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Human cognition requires coordinated commu-
nication across macroscopic brain networks.
This coordination is fundamentally constrained
by how populations of neurons are connected
together. Understanding how structural connec-
tivity between brain regions constrains or predicts
variability within and between individuals is a
pervasive topic of cutting edge research in neu-
roscience and the focus of multimillion dollar
investments in brain research (e.g. Human Con-
nectome Project, the White House’s B.R.A.I.N
initiative). Currently, diffusion-weighted imag-
ing is the only noninvasive tool for studying the
anatomical connectivity of macroscopic networks
in the living human brain. Recent innovations in
the acquisition and analysis of diffusion-weighted
imaging provide an unprecedented opportunity
to examine how an individual’s unique structural
wiring constrains brain function and cognition
and how this unique wiring is sculpted by both
genetics and experience across the lifespan.

Introduction

The human brain consists of approximately 86 billion neurons,
with trillions of connections between individual neurons leading
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to a massively interconnected network (Azevedo et al., 2009).
This network is composed of both gray matter (cell bodies) and
white matter (axons), which together enable the brain’s ability
to decode, store and send information in support of human cog-
nition and behaviour (Passingham et al., 2002). Consequently,
coordinated communication across the brain is fundamentally
constrained by patterns of interconnections and networks of spe-
cialised processing.

Gray matter is imaged and studied to understand the com-
putational processing or neural representation of information.
In humans, this research uses neuroimaging methods such as
functional magnetic resonance imaging (fMRI), which tracks
neuronal oxygen consumption during processing, or electroen-
cephalography (EEG), which captures electrical activity gener-
ated when neurons pass electrochemical signals to each other.
Analyses of gray matter activity identify what collections of neu-
rons, or brain regions, are actively processing and communicat-
ing information during task performance. See also: Cognitive
Neuroscience; Cerebral Cortex; Brain Imaging: Observing
Ongoing Neural Activity; History of Neuroscience; Neurons
and Neural Networks: Computational Models; Brain Imag-
ing: Localisation of Brain Functions; Oscillatory Neural Net-
works

Serving a complementary role, white matter is imaged and
studied to capture the trajectories of axons that relay commu-
nication between disparate brain regions. This type of research
relies on diffusion-weighted imaging (DWI), also known as dif-
fusion magnetic resonance imaging (dMRI), which uses an MRI
(magnetic resonance imaging) scanner to measure the movement
of water molecules in a small patch of imaged brain tissue, known
as a voxel. Within each voxel, water diffusion is restricted in
certain directions due to the tubular structure of axonal walls,
leading to an anisotropic diffusion pattern. In contrast, if no axons
are present in the voxel, water moves in all directions equally
in isotropic diffusion (Figure 1). Analyses of white matter path-
ways identify the brain’s structural connections that enable effi-
cient and rapid communication among different brain regions.
Currently, DWI is the only research tool for studying white

eLS © 2017, John Wiley & Sons, Ltd. www.els.net 1

http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0003376
http://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0000090.pub2
http://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0000024.pub3
http://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0003076
http://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0000089.pub3
http://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0000095.pub3
http://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0000276.pub2


White Matter Tractography and Diffusion-weighted Imaging

Water molecule

Diffusion
path

Axon

Multiple axons

Isotropic

Imaging area

Anisotropic

Cell
body

Axial slice of brain
with estimated direction

Figure 1 Principles of diffusion imaging. The axon of a neuron (represented as a cylinder) constrains the movement of water in small patch of imaged
brain tissue, known as a voxel, using an MRI (magnetic resonance imaging) scanner, and this causes anisotropic water diffusion (top). When no axons are
present, water moves equally in all directions in isotropic water diffusion (bottom).

matter pathways in the living human brain. See also: Synaptic
Integration; Neural Information Processing; Axon Guidance;
Magnetic Resonance Imaging

In this article, we provide a review of the current best prac-
tices and future directions of DWI research for newcomers to the
methodology. The section titled ‘DWI Acquisition and Analysis’
discusses how water diffusion is measured, how water move-
ment patterns are reconstructed to infer white matter integrity,
and how fibre tractography algorithms use these reconstructed
patterns to map structural networks. The section titled ‘Applica-
tion’ highlights research that has applied innovative DWI analysis
approaches to reveal new insights about brain–behaviour relation-
ships. Finally, the section titled ‘Pitfalls and Limitations’ provides
a succinct summary of current DWI limitations. ‘References’ for
more advanced treatment of the introductory topics presented
here are listed in the ‘Further Readings’ section.

DWI Acquisition and Analysis

Here, we first describe how diffusion images are acquired on
an MRI scanner and then discuss how the most commonly used
DWI scanning sequences trade off between the resolution of the
diffusion image and the total scan time. Next, we provide the pros
and cons of the two main classes of reconstruction approaches
that quantify the pattern of water diffusion and estimate structural
integrity in a voxel, and conclude with a description of two
algorithmic approaches for tractography that rely on directional
information from the voxels to estimate structural connectivity.

Measuring water diffusion

A DWI scanning sequence is an MRI protocol that defines how
water diffusion is measured within a 3D brain volume. The

movement of water in the brain can be hindered by the presence
of axonal walls (Figure 1). DWI capitalises on this fact, assuming
that strongly directional patterns of movement detected in the
MR signal reflect characteristics of axons (or fibre tracts), such as
axonal bundle size and orientation (Le Bihan and Johansen-Berg,
2012).

A DWI sequence uses a magnetic gradient to measure the
movement of water molecules in a particular direction and for
a fixed amount of time. At the beginning of the scan, the main
magnetic field (the b0-field) aligns water molecules in the brain
so that they are spinning like toy tops, all oriented in a common
direction. During the scan itself, magnetic pulses occur that knock
the water molecules off the main axis, tipping the toy tops off
centre, and the MR signal captures the amount of water molecules
that reorient themselves back in alignment with the main axis (the
b0-field). Parameters of a DWI sequence modulate its sensitivity
to the direction of movement and the time it takes the toy tops
to reorient to the upright toy top position. Collectively, the MR
signal in the resultant diffusion image records the displacement
of the water molecules that travel along a specific direction.

There are two critical parameters in a DWI sequence that
determine how the diffusion pattern will be sampled: the
b-value (strength) and the b-vector (directions). The b-value
is a time-by-distance measurement (s/mm−2), and it reflects
how well-directional movement can be resolved in the image.
A higher b-value indicates a greater sensitivity to directional
movement by increasing the diffusion time; that is, more diffu-
sion time allows water molecules to collide with axonal barriers
or traverse longer distances along the axis of the axon, but the
longer intervals also lead to a decreased signal-to-noise ratio
(Hagmann et al., 2006). A b-value moderately sensitive to
directional differences is 1500 s/mm−2, whereas high values are
typically over 3000 s/mm−2. DWI sequences include a b= 0 (or
b0) image where no directional gradient is applied, and these
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images provide baseline activity that is compared with diffu-
sion measured in images acquired with nonzero b-values. DWI
sequences vary in what b-values are used to sample directional
movement. The second critical parameter in a DWI sequence is
the vector table. The b-vector is the direction of the diffusion
gradient, and it captures what direction of water movement will
be measured in the image. The range of possible directions
and b-values sampled is called Q-space. Among different DWI
sequences, the number of sampling directions ranges from only
six directions to hundreds of directions.

Across DWI sequences described in the literature, there are
currently three general classes of diffusion sampling schemes
that vary in what b-values and b-vectors they use. Single-shell
Schemes sample a set of directions at the same b-value, and the
directions are usually equally distributed on a sphere to maximise
sensitivity to diffusion direction. Multishell Schemes improve
upon single-shell schemes by combining multiple single-shell
schemes acquired with different b-values. Finally, Grid Schemes
sample a specific grid arrangement of b-vectors and b-values
that have a variety of directions and strengths sampled under a
maximum b-value. Across all of the schemes, the end product
of a DWI sequence is a collection of diffusion images (3D
brain volumes), and the MR signal represented in each brain
volume captures the diffusion time (b-value) and amount of water
movement in each voxel for direction (b-vector).

Each of the diffusion-sampling schemes can be configured to
trade off between the resolution of the diffusion image and total
scan time (Hagmann et al., 2006). A DWI sequence with coarse
resolution of just a few directions can be acquired in just a few
minutes, whereas a DWI sequence with fine resolution of many
directions can take 30–45 min to acquire. The best trade-off must
be determined based on what structural resolution is needed to
investigate the experimental hypotheses for a particular study.
The three most commonly used diffusion sequences rely on
different sampling schemes: diffusion tensor imaging (DTI) and
high-angular resolution diffusion imaging (HARDI) typically
employ a single-shell scheme, whereas diffusion spectrum imag-
ing (DSI) relies on a grid scheme.

The most prevalent sequence used in the literature is DTI, and
the bulk of existing knowledge on brain structure has employed
this approach. DTI’s core advantage is its short scan length,
averaging 4–8 min with modern multiband imaging protocols,
since typical DTI sequences use only a few dozen directions
(minimum of 6 required); however, DTI’s core disadvantage
arises from its inability to detect crossing fibre tracts (Van et al.,
2010). Brain modelling efforts estimate that crossing fibres are
present in approximately 63–90% of all voxels (Jeurissen et al.,
2013), indicating a strong limitation when using DTI to examine
structural integrity in whole-brain analyses.

Both HARDI and DSI improve the resolution of directional
water movement by sampling more diffusion directions, typically
several hundred, and this greatly improves the resolution in the
MR signal. However, this resolution occurs at a trade-off with a
longer scan time, often ranging from 12 to 35 min, and a longer
scan time increases the risk for participant head movement and
discomfort during the scan. Although the difference between
HARDI and DSI is tightly tied to the physics of the image acqui-
sition, the general intuition is that DSI samples directions in a

different spatial pattern than HARDI. In addition, DSI employs
a set of different b-values whereas traditional HARDI uses the
same b-value (Tuch et al., 2002). These differences enable DSI
images to detect multiple speeds of diffusion and provide a
richer characterisation of the distribution of water diffusion in all
possible directions. This increased resolution from DSI comes
at a cost: the sequence takes more time to acquire, artefacts
are more difficult to remove, fewer analysis methods have been
developed for it, and sophisticated setup is required on the MRI
scanner. However, more important than their differences, both
HARDI and DSI can capture crossing fibres to overcome the
core limitation in DTI.

Reconstructing diffusion patterns within
a voxel
The diffusion images from a DWI scanning sequence contain
a scalar value that represents the overall MR signal intensity
in each voxel (the amount of total water movement following
the magnetic pulse). The next step in DWI analysis uses recon-
struction algorithms to convert the raw MR signal measured in
different directions (b-vector) to an estimate of the pattern of
water diffusion within each voxel (Figure 2). Most reconstruc-
tion methods available today can be categorised into two classes:
model-based methods or model-free methods. Here, we will first
describe model-based methods and their most common set of
voxel-based structural metrics (FA (fractional anisotropy), AD
(axial diffusivity), RD (radial diffusivity) and MD (mean diffusiv-
ity)) and then we will discuss model-free methods and their preva-
lent voxel-based structural metrics (QA (quantitative anisotropy)
and ISO (isotropic water signal)).

As one of their core advantages, model-based methods
(Figure 2, centre row) can reconstruct patterns of water
movement in each voxel from DWI sequences with minimal
directions, such as DTI. However, this reconstruction approach
requires strong assumptions about the underlying diffusion dis-
tribution. This approach is susceptible to error when the model’s
assumptions about water diffusion are violated (Alexander et al.,
2002), such as voxels where there are complex fibre crossings.
Once the model is fit for each voxel, structural metrics are
derived to characterise the white matter integrity in the voxel.
FA is the most commonly used white matter measure from DTI.
An FA value of 1 indicates water that moves in a perfect line
(anisotropic), as would be the case if all water is contained in a
single set of axons. An FA value of 0 indicates perfectly spher-
ical (isotropic) diffusion, suggesting that no axon restricts the
movement of the water molecules (Figure 1). Larger FA values
are assumed to reflect greater density and volume of underlying
white matter.

Importantly, there are multiple ways that FA may change, and
these changes are quantified in four voxel-based metrics of white
matter that are prominent in the current literature: FA, AD, RD
and MD. Differences in underlying cellular microstructure struc-
ture may be reflected in diffusion along the principal axon direc-
tion, called AD, or may manifest in diffusivity in the orthogonal
plane to AD, called RD. Structural changes may also arise in the
overall degree of diffusivity, called MD, which is independent of
the overall shape of the underlying diffusion pattern. Due to the
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Figure 2 Model-based and model-free estimations of water diffusion. Most
imaged voxels in DWI (diffusion-weighted imaging) belong to one of the
three categories: no axons present (left column), axons aligned in one pri-
mary direction (middle column), or crossing axons oriented in different
directions (right column). The first row depicts possible patterns of water dif-
fusion, whereas the second and third rows illustrate two types of reconstruc-
tion methods and how they estimate the corresponding diffusion pattern.
In row 2, a model-based method known as the ball-and-stick method esti-
mates the overall magnitude of diffusion (represented as a ball) and the fibre
direction (represented as oriented sticks). In row 3, a model-free method esti-
mates an orientation distribution function (ODF), and the model captures
multiple peaks in the empirical distribution of the water diffusion (repre-
sented by the ellipsoids) when crossing fibres are present.

inability to resolve crossing fibre tracts in traditional approaches,
there are other advanced model-based methods available, such as
the ball-and-stick model (Behrens et al., 2003), that improve the
description of complicated white matter structures.

In contrast to model-based approaches, model-free methods
(Figure 2, bottom row) directly estimate the empirical distribu-
tion of water diffusion, rather than fit to an assumed distribution.
One early model-free method was the DSI reconstruction method
(developed in conjunction with the DSI imaging sequence). This
approach uses the probability of water diffusion in all directions
in 3D space to estimate an object in each voxel called an orien-
tation distribution function (ODF; see bottom row of Figure 2).
Since a diffusion structure is not assumed, there is little risk of
violating the model and less risk for overfitting. However, the
downside of model-free methods is that they often need more
samples, which means a longer acquisition time. Fortunately,
recent developments of simultaneous multiple slice acquisition
(i.e. multiband imaging; Feinberg and Setsompop, 2013) have
dramatically shortened the required imaging time, thereby reduc-
ing the drawback of model-free reconstruction approaches.

In model-free reconstruction methods, the ODF provides met-
rics of structural integrity in the voxel. The two most common
metrics are QA, characterising the peaks of directional diffusion,
and the ISO, quantifying the background diffusion signal. As its

core advantage, however, the ODF identifies multiple peaks in
its empirical distribution of diffusion, revealing the presence of
axons with crossing trajectories (see bottom row of Figure 2).
Consequently, the ODF overcomes the core limitation in the tra-
ditional model-based analyses of DTI data that are prominent in
the early DWI literature. Using model-free methods, voxel-based
metrics can reveal intra- or inter-subject differences in any brain
region, and they provide a versatile and sensitive measure to study
voxel-based metrics of axonal structure.

Of course, not all reconstruction approaches fall cleanly in
this model-based versus model-free dichotomy, including the
increasingly popular constrained spherical deconvolution (CSD)
approach (Tournier et al., 2004). Similar to model-based meth-
ods, CSD assumes an underlying distribution for voxels with a
known fibre population, but similar to model-free methods, CSD
produces an ODF for the fibre distribution (but typically termed
fibre orientation distribution, FOD). The advantage of hybrid
approaches such as CSD is the intersection of the primary ben-
efits of both model-based and model-free methods – requiring
fewer diffusion orientations in the DWI sequence but still esti-
mating a sharp, precise ODF. However, their disadvantage is also
the combination of the flaws from both, including sensitivity to
model violations and outliers that lead to a higher likelihood of
identifying false fibres.

Tracking fibre pathways across voxels
Once the fibre directions are reconstructed within a voxel
(Figure 2), fibre tractography approaches can be applied to map
the trajectories of axon bundles. In general, tracking methods
can be categorised into two classes of algorithms: deterministic
and probabilistic. These two approaches have different aims, and
the pros and cons of each are discussed in this section.

Deterministic tractography uses a seed-based approach to tra-
verse through imaged voxels and delineate the path of major fibre
pathways (Mori and van Zijl, 2002). Starting with a seed point in
the white matter, a deterministic algorithm traverses along local
fibre directions in a recursive, step-by-step process until a set of
termination criteria are met. Various combinations of termina-
tion criteria can be applied, such as an angular threshold (i.e. not
allowing the algorithm to make too sharp of a turn), an anisotropy
threshold (i.e. threshold by which a voxel is determined to be in
gray matter vs white matter) or anatomical masks (i.e. explicit
declarations of gray matter vs white matter voxels). At the end
of the tracking process, the final data object is a streamline that
reflects the most likely trajectory of a bundled fibre pathway. Crit-
ically, multiple iterations of a deterministic algorithm that use the
same parameters in the mapping process will yield the same fibre
tractography output.

Probabilistic tractography also uses a seed-based approach to
traverse through white matter pathways, but instead of delineating
the specific trajectory of individual fibre bundles, these algo-
rithms estimate a probability of connectedness between the
specified seed voxel and all other voxels (Behrens et al., 2007).
This procedure yields a different result when the algorithm is
run from the same seed voxel because the progression along
potential pathways is randomised. The end result of probabilistic
tracking is a map of voxel weights that indicate the likelihood
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Figure 3 Estimating brain networks. To examine brain network properties, gray matter is parcellated into distinct brain regions using a brain atlas (left).
These regions then serve as the nodes of a graph (middle top) and the DWI structural connections, or fibre tractography, as edges (middle bottom) in a
brain graph (right) that represents a brain network. The resultant brain graph can be used to investigate how structural connectivity relates to individual
differences in function and performance.

of connectedness between a seed region and all other voxels.
This distribution can be analysed as the estimated strength of
connectivity.

Fibre tractography data is primarily used to characterise
end-to-end structural connectivity between pairs of brain regions,
and these estimates have been productively employed to study
brain networks, often called the human connectome (Bullmore
and Sporns, 2009). Here, a brain network is formulated as a graph
to leverage analytic approaches from network science (Bassett
and Sporns, 2017). Gray matter voxels are parcellated into brain
regions that serve as the nodes of the graph, and estimated
white matter tractography between these regions serves as the
edges (Figure 3). These graphs delineate what brain regions
have structural connectivity that enables direct communication
between them, providing an immensely insightful framework
to examine when structural connectivity can account for or
predict functional network activity and/or variability in human
behaviour.

Application

By allowing for a noninvasive measurement of structural con-
nectivity, DWI provides unprecedented opportunities to examine
how the functions of neural networks, and subsequent behaviours,
are constrained by the peculiarities of how an individual brain
is wired together (Verstynen, 2015). Based on space constraints,
we highlight just two interesting applications of DWI to study

the role of genetics and learning on the wiring of the brain,
demonstrating DWI’s potential to address questions of how
nature and nurture influence the human connectome. Inquisitive
readers can explore other interesting DWI applications. Some
of our favourites highlight DWI’s utility to understand brain
development in paediatric and adolescent populations (Yoshida
et al., 2013), identify microstructural changes underlying dis-
eases such as Alzheimer (Sexton et al., 2011) and schizophrenia
(Ellison-Wright and Bullmore, 2009) and develop novel clinical
approaches for neurosurgery (Fernandez-Miranda et al., 2012)
and brain stimulation treatments (Muldoon et al., 2016; Borto-
letto et al., 2015). See also: On Human Brain Networks in
Health and Disease; Philosophy of Neuroscience

Nature: how does genetics contribute
to the wiring of the brain?
Diffusion imaging provides an informative lens to investigate
how genetics (nature) contributes to the organisation of the
brain’s connections. Studies have used FA from DTI (Figure 4)
to show that there is a high degree of heritability in the integrity
of white matter pathways in twins (Chiang et al., 2009; Pfeffer-
baum et al., 2001), akin to the strong heritability of gray matter
volume in twins (Schmitt et al., 2007). This means that a high
degree of white matter integrity in one twin predicts the same
high degree in the other. However, this research also revealed
that heritability was highly variable across different regions of
the brain, with weaker genetic influence in less anisotropic areas
(Chiang et al., 2008).
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Figure 4 Voxel-based and network-based metrics of structural integrity. On the left, two voxel-based metrics are depicted: voxels with high fractional
anisotropy (FA) reflect greater density in large, primary fibres, whereas a local connectome fingerprint also captures variability in crossing fibres, creating a
neural signature of an individual’s unique structural connectivity. On the right, two network-based metrics are depicted: a measure known as walk length
defines the number of nodes that are traversed on the path from an origin to a destination node, whereas a measure known as modularity identifies
communities based on the density of structural connections.

A more sensitive measure of local white matter integrity has
been proposed called the local connectome (Yeh et al., 2015).
Unlike FA, which captures only the primary direction of water
diffusion in a voxel, the local connectome characterises the orien-
tation and integrity of multiple fibres within a voxel. This allows
for a more complex representation of local white matter along
a pathway. The local connectome fingerprint is an ordered vec-
tor of hundreds of thousands of individual fibres throughout the
brain (Figure 4) and is highly sensitive to unique patterns of local
white matter architecture. In fact, local connectome fingerprints
can classify whether two images come from the same person with
over 99.9% accuracy (Yeh et al., 2016).

The local connectome also reveals genetic contributions to
structural connectivity. By comparing the structural similarity
between twins and siblings relative to unrelated individuals, a
fingerprint analysis revealed a robust, although limited, role for
genetic influence on structural connections. Results demonstrated
approximately 12% similarity between identical/monozygotic
twins and roughly 5% similarity between fraternal/dizygotic
twins and nontwin siblings (Yeh et al., 2016). Thus, while her-
itability may be high in particular pathways, the brain’s global
connectivity is only moderately determined by genetics. See also:
Identical Twins Reared Apart

Nurture: how does learning contribute
to the wiring of the brain?
Based on the value placed on education and professional training
across the lifespan, one captivating and persistent question in neu-
roscience centres on the mechanisms underlying neuroplasticity.
Research over the last decade has confirmed that DWI can capture
structural changes after both short-term learning and long-term
expertise acquisition, marking one of its dominant applications
in healthy subject populations.

One productive experimental design in this research area
combines a training paradigm with pre- and post-training DWI
scans. In a landmark study that largely inspired this DWI
application, a group of adults underwent a 6-week protocol to
learn a new visuo-motor skill, juggling, and they demonstrated
training-related increases in FA (Scholz et al., 2009). A similar
study found FA changes following a 6-week training for a com-
plex balancing task (Taubert et al., 2010). Importantly, individual
differences in learning are reflected in the amount of structural
change measured (Johansen-Berg, 2010; Tomassini et al., 2011).
These results confirm that FA can capture plasticity in large
primary axon fibres at short timescales and reflect individual
differences.

Training paradigms have also combined tractography with
analytic tools from network science to further characterise the
properties of learning-induced structural change. In one study,
participants learned a new visuo-motor task, similar to playing
a set of piano arpeggios, over the course of 6 weeks. Individ-
ual differences in learning rate were reflected in structural wiring
among visual regions and between visual and motor cortices
(Kahn et al., 2016). This analysis used tractography to create a
structural network and employed a method from network science,
walk strength, to examine indirect connections. A walk is defined
as a path from one node in the graph (brain region) to another
(Figure 4). This study found that as walk length increased, indi-
vidual differences in motor–visual connectivity were increasingly
correlated with learning rate. By combining tractography and
network science methods, these results suggest that DWI can
identify a role for physically extended sets of polysynaptic struc-
tural connections between motor and visual cortices that support
the acquisition of a visuo-motor skill.

Research has also combined tractography with network science
to study the development of expertise, examining how learning
changes structural connectivity over long timescales. Instead of
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pre- and post-training DWI scans, this research compares a group
of experts to controls. In this study, collegiate baseball players
discriminated simulated baseball pitches in a scanning session
that collected functional (fMRI/EEG) and structural (DWI) data,
and a set of age-matched controls did the same (Muraskin et al.,
2017). After using tractography to create a structural connec-
tome, a modularity analysis divided the whole brain into five
communities, where a community was defined by dense connec-
tions among its members but sparse connections to brain regions
outside of the community (Figure 4). Compared with controls,
experts showed stronger connectivity between two of the modules
that linked motor and frontal regions with cerebellar regions, and
interestingly, the regions that showed expertise-related structural
differences also showed expertise-related functional differences.
Thus, DWI not only reveals plasticity from long-term expertise
development, but its combination with functional imaging can
also reveal structure–function couplings that expand our under-
standing of organisational principles of the human brain. See
also: Cortical Plasticity: Use-dependent Remodelling

Pitfalls and Limitations

Although DWI has demonstrated promise as a research and clin-
ical tool, proper applications of the method can only occur with a
realistic understanding of its limitations. We provide a review of
three dominant challenges in the field. First, the current tractog-
raphy algorithms rely on local decisions when traversing from
one voxel to the next, often with no prior assumptions about
the direction of underlying white matter pathways. As a result,
these algorithms will frequently make incorrect turns, leading to
the identification of false fibre pathways (Daducci et al., 2016;
Reveley et al., 2015). Second, no reliable methods to remove
noise from head motion and physiology exist (Le Bihan and
Johansen-Berg, 2012). This can be particularly problematic when
looking at individual differences in white matter architecture in
cases where a subject-specific variable (e.g. obesity) is corre-
lated with a noise source (e.g. head motion). Finally, it is not
well understood how anisotropy in the DWI signal relates to the
anatomical components of the underlying biological tissue (e.g.
axonal fibre integrity, myelin sheath structure and glia content),
and this lack of knowledge limits the interpretation of differences
or changes in the DWI signal itself. Ongoing efforts to validate
methods to image and reconstruct the diffusivity signal employ
animal models (Budde et al., 2011) and phantom devices of artifi-
cial tissue (Fillard et al., 2011; Daducci et al., 2014), but analysis
in biological tissue tends to produce different results than these
two surrogate models (Lichenstein et al., 2016). Thus, continued
research to overcome DWI limitations will be critical to improve
the methods and thereby advance our understanding of structural
connectivity and its relation to individual differences.

Conclusion

Research using DWI has fostered widespread excitement about
tackling fundamental questions concerning how structural
connectivity may constrain or explain intra- and inter-subject

variability in human behaviour. DWI sequences require exper-
imenters to determine a trade off between resolution and time,
and interpretation of DWI differences must take these technical
limitations into consideration. The bulk of existing literature has
used DTI to study the larger fibre bundles in the brain, but recent
advancements in image acquisition and analysis have revealed
structural differences at a finer resolution. Research using these
newer methods extend and complement the existing DTI findings,
and recent research has made significant progress to better under-
stand the interaction of genetics and learning on the wiring in
the brain. Continued efforts to combine DWI with sophisticated
analytic tools, such as those from network science, will expand
our ability to identify predictive patterns in the DWI signal.
While our existing knowledge of structure–function–behaviour
relationships is captivating, the imaging technique is likely in
its infancy for its impact on our knowledge of the human brain.
The field is ripe with opportunity and awaiting innovations from
multidisciplinary approaches.

Glossary

AD (axial diffusivity) One of the four common metrics of
structural integrity derived from DTI data, and it captures the
amount of diffusion along the principal axon direction within
a voxel.

Anisotropic diffusion Water movement that is restricted in
certain directions, and in DWI imaging, this restriction is
interpreted as the presence of axonal walls in the imaged
voxel.

Deterministic tractography One of the two types of algorithms
that use voxel-based estimates of diffusion direction to
estimate the path of major fibre pathways that connect brain
regions, and deterministic algorithms will always yield the
same result if run with the same tracking parameters.

DSI (diffusion spectrum imaging) A DWI imaging sequence
that often employs a grid scheme that samples hundreds of
directions at multiple b-values, and the same name designates
a model-free reconstruction method.

DTI (diffusion tensor imaging) A DWI imaging sequence
relies on a single-shell scheme to sample a small set of
directions (minimum of 6) at the same b-value; this is the
original and most prominent DWI method, but it is unable to
detect crossing fibres that strongly limits its use in
whole-brain structural analyses.

DWI (diffusion-weighted imaging) A noninvasive
neuroimaging method that measures the movement of water
molecules and is used in reconstruction algorithms to estimate
the direction of structural connections between brain regions.

FA (fractional anisotropy) The most common metric of
structural integrity derived from DTI data, and a value of 0
means isotropic diffusion (interpreted as no axons present)
and a value of 1 means anisotropic diffusion (interpreted as
axons aligned in a primary direction) within a voxel.

Grid schemes One of the three general classes of diffusion
imaging schemes that trade off sensitivity to directional water
movement and total DWI scan time, and this class improves

eLS © 2017, John Wiley & Sons, Ltd. www.els.net 7

http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0004056


White Matter Tractography and Diffusion-weighted Imaging

resolution of directional movement by sampling a grid
arrangement of directions and b-values.

HARDI (high-angular resolution diffusion imaging) A
diffusion sampling scheme with hundreds of directions
typically sampled at the same b-value.

ISO (isotropic water signal) A metric of structural integrity
derived from model-free reconstruction methods, and it
quantifies the background diffusion signal within a voxel.

Isotropic diffusion Water movement is equal in all directions,
and in DWI imaging, this unrestricted movement is
interpreted as the absence of axonal walls in the imaged voxel.

MD (mean diffusivity) One of the four common metrics of
structural integrity derived from DTI data, and it captures the
overall degree of diffusivity that is independent of the overall
shape/direction of the underlying diffusion pattern within a
voxel.

MRI (magnetic resonance imaging) A scanner that uses
magnetic gradients to image biological tissue in awake,
behaving humans without the use of any chemical agents.

Multishell schemes One of the three general classes of
diffusion-imaging schemes that trade off sensitivity to
directional water movement and total DWI scan time, and this
class improves resolution of directional movement by
sampling several single-shell schemes with different b-values.

ODF (orientation distribution function) A metric of structural
integrity derived from model-free reconstruction methods,
and it captures the probability of water movement in all
directions within a voxel.

Probabilistic tractography One of the two types of algorithms
that use voxel-based estimates of diffusion direction to
estimate the path of major fibre pathways that connect brain
regions, and probabilistic algorithms can yield different
mapping results since the progression along potential
pathways is randomised on each iteration of the tracking
algorithm.

QA (quantitative anisotropy) A metric of structural integrity
derived from model-free reconstruction methods, and it
captures the peaks of directional diffusion within a voxel.

RD (radial diffusivity) One of the four common metrics of
structural integrity derived from DTI data, and it captures the
amount of diffusion in the direction orthogonal to the
principal axon direction measured by AD within a voxel.

Single-shell schemes One of the three general classes of
diffusion imaging schemes that trade off sensitivity to
directional water movement and total DWI scan time, and this
class samples a set of directions, which are equally distributed
on a sphere, at the same b-value.
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