 ), and points to the need to incorporate more realistic action selection mechanisms

in future work. 

4. Discussion 

Flexible control of behavior in dynamic environments requires using the outcomes of previous actions to guide how

future sensory-driven actions are chosen. In this work, we use a computational model to study how plastic effects at the

corticostriatal synapses could contribute to the adaptive decision-making process. In particular, we show how a simple,

dopamine-mediated STDP rule can modulate the sensitivity of both dMSN and iMSN populations to cortical inputs in a way

that allows for the model network to bias action selection to favor a target that is more likely to lead to a higher reward. The

resulting regime emerges through modifications in the ratio of direct and indirect pathway corticostriatal weights within

each action channel, a process that is dominated by changes in weights to dMSNs, and features coactivation of opposing

dMSN and iMSN populations within the selected channel, as observed experimentally [45] . 

Experimental results suggest that adaptive decision processes involve a rather complex set of components, including cor-

ticostriatal spike timing-dependent plasticity modulated by reward-sensitive dopamine release and the interplay of direct

and indirect pathway populations of striatal neurons. Computational modeling provides a way to integrate these complex

effects and gain insights into the process of decision-making that can guide future experimental research. Indeed, it was

theoretical reasoning that led to the idea of the eligibility trace for dopaminergic learning [24] , in which “credit” is assigned

to the neurons that contributed to an action and represents a necessary permissive factor for subsequent synaptic modifica-

tion. This theoretical prediction was recently confirmed to exist experimentally [25,28] . Here we attempt something similar

by using computational models that characterize how plasticity modulates interactions within CBGT pathways in order to

generate testable predictions about behavior and physiological outcomes in various scenarios involving actions and rewards.

Recent experimental results have, in fact, exposed subtleties in the relationship between the direct and indirect pathways,

such as co-activation of dMSN and iMSN populations linked with a particular action [45] , and the modeling we report here

allows us to investigate the compatibility of such findings with the proposed reward-driven learning and action selection

framework. This work represents an important first step in showing how the many elements in our model effectively func-

tion together to achieve feedback-driven learning and decision-making, which has provided us with important insights that

we have already harnessed in a study of the mapping between striatal activity and cognitive concepts of decision-making

[10,18,46] and that will be useful for parameter tuning in more complex future studies. 

As our starting point, we considered a fairly detailed plasticity system together with a simple action selection rule based

on dMSN and iMSN spiking within specified time windows. While this form of action selection is rudimentary, it does

incorporate the crucial elements of MSN spike timing and direct/indirect pathway competition, with higher dMSN firing

rates translating into more frequent action selection. While a more biologically plausible selection rule would be ideal,

implementing eligibility in more complete simulations of basal cortico-basal-ganglia-thalamic circuits, with extensive spiking

of multiple competing neural populations during the decision period, is a highly non-trivial challenge that has not yet been

addressed in the literature. The use of a simple action selection rule allows us to sidestep this difficulty to achieve a proof

of principle that (a) hypothesized plasticity mechanisms based on an RPE-related DA signal, STDP, and eligibility can indeed

cause action selection to gradually favor more rewarded outcomes, whether deterministically or probabilistically rewarded,

in a way that resembles data from human experiments, and (b) different levels of conflict between probabilistic reward

scenarios lead to different ratios of direct and indirect pathway corticostriatal synaptic weights, predominantly through

changes in direct pathway weights. 

Even with a simple action selection rule, neither of these outcomes was necessarily preordained, and parameter tuning

was needed to find a regime that matches experimental results while maintaining robustness to variations in parameter

values. For example, it was not a given that the eligibility scheme we used would be compatible with effective learning.

Value learning could have led to loss of significant DA signals too soon to allow action selection policy to adapt to available

rewards. Chance selection of poorly rewarded outcomes early on could have led to strengthening of pathways favoring those

actions (due to small but still positive reward prediction errors) and thus interfered with learning. Alternatively, a stalemate

could have resulted: if a left action was selected early in the simulations with both L-dMSNs active (to promote the L action)

and R-iMSNs active (to prevent the R action), then reward-evoked DA release would have strengthened synapses to L-dMSNs

and weakened those to R-iMSNs. The former would have promoted more L selections, but the latter would have favored R.

The outcome of this competition could not have been anticipated a priori . As it turned out, in the parameter regime that

we identified, these outcomes were avoided, and instead early action selections were due to chance differences in cortical

activity levels associated with the two actions. Stochastic elevations in cortical inputs associated with the left action, for

example, drove both L-dMSNs and L-iMSNs to exhibit higher firing rates than their R counterparts. For left action selection,

the dMSN activity in the left channel prevailed despite the iMSN interference, leading to L-dMSN potentiation and L-iMSN

depression due to the STDP rule. Although this is a classic learning mechanism, we emphasize that it was not a foregone

conclusion. Moreover, the fact that after plasticity, both dMSN and iMSN neurons associated with a selected action exhibit
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elevated firing rates as seen experimentally [45] was not a direct, obvious result of model design. One limitation is that we

did not perform a systematic parameter fitting procedure. In our extensive exploration of parameter values, we did not find

another parameter regime that produced behavior in agreement with experimental observations, other than a time rescaling

that produced similar results more slowly; importantly, we did observe local robustness of our results to variations in key

parameters away from our selected values (see Methods). 

The model that we consider incorporates many features from the previous literature. The overarching novelty in our work

comes from (a) combining this full collection of model components, including action value updates, dopamine-sensitive

spike-timing dependent corticostriatal plasticity, synaptic eligibility, and spiking iMSN and dMSN populations that imple-

ment action selection, all together in one unified model, and (b) considering action selection across several reward scenar-

ios including settings with probabilistic rewards or with switching of action-reward dependencies. At a more specific level,

we note that many aspects of our plasticity model are based on the work of Gurney et al. [21] and Baladron and Hamker

[22] . The former work starts from plasticity rules defined for two different levels of DA (high and low) and then produces

weight change rules for other DA levels based on interpolation of these extremes. In contrast, we utilize a more direct de-

pendence of plasticity on DA, which significantly simplifies the implementation. We include a DA release with a magnitude

that depends on the reward prediction error, which is not a new concept but is not done in [21,22] nor in other recent

computational modeling of action selection and effects of dopamine [47,48] . These other papers differ from our work in

additional ways as well. Specifically, Mandali et al. focus on the relation between synchrony in the subthalamo-pallidal cir-

cuit and the exploration-exploitation tradeoff; they do include plasticity in cortico-striatal synapses, but weight changes are

directly proportional to reward prediction errors and do not take into account relative times of cortical and striatal spikes

[47] . Sen-Bhattacharya et al. base their action selection modeling on work [5,49] that predates [21] ; it includes deterministic

dopaminergic modulation of overall synaptic strengths but not synapse-specific or spike-timing dependent plasticity, and it

lacks consideration of synaptic eligibility. Finally, Topalidou et al. [50] consider a combined cognitive and motor decision-

making model that involves both cortical and BG decision-making circuits. Their work includes simplified Hebbian plasticity

of corticostriatal synapses based on reward prediction error without modeling of eligibility, spike-timing dependence, or a

dopamine signal. 

The learning of values associated with specific actions in our model is treated in a simple, standard way [see Eq. (8) ].

The encoding of values in neuronal activity that arises outside of the basal ganglia, yet is accessible to certain basal ganglia

components, is consistent with several experimental findings [51–53] , although modeling the details of this encoding is

outside of the scope of this work. For action values to be learned effectively, actions must be sampled. One interesting

scenario arises in the constant reward case when the action that elicits a higher reward (i.e., the optimal action) is switched

after learning is consolidated ( Figs. 5 and 6 ). Our use of the maximum possible reward in computing reward prediction

error [ Eq. (8) ] yields rapid changes in dopamine signals after reward switching. This leads to relatively quick adjustments in

action values. But the downside of this rapid learning is that the magnitude of the dopamine signal rapidly decays, resulting

in slow adjustments of weights and of action selection strategies (e.g,. Fig. 6 ). Thus, while the network is capable of learning

to favor the new optimal action, this occurs with a longer learning time than for the initial, unbiased learning process. 

In the probabilistic reward scenario, we compared our results with human experimental data obtained in previous work

[39] . For different levels of conflict, or similarity of reward probabilities between the two actions, the mean in the difference

between the values assigned to the actions in our model approaches the difference between the reward probabilities, in

general qualitative agreement with the experimental results [39] . ( Fig. 10 A,B). On the other hand, the percentage of trials on

which the higher reward action is selected is less directly related to the reward conflict level in both our simulations and the

earlier experiments ( Fig. 10 C). Overall, we find that corticostriatal learning based on reward-related dopaminergic feedback

is sufficient to capture the major trends in human performance in a two-alternative forced choice task with probabilistic

rewards. 

The plasticity model used here makes a very compelling case for how dopamine-mediated STDP at the corticostriatal

synapses can naturally modulate both firing rates and action selection in a reinforcement learning context; however, there

are several improvements that can and should be the focus of future studies. For example, as discussed above, while our

model features rather detailed plasticity mechanisms that build on past modeling studies [21,22,24] , we used a phenomeno-

logical action selection rule. We leave explicit modeling of the CBGT circuit, in the context of feedback-dependent learning

and action selection, for other work [9,46] . In addition, our simulations here largely ignored the role of tonic dopamine in

the action selection process [21,54–58] , which could reflect motivation or other aspects of reward valuation in the action

selection process [58,59] . Future variants of the current model should explore the influence of tonic dopamine so that we

can study how both phasic and tonic dopamine mechanisms coexist and contribute to plasticity of corticostriatal connec-

tions and subsequent behavior. This addition may help to explain the role of dopamine D2 receptors in reversal learning

[60] . Finally, our simulations here were limited to a very simple variant of the two-armed bandit task. While this task is a

popular test of learning in the reinforcement learning literature [61] , it has limited ecological validity in real world contexts.

Future work should explore the performance of dopamine-mediated STDP rules in more complex decision-making contexts

that involve more alternatives and more complicated changes in reward dynamics. 
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