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     Abstract 
 

Concepts are internal representations of characteristics of the external world with an 

ontological structure that associates related concepts together, like an apple tastes sweet 

and can sometimes be red. Concepts can be associated to form new ideas and concepts, 
can instantiate our lived experiences into language, and can be used to communicate our 

emotions and feelings towards people or institutions.   

Although there has been extensive neuroscientific and behavioral research on the 

semantic properties of concrete concepts there has been far less work examining the 
underlying semantic structure of abstract concepts. Abstract concepts are not 

immediately experienced by taste, smell, hearing, touch, sight, via proprioception 

(awareness of our body’s position in space or relative to an object), or via our vestibular 
system (information to maintain our body’s orientation in space). These aperceptual 

abstract concepts are important in that they represent key domains of human 
knowledge, critical for many complex human decisions and allowing us to form new 

ideas based on old ideas. Neuroscientific research on the semantic structure of abstract 

concepts is sparse and the degree of homogeneity of meaning of abstract concepts across 
individuals remains a question. Moreover, the inverse question of whether differences in 

meaning for the same concept (abstract or concrete) can be measured still remains. 

Across people that share a common language there may be variation in concept 
associations driven by differences in experiences of those concepts. 

This dissertation outlines three projects: First, fMRI-measured activation patterns were 
obtained during a thinking task for 28 abstract concepts (spanning 7 categories) from 
native English speakers. An examination of the underlying semantic structure revealed 3 
dimensions underlying the 28 concepts, suggesting a brain-based ontology for this set of 
abstract concepts. The 3 dimensions corresponded to 1) the degree a concept was 
Verbally Represented; 2) whether a concept was External (or Internal) to the individual, 
and 3) whether the concept contained Social Content. Second, the degree of 
commonality of these dimensions across fMRI-measured activation patterns for the 
same 28 abstract concepts were compared across native Mandarin and English 
speakers. The semantic dimensions identified in the first project were replicated across 
languages; however, despite comparing different languages, there is no reason to 
hypothesize differences in concept meaning. Third, differences in behaviorally measured 
concept representations were assessed by measuring socioenvironmental concepts (e.g., 
healthcare, police) that have been shown to reflect racial disparities between White and 
Black Americans. Moreover, a novel implicit measure of semantic association, the 
Implicit Semantic Association Procedure, is proposed, and evaluated against gold-
standard measures, as a tool for implicitly measuring concept semantic associations. 
Collectively this work measures the underlying structure of abstract concepts in the 

brain, the generalizability of these semantic structures across languages, and takes 
initial steps for measuring whether differences in experience leads to differences in 
concept representations.   
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Overview 

 Concepts are internal representations of characteristics of the external world with 

an ontological structure that associates related concepts together, like an apple tastes 

sweet and can sometimes be red. Concepts can be associated to form new ideas and 

concepts, can instantiate our lived experiences into language, and can be used to 

communicate our emotions and feelings towards people or institutions. Concepts also 

give us the means to communicate aperceptual information, also referred to as abstract 

concepts -- not immediately experienced by taste, smell, hearing, touch, sight, via 

proprioception (awareness of our body’s position in space or relative to an object), or via 

our vestibular system (information to maintain our body’s orientation in space). These 

aperceptual abstract concepts are important in that they are at the core of every domain 

of study scaffold the progress of human knowledge allowing us to form new ideas based 

on old ideas. Despite this importance there has been considerable research linking 

representations of object concepts and other perceptually grounded representations to 

the brain (Grill-Spector and Malach, 2004; Martin, 2007), our understanding of 

abstract concepts such as gravity, spirituality, and prejudice is far less understood. 

Neuroscientific research on the semantic structure of abstract concepts is sparse and the 

degree of homogeneity of meaning of abstract concepts across individuals remains a 
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question. Moreover, the inverse question of whether differences in meaning for the 

same concept (abstract or concrete) can be measured still remains. Across people that 

share a common language there may be variation in concept associations driven by 

differences in experiences of those concepts. 

 Chapter 1 consists of a published book chapter describing prevailing theories on 

the neuroscience of concepts, the literature on methodological approaches to 

understanding the link between concepts and the brain, and the current body of 

neurosemantic literature on concrete and hybrid concepts –concepts that are not 

concrete nor purely abstract (Vargas and Just, 2021).  

 Chapter 2 consists of a published article of one of the first MVPA examination of 

abstract concepts (Vargas and Just, 2020). In this study, fMRI-measures activation 

patters are obtained during a thinking task for 28 abstract concepts (spanning 7 

categories) from a set of native English speakers. Using modern MVPA approaches, this 

study identified 3 semantic dimensions underlying the neural activation patterns of 

these 28 abstract concepts. The 3 dimensions corresponded to 1) the degree a concept 

was Verbally Represented; 2) whether a concept was External (or Internal) to the 

individual, and 3) whether the concept contained Social Content. 
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 Chapter 3 is a published article which assesses whether the semantic dimensions 

identified in the study described in Chapter 2 are common across people of differing 

cultures and languages by examining the fMRI-measured neural activation patterns of 

the same 28 abstract concepts across American native English speakers and Chinese 

native Mandarin speakers (Vargas and Just, 2022). MVPA analyses revealed the same 

set of semantic dimensions underlying the set of abstract concepts including an 

additional dimension related to the concept’s degree of reliance on rule-driven 

principles. Chapter 2 and 3 identified a common underlying semantic structure that 

spans languages and cultures but there was no basis to expect differences in the neural 

patters of the proposed set of 28 concepts besides polysemous meaning. 

 Chapter 4 aims extend upon Chapter 3 by describing a series of behavioral 

studies aimed at measuring differences in concept meaning (rather than commonalities) 

driven by differing experiences. Racial disparities between Black and White Americans 

have been well documents and empirically studied across numerous domains and 

institutions of society. This chapter contextualizes the Bias of Crowds model, which 

asserts that concept associations reflect environmental factors (broadly described as 

context and situations)(Payne et al., 2017). Contexts can be as proximal as a specific 

personal encounter or as distal as the systemic and cultural norms of the nation the 

individual resides in. Contexts can also be as isolated as a one-time incident or as 
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chronic as repeated exposure to associations such as media exposure. To measure 

differences in concept association, two gold-standard measures of concept geometry 

(Spatial Arrangement Method (SpAM) and the Pairwise Rating Method (PRaM)) will be 

utilized in addition to a novel proposed implicit measure of concept geometry, the 

Implicit Semantic Association Procedure (ISAP). The first study of this chapter assesses 

the reliability and validity of these three metrics using a set of simple object concepts 

and attributes with clearly defined associations. The second half of this chapter utilizes 

the measures of semantic association to assesses whether racial disparities between 

Black and White Americans are reflected in the association of concepts related to 

institutions within our American society (e.g., healthcare, police).   
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Chapter 1. Approaches for understanding and analyzing the neural 
representations of concept 

 

Although the study of concept knowledge has long been of interest in psychology 

and philosophy, it is only in the past two decades that it has been possible to 

characterize the neural implementation of concept knowledge. With the use of 

neuroimaging technology, it has become possible to ask previously unanswerable 

questions about the representation of concepts, such as the semantic composition of a 

concept in its brain representation. In particular, it has become possible to uncover 

some of the fundamental dimensions of representation that characterize several 

important domains of concepts. 

Much of the recent research has been done with fMRI to predict and localize 

various concept representations and discover the semantic properties that underlie 

them. Commonly used experimental designs in this research area present single words 

or pictures of objects, measure the resulting activation pattern in multiple brain 

locations, and develop a mapping between the topographically distributed activation 

pattern and the semantic representation of the concept. The primary research topics 

concerning concept representations pertain to three issues: the composition of concept 

representations, the neurally defined underlying semantic dimensions; and the relation 

between neuroimaging findings and cognitive and psycholinguistic findings. It is these 
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types of relationships between cortical function and meaning representation that allow 

us to understand more about both the way knowledge is organized in the human brain 

and the functional role that various brain systems play in representing the knowledge. 

Concepts are often qualitatively different from one another with regard to their 

perceptual grounding. As a result, one area of research has largely focused on the neural 

representations of concrete object concepts. However, as imaging technology and 

analytic techniques continue to improve, the neural representations of seemingly 

ethereal, abstract concepts such as ethics and truth have recently become a topic of 

increasing interest. In addition to the interest in such highly abstract concepts, recent 

research has also investigated hybrids between concrete and abstract concepts such as 

emotions, physics concepts, and social concepts. These hybrid concepts are not directly 

perceptually grounded but they can nevertheless be experienced. This chapter provides 

an overview of contemporary neuroimaging research examining the neural instantiation 

of concrete concepts, abstract concepts, and concepts that fall somewhere in between, 

which we call hybrid concepts. 

 

Hub-and-spoke model of feature integration in concept representations 
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Any individual concept representation is thought to be composed of a network of 

semantic features (Collins and Loftus, 1975). Connections to more similar (closer) 

semantic representations are more likely and easier to come to mind than more distal 

ones. The anterior temporal lobe (ATL), sometimes referred to as the convergence zone 

or hub, has been credited with incorporating individual semantic features of concepts 

(the spokes, in this analogy) into an integrated representation of that concept (Meyer 

and Damasio, 2009). Recent fMRI research suggests that this integration of semantic 

features in the brain is localized to the ATL. One study showed that by combining color-

related activation coded in right V4 and shape-related activation coded in the lateral 

occipital cortex (LOC) allowed visual objects to be distinguished in the ATL (Coutanche 

and Thompson-Schill, 2015). Although the ATL has also been shown to activate for 

abstract concepts (Hoffman 2016), a study similar to Coutanche and Thompson-Schill 

(2015) has yet to be conducted showing that individual abstract concepts can be 

decoded from ATL based on their composite semantic features. In sum, the ATL is 

thought to act as a cognitive mechanism that integrates perceptual and verbal (i.e., 

concrete and abstract) information comprising the representation of a concept (Lambon 

Ralph, 2014). 

 

General Semantic Network  
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A prevailing neuroscientific framework for explaining concept and semantic 

processing is the General Semantic Network theory (Binder et al., 2009; Liuzzi et al., 

2020). The authors computed a meta-analysis of 120 articles examining semantic and 

concept processing totaling 187 univariate activation maps. The activation maps were 

restricted to those which directly measured some form of semantic information. The 3 

most common semantic maps included: Word versus pseudoword tasks that required 

participants to access word meaning; Semantic decision tasks with word stimuli; and 

high versus low meaningfulness tasks (e.g., names of animals versus tones; Binder et al., 

1999). The meta-analysis converged upon a network of regions that could be 

attributable to semantic processing regardless of specific semantic categorization or task 

structure. 

The result of this meta-analysis describes a set of brain locations responsible for 

the processing of semantic information (See Figure 1.1).  This network of regions 

includes: 1) inferior parietal lobe (AG and portions of SMG), 2) lateral temporal cortex 

(MTG and portions of ITG), 3) ventral temporal cortex (mid-fusiform and adjacent 

parahippocampal gyrus), 4) DMPFC, 5) IFG, 6) ventromedial prefrontal cortex 

(VMPFC), and 7) posterior cingulate gyrus (Binder et al., 2009).  

This framework provides a convenient vessel for modern multivariate pattern 

analytic (MVPA) approaches for understanding semantic structures underlying 
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qualitatively distinct concepts. Using this framework, semantic dimension identified for 

individual sets of concepts (e.g., shelter dimension, frequency dimension, valance 

dimension; Just et al.,2010) can be thought as being distributed sub-systems which 

serve as organization principles for processing specific types of information subsumed 

within this network. 

 

 

 

Figure 1.1. Summary  diagram of the regions comprising the general semantic network. This figure was 
adapted from Figure 7  as published in Binder et al., 2009.  

 

Neuroscientific methods for understanding concepts 

Univariate-based analyses 
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The initial approach of task-related fMRI imaging was to measure the difference 

in activation for a class of stimuli (such as a semantic category, like houses) relative to a 

“rest” condition. At each 3-dimensional volume element in the brain (a voxel), a general 

linear regression model (GLM) is fit to relate the occurrence of the stimuli to the 

increase in activation relative to the rest condition. The result is a beta weight whose 

magnitude reflects the degree of condition-relevant activation in each voxel. This 

approach proves useful for investigating the involvement of cortical regions whose 

activation systematically increases or decreases relative to rest for a specific mental 

activity. However, with this voxel-wise univariate approach, complex relations between 

the activation in different brain regions within a network are often not apparent 

(Kriegeskorte, et al., 2006; Mur, et al., 2009). Moreover, treating each voxel 

independently of the others misses the fact that the activation pattern corresponding to 

a concept consists of a set of co-activating voxels that may or may not be proximal to 

each other. Nevertheless, the univariate approach was successful in identifying which 

brain regions activated in response to a given class of concepts. 

 

Multivariate pattern analysis (MVPA) 
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The advent of higher-resolution imaging analyses aided in shifting the research 

focus from identifying the cortical regions involved in the representation of concepts to 

focusing on the coordinated activation across a network of brain regions or subregions 

(Haxby et al., 2001; Haynes and Rees, 2006). Instead of assessing the activation evoked 

by a class of concepts in terms of individual voxels in various brain regions considered 

independently of each other, multivariate analyses treated the activating voxels in 

conjunction with each other, as multiple dependent variables. Multivariate pattern 

analysis (MVPA) is graphically illustrated in Figure 1.2. MVPA refers to a family of 

analyses designed to take into account the multivariate relationships among the voxels 

that represent various concepts. Some of the most common analyses for investigating 

concept representations include: 1. Representational Similarity Analysis (RSA), which 

enables comparison of the multivariate activation patterns of different concepts; 2. 

Factor Analysis or Principle Components Analysis (PCA) which enables discovery of the 

lower-dimensional structure of distributed patterns of activation; 3. Predictive 

Modeling, which enables assessment of various postulated interpretations of underlying 

semantic structures by predicting activation patterns of concepts; and 4. Encoding 

Models which enable quantitative assessment of various organizational structures 

hypothesized to drive the activation. These techniques tend to answer somewhat 
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different questions. 

 

Figure 1 .2 Conceptual schematic showing differences between GLM activation-based approaches and 

pattern-oriented MVPA, where the same number of voxels activate (shown as dark voxels) for two 

concepts but the spatial pattern of the activated voxels differs 

 

Representational similarity analysis (RSA) 

RSA is often used to measure the similarity (or dissimilarity) of representational 

structures of various individual concepts or categories of concepts. The representation 

of a concept or a category of concepts can be defined as the evoked activation levels of 

some set of voxels. These activation patterns can be computed with respect to all of the 

voxels in the whole cortex but are often restricted to the voxels in semantically relevant 

regions. The most common technique is to redefine the representation of a concept from 

being an activation pattern to a similarity pattern with respect to the other concepts in 
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the set (Kriegeskorte, et al., 2008a). For example, the neural representation of a concept 

like robin can be thought of in terms of its similarities to a set of other birds. This 

approach makes it possible to compare various brain subsystems in terms of the types of 

information they represent, and thus to characterize the processing characterist ics of 

each subsystem. For example, RSA has been used to demonstrate the similarities in the 

visuospatial subsystems of humans and monkeys in the representations of visually 

depicted objects (Kriegeskorte et al., 2008b). The strength of this approach is its higher 

level of abstraction of the neural representation of concepts, representing them in terms 

of their relations (similarities) to other concepts. The cost of this approach is its limited 

focus on the representation of the properties of individual concepts. 

 

Extracting dimensions of semantics (Factor Analysis / PCA) 

Factor analysis and PCA are used to extract neurally meaningful dimensions from 

high-dimensional activation patterns. “Neurally meaningful” refers to a subset of 

concepts systematically evoking activation from a subset of relevant voxels. For 

example, concrete objects that entail interaction with parts of the human body (such as 

hand tools) evoke activation in motor and pre-motor areas, such that a neural 

dimension of body-object interaction emerges (Just et al., 2010). This approach focuses 



14 

 

on dimensions that are shared by some concepts and de-emphasizes the differences 

among the concepts that share the dimension. The regions corresponding to the 

dimension can be localized to particular brain areas (by noting the factor loadings of 

various clusters of voxels). 

After the dimension reduction procedure finds a dimension and the items and 

voxels associated with it, the dimension requires interpretation. The source of the 

interpretation often comes from past knowledge of the functional roles of the regions 

involved and the nature of the items strongly associated with the dimension. For 

example, if hand tools obtain the highest factor scores on some factor, then that factor 

might plausibly be interpreted as a body-object interaction factor. (The items’ factor 

scores indicate the strength of the association between the items and the factor). One 

approach to assessing an interpretation of a dimension (such as a body -object 

interaction dimension in the example above) is to first obtain ratings of the salience of 

the postulated dimension, say body-object interaction, to each of the items from an 

independent group of participants. For example, the raters may be asked to rate the 

degree to which a concept, such as pliers, is related to the hypothesized dimension body -

object interaction (Just et al., 2010). Then the correlation between the behavioral 

ratings and the activation-derived factor scores of the items provides a measure of how 

well the interpretation of the dimension fits the activation data. This technique has been 
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used to extract and interpret semantically meaningful dimensions underlying the 

representations of both concrete nouns and abstract concepts (Just et al., 2010). 

 

Predictive modeling 

The goal of a predictive modeling procedure is to assess whether the activation 

pattern of a concept that was left out of the modeling can be predicted with reasonable 

accuracy, given some theoretical basis. The prediction process starts by generating a 

hypothesis about the underlying factor or dimension (which is based on how the items 

are ordered by their factor scores and on the locations of the voxels with high factor 

loadings). Then a linear regression model is used to define the mapping between the 

salience ratings of all but one item and the activation levels evoked by those items in 

factor-related locations (voxel clusters with high factor loadings in factor analyses that 

excluded the participant in question). The mapping is defined for all of the underlying 

factors. Then the activation prediction for the left-out item is generated by applying the 

mappings for all of the factors to the ratings of the left-out item. This process is 

repeated, each time leaving out a different item, generating an activation prediction for 

all of the items. Activation predictions for each concept can be made within each 

participant and then averaged over participants. The accuracy of the predictions 

provides converging evidence for the interpretation of the neurosemantic factors. Unlike 
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the correlational measure described above, this approach develops a mapping that is 

generative or predictive, applying to items uninvolved in the modeling. 

 

Hypothesis-driven encoding modeling 

Encoding models provide another more general way to test whether a 

hypothesized semantic organization structure is capable of explaining the activation 

data for some set of concepts. A first step in the modeling is the specification of a 

theoretically plausible feature set that is hypothesized to account for the relationship 

between a stimulus set and the corresponding evoked activation patterns (Naselaris et 

al., 2011). For example, the co-occurrence of noun concepts with verbs in a large text 

corpus may account for the relationship between individual concepts and activation 

patterns for those concepts say in a regression model. The resulting beta-weights from 

the regression model quantify the degree to which each feature determines the 

relationship between the stimuli and neural activity (Mitchell et al., 2008). The ability of 

this mapping to generalize to novel concepts, either in activation space or in feature 

space, provides a quantitative assessment of the plausibility of the hypothesized 

relation. This approach is especially useful for representations that are less clearly 
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mapped in the brain, such as abstract concepts, enabling an evaluation of the neural 

plausibility of theories of abstract concept representation (Wang et al., 2018). 

More recently, encoding models have been used with semantic vectors, a feature 

structure constructed by extracting information from the co-occurrence of words in a 

large text corpus, to serve as a basis for predictions of large-scale sets of concept 

representations (Pereira et al., 2018). Encoding models have also been used to measure 

the ability for theoretically derived semantic feature structures to explain neural 

activation data for sentences (Yang et al., 2017). Encoding models are a flexible tool that 

allow for the quantitative evaluation of the ability of theoretically motivated feature 

structures to account for brain activation patterns. 

 

Neurosemantic structure of concrete object representations 

Object concepts are the most perceptually driven of concept representations. 

Consequently, the neural representation of object concepts is well understood because 

the neural organization of low-level perceptual information is well understood (Grill-

Spector and Malach, 2004; Martin, 2007). Haxby and colleagues (2001) showed that 

pictures of different objects could be related to each other based on their pattern of 

activation in the visuospatial pathway, specifically in the fusiform face area (FFA) and 
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parahippocampal place area (PPA). Patterns of activation in these regions were 

distinguishable in terms of the object categories being represented (i.e., faces versus 

houses). It seems clear that a substantial part of concrete object representations consists 

of the representation of their perceptual properties. 

Moreover, it has been possible to determine the sequence in which various types 

of perceptual information becomes activated as the thought of a concrete object 

emerges. Recent MEG research has shown that the temporal trajectory of the neural 

activation for object representations starts with low-level visual properties such as 

image complexity which begins to be activated about 75 ms after stimulus onset in the 

early bilateral occipital cortex. Later, at 80-120 ms, information concerning more 

complex categorically defined shapes (e.g., has eyes, has 4 legs) begins to be activated 

along the left ventral temporal cortex and anterior temporal regions (Clarke et al., 2013). 

The early onset object representation suggests that coarse categorical distinctions 

between objects are rapidly represented along a left-hemispheric feed-forward neural 

pipeline. After this initial representation is generated, more complex semantic features 

take form through recurrent activation and the integration of more distributed cortical 

systems at 200-300 ms. This temporal trajectory from simple to complex information 

suggests a cumulating pipeline designed to construct meaning from distributed 

semantic features. 
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Beyond the understanding that concrete object representations are based in large 

part on the objects’ perceptual properties, several interesting questions remain, such as 

how the differing perceptual properties of an object are integrated in the object 

representation and what semantic properties underlie the organization of the 

representations of differing objects. 

 

Semantic dimensions of concrete concepts 

Contemporary research into concrete object concepts has progressed beyond the 

focus on perceptual aspects of concept representations and begun to examine higher-

level semantic properties of concrete concept representations. This approach generally 

utilizes dimension reduction techniques such as factor analysis, first on an individual 

participant level then at the group level, to investigate semantic dimensions that are 

present in the neural representations across individuals (Just et al., 2014). This 

dimension reduction approach applied to a set of activation patterns has the advantage 

of discovering neurally driven dimensions of meaning rather than imposing a previously 

hypothesized semantic organization. 

Just and colleagues (2010) utilized this approach to uncover 3 semantic 

dimensions underlying the representation of 60 words referring to concrete nouns (e.g., 
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hammer, apple). Specifically, they found that these 60 concrete concepts could be 

characterized by the way they relate to eating, manipulation (or body-object 

interaction), and shelter (or enclosure). Moreover, each of these dimensions was 

associated with a small set of cortical regions. The shelter dimension was associated 

with activation in regions of bilateral parahippocampal place area, bilateral precuneus, 

and left inferior frontal gyrus. The manipulation dimension was associated with 

activation in regions of left supramarginal gyrus and left pre- and post-central gyrus (the 

participants were right-handed). The eating dimension was associated with activation in 

regions of left inferior and middle frontal gyrus and left inferior temporal gyrus. These 

results indicate the beginnings of a biologically plausible basis set for concrete nouns 

and highlight semantic properties beyond a visuospatial domain. 

Other research has sought to discover semantic dimensions of non-word or 

picture concept representations using a different approach. Principal Components 

Analysis (PCA) was applied to the activation evoked by 1800 object and action concepts 

shown in short movie clips (Nishimoto et al., 2011). This approach sub-divided the brain 

based on the similarities of the activation patterns among the concepts to their co-

occurrence with a large text corpus. This technique was also applied to the activation 

patterns evoked by natural continuous speech (Huth et al., 2016). Both the video clip 

and the natural-speech studies related neural activation similarities to corpus co-
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occurrence information to locate semantically consistent regions within the cerebral 

cortex based on domain-specific information. This parcellation approach associated the 

activation of various regions and semantic categories with individual concepts. The 12 

interpretable semantic categories from the PCA were: mental (e.g., asleep); emotional 

(e.g., despised); social (e.g., child); communal (e.g., schools); professional (e.g., 

meetings); violent (e.g., lethal); temporal (e.g., minute); abstract (e.g., natural); 

locational (e.g., stadium); numeric (e.g., four); tactile (e.g., fingers); and visual (e.g., 

yellow). Aside from the format of stimulus presentation, the notable distinction between 

the dimension reduction approaches in Just et al. (2010) and Huth et al. (2016) was that 

Huth generated semantic dimensions based on the mapping between activation and co-

occurrence while Just (2010) generated dimensions from the activation patterns. The 

exploration of the underlying dimensions of concrete concepts helps provide a basis for 

the semantic organization of perceptible concepts beyond basic visuospatial properties. 

 

Neurosemantic signatures of abstract concepts 

The representations of abstract concepts, such as ethics and law, are neurally and 

qualitatively distinct from those of concrete concepts. Abstract concepts, by definition, 

have no direct link to perception with the exception of some form of symbolic 
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representation (e.g., lady justice holding a scale to represent the concept of law or 

justice). The conventional view of abstractness portrays it as an absence of a perceptual 

basis, that is, the opposite of concreteness (Barsalou, 1999; Barsalou, 2003; Brysbaert et 

al., 2014; Wang et al., 2010). Although it is easy to define abstract concepts as those 

lacking concreteness, this definition does not describe the psychological or 

neurocognitive properties and mechanisms of abstract concepts. 

Concrete and abstract concepts generally evoke different activation patterns, as a 

meta-analysis showed (Wang et al., 2010). This meta-analysis indicated that the two 

types of concepts differ in their activation in areas related to verbal processing, 

particularly the left inferior frontal gyrus (LIFG). Abstract concepts elicited greater 

activation than concrete concepts in such verbal processing areas. By contrast, concrete 

concepts elicited greater activation than abstract concepts in visuospatial processing 

(precuneus, posterior cingulate, and fusiform gyrus). This meta-analysis was limited to 

univariate comparisons of categories of concepts and did not have access to the 

activation patterns evoked by individual concepts. This limitation potentially overlooks 

nuanced distinctions in the representational structure. As described above, univariate 

contrasts potentially overlook critical relationships across neural states and neural 

regions (Mur et al., 2009). Through the use of MVPA techniques, more recent studies 

have begun to examine the underlying semantic structure of sets of abstract concepts. 
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The section below focuses on various imaging studies examining the neural activation 

patterns associated with abstract concepts and explores the possible semantic structures 

that are specific to abstract concepts. 

As in the case of concrete concepts, the semantic dimensions underlying abstract 

concept categories can be identified from their activation patterns. One of the first  

attempts to decode the semantic content of abstract semantic information was 

conducted by Anderson and colleagues (2017). A set of individual concepts that 

belonged to various taxonomic categories (tools, locations, social roles, events, 

communications and attributes) were decoded from their activation patterns. Whether a 

concept belonged to 1 of 2 abstract semantic categories (i.e., Law or Music) was also 

decoded from the activation patterns of individual concepts. Although these abstract 

semantic categories could be decoded based on their activation patterns, the localization 

of this dissociation is unclear. 

 

Hybrid concepts: neither completely concrete nor completely abstract 

Hybrid concepts are concepts that can be experienced directly but require 

additional processing beyond the 5 basic perceptual faculties to evoke. These concepts 

do not neatly fit within the dichotomy of concrete versus abstract. For example, the 
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concept envy cannot be tasted, seen, heard, smelled, and touched but it inarguably can 

be experienced as an internal event which could have perceptual repercussions (e.g., 

feeling lethargic, crying). We propose that envy and other concepts referring to 

psychological states are hybrid. 

The view of embodied cognition (Barsalou, 1999) expands upon the definition of 

perception beyond our 5 basic perceptual faculties to also include the experiences of 

proprioception and emotions. Hybrid concepts fall outside the strict realm of the 

sensory-perceptual but within the realm of psychological experience as described by 

embodiment theory (e.g., proprioception and emotion). Emotions, physics, and social 

concepts are not usually defined exclusively with respect to their 

concreteness/abstractness but serve as excellent exemplars of hybrid concepts in that 

they can be perceptually experienced without evoking any of our 5 senses directly. 

Additionally, the neural understanding of the semantic underpinning of hybrid concepts 

is not well understood. The following three sections describe research investigating the 

neurosemantic organization of hybrid concepts, specifically, the neurosemantic 

organization of emotions, physics concepts, and social concepts. 

 

Neurosemantic dimensions of meaning underlying emotions concepts 
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Meta-analyses of activation contrasts investigating emotion concepts reveal six 

functional networks (Kober et al., 2008) including limbic regions (i.e., amygdala, 

hypothalamus, and thalamus), areas related to top-down executive control function (i.e., 

dorsal lateral prefrontal cortex), the processing of autobiographical information (i.e., 

posterior cingulate cortex) (Klasen et al., 2011), visual association regions, and 

subregions within the motor cortex (Phan et al., 2002). These networks suggest that 

emotion representations partially involve cognitive functions related to more complex 

perceptual functioning (i.e., motion and visual association). Furthermore, the 

involvement of regions related to top-down executive functioning and regions related to 

the processing of autobiographical information suggest that emotion concepts recruit 

cognitive faculties for not only basic perceptual representations but also for higher-

ordered cognitive functions. Although these findings identify regions involved in 

emotion representation and processing, they do not provide insight into how different 

emotions are neurally distinguished. 

Recent MVPA analyses examining the neural representations of emotion 

concepts have provided insight into the way the representations of different emotions 

are neurally organized. Kassam and colleagues (2013) examined the evoked neural 

activation patterns of 18 emotion concepts such as happiness, pride, envy and sadness. 

The participants in this study didn’t just think about the meaning of a presented 
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emotion word: they tried to evoke the emotion in themselves at that moment. Factor 

analyses of the activation profiles for the 18 emotion concepts followed by a predictive 

model to validate the interpretations revealed three underlying dimensions of meaning. 

The underlying semantic dimensions organize these emotions concepts according to the 

valence of the emotion (positive or negative), its degree of arousal (fury versus 

annoyance) and degree of social involvement (i.e., whether another person is included in 

the representation, as is the case for envy but not necessarily so for sadness). Each of 

these dimensions of representation were found to correspond to activation distributed 

across several cortical regions. The brain locations associated with the valence of an 

emotion concept included the right medial prefrontal cortex, left hippocampus, right 

putamen, and the cerebellum. The brain locations associated with the arousal 

dimension included the right caudate and left anterior cingulum. Finally, brain locations 

associated with sociality included the bilateral cingulum and somatosensory regions. 

Both univariate and multivariate approaches provided neural evidence for the 

involvement of perceptual and higher-cognitive faculties. The multivariate analyses 

provided additional insight into the dimensions along which the individual emotion 

concepts are differentiated from each other. So even though emotions are very different 

from object concepts, the principles underlying their neural representations are rather 

similar to those of other types of concepts. 
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Neurosemantic dimensions of meaning underlying physics concepts 

Research investigating the neural representation of physics concepts suggests 

their neural organization somewhat reflects the physical world they refer to, such as the 

movements or interactions of objects. Mason and Just (2016) investigated the neural 

activation patterns of 30 elementary physics concepts (e.g., acceleration, centripetal 

force, diffraction, light, refraction). Factor analyses of the activation patterns evoked by 

the 30 concepts revealed four underlying semantic dimensions. These dimensions were 

periodicity (typified by words such as wavelength, radio waves, frequency), causal-

motion/visualization (e.g. centripetal force, torque, displacement), energy flow (electric 

field, light, direct, current, sound waves, and heat transfer), and algebraic/equation 

representation (velocity, acceleration, and heat transfer) which are associated with 

familiar equations. 

The regions associated with each semantic dimension provide insight into the 

underlying cognitive role of the region. The periodicity dimension was associated with 

dorsal premotor cortex, somatosensory cortex, bilateral parietal regions, and the left 

intraparietal sulcus. These regions have been shown to activate for rhythmic finger 

tapping (Chen et al., 2006). The causal-motion/visualization dimension was associated 
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with the left intraparietal sulcus, left middle frontal gyrus, parahippocampus, and 

occipital-temporal-parietal junction. These regions have been shown to be involved in 

attributing causality to the interactions between objects and data (Fugelsang et al., 

2005; Fugelsand and Dunbar, 2005). The algebraic/equations dimension includes the 

precuneus, left intraparietal sulcus, left inferior frontal gyrus, and occipital lobe. These 

regions have been implicated in the executive processing and integration of visuospatial 

and linguistic information in calculation (Benn, et al., 2012) and more general 

arithmetic processing. The regions associated with energy flow were middle temporal 

and inferior frontal regions. In the context of physics concepts, these regions are 

attributed with representing the visual information associated with abstract concepts 

(Mason and Just, 2016). Together, these results suggest that the neural representations 

of physics concepts, many of them developed only a few hundred years ago, draw on the 

human brain’s ancient ability to perceive and represent physical objects and events. 

 

Neurosemantic dimensions of meaning underlying social concepts 

Research comparing the neural representation of social concepts between healthy 

controls and individuals with high-functioning autism has revealed three semantic 

dimensions involved in the neural representations of social interactions (Just et al., 

2014). Participants in this study thought about the representations of 8 verbs describing 
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social interactions (compliment, insult, adore, hate, hug, kick, encourage, and 

humiliate) considered from the perspective of either the agent or recipient of the action. 

Factor analyses of neural activation profiled for these 16 concept-role combinations 

revealed semantic dimension associated with self-related cognition (hate in the agent 

role and humiliate in the recipient role), social valence (adore and compliment), and 

accessibility/familiarity relating to the ease or difficulty of semantic access. 

The self dimension was associated with activation in posterior cingulate: an area 

commonly implicated in the processing of autobiographical information. The social 

valence factor included the caudate and putamen for both controls and individuals with 

autism. The accessibility/familiarity factor included regions that are part of the default 

mode network, particularly middle cingulate, right angular gyrus, and right superior 

medial frontal. 

Because this study involved a comparison between young adult healthy controls 

and participants with high-functioning ASD, it provided an important glimpse into how 

a psychiatric or neurological condition can systematically alter the way a certain class of 

concepts is thought about. The use of fMRI neuroimaging allows the precise 

measurement of how a given concept is neurally represented, and specify precisely how 

a condition like ASD can alter the representation. The interesting finding was that the 

members of the two participant groups could be very accurately distinguished by their 
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neural representations of these social interaction concepts. More specifically, the ASD 

group showed a lack of a self dimension, showing little activation in the regions 

associated with the self dimension in the healthy control group. The findings suggest 

that when the ASD participants thought about a concept like hug, it involved very little 

thought of themselves. By contrast, the control group thought about themselves when 

thinking about what hug means. Thus the assessment of neural representations of 

various classes of concepts has the potential to identify the presence and the nature of 

concept alterations in psychiatric or neurological conditions. The neurosemantic 

architecture of hybrid concepts (as exemplified by emotions, physics, and social 

concepts) suggests these concepts relate us with the external world (e.g., causal-motion 

visualization dimension for physics concepts or self/other for social concepts). 

Moreover, the neural activation associated with magnitudes of perceptual experience 

are also captured by the neural representations (e.g., degree of arousal with emotion 

concepts). Taken together, these results suggest that hybrid concepts are composed, in 

part, of perceptual states that translate our perceptual world into various mental states. 

 

 

Relating neuroimaging findings and corpus co-occurrence measures 
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One particular class of encoding models, as was previously discussed, attempts to 

relate neural representations to some well-defined feature set. Defining the meaning of 

a concept in some computationally tractable way has long been a challenge and it is 

relevant here because it has the potential to be systematically related to the neural 

representation of the concept. One of the early answers to this challenge suggested that 

concepts can be characterized in terms of the concepts with which they co-occur in some 

large text corpus (Landauer & Dumais, 1997). The lower dimensions (about 300) of a 

large co-occurrence matrix produce a semantic vector representation of the words in the 

corpus (Pennington et al., 2014; Deerwester et al., 1990). The method of deriving this 

lower dimensional feature space can vary, depending on the specific approach. The 

utility of semantic vector representations comes from their convenience in natural 

language processing applications. But can the semantic vector representation of a 

concept like apple be informative about the neural representation of apple? 

The semantic vector representations can be used as the predictive basis of an 

encoding model. Predicted images can be generated from the learned mapping relating 

brain activation data from a matrix containing semantic vectors. This learned mapping 

can then be used to generate predicted brain images for concepts with no previously 

collected data (Mitchell et al., 2008). This approach provides the basis for generating a 

set of concept representations which can then be explored for its semantic properties 
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(Pereira et al., 2018). Moreover, it enables the study of many more concept 

representations than can easily be acquired in time and cost-limited fMRI studies. 

However, it is unclear whether encoding models based on semantic vector 

representations illuminate the difference between concrete and abstract concepts 

representations. 

Co-occurrence structures have also been used to evaluate the neural instantiation 

of the associative theories of abstract concept representations. Wang and colleagues 

(2018) utilized RSA to compare the organizational structures of 360 abstract concept 

representations by examining the representational structure of fMRI activation patterns 

across the whole brain and concept co-occurrence properties in a large corpus. The goal 

was to show that each of these viable organization principles is instantiated uniquely 

within the brain. 

Co-occurrence properties represent the theoretical view that abstract concepts 

are represented in terms of their association with other concepts. Their results showed 

that the relationship between co-occurrence representations and brain activity for 360 

abstract concepts was largely left lateralized and seemed to uniquely activate areas 

traditionally associated with language processing such as left lateral temporal, inferior 

parietal, and inferior frontal regions. 
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Conclusions 

The understanding of how concepts are represented in the human brain has 

advanced significantly based on innovations in imaging technology and multivariate 

machine learning techniques. One new insight concerns how human and self-centric 

concept representations are. No dictionary definition had specified how a hammer is to 

be wielded, and yet that is an important part of how it is neurally represented. Thus, 

part of the neural representation of a physical object specifies how our bodies interact 

with the object (Hauk and Pulvermuller, 2004; Just et al., 2010). Part of the neural 

representation of gossip specifies a social interaction. The concept of spirituality evokes 

self-reflection. Thus this insight is that many neural representations of concepts contain 

human-centric information in addition to semantic information. 

A second insight concerns the dependence of abstract concepts on the verbal 

representations of other concepts. Representing the meaning of abstract concepts may 

require a greater integration of meaning across multiple other concept representations 

than is the case for concrete concepts. Abstract concepts evoke activation in cortical 

regions associated with language processing, particularly LIFG, which may reflect the 

neurocomputational demand for this increased integration of meaning. 
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A third insight is that the semantic components of a neural representation of a 

concept consist of the representations within various neural subsystems, such as the 

motor system, the social processing system, and the visual system. These neural 

subsystems constitute the neural indexing or organizational system. 

A fourth insight concerns the remarkable degree of commonality of neural 

representations across people and languages. Although concept representations 

phenomenologically seem very individualized, the neural representations indicate very 

substantial commonality, while still leaving room for some individuality. The 

commonality probably arises from the commonality of human brain structures and their 

capabilities, and from commonalities in our environment. We all have a motor system 

for controlling our hands, and all apples have a similar shape, so our neural 

representations of holding an apple are similar. 

A fifth insight is that the principles regarding the neural representations of 

physical objects extend without much modification to more concrete and hybrid 

concepts. Although it is easy to see why the concept of apple is similarly neurally 

represented in all of us, it is more surprising that an emotion like anger evokes a very 

similar activation pattern in all of us. Moreover, even abstract concepts like ethics have a 

systematic neural representation that is similar across people. 
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Although there is much more to human thought than the representation of 

concepts, these representations constitute an important set of building blocks from 

which thoughts are constructed. The neuroimaging of these concept representations 

reveals several of their important properties as well as hints as to how they might 

combine to form more complex thoughts. 
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Chapter 2. Project 1: The Neural Representation of Abstract Concepts 
 

Chapter 1 described the literature on the neuroscientific examination of concepts 

by briefly describing theoretical frameworks such as the hub-and-spoke model and the 

general semantic network model of how concepts are represented in the brain. 

Additionally, Chapter 1 described contemporary methodological approaches for 

understanding underlying semantic structure of concepts from brain activation using 

multivariate pattern analytic techniques. Lastly, Chapter 1 described how these 

methodologies allowed for the examination of concrete and hybrid concepts (e.g., 

physics and emotion concepts) in the brain. Chapter 2 describes a published empirical 

study examining the neural representation of abstract concepts using similar 

methodologies described in Chapter 1. 

 

Introduction 

 The human ability to formalize planetary orbit, argue what is ethical or just, or 

communicate about the feelings of others hinges on our ability to speak of concepts that 

do not explicitly take a physical form, or, abstract concepts. However, the neural 

characterization of abstract concepts such as ethics and justice remains relatively 

unexplained. A concept can be defined, in neural terms, as a systematic, distributed 
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pattern of activation across a network of cortical regions that occurs when a person 

thinks about that concept. Unlike concrete concepts, there are no explicit cortical 

systems or theories for explicitly measuring the embodied instantiation of abstract 

information. According to the now well-documented embodiment hypothesis, the 

representation of many concepts is rooted in how their referents are perceived and 

interacted with. This view has provided a valuable theoretical basis for understanding 

the neural instantiation of concrete concepts (Barsalou, 1999). However, there is much 

less clarity concerning the neural representation of abstract concepts (Binder et al., 

2005).  

A meta-analysis of functional magnetic resonance imaging (fMRI) studies 

examining concrete and abstract concepts revealed that areas responsible for language 

processing (namely, left inferior gyrus) reliably activate more for abstract concepts 

relative to concrete concepts (Wang et al., 2010). In addition, a number of studies have 

shown that several other cortical areas related to executive functioning, motion, and 

emotion processing were also involved in the processing of abstract concepts (Pecher et 

al., 2011; Vigliocco et al., 2014). These varied cortical activation findings suggest that 

abstract concept representations rely on the integration of multiple neural systems 

associated with a variety of cognitive functions.  
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The aperceptual nature of abstract concepts also raises the question of the 

commonality of their neural representations across individuals. Whereas the neural 

commonality of concrete concepts across people (Just et al., 2010) could be based on 

common perceptual properties, it is unclear what the common basis might be for more 

abstract concepts. The concept of justice, for example, is likely to be related to a wider 

variety of experiences than a concept such as apple, suggesting that the neural activation 

pattern associated with the concept could vary substantially across individuals. Prev ious 

research has shown that concrete concepts can be decoded across individuals from their 

neural signature; this commonality of representation can be characterized by lower-

dimensional semantic primitives such as eating and shelter (Just et al., 2010; Coutanche 

& Thompson-Schill, 2015). This method of decoding concepts from neural signatures 

and characterizing their commonality across participants has been applied to 

perceptually less grounded categories of concepts such as physics concepts (Mason & 

Just, 2016) and emotion concepts (Kassam et al., 2013). However, although physics 

terms and emotions concepts are less concrete than apple or hammer, according to an 

embodied view of concept representation, they are still related to proprioception and 

emotional content. Thus, the commonality of the neural representation of abstract 

concepts across participants remains unknown. 
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The goal of the current study was to determine the neural and semantic ontology 

of individual abstract concepts. Although at least one previous study used multivariate 

pattern analytic techniques (MVPA) to decode taxonomic categories and domains of 

abstract concepts such law and music (Anderson et al., 2014), there has been no attempt 

to predict the neural representation of individual abstract concepts nor to uncover the 

semantic organization of abstract concepts in a neurally-based ontology. The current 

study assessed the neural activation patterns of 28 abstract concepts by applying MVPA 

including factor analysis to fMRI data. First, the identifiability and commonality of the 

concepts’ neural signatures were assessed within and across participants using a pattern 

classifier. Second, a dimension-reduction technique (factor analysis) was used to derive 

a lower-dimensional semantic structure of the concept representations. These 

interpretations of the resulting semantic dimensions were then tested by obtaining 

independent ratings of the concepts along each of the dimensions as we interpreted 

them, and then using the ratings to predict the concepts’ activation patterns. These 

findings provide a brain-based account of the way abstract concepts are neurally 

represented.  
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Methods 

Participants 

Ten right-handed adults (7 Females; age range from 20 to 38, M=25.9) from the 

Carnegie Mellon community participated in a 30 min-scanning session. Informed 

consent was obtained from all 10 participants in accordance with the Carnegie Mellon 

Institutional Review Board. Data from 1 participant was excluded due to the participant 

falling asleep during the scan.  

 

Experimental Paradigm 

Stimuli were 28 words referring to abstract concepts distributed among 7 

categories. Although the category labels were never mentioned nor presented to 

participants, they are listed here in parentheses for expository purposes, preceding the 

actual stimuli: (mathematics): subtraction, equality, probability, and multiplication; 

(scientific): gravity, force, heat, and acceleration; (social): gossip, intimidation, 

forgiveness, and compliment; (emotion): happiness, sadness, anger, and pride; (law): 

contract, ethics, crime, and exoneration; (metaphysics): causality, consciousness, 

truth, and necessity; (religiosity): deity, spirituality, sacrilege, and faith. Focusing on 

the neural representations of individual concepts provides a higher resolution of 
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semantic content than examination on a categorical level. The representations of 

individual concepts contain information about item-level elements of meaning rather 

than superordinate representational structures. The set of 28 stimuli was presented 6 

times, to enable averaging out effects of noise in the fMRI signal and to provide separate 

datasets for training and testing the machine learning classifier in its cross-validation 

protocol. On each trial, participants were presented with the stimulus concept for 3 s, 

and were asked to think about the properties they associate with the given concept. 

Participants were instructed to think of the individual concept and the various 

components of its meaning, referring back to the properties of the concept they had 

generated. This instruction has previously been used to enable participants to evoke 

semantically rich representations of concepts that are consistent across multiple 

presentations (Just et al., 2010, 2017; Mason & Just, 2016; Bauer & Just, 2017).  

Following this 3 s period, participants were instructed to clear their mind over 

the course of 7 s while watching a blue ellipse shrink to nonexistence, to allow the 

hemodynamic response to approach baseline before the next concept appeared. A 

shrinking ellipse was presented during the inter-stimulus interval to provide a fixation 

target and to convey the progress through the 7 s interval. There was a total of 6 

presentation blocks of the same 28 stimulus concepts (using different random 

permutation orders in the different presentations) in the scanning session, distributed 
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between 3 runs (2 blocks per run) to allow participants a brief rest between runs. A 17-

second “X” was presented at the beginning of each block (2 per run) to use as a baseline 

measure of neural activity.  

Prior to the scan, participants were instructed to write down 3 properties for each 

of the 28 abstract concepts. Possible properties were synonyms, definitions, or 

experiences associated with the concept intended to guide participants to mentally 

evoke a consistent representation for each concept. Participants were instructed to write 

properties that came to mind quickly and naturally. Participants briefly practiced the 

experimental paradigm in a mock MRI scanner while receiving head-motion feedback to 

minimize movement.  

 

fMRI Parameterization and Image Processing 

Functional images were acquired on a Siemens Verio 3.0 T scanner and a 32-

channel phased-array head coil (Siemens Medical Solutions, Erlangen, Germany) at the 

Scientific Imaging and Brain Research facility at Carnegie Mellon. Scans were acquired 

using a gradient-echo echo-planar imagining pulse sequence (TR=1000 ms, TE=25 ms, 

and a 60◦ f lip angle); each volume contained 20 5-mm thick AC-PC aligned slices (1-

mm gap between slices). The acquisition matrix was 64 × 64 with 3.125 × 3.125 × 5-mm 
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voxels. SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) was used to correct for head motion 

and normalize to the Montreal Neurological Institute template (Collins et al., 1994). The 

percent signal change (PSC) relative to the fixation condition was computed at each gray 

matter voxel for each stimulus presentation (the PSC data was converted to z-scores). To 

isolate the neural instantiation of concept representations, voxel activation levels were 

averaged over the four brain images acquired within a 4 s window (at a TR of 1000) 

offset 5 s from the stimulus onset (i.e., images 5 to 8). Mean PSCs were normalized 

across voxels for each trial (MPSC). Previous studies have reported that the use of these 

four images yields the highest classification accuracies obtained by a classifier that 

attempts to relate the activation pattern to the concept (Just et al., 2010; Mason & Just, 

2016; Bauer & Just, 2017). Additionally, using these four images allows for the 

comparison with previously collected concept-level fMRI data.  

 

Voxel Stability 

The analysis focused on the most stable voxels, those whose activation levels were 

systematically modulated by the set of 28 abstract concepts each time the set was 

presented. Voxel stability is a criterion for feature selection that selects voxels in the 

training set that respond consistently across repetitions of the concepts across blocks. It 
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has been established as a method of feature selection for discriminating concept 

representations (Just et al., 2010, 2017; Kassam et al., 2013; Wang et al., 2013; Mason & 

Just, 2016; Bauer & Just, 2017; Yang et al., 2017). A voxel’s stability was computed as 

the mean pairwise correlation of its 28 MPSC activation levels (for the 28 abstract 

concepts) across all pairwise combinations of the presentations blocks in the training 

data. Thus, a voxel with high stability is one that has a stable tuning curve over the set of 

stimuli. Stable voxels were used as features in classification and factor analyses. The 

stable voxels selected in the training data for classification are then used to select the 

voxels in the test set. The 120 most stable voxels in the whole brain were used as 

features for classification. This approximate number of voxels has been shown to 

reliably capture meaningful information in the neural representation of individual 

concepts (Just et al., 2010; Mason & Just, 2016). To ensure the analysis was not 

particularly sensitive to variations in the number of features, the classification analysis 

was repeated varying the number of stable voxels used from 20 to 10 000 (in 20 voxel 

increments); the peak classification accuracy occurred between 120 and 180 stable 

voxels. The mean classification accuracy gradually decreased with the inclusion of 

additional stable voxels beyond 180. To be consistent with previous studies, 120 stable 

voxels were chosen to be used as features. 
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Discriminative Classification: Within-Participant  

Gaussian Naïve Bayes (GNB) classifier was trained to decode the 28 concepts in 

each participant’s data. The classifier was trained on the activation data from 4 of the 6 

presentations and was tested on the mean of the 2 left-out images. This cross-validation 

procedure was followed in 15 (6 choose 2) folds. The features used by the algorithm 

consisted of the activation levels of the 120 most stable voxels in the training set from 

anywhere in the whole brain. The classifier’s normalized rank accuracy was used to 

assess decoding accuracy (i.e., the mean over folds of the normalized rank of the correct 

response in a probability-ranked list of all 28 alternatives, where the chance level is 0.5). 

Above-chance performance at p < 0.001 was achieved for concept-level predictions for 

all participants, as determined using a 10,000-iteration permutation test on each 

participant separately (mean cutoff for p < 0.001 = 0.60; SD= 0.004).  

 

Discriminative Classification: Between-Participant  

A GNB classifier was trained on the neural signatures from 8 of the 9 participants 

and tested on the left-out participant’s data. The alignment across participants was 

accomplished by selecting the voxels with the highest stability across participants (i.e., 

having a similar pattern of activation responses to the 28 stimuli). To compute the 
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cross-participant stability in the between-participant classification, the MPSC data were 

first averaged across presentations for each participant and then the mean pairwise 

correlation of a voxel’s 28 MPSC activation levels (for the 28 abstract concepts) was 

computed between all pairs of the 8 participants in the training data. The 120 most 

stable voxels (i.e., those with the highest mean pairwise correlations) from the whole 

brain across the 8 participants were selected as features for the training set. Predictions 

were cross-validated across participants and the mean rank accuracy was computed 

across the resulting 9 folds. Above-chance performance at p < 0.01 is 0.57 for concept-

level predictions as determined using a 10,000-iteration permutation test. 

 

Factor Analysis Procedure 

To explore the semantic structure underlying the representations of the 28 

abstract concepts, a two-level factor analysis was computed; a factor analysis was first 

applied to the data of individual participants while the second factor analysis used the 

factor scores from the first level as input (using a procedure described in detail in Just et 

al., 2014). This procedure was implemented using a principal factor analytic algorithm, 

including varimax rotation, in MATLAB (Version 6.5; The MathWorks, Natick, MA). 
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The data from all 9 participants were analyzed to determine whether 

interpretable factors could be extracted. Stability was averaged across the 9 participants 

for each voxel (voxels with negative stability were set to 0). The locations of the 800 

most stable voxels were first used to indicate the major participating cortical regions [as 

defined using Automated Anatomical Labeling (AAL; Tzourio-Mazoyer et al., 2002)] to 

be included in the factor analysis. Then, the input to the first-level factor analysis 

(performed within each participant) consisted of the mean activation levels of the most 

stable voxels for each of the concepts in each of the contributing AAL regions. The total 

number of voxels used in this factor analysis was 410, similar to the number used in 

previous studies (Kassam et al., 2013), with the number per AAL-defined ROI based on 

the numerosity of the ROI’s stable voxels: 40 voxels from left inferior frontal gyrus 

(LIFG); 30 voxels from left posterior cingulate cortex; 60 voxels from frontal cortex 

bilaterally; 60 voxels from occipital cortex bilaterally; 60 voxels from temporal cortex 

bilaterally; and 160 voxels from parietal cortex bilaterally. This first-level factor analysis 

was run on all 9 participants individually, extracting 7 factors for each subject, resulting 

in a total of 63 vectors of factor scores. The number of factors to be extracted was 

informed by previous studies (Mason & Just, 2016); modifications from the initial 

parameterization resulted in only minor differences in results.  
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The goal of the first-level factor analysis, applied to individual participants, was 

to partition the set of input stable voxels into subsets that each systematically but 

differentially responded to the abstract concepts, specifying 7 factors. This analysis 

produced factor scores for the 28 concepts, for each of the 7 factors, for each of the 9 

participants. Each of the 9 participants’ 7 sets of factor scores were concatenated and 

used as input into the second, group-level factor analysis (a total of 63 sets of 28 factor 

scores) to further reduce dimensionality to 5 dimensions and to seek consistency across 

participants. A voxel was determined to belong to a factor if its factor loading exceeded a 

cutoff 0.4 (a typical value for a factor loading threshold): this threshold was also 

informed by previous work using this procedure (Just et al., 2010; Just et al., 2014; 

Mason & Just, 2016). 

To evaluate the robustness of the results to the number of voxels used, factor 

scores from each of the 5 second-order factors were correlated across the different voxel 

set sizes used in the factor analysis (i.e., 205 voxels, versus the original number of 410, 

and 615 voxels). The mean correlation between the factor scores from the 410 voxel set 

(original parameterization) and 615 voxels factor analyses was 0.94 (with all 

correlations exceeding 0.9). Thus the outcomes are not sensitive to an increase in the 

numbers of voxels used in the factor analysis. The correlations between the factor scores 

from the 410 voxel set size (original parameterization) and the 205 voxel set were 
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somewhat lower: most of the correlations fell to ∼0.85 with one of the correlations 

(corresponding to an Externality/Internality semantic dimension) falling to 0.64. 

Although the same 5 factors are present when using only 205 voxels, the factor scores 

are not as similar to the 410 set size. The set of 410 stable voxels was thus used for the 

factor analysis. 

 

Predictive Modeling Procedure 

The goal of the predictive modeling procedure was to assess whether the 

activation pattern of a concept that was left out of the modeling could be predicted, 

based on the mapping between the behavioral ratings and the activation patterns of all 

of the other concepts. Accurate predictions would provide converging evidence for the 

factor interpretations (on which the ratings were based). That is, the correlation 

between the behavioral ratings of the concepts along the dimensions as we interpreted 

them and the concepts’ factor scores are a test of the interpretation of the factors from 

the factor analysis. To obtain converging evidence for the factor interpretations, an 

independent group of participants was asked to rate each stimulus concept on a scale 

from 1–7 with respect to its salience to the dimensions as they have been interpreted 

here (e.g., the degree to which a concept, such as faith, was verbally versus perceptually 
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based). These ratings were then used in a multiple regression model to predict the 

activation patterns of concepts for which the model had no activation data (Mitchell et 

al., 2008). Activation predictions for each concept were made within each participant, 

by developing a separate regression model for each participant to separately predict 

each concept, basing the model and the weights it derives on the data from the 27 

concepts other than the 28th target concept. The resulting model weights were then 

applied to the dimension ratings and character length of the target concept (Just et al., 

2010). These models made predictions of activation values in factor locations obtained 

from factor analyses that were based on all but the participant in question. The mean 

prediction accuracies for the 28 concepts were then averaged across participants. A 

prediction’s accuracy was assessed by computing the Euclidean distance between the 

activation pattern predicted by the model and the observed activation data, relative to 

the distance to the representations of the other 27 concepts. The normalized rank of the 

distance between the predicted and test images (among the 28 distances) was the 

measure of prediction accuracy. Significance was computed using a permutation test. 

The results of the predicted images with correct labels were compared against the 

distribution of rank accuracies of predicted images with random labels for 100,000 

random permutations. 
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Results 

Systematicity and Commonality of Abstract Concepts 

Within-Participant Classification 

The mean normalized rank accuracy of the classification of the 28 concepts, first 

computed for each participant and then averaged over participants, was 0.82, p < 0.001 

(where chance is 0.5). The mean classification accuracy for each of the 9 participants 

individually was also reliably above chance (range = 0.76 to 0.94, p < 0.001). These 

results indicate that these abstract concepts have distinctive neural signatures that can 

be characterized by the multivoxel activation pattern captured by the classifier. 

Although previous studies have shown that abstract domains such as law and music can 

be decoded from neural signatures (Anderson, et al., 2014), this finding reveals that 

individual abstract concepts can be decoded from their neural signatures.  

To address the possibility that some of the decoding accuracies could be due to 

low-level representations of the concept presentation rather than just the concepts, the 

analyses were repeated excluding left fusiform gyrus (which includes visual word form 

areas) and bilateral Heschl’s gyrus (to account for low-level auditory information) in 

addition to the previously excluded occipital lobe. The minimal difference between the 

inclusion and exclusion of these regions (a minor decline from 0.82 to 0.80 in rank 
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accuracy) suggests that the lower-level word representations have little influence on the 

overall results. 

 

Representational Similarity between Activation Patterns for Individual Concepts 

To explore the similarities among the neural representations of the 28 individual 

abstract concepts, representational distance matrices (RDMs) were generated using the 

activation patterns for the 120 most stable voxels for each participant separately. The 

resulting concept-by-concept RDMs of activation patterns were then averaged across 

participants. The resulting mean RDM contained 2 clusters of similar concepts. One 

cluster was related to mathematics and scientific concepts (top left box of Figure 

2.1), including concepts such as subtraction and acceleration. A second cluster indicates 

similarity of activation patterns among the remaining 5 categories relating to social, 

emotions, law, metaphysics, and religiosity (bottom right box of Figure 2.1). 
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Figure 2.1. Representational similarity between neural act ivation (blue colors indicate higher similarity) 
for indiv idual concepts. Dotted lines indicate category separation.  

 

Commonality of Neural Representations across Participants 

In addition to establishing that the neural representations of abstract concepts 

were systematic and decodable within each participant, a between-participant 

classification was performed to determine whether these abstract concept 
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representations were similar across participants. When the classifier was trained on the 

data of all but one participant, the mean rank accuracy for the test data from the left-out 

participant was 0.74, p < 0.01, indicating that the neural signatures had a substantial 

amount of commonality across participants. All 28 individual concepts were reliably 

classifiable between participants with a range of 0.58 to 0.94 (p < 0.01). Thus these 

highly abstract concepts are neurally represented as activation patterns that are highly 

common across participants. 

 

Factor Analysis for Uncovering Underlying Neurosemantic Dimensions 

A two-level factor analysis (first applied to individual participants, then to the 

pooled data) was used to uncover the dimensions underlying the activation evoked by 

the abstract concepts. Four of the five resulting second-level (common) factors that 

accounted for the most variance were interpretable, using two criteria: 1) the ordering of 

the 28 concepts by their factor scores for a given factor, particularly the concepts near 

the two extremes of the ordering; 2) the locations of voxels with high loadings on the 

factor. These 4 factors were interpreted as corresponding to Verbal Representation, 

Externality/Internality (to oneself), Social Content, and Word Length. These 4 factors 

accounted for a total of 33.2% of variance in the group-level factor analyses: Verbal 
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Representation accounted for 10%; Externality/Internality accounted for 7.9%; Social 

Content accounted for 6.9%; and Word Length accounted for 8.4%. 

 

Verbal Representation Factor 

This dimension is interpreted as the degree to which a concept is represented in 

verbal as opposed to perceptual terms (Barsalou, 2003). The interpretation of this factor 

and the others is tested below. This dimension was present for every participant and 

accounted for the most or second most variance in first-order factor analyses. Concepts 

with large positive factor scores for this factor included compliment, faith, and ethics 

while concepts with large negative scores for this factor included gravity, force, and 

acceleration as shown in Table 2.1. 

The main cortical regions containing voxels with high loadings on this factor 

consisted of LIFG, left anterior supramarginal gyrus (LSMG), and left lateral occipital 

complex (LLOC; highlighted in red in Figure 2.2). These regions are consistent with a 

previous meta-analysis examining contrasts between concrete and abstract concepts 

(Wang et al., 2010). In Wang et al. (2010), GLM contrasts revealed that the areas 

around LSMG and LLOC activated more for concrete concepts and less for abstract 

concepts while LIFG activated more for abstract and less for concrete concepts. Even 
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though the 28 concepts in the present study were all designed to be abstract, the 

distribution of factor scores along this dimension indicates that some of these concepts, 

such as force and acceleration have more perceptual content than others (such as faith 

and ethics). The Neurosynth meta-analytic database provides converging evidence for 

the interpretation of the functional role of LIFG (verbal processing), LSMG 

(somatosensation), and LLOC (object processing) (http://neurosynth.org; Yarkoni et al., 

2011). 

 

Table 2.1. Six concepts with the highest and lowest factor scores for each interpretable factor. 

 

 

Externality/Internality Factor 

The second interpretable factor corresponds to the degree to which a concept is 

experienced as an external versus internal state or event. An event that is external is one 
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that requires the representation of the world outside oneself and the relative 

noninvolvement of one’s own state. An internal event is one that involves the 

representation of the self. The main cortical region containing voxels loading on this 

factor was right supramarginal gyrus (RSMG; see Figure 2.2). This region has been 

shown to be related to emotional egocentricity, that is, “the tendency to project one’s 

own mental state onto others” (Silani et al., 2013). At one extreme of the dimension lie 

concepts that are external to the self (e.g., causality, sacrilege, and deity). At the other 

extreme lie concepts corresponding to events that are internal to the participant, such as 

spirituality and sadness (Table 2.1). Neurosynth failed to suggest any consistent 

functional role for the Externality dimension’s associated voxel cluster locations. The 

current interpretation is largely based on the ordering of the concepts by their factor 

scores on this dimension. 

 

Social Content Factor 

A third factor was interpreted to correspond to social content, as it pertains to 

personal experience. The concepts at one extreme of the dimension included pride, 

gossip, and equality while the concepts at the other extreme included heat, necessity, 

and multiplication (Table 2.1). The main cortical region containing voxels with high 
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loadings for this factor was the left posterior cingulate cortex (LPCC; Figure 2.2), which 

is associated with the contextualization of oneself in space and emotions (Maddock et 

al., 2003; Bird et al., 2015; Guterstamet al., 2015). Neurosynth suggests the LPCC is 

involved in the processing of episodic and autobiographical memories 

(http://neurosynth.org; Yarkoni et al., 2011). In the context of this study, the LPCC may 

be involved in the retrieval of memories of previous social interactions. 

 

Word Length Factor 

This fourth factor characterizes concepts based on their word length. The 

concepts that lie on the two extremes of this factor clearly represent the longest and 

shortest words in the set of concepts. Concepts at one extreme for this factor included 

acceleration, exoneration, and spirituality while concepts at the other extreme included 

heat, crime, and anger (happiness lying on the “short-word” extreme was an exception). 

The only cortical region that loaded on this factor was the left occipital pole (Figure 2.2). 

This finding regarding word-length provides a face validity check for the factor analysis 

methods and interpretations. 
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Figure 2.2. Locations of the voxel clusters with the highest factor loadings for each of the 4 interpretable 

factors. Voxels were thresholded to have a minimum cluster size of 15 and mean correlations above 0.2 (in 
either positive or negative direction) between their activation values and their factor loadings. Cluster 

centroid XY Z coordinates for: Verbal representation: LIFG (-53.8 22.2 13.4), LSMG (−58.0 −34.1 35.1), 
and LLOC (−54.3 −62.0 −9.1); Social Content: LPCC (−5.8 −54.0 29.7); Externalization: RSMG (42.9 

−41.6 47.4); and Word Length: left occipital pole (−13.0 −96.8 −6.6).  
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Testing the Factor Interpretations Using Behavioral Ratings and a Predictive Model 

Ten participants who were not in the fMRI study rated the salience of the 3 

semantic factor interpretations to each of the 28 concepts. For example, they rated on a 

1–7 scale how verbal (as opposed to perceptually instantiable) items like gravity and 

ethics were. The correlation between the mean ratings and the factor scores were 0.63 

for Verbal Representation, 0.59 for Externality, and 0.55 for Social Content (all 

significant at p < 0.01), as shown in Figure 2.3). To determine agreement among raters, 

intraclass correlation was computed for the 3 rated dimensions across participants; ICC 

was 0.88 for verbal representation, 0.93 for Externality, and 0.97 for Social Content (all 

significant at p < 0.01). 

A generative model using the independent ratings (and word length (i.e., number 

of characters in each word)) was developed to predict the activation of “new” concepts 

(i.e., concepts left out of the modeling) in the locations corresponding to the factor-

associated clusters, based on their association with each of the factors. The mean 

behavioral ratings served as model weights in a regression model, where the 

independent variables were the four factors (3 semantic factors and Word Length). To 

eliminate contamination between the training data that determined the locations and 

the data, on which the model was tested, the 2-level factor analysis was computed on 

only 8 participants and the model was tested on the remaining participant. In all 9 
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iterations of the modeling, the 4 interpretable second-order factors were identified by 

correlating the factor scores from the 5 second-level factors from the 9-participant 

factor analysis with each of the 5 second-level factors from the 8-participant factor 

model. In all iterations, the 4 factors were present with correlations of 0.9 or greater. In 

each of the 9 iterations of the predictive model, each factor was associated with a set of 

voxel clusters, and each cluster was characterized by an enclosing cuboid. The 6 most 

stable voxels were selected from each cuboid of each factor. The mean number of 

cuboids identified across all 9 iterations are as follows: Verbal Representation 

contributed a mean of 13.22 (SD= 1.48) cuboids; Externality/Internality contributed a 

mean of 7.89 (SD= 2.71) cuboids; Social Content contributed a mean of 5.89 (SD= 1.17) 

cuboids; and Word Length contributed a mean of 2.56 (SD= 1.33) cuboids. 

Model predictions were made by leaving out one of the 28 concepts, predicting 

the activation for that concept using the behavioral ratings (and word length), and 

computing the Euclidean distance between the predicted activation pattern generated 

by the model and the observed (test) mean activation data. The normalized rank of the 

distance between the predicted and test images (among all inter-item distances) was 

used as a measure of prediction accuracy. This leave-one-out procedure was repeated 

for all 28 concepts. The mean normalized rank accuracy of the predictions across 

concepts was 0.78 (SD= 0.09; where chance = 0.5). Mean rank accuracies for all 
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participants were significantly above chance (p < 0.001) as determined using a 100,000-

iteration permutation test. Although the factor analysis and its interpretation are 

exploratory, the correlations between the factor scores and the behavioral ratings, as 

well as the predictive modeling, provide a clear empirical test of the factor 

interpretations. 
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Figure 2.3. Scatter plot of factor scores for each of the 3 semantic dimensions versus the mean 
behavioral ratings of the 28 concepts, and their correlations. Although these correlations are significant, 

they  are based on 28 items and therefore the effect sizes should be interpreted with caution.  

 

Further Exploration of the Verbal Representation Dimension 

Previous studies have suggested that the relationship between abstractness and 

activation levels differs for the three regions in the Verbal Representation factor (i.e., 
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LIFG, LSMG, and LLOC; Wang et al., 2013). Correlations between the second-level 

factor scores from this dimension and the MPSC activation levels were computed for 

each voxel in these 3 subregions for each participant separately. The correlations values 

were then averaged over the participants within each voxel. LIFG activated more for 

concepts that are more verbally represented (r = 0.38, p < 0.05) whereas LSMG and 

LLOC activated more for concepts that are more perceptually represented (r = 0.46, p < 

0.05), as shown in Figure 2.4. These results suggest that the abstractness of a concept 

corresponds to the degree to which it is represented in verbal terms, which can be 

thought of as a point along a verbal-perceptual continuum. To further investigate 

whether one of the variables underlying the Verbal Representation factor is 

concreteness, the 28 concepts’ factor scores for this dimension were compared with 

their concreteness ratings from Brysbaert et al. (2014), resulting in a substantial 

correlation (r =−0.47, p < 0.05). 
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Figure 2.4. Correlation between the Verbal Representation factor scores and MPSC activation. As 
concepts become more verbally represented they recruit more LIFG and show less activation in regions 
associated with the v isual representation of concepts (LSMG and LLOC). Positive correlations shown in 
green; negative correlations in red. 

 

Discussion 

The human ability to think about abstract entities plays a central role in scientific 

and intellectual progress. The ability to deeply understand the nature of the world 

around us (including the sociopolitical world) depends on the repeated application of 

this ability over millennia. Despite the intuitive consensus of which concepts are 

abstract, it was not known what neurally characterizes an abstract concept, beyond its 
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preferential recruitment of left frontal language-based areas (Binder et al., 2005; Wang 

et al., 2010). 

The primary results of this study can be summarized as follows: first, there is 

enough consistent and common information in the neural signatures of abstract 

concepts to reliably identify a set of 28 such concepts within and across participants. 

Second, the neural representations of these concepts are underpinned primarily by 3 

semantically interpretable dimensions (Verbal Representation, Externality/Internality, 

and Social Content). Third, the abstractness of a concept is defined not only by the 

absence of concreteness but also in terms of its verbal characterization. This study 

provides new insight into the neural systems and underlying implicit semantic 

structures that are used to represent abstract concepts. 

 

Systematicity and Commonality of Abstract Concepts 

Given the absence of common perceptual content related to abstract concepts, 

there was reason to anticipate substantial individual differences in the representations 

of such concepts. Nevertheless, the between-participant classification was reliably 

accurate, indicating considerable nonperceptual commonality in the meaning 

representations. The variation among the concepts in their across-participant 
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classification accuracy provides hints at what makes an abstract concept representation 

less or more common. Concepts such as anger and multiplication were less well 

predicted than others across participants (although still reliably so), and these concepts 

tended to be highly instantiable. By contrast, concepts such as necessity, which are 

highly verbally represented, were extremely well predicted across participants. Thus a 

post hoc hypothesis is that across-participant commonality is greater for more verbally-

based concepts and somewhat lower for more instantiable concepts, which may be 

instantiated differently across participants. 

 

Semantic Primitives Associated with the Neural Representation of Abstract Concepts 

The three semantic dimensions underlying the representation of abstract 

concepts are Verbal Representation, Externality, and Social Content. That is, we propose 

that abstract concepts are represented based on: their meaning across a wider variety of 

contexts than concrete concepts (Crutch & Warrington, 2005, 2010; Hoffman, 2016); 

their reliance on using the self as a reference point; and their use of social contexts as a 

reference point. It is useful to highlight that these representations of abstract concepts 

were based on neural activation patterns. It is possible to assess semantic 

representations of abstract concepts based on different types of data, such as 
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cooccurrence properties in large corpora or behaviorally measured semantic features 

(Wang et al., 2017). The dimensions identified in this study provide a neurally -driven 

foundation for understanding the semantic underpinning of abstract concepts.  

The factor analysis procedure identifies regions reflecting the organization of the 

28 concepts along various dimensions. However, none of the factor locations included 

the anterior temporal lobe (ATL), which has been shown to activate to both concrete and 

abstract words (Jefferies et al., 2009; Hoffman, 2016) and has also been shown to be 

involved in the integration of low-level perceptual features of visual objects (Coutanche 

& Thompson-Schill, 2015). A GLM contrast of the 28 abstract concepts vs. fixation 

revealed activation in the superior portion of the ATL, indicating that ATL may serve a 

similar function for all 28 abstract concepts.  

One of the strengths of the approach that was used here is the quantitative 

assessment of the fit of the interpretation of each dimension to the activation data. 

Although the interpretations fit the data well, as with any theoretical proposal, 

alternative interpretations can be generated and quantitatively assessed. 

 

Degree of Abstractness as a Point on a Gradient between Language and Percepts 
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The Verbal Representation factor organizes conceptual representations based on 

the dissociation of activity in neural structures associated with verbal processing (LIFG) 

and spatial/object processing (Figure 2.4; Grill-Spector et al., 2001). LIFG has been 

reliably shown to be involved in verbal processing (Yarkoni et al., 2011; Hoffman, 2016). 

It is incomplete to say that the abstract concepts evoke less activation in regions 

associated with perceptual processing; rather, abstract concepts both evoke less 

activation in regions associated with perceptual processing and evoke more activation in 

regions strongly associated with verbal processing. This dissociation in neural 

patterning suggests that the degree of abstractness of a concept is a point on a 

continuum between language systems and perceptual processing systems. This result 

provides a neural realization for the intuitive idea that abstractness is not a binary 

construct but rather a gradient-like translation of a concept into amore verbal 

encoding. 

This point raises an interesting theoretical question regarding the role of neural 

language systems, particularly LIFG, in the verbal representation of abstract concepts. 

LIFG has been implicated in the integration of semantic relationships among different 

contexts. Abstract concept representations require an integration of meaning from a 

greater variety of contexts relative to concrete concepts (Crutch & Warrington, 2005, 

2010; Hoffman, 2016; Hayes & Kraemer, 2017). Thus, LIFG may become more activated 
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for the concept ethics than gravity because ethics requires integration across more 

semantically variable contexts. The activation in LSMG (and LLOC), by contrast, is 

related to the instantiability of a concept (Figure 2.4). The critical finding here is that 

the degree of perceptual involvement varies systematically across abstract concepts. 

 

Conclusion 

The lack of a perceptual grounding makes abstract concepts difficult to 

characterize in semantic and psychological terms, but a neural framework provides a 

good beginning to the answer. What neurally defines the abstractness of a concept is its 

place on a continuum between perceptible experience and a purely verbal entity. This 

continuum emerges even among a set consisting entirely of abstract concepts. 

Moreover, the present study suggests that abstract concepts rely on semantic features 

that are also not necessarily perceptually grounded, such as our ability to construe 

abstract concepts relative to ourselves, or to use social contexts as a reference. 
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Chapter 3. Project 2: Similarities and differences in the neural 
representations of abstract concepts across English and Mandarin 

 
 
 

Chapter 2 provided a published empirical examination of 28 abstract concepts for 

speakers of the same language. Three semantic dimensions describing the underlying 

structure of abstract concepts were identified including: Verbal representation; 

Internality/Externality; and Social. These dimensions provide a framework for 

understanding how abstract concepts are represented in the brain. However, the 

question of the generalizability of these dimensions remains. Chapter 3 describes a 

published empirical study examining the neural representation of the same set of 28 

concepts across speakers of different languages, specifically, American native English 

speakers and Chinese native Mandarin speakers. Using similar MVPA methodologies, 

the underlying structure of abstract concepts will be assessed across both languages. 

 

Introduction 

Although the neural representations of concepts are generally similar across 

speakers of the same language, the extent of this similarity across languages has yet to 

be measured. When the concept corresponds to a concrete entity, such as an apple, the 

common basis in large part consists of the perceptual and physical properties of the 
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referent (Just et al., 2010). Recent studies using multivariate pattern analyses (MVPA) 

and machine learning techniques have reported cross-language decoding of fMRI 

signatures, namely, across English and Portuguese nouns, (Buchweitz et l., 2012), across 

English, Portuguese, and Mandarin sentences (Yang et al., 2017a, 2017b) as well as 

English, Mandarin, and Farsi stories (Dehghani et al., 2017).  

The shared representational basis of abstract concepts such as ethics and 

causality are more difficult to identify. Given that abstract concepts do not often reflect a 

shared experience of the physical world, require schooling to acquire (Mason & Just, 

2016), and are built on existing conceptual knowledge, there is reason to question the 

degree of commonality across languages in the meaning representations underlying 

abstract concept knowledge. Some theories have suggested that the psychological 

representations of abstract concepts, such as time, are dependent on cultural and 

language differences (Fuhrman et al., 2011; Lai & Boroditsky, 2013) while other theories 

suggest that there are culturally-invariant neural activation patterns for concepts across 

brain regions (Han & Northoff, 2008). Although abstract concepts have been shown to 

be represented similarly across speakers within a given language (Vargas & Just , 2020), 

it has yet to be measured whether or not this common representation extends across 

languages.  
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Among English speakers, the neural activation patterns for abstract concepts 

have been shown to be underpinned by a set of three neurosemantic dimensions, 

namely the degree to which a concept is verbally represented; whether a concept uses 

the self as an internal reference; and whether the concept contains social content. 

Furthermore, in English, the neural representation of abstract concepts has been shown 

to involve regions associated with motor and visuospatial functioning (Dreyer & 

Pulvermüller, 2018; Harpaintner et al., 2020). Other research has supported the 

emphasis of verbal and linguistic-based processing of abstract concepts in Mandarin 

speakers (Wang et al., 2018). The current study compared the neural representations of 

the same abstract concepts in English and Mandarin to illuminate commonalities and 

possible differences between languages in the representation of abstract concepts. 

This study had two main aims: First, to test whether a shared set of semantic 

dimensions underlie the neural activation patterns of abstract concepts across English 

and Mandarin speakers and to determine how well the observed organization of abstract 

concepts along these dimensions corresponds to behavioral judgments of concept 

meaning. Second, to identify differences in the representation of individual concepts 

despite a common underlying structure. Taken together, this study aims to determine 

whether there is a common neural basis for representing abstract concept information 
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across languages while providing a framework for identifying language-specific 

differences in the meaning of individual abstract concepts.  

 

Methods 

Participants 

Ten right-handed native Mandarin speaking adults (age range from 18 to 26, M = 

20.2; six females) and 10 right-handed native English-speaking adults (sample 

previously reported in Vargas & Just, 2020) age range from 20 to 38, M = 25.9; seven 

females;) from the Carnegie Mellon community participated in a 45-min fMRI scanning 

session. To mitigate cross-cultural familiarity, the group of native Mandarin speakers 

included only those who had spent less than 1 year living outside of the Peoples Republic 

of China. Informed consent was obtained from all participants in accordance with the 

Carnegie Mellon Institutional Review Board. Data from two Mandarin speakers and one 

English speaker were excluded due to the participant falling asleep during the scan. An 

additional Mandarin speaking participant's data was excluded due to their 

misunderstanding of instructions, resulting in data analysis of seven Mandarin speakers 

and nine English speakers.  
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Experimental Paradigm 

For both language groups, the stimuli were 28 words referring to abstract 

concepts distributed among seven categories. Although the category labels were never 

mentioned nor presented to participants, they are listed here in parentheses for 

expository purposes, preceding the actual stimuli: (social): gossip, intimidation, 

forgiveness, and compliment; (emotion): happiness, sadness, anger, and pride; (law): 

contract, ethics, crime, and exoneration; (metaphysics): causality, consciousness, 

truth, and necessity; (religiosity): deity, spirituality, sacrilege, and faith; 

(mathematics): subtraction, equality, probability, and multiplication; (scientific): 

gravity, force, heat, and acceleration. The set of concepts was translated from English 

to Mandarin by two independent native Mandarin speakers and then back-translated to 

English by a separate independent Mandarin speaker. The translations were then 

verified by a fourth independent Mandarin–English bilingual to ensure the meaning 

best matches the original English concept (see Table 3.1 for Mandarin translations).  
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T able 3.1. Table of all 28 abstract concepts stimuli presented to English and Mandarin speaking 
participants

 

 

Concept abstractness ratings were compared across the languages. English 

abstractness ratings were obtained from the Brysbaert et al. (2014) database while 

Mandarin ratings were obtained from MELD-SCH (Xu & Li, 2020). Because the 

concepts in the MELD-SCH were limited to words with two characters, abstractness 

comparisons were restricted to the 18 concepts present in both databases (18 of 28 

concepts), r = 0.64, p < 0.01. Word frequencies were compared across languages using 

English (Brysbaert et al., 2014) and Mandarin (Cai & Brysbaert, 2010) word frequency 

databases. The correlation comparing the word frequencies of the concepts across 

languages was r = 0.3, p = 0.12, indicating some minor differences in word frequency 

across languages.  

Prior to the scanning session, participants were presented with a list of the 28 

concepts and asked to write down three prominent properties of the concept's meaning. 

Possible properties included synonyms, definitions, or experiences associated with the 
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concept intended to guide participants to mentally evoke a consistent representation for 

each concept. Participants were instructed to write properties that came to mind quickly 

and naturally. 

There was a total of six presentation blocks of the same 28 stimulus concepts 

(using different random permutation orders in the different presentations) in the 

scanning session, distributed between three runs (two blocks per run) to allow 

participants a brief rest between runs. A 17 s “X” was presented at the beginning of each 

block (two per run) to use as a baseline measure of neural activity. The set of 28 stimuli 

was presented six times to provide multiple datasets for training and testing the 

machine learning classifier in its cross-validation protocol. Prior to the scan, 

participants briefly practiced the experimental paradigm in a mock MRI scanner while 

receiving head-motion feedback to minimize movement.  

On each trial, participants were visually presented with the stimulus word 

concept in their native language for 3 s and were asked to think about the properties 

associated with that concept. Following this 3 s period, participants were instructed to 

clear their mind over the course of 7 s while watching a blue ellipse shrink to 

nonexistence, to allow the hemodynamic response to approach baseline before the next 

concept appeared. The shrinking ellipse provided a visual fixation target and conveyed 

the progress through the 7 s interstimulus interval.  
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fMRI parameterization and image processing  

Functional images were acquired on a Siemens Verio 3.0T scanner and a 32-

channel phased-array head coil (Siemens Medical Solutions, Erlangen, Germany) at the 

Scientific Imaging and Brain Research facility (SIBR) at Carnegie Mellon. Scans were 

acquired using a gradient-echo echo-planar imagining pulse sequence (TR = 1,000 ms, 

TE = 25 ms, and a 60 ̊ flip angle); each volume contained 20 5-mm thick AC-PC aligned 

slices (1-mm gap between slices). The acquisition matrix was 64 x 64 with 3.125 x 3.125 

x 5-mm voxels. SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) was used to correct for head 

motion and normalize to the Montreal Neurological Institute template. The percent 

signal change (PSC) relative to the fixation condition was computed at each gray matter 

voxel for each stimulus presentation (the PSC data was converted to z-scores).  

The main measure of activation evoked by a concept consisted of the voxel 

activation levels acquired around the peak of the hemodynamic BOLD response, namely 

the mean of four brain images acquired once per second (i.e., a TR of 1,000) within a 4 s 

window, offset 5 s from the stimulus onset (i.e., images 5–8). Mean PSCs were 

normalized across voxels for each trial (MPSC). Previous studies have reported that the 

mean activation across these four images (as opposed to a GLM measure) yields a high 
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classification accuracy obtained by a classifier that relates the activation pattern to the 

concept (Bauer & Just, 2017; Just et al., 2010; Mason & Just, 2016). 

 

Voxel Stability 

The analysis focused on the most stable voxels, those whose activation levels were 

similarly modulated by the set of 28 abstract concepts each time the set was presented. 

This property selects voxels whose activation levels constitute neural signatures of a set 

of concepts (Bauer & Just, 2017; Just et al., 2010, 2017; Kassam et al., 2013; Mason & 

Just, 2016; Mason & Just, 2020; Yang et al., 2017a, 2017b). Thus, a voxel with high 

stability is one that has a stable tuning curve over the set of stimuli. A voxel's stability 

was computed as the mean pairwise correlation of its 28 MPSC activation levels (for the 

28 abstract concepts) across all pairwise combinations of the presentation blocks in the 

training data. Stable voxels were used as features in classification and factor analyses. 

The stable voxels selected in the training data for classification are then used in the test 

set. The 120 most stable voxels in the whole brain were used as features for 

classification. This approximate number of voxels has been shown to reliably capture 

meaningful information in the neural representation of individual concepts (Just et al., 

2010; Mason & Just, 2016). To demonstrate that the results and conclusions are not 
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particularly sensitive to variations in the number of features, the classification analysis 

was repeated varying the number of stable voxels used from 20 to 10,000 (in 20 voxel 

increments); the peak classification accuracy occurred between 120 and 180 stable 

voxels. The mean classification accuracy gradually decreased with the inclusion of 

additional stable voxels beyond 180. To be consistent with previous studies, 120 stable 

voxels were used as features. 

 

Within-participant Classification 

The data were analyzed using various classification approaches, each informing a 

different aspect of the underlying concept representations. Within participant concept 

classification captures participant specific reliability as well as idiosyncrasies in concept 

representations. High accuracies in the within participant classification analyses suggest 

individual participants were able to think about a specific concept consistently and 

distinctly, making them identifiable by the classifier. A Gaussian Naïve Bayes (GNB) 

classifier was trained to decode the 28 concepts, based on its training on an independent 

subset of the activation data from four of the six presentations and it was tested on 

the mean of the two left-out presentations. This cross-validation procedure was followed 

in 15 (six choose two) folds. The features used by the classifier consisted of the activation 



81 

 

levels of the 120 most stable voxels in the training set from anywhere in the whole brain. 

The classifier's mean normalized rank accuracy was used to assess decoding accuracy 

(i.e., the mean over folds of the normalized rank of the correct response in a probability -

ranked list of all 28 alternatives, where chance level is 0.5). Chance performance was 

determined using a 10,000-iteration permutation test on each participant separately for 

each concept-level prediction. 

 

Between participant, within language classification 

Between participant within-language classification quantifies the commonalities 

of the neural representations across participants of the same language. For each 

language group separately, a GNB classifier was trained on the neural signatures of the 

concepts from all but one participant and tested on the left-out participant's data. The 

mean rank accuracy was computed across the resulting nine folds for the English group 

and seven folds for the Mandarin group. Chance performance was determined using a 

10,000-iteration permutation test. The voxels used in the classification across 

participants were those with the highest stability across participants from that 

participant's language group. To compute the cross-participant stability of voxels, the 

MPSC data was first averaged across all presentations for each participant, and then the 
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mean pairwise correlation of a voxel's 28 MPSC activation levels (for the 28 abstract 

concepts) was computed between all pairs of the remaining participants in the training 

data. The 120 most stable voxels (i.e., those with the highest mean pairwise correlation) 

from the whole brain across the training participants (eight for the English group, six for 

the Mandarin group) were selected as features for the classifier. The methods for the 

cross-language classification, which was based on the factor locations, are described 

below after the factor analyses. 

 

Factor Analysis 

To uncover the semantic dimensions underlying the representations of the 28 

abstract concepts, a two-level factor analysis was computed based on the combined data 

from the participants of both languages; a factor analysis was first applied to the data of 

individual participants and then the second factor analysis used the factor scores from 

the first level as input (using a procedure described in detail in Just et al., 2014). The 

factor analysis of the English-specific activation data was previously reported and used 

similar methods (Vargas & Just, 2020). The factor analysis of the Mandarin-specific 

data followed the same procedure with the exception that 6 second-level factors were 
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extracted instead of five. The factor analysis was implemented using a principal factor 

analytic algorithm in MATLAB (R2011a; version 7.12; The MathWorks, Natick, MA). 

The inclusion of brain regions in the combined-language second level factor 

analysis was based on broad AAL (Automated Anatomical Labeling) regions containing 

voxels that met three criteria: the voxels had to: (1) be stable in the cross-participant 

stability map; (2) have factor loadings above a threshold of ≥ 0.4; and (3) form clusters 

of at least 15 contiguous voxels. Spheres were then generated using the centroids of 

these clusters. The data from all 16 participants (seven Mandarin and nine English) 

were analyzed to identify interpretable factors. As described in Vargas and Just (2020), 

an initial map of the union of 800 stable voxels from each language was generated. This 

map was then parcellated using AAL (Tzourio-Mazoyer et al., 2002). The parcellated 

map was then used to identify AAL-defined regions with large numbers of stable voxels 

relative to the total number of voxels in the AAL region. Then, the input to the first -level 

factor analysis (performed within each participant) consisted of the mean activation 

levels of the most stable voxels in each of the contributing AAL regions. The total 

number of voxels used in this factor analysis was 410, similar to the number used in 

previous studies (Kassam et al., 2013; Vargas & Just, 2020). The 410 voxels were 

selected with the number per AAL-defined ROI based on the numerosity of the ROI's 

stable voxels in the initial map: 40 voxels from left inferior frontal gyrus (LIFG); 30 
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voxels from left posterior cingulate cortex; 60 voxels from frontal cortex bilaterally; 60 

voxels from occipital cortex bilaterally; 60 voxels from temporal cortex bilaterally; and 

160 voxels from parietal cortex bilaterally. Because the results have been shown to be 

insensitive to minor variations in the data analysis parameters, the same parameter 

values were used in this study as in Vargas and Just (2020). To assess the dependency of 

the analyses on the choice of particular parameter values, the combined-language 

second-level factor analyses were computed with systematic variation of several 

parameters, namely the number of input voxels, number of first level factors, and 

number of second level factors. The effects of these variations were evaluated by 

correlating the factor-scores from the second-level dimensions across the variations and 

comparing the locations of the voxel clusters with high factor loadings across the 

variations. The effects of these variations were found to be minor, so the parameter 

values used in the analysis of this study were the same as those used in the previous 

study of these concepts (Vargas & Just 2020).  

This first-level factor analysis was performed on all 16 participants individually, 

extracting seven factors for each subject, resulting in a total of 112 vectors of factor 

scores. A voxel was determined to belong to a factor if its factor loading exceeded a 

threshold 0.4 (a typical value for a factor loading threshold). This same threshold was 

used in previous studies that characterized brain locations identified through factor 
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analysis (Just et al., 2010, 2014; Mason & Just, 2016). To eliminate isolated single 

voxels, the factor-loading voxels were required to form clusters containing a minimum 

of 15 voxels. Spheres for each factor were generated based on the centroids of clusters 

and extend to account for minor inter-participant variations in specific voxel locations 

for that factor.  

The goal of the first-level factor analyses was to partition the set of input voxels 

into subsets that responded similarly across the set of abstract concepts, specifying 

seven factors. This analysis produced factor scores for the 28 concepts, for each of the 

seven factors, for each of the 16 participants. The 16 participants' seven sets of factor 

scores were concatenated and used as input into the second, group-level factor analysis 

(a total of 112 sets of 28 factor scores) to further reduce the dimensionality to six 

dimensions and to seek consistency across participants and languages. To evaluate the 

robustness of the factor results, analyses were computed with varying number of input 

voxels and factors. Although there were minor variations in the scores of individual 

concepts, the overall factor interpretation and factor scores for concepts remained 

generally unchanged. 

To confirm there is a common neural basis across languages, a factor analysis was 

computed on both languages separately and the factor scores were correlated between 

languages for each identifiable dimension. The correlations for the second-level factor 
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scores across languages for each identifiable dimension are as follows: Verbal 

representation: r = 0.55, p < 0.01; rule-based: r = 0.45, p < 0.05; social content: r = 

0.42, p < 0.05; externality–internality: r = 0.32, p < 0.1; word length: r = 0.20, n.s. 

Notably, the previously unexplainable factor described in Vargas and Just (2020) was 

reliably correlated with the newly identified rule-based factor in the Mandarin group. 

Additionally, the lack of correlation between the low correlation of the word length 

factor scores across languages reflects language-specific orthographic differences. 

Regions for the factor analysis of both languages combined were selected based 

on their being populated by stable voxels. Whole-brain voxel-wise stability was 

computed for each participant separately and averaged across participants. This method 

allows for a spatially stable common set of voxels to be identified. The interpretation of 

each individual factor was largely based on the distribution of the corresponding factor 

scores across the 28 concepts (particularly the nature of the items at the two extremes of 

the factor scores) and based to some degree on previous findings that associated 

particular processes with the factor locations. Moreover, converging evidence for the 

factor interpretations was provided by the correlation between the factor scores and 

independent participant ratings of the items with respect to the factor as interpreted. 
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Behavioral rating of semantic dimensions 

To obtain converging evidence for the factor interpretations, an independent 

group of 20 participants (10 native English speakers and 10 native Mandarin speakers) 

were asked to rate each stimulus concept on a scale from 1 to 7 with respect to its 

salience to the dimensions as they were interpreted here (e.g., the degree to which a 

concept, such as ethics, was verbally vs. perceptually based). These ratings of the 

concepts along each of its dimensions were then used as independent variables in a 

multiple regression model to predict the activation pattern of a concept in the factor 

locations (Just et al., 2010; Vargas & Just, 2020).  

The correlations between the behavioral ratings of English and Mandarin 

participants for the 28 concepts on each dimension were as follows: Verbal 

representation, r = 0.67, p < 0.001; externality–internality, r = 0.93, p < 0.001; rule-

based, r = 0.94, p < 0.001; social content, r = 0.9, p < 0.001. Given the highly reliable 

correlation between English and Mandarin behavioral ratings, averaged ratings were 

used as input to the regression model. 

 

Predictive modeling 
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To evaluate the how well the factor interpretations fit the activation data, a 

predictive modeling procedure was used to assess whether the activation pattern of an 

individual concept could be predicted, based on the mapping between behavioral ratings 

of all the other concepts in the set (i.e., leaving out the to-be predicted item) with respect 

to the factor interpretations and their activation patterns. Accurate predictions would 

provide face validity for the factor interpretations. Activation predictions for each 

concept were made by developing a separate regression model for each participant to 

predict a left-out concept's activation pattern, based on the model weights from the 

remaining 27 concepts. The factor locations used were obtained from factor analyses 

based on all participants except for the one being predicted. The mean prediction 

accuracies for the 28 concepts were then averaged across participants. A prediction's 

accuracy was assessed by computing the Euclidean distance between the activation 

pattern predicted by the model and the observed activation data, relative to the distance 

to the representations of the other 27 concepts. The normalized rank of the distance 

between the predicted and test images (among the 28 distances) was the measure of 

prediction accuracy. Significance was computed using a permutation test. The results of 

the predicted images with correct labels were compared against the distribution of rank 

accuracies of predicted images with random labels for 10,000 random permutations. 
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Factor-based cross-language classification 

Cross-language factor-based classification quantifies the commonality of 

representation across languages based on the semantic dimensions underlying the 

concept representations. To test whether the factors (or dimensions) are sufficient for 

identifying the neural signatures of individual abstract concepts across languages, a 

GNB classifier was trained on the neural signatures from all participants from one 

language and was tested individually on each of the participants from the other 

language. The data consisted of the mean MPSC values of each concept across 

repetitions for each participant in the factor locations of the five interpretable factors in 

the factor analysis including both languages. A classifier was trained on the data of all 

nine native English speakers and was tested on each of the seven native Mandarin 

speakers and vice versa. The 28 rank accuracies from each participant in the test 

language were then averaged. There were minimal differences in accuracies between the 

two classifiers t(27) = 0.01, n.s., so the accuracies of the two classifiers were averaged. 

Above-chance performance at p < 0.01 is 0.56 for concept-level predictions as 

determined using a 10,000-iteration permutation test. 
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Results 

Commonality of abstract concept representations within and across languages 

Within-participant classification in the two languages 

The individual 28 abstract concepts were reliably identified from their multi-

voxel neural signatures within each language by a classifier. This mean classification 

accuracy for native English participants, 0.83, was reliably above chance (range = 0.76–

0.94, p < 0.001; mean cutoff for p < .001 = 0.60; SD = 0.003) as was that of the seven 

native Mandarin participants (mean = 0.77; range = 0.66–0.84). Although the concepts 

of all participants in both groups were identifiable, a t-test comparing the within-

participant classification accuracies of the 28 concepts across languages indicated that 

the classification accuracy was reliably higher in the English participants, t(27) = 6.70, p 

< 0.001.  

Although the concepts differ in their overall identifiability between the two 

language groups, these results indicate that these abstract concepts have distinctive 

neural signatures in both languages that can be characterized by the multi-voxel 

activation pattern captured by the classifier. 

 

Commonality of the concept representations across speakers of the same language 
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A between-participant, within-language classification was performed to 

determine whether these abstract concept representations were similar across speakers 

within a language group. For English speakers, when the classifier was trained on the 

data of all but one participant, the mean rank accuracy of the concept identification in 

the data from the left-out participant was 0.74, p <.01, indicating that the neural 

signatures had a substantial amount of commonality across participants (Table 3.2). All 

28 individual concepts were reliably classifiable between English-speaking participants, 

with a range of 0.58–0.94 (p < 0.01=0.55). For Mandarin speakers, when the classifier 

was trained on the data of all but one participant, the mean rank accuracy of the concept 

classification in the test data from the left-out participant was 0.73, p < .01 (Table 3.2). 

All 28 individual concepts were reliably classifiable between Mandarin-speaking 

participants, with a range of accuracies from 0.57 to 0.92 (p < 0.01 = 0.54) except for 

contract which was classifiable only at p < .05. Thus, there is a comparable degree of 

commonality across participants within each language group in their neural 

representation of the abstract concepts. Below, the underlying dimensions of the 

concept representations across languages are described, followed by an assessment of 

the commonality of the neural representations of individual concepts across languages, 

taking the underlying dimensions into account. In the few cases where between-
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participant decoding was more accurate than within-participant decoding within a 

language, the difference might be attributable to the different way the stable voxels 

were selected in the two cases. The consensually chosen stable voxels in the between-

participant analysis could have reduced idiosyncratic properties in the concept 

representations. 
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T able 3.2. Commonality of concepts within and across languages as measured using concept‐level 
decoding rank accuracy. Dashed lines separate concept categories.  

 

Mandarin-specific factor analysis 

The Mandarin-specific factor analysis indicated a common neurosemantic basis 

for the set of 28 abstract concepts across English and Mandarin, revealing five 

interpretable dimensions, namely: Verbal representation, social content, rule-based, 

externality/internality, and word length. The concepts located at the extremes of each of 
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these dimensions and their respective factor scores are shown in Table 3.3. The 

correlations between the Mandarin behavioral ratings and Mandarin-only factor scores 

for the 28 concepts on each dimension were as follows: Verbal representation, r = 0.57, 

p < 0.01; externality–internality, r = 0.66, p < 0.001; rule-based, r = 0.34, p = 0.07; 

social content, r = 0.27, p = 0.16. The brain locations of the voxel clusters with high 

loadings on the interpretable factors for the Mandarin-specific analysis are shown as 

spheres in Figure 3.1. 

 

Figure 3.1. Locations for five interpretable factor dimensions from Mandarin-specific analysis. These 
spheres were specified using the centroids of clusters of voxels (containing a m inimum of 10 voxels) with 

high loadings (>0.4) on each of the factors.  
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T able 3.3. Mandarin-only factor analysis output including: six  concepts with the highest and lowest 
factor scores for each mapped dimension, factor locations, and correlations between  factor scores and 
behavioral ratings.

 

 

Combined-language factor analysis 

The commonality of neural representation for abstract concepts in the two 

languages was characterized by six underlying dimensions, five of them readily 

interpretable. Of the five interpretable dimensions, four were semantic in nature, which 

we have labeled: Verbal representation, internality–externality to self, rule-based, and 

social content. (Each dimension is further described in the Discussion). The remaining 

non-semantic dimension corresponded to the length of the printed word that named the 

concept. The five interpretable group-level factors accounted for 36% of the variance in 

the participant-level factors. All but one of these factors (rule-based concepts) have been 

identified in a previous study of abstract concepts (Vargas & Just, 2020). The brain 

locations of the voxel clusters with high loadings on the interpretable factors are shown 
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as spheres in Figure 3.2. The concepts located at the extremes of each of these 

dimensions and their respective factor scores are shown in Table 3.4.  

Behavioral ratings of each concept reflecting the saliency of each dimension (as it 

had been interpreted) were used as independent variables in a linear regression model 

that predicted the activation level of each concept in the factor locations. The mean rank 

accuracy of predictions for left-out concepts, averaged first over concepts and then over 

participants, was 0.73, p < 0.001. Performing the predictive modeling analysis while 

excluding the word length dimension resulted in a mean classification accuracy of 0.72, 

p < 0.001, which was not significantly different from the accuracy when word length was 

included, t(27) = 1.80, n.s.  

 

Figure 3.2. Locations for five interpretable factor dimensions from combined-language analysis. These 
spheres were specified using the centroids of clusters of voxels (containing a minimum of 10 voxels) with 

high loadings (>0.4) on each of the factors.  

 



97 

 

The correlation for a given dimension between the factor scores of the 28 

concepts and their behavioral ratings were reliable for all semantic dimensions for both 

languages. The correlations between ratings and factor scores from the language-

specific factor analyses for each semantic dimension are as follows: the externality 

dimension had an r = 0.63, p < 0.001 for Mandarin and r = 0.70, p < 0.001 for English; 

the social dimension had an r = 0.52, p < 0.01 for Mandarin and r = 0.46, p < 0.05 for 

English; and the rule-based dimension had an r = 0.40, p < 0.05 for Mandarin and r = 

0.39, p < 0.05 for English. The similarity between languages in the correlations between 

factor scores and mean behavioral ratings for the Verbal dimension: in the case of the 

English ratings, it was r = 0.82, p < 0.001, and for the Mandarin ratings, it was r = 0.42, 

p < 0.05. These significant correlations between the behavioral ratings and factor scores 

indicate convergent validity for the interpretations of the semantic dimension for both 

English and Mandarin samples. 

 

T able 3.4. The six  concepts with the highest and lowest factor scores for each interpretable dimension 
from the combined-language factor analysis. 
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Common representation supported by cross-language classification 

To assess the similarity of individual concept representations across languages 

based on the underlying factors, a classifier was trained on one language to predict 

individual concepts in the other language. Cross-language classification of individual 

concepts resulted in a mean rank accuracy (averaged over concepts, direction of 

decoding, and participants) of 0.65, p < 0.001. (The right-most column in Table 3.2 

shows the accuracies for individual concepts.) When individual concepts were averaged 

within categories, the categories with the highest accuracies were mathematics (0.67), 

scientific (0.78), emotion (0.70), and social (0.70). When the features for the 

between participant cross-language classification were defined independently of the 

factors, using the union of 120 stable voxels from each language regardless of their 

association with any of the factors, the mean accuracy was 0.69, p < 0.01. The 
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classification accuracy was only slightly lower (0.65 vs. 0.69) when computed using only 

stable voxels associated with factors, indicating how well a factor-based account of the 

data accounts for the similarity between languages in their neural representations of 

abstract concepts. 

 

Differences in the neural representation of concepts across languages 

 Although a common set of dimensions was identified (as indicated by the reliable 

correlations of factor scores across the two language specific factor analyses in Table 

3.5), the distribution of the items along corresponding factors was similar but not 

identical (Table 3.3 and Table 3.1). Independently collected behavioral ratings provided 

converging evidence that a few individual abstract concepts are represented somewhat 

differently along the verbal representation dimension. English speakers rated emotions 

(e.g., happiness and anger), social concepts (e.g., intimidation and compliment) and 

spiritual concepts (e.g., deity and sacrilege) as being more verbally represented than did 

Mandarin speakers. Additionally, Mandarin speakers rated mathematical concepts (e.g., 

subtraction and multiplication) and scientific concepts (e.g., heat and acceleration) as 

more verbally represented than did English speakers.  
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T able 3.5. Correlation matrix of factor scores across English (rows) and Mandarin (columns) factor 
analy ses for each semantic dimension. 

 

 

Qualitative descriptions of the concept properties that participants reported 

suggest polysemous words such as equality were represented somewhat differently 

across languages. English speakers tended to interpret the concept of equality partly in 

the context of social equality while Mandarin speakers tended to interpret equality in 

terms of its mathematical meaning. These results suggest that the difference between 

languages is not in brain function but in the meanings of the “translation equivalents” of 

the polysemous word equality in the two languages. These differences could be due in 

part to differences in relative frequency or prominence of the two senses of the word in 

the two languages. 
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Discussion 

Overview 

The results of this study suggest that a common neural infrastructure exists for 

representing abstract concepts across English and Mandarin. Factor analyses using 

activation data from both languages revealed four semantically interpretable 

dimensions, verbal representation, internality– externality, social content, 

and rule-based representation underlying the activation patterns of 28 abstract 

concepts for both languages. A secondary finding was that although the neural regions 

or systems associated with these representations are common, the representations of 

individual concepts sometimes differ with respect to the salience of an underlying 

dimension. 

 

Language-invariant semantic primitives of abstract concept representation 

The four emerging neurosemantic dimensions underlying representation of 

abstract concepts are: verbal representation, internality–externality, social 

content, and rule-based representation. The ability to think of abstract meaning 

draws on the ability to think of concepts in terms of other verbal concepts, to rely on the 

use of the self as a reference, to think in terms of social contexts, and to consider the 
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rules that govern certain concepts. The combined-language factors highlight possible 

subnetworks that are present in the general semantic network identified by Ralph et al. 

(2017). These subnetworks represent the processing of specific types of semantic 

information. Regardless of language, people rely on the same broad neural systems to 

represent abstract concept meaning.  

Although previous research has found emotion processing to be involved in the 

processing of abstract concepts (Kassam et al., 2013; Kousta et al., 2011; Vigliocco et al., 

2014), an emotion-specific dimension did not emerge in our factor analyses. However, 

one of the factor locations of the social content dimension identified from the combined-

language factor analysis, posterior cingulate, is often associated with affective 

processing. The inclusion of this region could be due to the affective involvement in 

abstract concepts like intimidation, pride, and forgiveness for the social dimension. 

Vigliocco et al.'s (2014) abstract stimuli were selected on a different basis (concreteness 

ratings) than ours (membership in seven abstract semantic categories). Many of our 

abstract categories (such as science, mathematics, and metaphysics (logic) and hence 

their members (e.g., gravity, force, acceleration, and causality, truth, necessity) are 

sparsely represented in the Vigliocco stimulus set. By contrast, the Vigliocco stimulus 

set contains many descriptors of mental states that have a significant affective 

component, such as agony delirium, frenzy, and panic. It may be that an affective 
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component plays a larger role in the representations of abstract concept representations 

pertaining to mental states rather than to physical or constructed worlds. 

 

The verbal representation dimension of abstract concepts 

This dimension organizes concept representations based on their degree of 

association with word (verbal) representations (manifested as activation in left inferior 

frontal gyrus (LIFG, specifically, the triangular subregion) and disassociation with 

visuospatial processing and action imagery (lower activation in LLOC and LSMG) 

(Vargas & Just, 2020). The verbal representation dimension accounted for the most 

variance (9%) in the participant-level factor representations and was the most salient 

dimension for all participants in both languages. Concepts such as faith, spirituality, 

and ethics anchor the verbal extreme of this dimension while concepts such as heat, 

gravity, and force anchor the other, nonverbal extreme. The concepts at the verbal 

extreme evoke activation in language areas, presumably because the concept evokes the 

thought of verbal labels for other related concepts. The presence and salience of this 

dimension in these data and in previous studies work (Vargas & Just, 2020; Wang et al., 

2010) provide converging evidence for the prominent role of this semantic dimension in 

the representation of abstract concepts. 
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The self-based dimension of abstract concepts 

The internality–externality dimension organizes conceptual representations 

based on the degree to which a concept uses the self as a reference. Concepts such as 

pride, spirituality, and sadness anchor the internal extreme of the dimension while the 

concepts causality, gravity, and sacrilege anchor the external extreme. This dimension 

accounted for 8% of the variance in the participant-level factor analysis. This factor's 

locations include RSMG, a region shown to be related to the projection of one's own 

mental state onto others (Silani et al., 2013). 

 

The social interaction dimension of abstract concepts 

This dimension organizes abstract representations based on whether they entail a 

social component. The concepts intimidation, pride, gossip, and forgiveness typify the 

extreme of this dimension. This dimension accounts for 6.4% of the variance in the 

participant-level factor analysis. The factor locations include regions associated with 

autobiographical information processing (posterior cingulate) and theory -of-mind (right 

temporoparietal junction), as well as the triangular region of LIFG. Although the 

triangular region of LIFG was a component of the social dimension in the combined-
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language factor analysis, the presence of this component emanates from the Mandarin-

specific data (Figure 3.1). This participation of LIFG in the Social dimension only in 

Mandarin is an example of differential involvement of various components of meaning 

across languages. It is uncertain from our study what functional role LIFG is 

contributing to this dimension; for example, it is possible that some abstract concepts 

with a social component also entail an associated verbal expression that LIFG references 

and this LIFG role may be differentially used in Mandarin. 

 

The rule-based dimension of abstract concepts 

This dimension organizes concepts in terms of their being based on some set of 

rules or that define or are defined by specific, precise relationships between other 

concepts. The concepts multiplication, probability, and ethics typify this dimension. 

The factor locations are left precuneus and right supramarginal gyrus. This factor 

accounts for 7.1% of the variance in the participant-level factor analysis. The regions 

associated with this dimension share a partial overlap in left parietal cortex with regions 

previously identified to be associated with algebraic and equation-based processing 

(Mason & Just, 2016). The Mandarin-specific factor analysis indicated that one of the 

rule-based factor locations was in the triangular region of LIFG (Figure 3.1). This region 
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is sometimes associated with semantic selection (Badre et al., 2005), and its role in the 

rule-based representations may entail reference to a verbal expression of some aspect of 

a rule. 

 

The neural representation of word length in English and Mandarin 

This dimension organizes the concepts in terms of the length of the written word 

that names them. For English, the word length factor scores are correlated with the 

number of characters in a word, with r = 0.68, p < 0.001. For Mandarin concepts, the 

number of strokes was used as a measure of word length. There was insufficient 

variance in the number of characters of the set of Mandarin concepts, with 24 of the 28 

concepts containing two characters (M = 2.04; SD = 0.5). For Mandarin, the word 

length factor scores are correlated with the number of strokes in a word, with r = 0.56, p 

< 0.01. Although the number of characters and the number of strokes in a word are not 

correlated (r = 0.2, n.s.), when normalized (converted to z-scores) and averaged, the 

resulting relative word-length measure of participants of both languages was correlated 

with the factor scores of this dimension at r = 0.8, p < 0.001. The region associated with 

this dimension (i.e., where the voxels with high loadings on this factor are located) is 
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isolated to the occipital pole. This finding suggests the presence of a language-common, 

word length dimension that captures some aspect of the early visual percept of the word. 

 

Commonality of meaning for abstract concepts 

The common neural organization of the concepts, as characterized by the shared 

underlying semantic dimensions, was sufficient to serve as a basis for reliably classifying 

(identifying) individual concepts using the activation signature from the other language. 

This cross-language classifiability provides converging evidence for a language-invariant 

semantic representation of abstract concepts across the set of 28 concepts. The high 

cross-language decodability of mathematics and science concepts could be attributable 

to the language-invariant algebraic expression of these concepts (Mason & Just, 2016). 

The high cross-language decodability of emotion and social concepts could be 

attributable to a common embodied nature of these concepts.  

The similarity of the factor analysis outcomes in the two languages indicates a 

common underlying neurocognitive infrastructure for processing abstract concepts. This 

semantic resource distributed across multiple brain locations constitutes a more 

specialized subset of regions previously identified as a general semantic network (Ralph 

et al., 2017). These regions were sufficient for reliably decoding individual abstract 
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concepts across languages based on their neural representations. However, some of the 

underlying dimensions were differentially salient across languages. 

 

Nuances in the meaning of individual abstract concepts across languages 

Not all concepts were decoded equally accurately across languages; in each 

language, there were individual concepts that were reliably classified within language 

but not across language. For example, causality was highly decodable within English 

(0.89 accuracy) and Mandarin (0.8) but less decodable across languages (0.62). In these 

cases, the semantic properties (e.g., contexts or associated concepts) that were 

generated by participants for these concept representations could be homogenous 

within each language but distinct across languages.  

Low cross language decodability could often be explained by a differential 

salience of verbal processing (as is this case for some concepts such as consciousness, 

necessity, or faith) while other concept differences could be attributable to differing 

senses of meaning across languages. One such example cited above is that in Mandarin, 

the concept, equality, was more strongly interpreted in its mathematical sense than 

social sense relative to the English interpretation. These differences could be caused by 

differences in how concepts like equality are learned or taught, or the differences may 
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arise because of the polysemy of some of the words used to describe the abstract 

concept. Due to small sample sizes, it is uncertain whether cultural differences or 

characteristics of the two samples of participants or nonequivalence of the stimulus 

words' connotation or senses were responsible for the differences between languages in 

some of the neural representations.  

In addition to occasional nuances of a difference between languages in the neural 

representations of individual concepts, the underlying dimensions sometimes played a 

larger role in one language than the other. For example, the verbal representation 

dimension accounted for 10% of variance in the English factor analysis but only 7% in 

the Mandarin analysis. Differences such as these indicate that abstract concepts in the 

two languages can evoke various dimensions of meaning to different degrees. Such 

differences could be attributable to differences in the senses or connotation of the 

translation-equivalent word concepts. 

 

Conclusion 

Factor analyses revealed a set of common neurosemantic dimensions that 

constitute the basis for the representation of abstract concepts across languages: verbal 

representation, internality–externality, social content, and rule-based content. The 
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subsequent predictive modeling based on behavioral ratings of the concepts provides 

convergent validity for the factor interpretations. The successful cross-language 

classification suggests that the underlying semantic dimensions provide a sufficient 

basis for decoding abstract word concepts across languages. Although the neural 

dimensions used for representing abstract concepts are common across languages, 

differences in the meaning of some individual concepts can be accommodated in terms 

of differential salience of particular dimensions. These semantic dimensions constitute a 

set of neurocognitive resources for abstract concept representation within a larger set of 

regions responsible for general semantic processing. 
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Chapter 4. Project 3: Representational differences in Socioenvironmental 

Concepts 

 

The results of the study described in Chapter 3 suggest there is a common 

semantic structure underlying abstract concepts across linguistically defined groups. 

However, there is little reason to expect large differences in the meaning of the abstract 

concepts or their associations across languages. That is, across languages, the definition 

of concepts’ meaning is not hypothesized to differ, nor are they expected to differ in 

cultural contexts or situations they are experienced. For example, a concept such as 

contract refers to a legally binding agreement between two persons or entities 

regardless of culture or language. There are no systemic or historical incidents that 

would bias the semantic association for native speakers of either language just as the 

concept of multiplication is likely experienced in classrooms or in the context of 

engineering problems for both Chinese and American cultures.  

Across people that share a common language, however, there may be subtle 

variation in concept associations that are driven by differences in experiences. For 

example, marginalized communities often have largely different life experiences than 

individuals from dominant cultural groups. Thus, we would expect variability in concept 

associations based on such group differences within a larger, linguistically defined 

culture.  
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Chapter 4 attempts to address this question by contextualizing this it in an 

existing theoretical framework for describing the influence of environmental factors on 

concept associations, the Bias of Crowds model (Payne et al., 2017).  This model asserts 

that environmental factors (i.e., contexts and situations) are reflected in concept 

associations. Although much of this research has examined the associations of attributes 

and concept categories towards specific racial groups, this framework could be used to 

describe how racial disparities in the United States (particularly between White and 

Black Americans) influence how people associate institutions where these disparities are 

present. These institutions belong to a family of concepts we will refer to as 

socioenvironmental concepts.   

  

Introduction 

 The concept apple refers to a round sweet fruit regardless of whether you say it in 

English or Mandarin just as a contract refers to a binding agreement. There is evidence 

for a common neural basis (as measured using functional Magnetic Resonance Imaging 

(fMRI)) in the semantic organization of abstract concept representations across 

languages (Vargas and Just, 2022). Despite this commonality there is little reason to 

hypothesize differences in the meaning of concepts beyond words having polysemous 

meaning in one language and not the other. However, research on the implicit biases of 
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racial groups provides a framework for hypothesizing differences in the semantic 

organization of a set of concepts. 

 Behavioral research on implicit concept associations, contextualized as the Bias 

of Crowds model, suggests that the associations between concepts reflect environmental 

factors (broadly described as contexts or situations) (Brown-Iannuzzi et al., 2017; Lee et 

al., 2017; Payne et al., 2017; Vuletich and Payne, 2019). Contexts can be as proximal as a 

specific personal encounter or as distal as the systemic and cultural norms of the nation 

the individual resides in. Contexts can also be as isolated as a one-time incident or as 

chronic as repeated exposure to associations such as media exposure. Although much of 

this research has focused on examining implicit biases of racial groups, the Bias of 

Crowds framework could effectively be used to explain the relationship between racial 

disparities (specifically in the context of Black and White Americans) and differences in 

the semantic organization of societal institutions where those disparities are present. A 

proper examination of systematic differences in conceptual associations across racial 

groups would require sample sizes that are practically outside the scope of traditional 

functional fMRI studies. The prohibitive expense of fMRI studies often limits sample 

sizes to 10-20 participants. Thus, to measure differences in conceptual associations, two 

gold-standard measures of concept geometry (Spatial Arrangement Method (SpAM) and 

the Pairwise Rating Method (PRaM)) will be utilized in addition to a novel proposed 
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implicit measure of concept geometry, the Implicit Semantic Association Procedure 

(ISAP). The first study of this chapter assessed the reliability and validity of these three 

metrics using a set of simple object concepts and attributes with clearly defined 

associations. The second half of this chapter assessed whether racial disparities between 

Black and White Americans are reflected in the association of concepts related to 

institutions within our American society (e.g., healthcare, police). 

 

Background 

How do our environments influence how we think?  

  

 The Bias of Crowds framework asserts that implicit associations between 

concepts reflect environmental factors (broadly described as contexts or situations) 

(Payne et al., 2017).  Contexts can be as proximal as a situational personal encounter or 

as distal as the systemic and cultural norms of the nation the individual resides in. 

Contexts can also be as isolated as a one-time incident or as chronic as repeated 

exposure to associations. Although measures of implicit association within an individual 

have been shown to be transient across time (Payne et al., 2017), when averaged across 

individuals, individual-specific idiosyncratic noise in concept associations are 

eliminated and the influence of shared environmental and contextual influences become 

more salient (Vuletich and Payne, 2019). 
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 This idea of averaging across individuals to gain a group-level understanding is 

reinforced by the wisdom-of crowds phenomena, which posits that partial knowledge 

distributed among many individuals culminates in a true reflection of a shared 

experience or shared set of concept associations (Surowiecki, 2004). This means that, 

although a concept could have the same definition to two individuals, its conceptual 

associations are constantly evolving.  Concepts become more than a simple 

representation of an external world property when they are chronically associated with 

certain contexts or other concepts. Contexts such as the geographical state that we live 

in, identities that we affiliate with, media we are exposed to, and situational factors like       

mood influence the likelihood of associations between certain concepts. For example, 

the concept of firefighter and police officer share common features on a superficial 

definitional level (e.g., public servant) however they differ in how they are 

contextualized (e.g., media portrayal) thus modulating their conceptual associations. 

Moreover, when contexts differ along a group of people (as is the case with racial 

disparities), then differing associations should be reflected in the concepts linked to 

those disparities. The Bias of crowds and, by extension, the wisdom-of-crowds 

frameworks provide a schema for thinking about racial disparities between Black and 

White Americans in the United States and how these disparities could be reflected in the 

associations of socioenvironmental concepts central to those disparities. 
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Racial disparities in the United States for Black and White Americans 

People of color in the U.S. have historically been disproportionately negatively 

affected by health, economic, environmental, and political disparities when compared 

with White/European- Americans. These differences in adverse outcomes and positive 

opportunities across racial identities are defined as racial disparities (Kendi, 2016). 

People of color die sooner (Umberson et al., 2017), are at greater risk of being killed by 

police use of force (Plant and Peruche, 2005; Edwards et al., 2019), are more likely to live 

in poorer neighborhoods (Firebaugh and Acciai, 2016), are more likely to be exposed to 

toxins in the work place (Ash and Boyce, 2018), are at greater risk of dying from 

cardiovascular disease (Mozaffarian et al., 2015), receive differential treatment by 

clinician (Ryn et al., 2011), and, most recently, have a higher chance of contracting and 

dying from COVID-19 (Kim and Bostwick, 2020; Millet et al., 2020; Tai et al., 2020). 

Taken together, the available evidence converges on the conclusion that racial and ethnic 

minorities in America navigate greater risks and dangers than those experienced by White 

Americans.  

Polling research has provided some preliminary insight into the influence of 

these racialized differences on perceptions of societal infrastructure in America. Black 

Americans reported negative views towards police with 30% reporting very little to no 
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confidence in the police as compared to 7% of White Americans (Schuck and 

Rosenbaum, 2005). Of Black Americans, 63% reported that discrimination greatly hurts 

their chances of getting a good paying job while only 5% say it has little to no effect (Gay, 

2004). Based on national polling data by the Gallup Poll Social Series from 2001 to 

2015, Hispanic people and Black Americans are more concerned, relative to White 

Americans, about issues associated with air pollution, drinking water, and soil 

contamination (Lazri and Konisky, 2019). An examination of survey data from the 

General Social Survey database from years 2016 and 2018 revealed that when asked if 

“Black Americans have worse jobs, income, and housing than White people due to 

discrimination”, 65% of Black participants agreed while only 40% of White participants 

agreed, χ2  (4, N = 2958) = 120.36, p < 0.0001 (Smith et al., 2019). These polling results 

in conjunction with empirical work on racial disparities provide converging evidence 

that the mental relations between social and environmental concepts may differ across 

racialized groups. Measuring whether racial disparities are reflected in the organization 

of institutions in our societal environment will require a measure of representational 

concept association. 

 

Measuring Representation Association 

Assessing representational geometry: SpAM and PRaM 
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Understanding the semantic organization of a set of concepts involves the 

examination of its inter-concept geometric structure (i.e., the collective set of 

associations). For example, Koch and colleagues (2020) had participants spatially 

organize a set of influential leaders on a 2-dimensional plane based on the 

(dis)similarity between leaders. Using these data across participants the authors were 

able to generate semantic organization principles participants used to arrange each 

stimulus (Figure 4.1).  

 

 

Figure 4.1. Arrangement of influential leaders and the underlying organizing dimensions as seen in 

Koch et al. (2020). 
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The gold-standard for measuring pair-wise associations and representational 

geometries the Pairwise Rating Measure (PRaM). This measure involved obtaining 

Likert-ratings of concept similarities for all unique combinations of concepts in a set 

and to apply multidimensional scaling to these pair-wise ratings (Verheyen et al., 2016).  

Despite the PRaM’s clarity and reliability, it’s main criticism is that the duration of the 

task exponentially increases with the number of concepts included in a set.  

The Spatial Association Measure (SpAM) was designed to overcome the 

exponential increase in session duration. In a conventional SpAM task, participants 

spatially organize concepts on a screen such that the distance between stimuli 

represents their perceived (dis)similarity with shorter distances reflecting greater 

semantic association and longer distances reflecting associated dissimilarity (Goldstone, 

1994). Participants provide their responses by dragging and dropping “more similar” 

concepts closer together and “more dissimilar” targets further apart on a 2-dimensional 

surface. Moreover, by organizing concepts as a set according to their similarity, 

participants can communicate more nuanced semantic properties (Verheyen et al., 

2020). The SpAM measure, despite being more scalable with respect to stimulus set  

size, has been shown to favor spatial over featural representations and tends to limit the 

number of underlying dimensions that can emerge because the 2-dimensional nature of 
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the task biases participants to think in 2-dimensional terms (Verheyen et al., 2016). For 

visual and verbal stimuli, the SpAM has been shown to correlate strongly with the PRaM 

(Hout et al., 2013). However, the results obtained from the SpAM and the PRaM often 

converge considering that they are both measuring explicit concept association and are 

vulnerable to similar response biases. Implicit measures of concept association have 

been used to circumvent the possibility of response bias.    

 

Implicit measures of concept association 

One of the first implicit measures, the Implicit Association Task (IAT; Greenwald 

et al., 1998) has historically been used to measure implicit biased attitudes towards racial 

and ethnic groups. Using reaction time as a critical measure, participants supraliminally  

categorize exemplars belonging to a category (e.g., Asian/European faces) along a 

different dichotomous category (e.g., Foreign/American). More recently, the Affect 

Misattribution Procedure (AMP; Payne and Lundberg, 2014) has been used to measure 

biased attitudes by implicitly measuring Likert ratings of an irrelevant target stimuli 

which reflect misattributed attitudes towards a primed stimulus. The structure of AMP 

involves briefly presenting a prime stimulus (e.g., picture of an infant) followed by an 

ambiguous pictograph (e.g., chinese character); participants are then required to make a 

judgment of the pictograph (Pleasant/Unpleasant?). The response towards the target 
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(Chinese character) is indirectly influenced by the participant’s attitude towards the 

prime (infant picture). The AMPs has been shown to predict alcohol consumption 

(Hofmann et al., 2010) and moral decisions (Hofmann and Baumert, 2010). Despite the 

IAT and AMPs successful ability to measure biased attitudes towards racial groups, the 

two measures are designed to measure implicit associations with respect to categories 

rather than all pair-wise associations of stimuli. Additionally, the design of the original 

AMP is parameterized to examine visually presentable stimuli.  

Part of this research plan capitalizes on the supraliminal capabilities of implicit  

measures such as the IAT and AMP and holistic geometric information from the SpAM 

and PRaM by proposing a new methodology based on a modified version of the AMP 

paradigm designed to assess the semantic similarity/dissimilarity of any number of pairs 

of concepts by measuring differences in reaction time, the Implicit Semantic Accessibility 

Procedure (ISAP). Participants will be presented two words in quick succession (a prime 

and target) and then asked to answer a semantically irrelevant question (“Is the target 

word English?”) (See Figure 4.2 for example trial of the ISAP). Shorter response times to 

the question (relative to a global baseline) are hypothesized to correspond to increased 

semantic similarity in the prime/target pairs while longer response times are 

hypothesized to correspond to semantic conflict present in the prime/target pairs. This 

difference in reaction time is represented as a differential in semantic accessibility – that 
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is, when the prime concept is cued, what is the probability that a particular target word 

would follow (Payne et al., 2017). These modifications allow for the comparison of all pair-

wise relationships between stimuli rather than along a single dimension (as designed in 

the IAT and AMP) while circumventing possible response bias present in explicit 

measures concept geometry (i.e., SpAM and PRaM). 

 

 

 

 

Figure 4.2. A sequence diagram of a ISAP trial. Each trial begins with a fixation cross. A pair of words (prime 

and target) are then presented in quick succession and are followed by a grey noise mask. Participants are then 

primed to provide a Yes or No response as to whether the target word (shown in blue) was a word in English or a 

non-word.  

 

This project aims to measure whether racial disparities are reflected in the 

geometry of concept associations Black and White Americans have towards concepts 
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central to their societal environment. To measure differences in concept geometry the 

SpAM and PRaM will be utilized in addition to proposed ISAP. The first  study of this 

chapter assesses the reliability and validity of these three metrics using a set of simple 

object concepts and attributes with clearly defined associations. The second study of this 

chapter assesses whether racial disparities between Black and White Americans are 

reflected in the association of concepts related to institutions within our American 

society (e.g., healthcare, police). 

 

Study 1: Assessing the Reliability and Validity of the ISAP, SpAM, and PRaM 

In Study 1 the reliability and validity of semantic association measures (ISAP, 

SpAM, and PRaM) are assessed. The reliability is assessed internally for all tasks using a 

split-half measure (Hout et al., 2013; Verheyen et al., 2016; Verheyen et al., 2020) and 

the test-retest reliability is assessed specifically for the ISAP by correlating the pair-wise 

similarity 1-day apart. After screening for data-quality and incomplete sessions 75 

participants completed all 3 tasks using a set of 8 concepts. The primary goal of this 

study is to determine the efficacy of the ISAP as a tool for measuring the semantic 

geometry (i.e., the pair-wise semantic association of a collective set of concepts) and to 

replicate past reliability statistics for the SpAM and PRaM. 
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Methods 

Participants 

 One-hundred participants were initially recruited via Mechanical Turk using the 

Cloud Research toolbox (formerly TurkPrime; Litman et al., 2017) from a nationwide 

sample. ISAP, SpAM, and PrAM tasks were completed using Gorilla, a platform for 

implementing and hosting experimental paradigms for online testing (Anwyl-Irvine et 

al., 2020). These 100 participants were solicited to participate in the same ISAP task 1 -

day after their completion of the first session. Ten participants were excluded due to 

incomplete session and an additional 9 were excluded due to insufficient accuracy on 

attention checks during reaction-time measures of the ISAP task (< 90% accuracy on 

non-scrambled trials; <75% accuracy on scrambled trials).  Insufficient accuracy was 

caused by a consistent lack of responding during trials or fixed responding (i.e., 

providing the same response for all questions regardless of scrambled/non-scrambled 

trials) during the ISAP task. The study sessions were automatically terminated if the 

total duration of the session exceeded 20-minutes past the expected study duration. Of 

the remaining 81 participants, 75 participants (93%) successfully completed testing on 

the second day.  The final analyzed data set consisted of these 75 participants (6.67% 

Black; 76% White; 5.33% Asian; 12% Hispanic or Latino; mean Age = 34.33, SD = 6.97) 

collected from 25 different states with each participant residing in a different zip code.  
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Stimulus set 

 Stimuli were 8 concepts distributed among 3 categories. Although the categories 

were not presented to participants they are listed here for expository purposes preceding 

the list of concept exemplars: (pets): puppy, kitten, spider; (objects): knife, gun, 

blanket; (attributions): danger, soft. Two of the categories were designed to 

correspond to concrete concepts while the final category corresponds to two attributions 

each of which are expected to align semantically with 2 concepts from one category and 

1 from the other. Past neuroimaging work has shown that focusing on the 

representations of individual concepts provides a higher resolution of semantic content 

than examination on a categorical level (Just et al., 2010). 

 

Experimental Design 

ISAP 

 During the ISAP task each stimulus was presented 18 blocks to enable averaging 

of noise present in individual trials. The ISAP was structures similarly to the AMPs -- 

each trial consisted of a fixation (700ms), followed by a prime concept (225 ms), target 

concept (225 ms), a mask (150ms ms), and a question (1250 ms window of time to 
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provide a response) (See Figure 4.2 for a diagram of a single trial). Participants were 

shows two consecutive concepts and then asked whether the second concept was in 

English. The response time to the question is used as a proxy of semantic association 

between the prime and the target concept. For the set of 8 concepts, there were a total of 

8 choose 2 (i.e., 28) unique concept combinations. In each block all possible pairs of 

stimuli were shown. For each block, additional scrambled trials were included 

(proportional to 25% of the unique combinations). In these scrambled trials, the target 

concept was a scrambled version of a concept from the set. For example, if tiger was a 

candidate target concept than a possible scramble could be rgite. These scrambled trials 

served primarily as an attention check. The reaction time was the critical measure used 

for analyses. Half-way through the ISAP task the left-right input responses were 

inverted. This was done to accommodate handedness bias that may be present and to be 

consistent with designs of modern versions of the IAT 

(https://www.projectimplicit.net/).  

 

Pairwise-rating of Association Measure (PRaM) 

 During the PRaM task participants provided explicit Likert ratings (1 to 7) 

representing semantically (dis)similar for a pair of concepts. A rating of 1 indicated that 

the pair of shown concepts are extremely dissimilar while a rating of 7 indicated that the 
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pair of concepts were extremely similar. Participants provide rating for all 28 possible 

combinations of the 8 concepts. Only a single set of rating was obtained from 

participants. 

  

Spatial Arrangement measure (SPaM) 

 During the SPaM task, participants were instructed to spatially arranged boxes 

labeled with each of the 8 concept according to their semantic similarity. Participants 

were instructed to arrange concepts that were semantically similar are closer together 

while concepts that were spatially dissimilar were farther apart. The X and Y 

coordinates of the pixels for a concept’s placement within the display were used to 

determine the spatial arrangement of each concept. These XY coordinated were used to 

compute Euclidean distances between all combinations of concept pairs. 

 

Data processing 

For the ISAP, reaction times for all 28 unique pairs of the 8 concepts were 

averaged across all 18 blocks to generate a stable estimate. Timed-out trials were 

excluded from the mean. Mean reaction times were then normalized within each 

participant to control for participant-specific differences in mean reaction times. For 
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each pair of concepts positive z-scores reflect slower reaction times relative to all the 

pair-wise relationships between concepts and negative z-scores reflect pairs of concepts 

where the participant responding relatively quickly. To make the polarity of semantic 

associations consistent across tasks the vector of 28 unique concept pairings was 

multiplied by -1 to invert the polarity on some tasks such that all positive z scores 

reflected greater semantic similarity and negative z scores reflected less semantic 

similarity. Pair-wise associations for the SpAM and PRaM were similarly normalized 

within each participant. Z-scores for the SpAM were likewise multiplied by -1 to 

similarly invert the polarity on some tasks such that all positive z scores reflected greater 

semantic similarity and negative z scores reflected less semantic similarity. For each of 

the 3 tasks, these normalized 28 pairwise associations were used for subsequent 

analyses.  

 

Assessing internal consistency and test-retest reliability 

 For the SpAM and PRaM tasks, reliability was computed as the split-half 

correlation of the vector of 28 pair-wise similarities (Hout et al., 2013; Verheyen et al., 

2016; Verheyen et al., 2020). The participant data were separated into two halves and 

the averaged normalized similarity vectors were correlated across halves within each 
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participant. To obtain a stable estimation of split-half reliability, this analysis was 

repeated 10,000 times randomizing the participant distribution between the two halves 

across permutations. To obtain this metric of relative reliability a factor k coefficient was 

computed, representing the multiplier to the number of the participants recruited 

required to obtain a desired reliability. Using the PRaM reliability as the gold-standard, 

a factor k was computed indicating the magnitude more participants that would need to 

be tested using SpAM or ISAP to attain the same level of reliability as the PRaM. Thus 

the factor k represents the multiplier to the number of the participants recruited 

required to obtain reliability desired for the PRaM (Equation 4.1; Lord and Novick, 

1968): 

 

Equation 4.1. Factor k coefficient equation for measuring relative reliability.  

 

 

the desired reliability ρD equal to PRaM’s averaged split-half reliability and the observed 

reliability ρO is equal to SpAM or ISAP’s reliability. 

Concept associations are expected to vary across time because contexts are 

expected to vary across time (Payne et al., 2017). This property of concepts often results 

in low test-retest reliability of individual participant has been shown to be low when 
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measured over long intervals of time. Therefore, for this study, the test-retest reliability 

was calculated across a relatively short window of time (1-Day) and across groups (Table 

4.1).  

 

Assessing the validity of the ISAP 

 Using the post-processed data, the vector of 28 pair-wise similarities for the ISAP 

was correlated with the same vectors from the SpAM and the PRaM. If the ISAP is a 

comparable measure of concept association to the gold-standard then the correlation 

between the ISAP and the SpAM and PRaM should be comparable to the correlation 

between the SpAM with the PRaM. 

 

Table 4.1. Correlation matrix of the vectors of pair-wise semantic similarity of the ISAP (including both days), 

SpAM, and PRaM.  

 

 

Results 

Split-half and test-retest reliability 
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Table 4.2 lists the average split-half reliability averaged across iterations for each 

of the measures as well as factor k metrics relative to the gold-standard PRaM.  Both 

SpAM and PRaM measures yielded high average reliabilities (0.96 and 0.99 

respectively). By contrast, the ISAP yielded a reliability of 0.41. As a result, k coefficients 

reflected that more participants need to be tested using the SpAM (by a factor of 5.65) or 

the ISAP (by a factor of 224.02) to obtain theoretically comparable reliability to the 

PRaM.  The test-retest reliability of the ISAP across 1 Day yielded a correlation of r = 

0.46, p < 0.05.   

 

Table 4.2. Averaged split-half reliability for 10,000 iterations and factor k coefficients. Factor k 

coefficients were computed with the PRaM being the desired target reliability. Factor k coefficients 

represent the multiplier to the number of participants recruited in the observed task required to obtain a 

comparable reliability to the desired task.  

 

 

Validity of the ISAP 

 Validity for the ISAP is assessed by the correlating the concept geometry of the 28 

unique concept-pair combinations of the ISAP with both the SpAM and PRaM. Both 

days of the ISAP were shown to be non-significantly related to the other gold-standard 

measures of concept geometry (Table 4.1). By contrast, the SpAM and PRaM were 

shown to be highly correlated (r = 0.94, p < 0.001). 
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Discussion 

 The SpAM and PRaM are both highly reliable measures of concept geometry 

while the ISAP showed to be relatively considerably less reliable. The reliability statistics 

obtain for the SpAM and PRaM are consistent with previously reported reliability 

measure using an identical metric for an identical number of exemplars (PRaM, rho = 

0.98 and SpAM, rho = 0.94; Verheyen et al., 2020). Although the ISAP may not be a 

compartable to the gold-standard measures of concept geometry, it may still be an 

effective measure of implicit association.  

 

Comparing the viability of the ISAP to other measures of implicit association 

 Although the ISAP has been shown to not be as reliable as other gold-standard 

explicit measures of concept geometry it is potentially an effective measure of implicit 

association. The ISAP yielded considerably lower reliability as compared to another 

measure of implicit associations, the AMP. A meta-analysis of AMP suggest the task 

yielded Cronbach’s alpha ranged from 0.47 to 0.95, with an average alpha of 0.81 (95% 

confidence interval= 0.77, 0.85). This meta-analysis did not include estimates of the 

test-retest reliability (Payne and Lundberg, 2014). There have not been any known 

direct measures of test-retest reliability for the SpAM and PRaM. However, the IAT, 
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another implicit association measure, has been shown to have a test-retest reliability of 

around 0.50 (Greenwald et al., 2021) which is roughly similar to the test-retest 

reliability obtained by the ISAP (r = 0.46, p < 0.05). This comparable reliability may 

implicitly suggest that the ISAP and IAT are measuring similar constructs (e.g., "gut reactions") 

or are measuring constructs with similar mechanistic properties (e.g., transient across time). If 

the ISAP and IAT are measuring similar constructs, then that would further cement the 

innovation of the ISAP as a tool for measuring conceptual geometries in a supraliminal manner. 

A comprehensive examination of the ISAP would require a direct comparison between the ISAP 

and IAT. 

 There is evidence to suggest implicit measures of concept associations based on 

“gut reactions” while explicit measures of concept association measure peoples’ 

“considered options” (Payne et al., 2017). Moreover, participants were able to accurately 

predict their bias under circumstances where implicit measures of association were 

acquired (Ranganath et al., 2008).  To assess whether the lack of correlation between 

the ISAP and the SpAM and PRaM reflects this distinction a follow-up study would be 

required. Theoretically the ISAP should reflect similar associations found with other 

implicit measures of concept association such as the IAT and the AMP. Considering that 

Study 1 utilized only 2 attributions (i.e., soft and danger), it would be possible to 

replicate the proposed study using an IAT paradigm.  However, considering that the 
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ISAP was found to be distinct in what it is measuring relative to the SpAM and PRaM as 

evident by low cross correlations. Additionally, because of the low relatively low 

reliability of the ISAP, it is difficult to assess whether it is all-together measuring a 

distinct construct or whether there is an excess of noise in the signal. Taken together, 

the SpAM and PRaM have been shown to be effective measures of concept geometry and 

will be the primary measures of focus for Study 2. 

Study 2: Measuring Socioenvironmental concepts across Black and White 
Americans 

 

 The goal of the second study was to assess the representational geometry of a set 

of concepts that are hypothesized to differ in their conceptual associations across racial 

groups. Racial disparities for institutions (e.g., healthcare, police) within the United 

States between Black and White Americans contextualize the environments each racial 

group experience these institutions. These disparities serve a basis for identifying the 

influence of environmental factors on concept associations across racial groups. Using 

the tasks from Study 1, pair-wise semantic associations were measured across Black and 

White participants to identify possible differences in semantic geometry of 

socioenvironmental concepts. 

 



135 

 

Methods 

Participants 

One-hundred participants (50 Black; 50 White) were recruited via Mechanical 

Turk using the Cloud Research toolbox (Litman et al., 2017). Six participants were 

excluded due to incomplete sessions. An additional 10 participants were excluded due to 

insufficient accuracy on attention checks during the ISAP task (< 90% accuracy on non-

scrambled trials; <75% accuracy on scrambled trials). The final sample contains 84 

participants (40 Black, mean age = 33.85, SD = 8.59, 93% Female; 44 White, mean age 

= 35.73, SD = 7.60, 77% Female). Participants were collected across 78 unique zip codes. 

The ISAP, SpAM, and PRaM were implemented using Gorilla, a platform for 

implementing and hosting experimental paradigms for online testing (Anwyl-Irvine et 

al., 2020).  

 

Stimulus set 

Stimuli were 7 concepts distributed among 2 categories: (socioenvironmental 

concepts): police, healthcare, media, community, voting; (attributions): trust, fear. 

The selection of these concepts was informed by empirical research on racial disparities 
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across White and Black Americans. To limit the session duration, the concepts chosen 

were not intended to be exhaustive of all aspects of societal infrastructure. 

 

Experimental Design 

Participants completed the ISAP, SpAM, and PRaM during a single 1 -hour online 

session. Each participant completed 18 blocks of the ISAP procedure. The structure of 

individual trials for the ISAP was identical to the Study 1. For the 7 concepts, there were 

21 unique combinations of stimuli, and all unique concept-pairs were presented in a 

single block. The structure of the SpAM and PRaM tasks were also identical to Study 1. 

Following the completion of the three concept association tasks, a set of 

questionnaires were completed to be used to explore possible mechanisms of concept 

association: a short-form of the Social Dominance Orientation scale (Ho et al., 2015); 

explicit rating of engagement and valanced attitudes towards each of the 5 

socioenvironmental concepts; self-reported perceptions of gender and racial 

discrimination; ratings of comfort providing opinions for each of the 5 

socioenvironmental concepts to strangers. Additionally, participants who reported their 

race as Black or African American during the demographic intake were asked to 

complete the Centrality Scale of the Multidimensional Inventory of Black Identity 

(MIBI; Sellers et al., 1997).  
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Data processing 

Similarly to Study 1, pair-wise associations for the ISAP, SpAM and PRaM were 

normalized within each participant. Z scores for the ISAP and SpAM were multiplied by 

-1 to similarly invert the polarity on some tasks such that all positive z scores reflected 

greater semantic similarity and negative z scores reflected less semantic similarity. For 

each of the 3 tasks, these normalized 21 pairwise associations were used for subsequent 

analysis. 

 

Reliability of semantic association within racial groups 

 The reliability statistics were measured using an identical methodology as Study 

1. Split-half reliability was measured for each racial group and task separately. The 

PRaM was used as the reference task for computing factor k (Equation 1).  

 

Measuring overall similarities and differences in representational structure by task 

 To assess task-level similarities and differences across all 21 unique pairs of 

concepts data for each task and racial group were averaged across participants. The 
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task-specific vectors of 21 concept-pair associations were then correlated across task and 

group. These correlations provide a macroscopic view of the relationship across tasks 

within the same racial group and how the three tasks compare across groups. 

 

Measuring differences in specific concept pairs 

 To gain a more nuanced understanding of how racial groups differ for indiv idual 

socioenvironmental concept pairs, a permuted linear regression approach was utilized. 

Treating racial identity as a coded variable (Black = 1; White = 0), concept pair 

similarity was predicted. A separate regression model was created for each of the 21 

concept pairs. Assessment of statistical significance was estimated using a 10,000-

iteration permutation with racial identity being randomized across iterations. Age was 

entered as a covariate into each model and was held constant across permutations. 

Concept-pair relations were also qualitatively assessed using similarity matrices. Each 

element of the data structure reflects the normalized pairwise relationship averaged 

across participants. Separate data structures were computed for each racial group.  

 

Results 

Reliability of semantic association within groups 
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 The set of concepts in Study 2 generally yielded lower reliability than the set in 

Study 1 for all tasks. Despite being relatively lower, both the SpAM and PRaM had high 

reliability for each racial group (Table 4.3). The ISAP yielded low reliability for both 

racial groups and were comparable to Study 1. For both groups, the factor k suggests 

that 2.38 times (for the Black group) or 3.44 times (for the White group) more 

participants would need to be recruited for the SpAM to have comparable reliability to 

the PRaM. 

 

 

 

 

 

Measuring overall similarities and differences in representational structure by task 

 Task-level similarities and differences across all 21 unique pairs of concepts data 

for each task and racial group inform of both cross-task consistency within each racial 

group as well as the relationships of similarity structures across racial groups. For both 
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groups, the ISAP was found to non-correlated with the SpAM and PRaM. However, 

there was a significant correlation between the SpAM and PRaM within each group (r = 

0.49, p < 0.05 for Black participants; r = 0.66, p < 0.01 for White participants) (Table 

4.4). Significant cross-group correlations were observed for both the SpAM (r = 0.77, p 

< 0.001) and PRaM (r = 0.92, p < 0.001). This indicates that there was correspondence 

in similarity structure across the set of 21 concept-pairs. However, despite this overall 

correspondence there may be specific concept pairs that differ across racial groups. 

Table 4.4. Correlation matrix of the 21  socioenvironmental concept-pairs for ISAP, SpAM, and PRaM 
for Black and White Americans.  

 

 

Measuring Racial differences in specific concept pairs 

 Racial group membership was used to predict pair-wise similarity for all 21 

combinations between socioenvironmental concepts (Table 4.5). Given that Black was 

coded as 1 and White as 0, positive betas reflect instances were Black participants had 

greater similarity between concept pairs and negative betas reflect greater similarity 

among White participants. For the PRaM, police-fear was significantly more 
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semantically associated for Black participants and police-trust and healthcare-trust 

were significantly more associated for White participants. For the SpAM, police-fear, 

healthcare-media, and media-voting were significantly more associated for Black 

participants and police-healthcare, police-trust, and community-voting were 

significantly more associated for White participants. Lastly, for the ISAP, police-media, 

police-trust were significantly associated for Black participants and police-community 

and healthcare-fear, and media-fear were significantly associated for White 

participants. The differences identified by this analysis dissipated when corrected for 

False Discovery Rate. A qualitative assessment of concept pairs for each task and racial 

group can be seen in Figures 4.3-4.5.  

 

 

Table 4.5. betas and p-values for predicting individual socioenvironmental concept pairs using racial 

identity  as the predictor. Positive betas reflect greater similarity for concept pairs in Black participants 

while negative betas reflect greater similarity in White participants.  
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Figure 4.3. Heatmap of the similarity between concept-pairs across White and Black participants for 

the ISAP. Data were normalized within each participant and averaged across participants of the same 

group. The normalized data were then multiplied by -1  to invert the polarity such that positive (red) values 

reflect greater concept similarity, and negative (blue) values reflect concept dissimilarity.  
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Figure 4.4. Heatmap of the similarity  between concept-pairs across White and Black participants for 

the SpAM. Data were normalized within each participant and averaged across participants of the same 

group. The normalized data were then multiplied by -1  to invert the polarity such that positive (red) values 

reflect greater concept similarity, and negative (blue) values reflect concept dissimilarity.  
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Figure 4.5. Heatmap of the similarity  between concept-pairs across White and Black participants for 

the PRaM. Data were normalized within each participant and averaged across participants of the same 

group. The normalized data were then multiplied by -1  to invert the polarity such that positive (red) values 

reflect greater concept similarity, and negative (blue) values reflect concept dissimilarity.  
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Discussion 

The results of Study 2 reinforce finding from Study 1 suggesting the ISAP is not 

comparable to the SpAM and PRaM as tool for measuring concept geometry. Notable, 

there was a general decrease in split-half reliability across all measures compared to 

Study 1 (Table 4.2 and Table 4.3). This decrease suggests that the sets of concepts 

examined between Study 1 and Study 2 qualitatively differed. The concepts of Study 1 

were predominantly concrete concepts with clear category membership and 

unambiguous relationships while the concepts from Study 2 were more abstract with no 

predetermined category structure. A further examination of the cause of this decrease in 

reliability will be required. Regardless, there was a significant correlation between the 

similarity structure of the socioenvironmental concepts across measures of concept 

association. Although there was a significant relationship across racial groups for the set 

of socioenvironmental concepts (Table 4.4), some notable differences were identified 

between Black and White Americans when looking at individual concept pairs. 

 

Racial differences in the representation of societal environmental concepts 

 There are differences in the similarity of socioenvironmental concept-pairs across 

Black and White racial groups. Due to the lack of reliability and validity of the ISAP the 
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results of the SpAM and PRaM will be the focus for interpretation (Table 4.3). Despite 

there being a significant correlation across the set of 21 concept pairs across Black and 

White participants for the SpAM and PRaM (Table 4.4), there was a double-dissociation 

between the association of police with trust and police with fear across Black and White 

racial groups for the SpAM and PRaM (Table 4.5). Black participants showed greater 

similarities between police-fear and greater dissimilarity between police-trust while 

White participants as a group showed the inverse effects. These results are consistent 

with empirical studies on the differential experience of Black and White Americans ’ 

interactions with police. Black participants are more likely to experience violence by 

police (Plant and Peruche, 2005; Edwards et al., 2019) and more likely to have negative 

experiences during police traffic stops. (Voigt et al., 2017). Other significant concept-

pair association include media-voting and healthcare-media for Black participants and 

healthcare-trust and community-voting for White participants. It is worth noting that 

after correcting for family-wise error the significance of the differences for each task is 

eliminated. Without a clear double-dissociation it is unclear what these significant 

relationships suggest without further analysis of the underlying representational 

structure.  

Subsequent analyses could incorporate additional behavioral measures to predict 

differences in the association of socioenvironmental concepts. Moreover, the dissipation 
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of the significant findings after correcting for family-wise error may suggest that the 

current iteration of the study is underpowered. Although there is modest evidence, the 

elimination of significant effects after correcting for FDR suggests this study is 

underpowered. Moreover, despite the sample being heterogenous for variables such as 

age and location the samples were homogenous with respect to gender with both 

samples consisting of predominantly female participants. This unequal representation 

of gender within each group raises the question of whether these results would have 

differed if the samples were more equivalent with respect to gender. Although there is 

no significant difference in proportion life-time deaths due to police violence across 

White and Black women (Edwards et al., 2019), there is a significant difference in the 

number of experienced illegitimate police stops across White and Black women 

(Cochran and Warren, 2012). If the gender distributions were equivalent, then I suspect 

the differences in conceptual geometries between racial groups would be exacerbated. 

The mortality rate ratio of deaths due to police force is 2.5:1 between Black males (~100 

deaths per 100,000 people) and White males (~40 deaths per 100,000 people)(Edwards 

et al., 2019). I suspect these dramatic differences would be reflected in the 

representational geometries across racial group for the police-trust and police-fear 

associations. Collectively these results provide an initial step towards understanding the 
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influence of differential experiences and treatment of systemic institutions on the 

conceptual association of those institutions. 
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Chapter 5. General Discussion 

Concepts are internal representations of characteristics of the external world with 

an ontological structure that associates related concepts together, like an apple tastes 

sweet and can sometimes be red. Concepts can instantiate our lived experiences into 

language and can be used to communicate our emotions and feelings towards people or 

institutions.  

This dissertation extends upon existing research on the representation and 

association of concepts by examining the underlying semantic structure of abstract 

concept in the brain and defining a set of underlying dimensions representing the 

organization principles of abstract concepts, determining the commonality of those 

dimensions across languages, and to begin to take initial steps to measure concept 

representational differences across groups of individuals based on disparities of 

experiences of those concepts. 

 

Neurosemantic dimensions of abstract meaning 

Neurally-based semantic dimensions underlying abstract concepts differ from the 

dimensions underlying concrete concepts. Vargas and Just (2020) investigated the fMRI 

activation patterns of 28 abstract concepts (e.g., ethics, truth, spirituality) focusing on 
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individual concept representation and the relationship between the activation profiles of 

these concept representations. 

Factor analyses of the activation patterns evoked by the stimulus set revealed 

three underlying semantic dimensions. These dimensions corresponded to 1. the degree 

to which a concept was Verbally Represented; 2. whether a concept was External (or 

Internal) to the individual, and 3. whether the concept contained Social Content. The 

Verbal Representation dimension was present across all participants and was the most 

salient of the semantic dimensions. Concepts with large positive factor scores for this 

factor included compliment, faith, and ethics while concepts with large negative scores 

for this factor included gravity, force, and acceleration. The former three concepts seem 

far less perceptual than the latter three. For the Externality factor, a concept that is 

external is one that requires the representation of the world outside oneself and the 

relative non-involvement of one’s own state. An internal concept is one that involves the 

representation of the self. At one extreme of the dimension lie concepts that are external 

to the self (e.g., causality, sacrilege, and deity). At the other extreme lie concepts that 

are internal to the participant (e.g., spirituality and sadness). The last semantic 

dimension was interpreted to correspond to Social Content. The concepts at one 

extreme of the dimension included pride, gossip, and equality while the concepts at the 
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other extreme included heat, necessity, and multiplication. Together these semantic 

dimensions underlie the neural representations of these 28 abstract concepts. 

One surprising finding was that the regions associated with the Verbal 

Representation dimension were the same as those found in the meta-analysis conducted 

by Wang and colleagues (2010) that contrasted the activation between concrete and 

abstract concepts. Activation in LIFG (a region clearly involved in verbal processing) 

was evoked by concepts such as faith and truth while the left supramarginal gyrus 

(LSMG) and left lateral occipital complex (LOC), both of which are involved in different 

aspects of visuospatial processing, were associated with concepts such as gravity and 

heat. 

Moreover, the output of the factor analysis (i.e., factor scores) for the Verbal 

Representation factor also suggested that the abstractness of the neural patterning in 

these regions for an individual concept is represented as a point on a continuum 

between language systems and perceptual processing systems. This interpretation 

corresponds to the intuition that abstractness is not a binary construct but rather a 

gradient-like translation of a concept into a more verbal encoding. This conclusion is 

somewhat surprising given that the set of 28 concepts are all qualitatively abstract, in 

that they have no direct perceptual referent. The amount of activation in LIFG evoked 

by a given abstract concept corresponds to its Verbal Representation factor score. 
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Commonality of individual concrete and abstract concepts across people 

Several discussions above have noted that the semantic factor structure was 

similar across participants, but that understates one of the most interesting findings in 

the area of neural representations of concepts. The surprising finding is that the neural 

representations of all of the concepts studied so far are rather similar across people. This 

section below focuses on the commonality of individual concept representations across 

individuals. The general approach to quantitatively evaluating the commonality of 

individual concept representations is to train a machine learning classifier on the 

labeled activation data of all but one participant for a given set of concepts, and then to 

classify or make predictions concerning the concept representations of the left-out 

individual. In a cross-validation protocol, this process is repeated with a different 

person left out on each iteration. The accuracies of the predictions are then averaged 

across iterations. This averaged accuracy measures the commonality of a set of concept 

representations. 

This approach has shown that there is considerable commonality of the neural 

representations of concepts across healthy participants. The commonality was present 

for concrete, abstract, and hybrid concepts. Decoding accuracies across participants 
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were high and approximately equivalent for concrete, abstract, and hybrid concepts (i.e., 

mean rank accuracy = 0.72 for concrete concepts (Just et al., 2010); 0.74 for abstract 

concepts (Vargas and Just, 2020); 0.71 for physics concepts (Mason and Just, 2016); 0.7 

for emotion concepts (Kassam et al., 2013); and 0.77 for social concepts (Just et al., 

2014). 

Although a large proportion of the concepts in a brain reading study are 

accurately predicted across participants, there are always a few items at the negative tail 

of the accuracy distribution, and it would be interesting to know if the items with lower 

across-participant commonalities had some distinguishing properties. In a study of 

sentence decoding across three languages (Portuguese, Mandarin, and English), Yang et 

al. (2017) found lower across-language, across participant decoding accuracies for 

concepts that are more abstract and related to social and mental activities (e.g., happy, 

negotiation, artist). They attributed this lower degree of commonality across languages 

of such items to some abstract and socially related concept domains being more 

culturally-determined. 

For the set of 28 abstract concepts presented in the Vargas and Just (2020) 

study, the concepts which were more prototypically abstract (e.g., sacrilege and 

contract) were somewhat less accurately predicted across participants than concepts 

that tend to be more hybrid (e.g., force and pride). However, there were a number of 



155 

 

exceptions to this trend. For example, concepts such as anger and gossip were less well 

predicted than others across participants (although still with an above-chance 

accuracy), and these concepts tended to be highly instantiable. By contrast, concepts 

such as necessity and causality, which are highly verbally represented, were more 

accurately predicted across participants. 

When examining the neural representation of the same 28 abstract concepts 

across languages and cultures by looking at the fMRI-measured activation of native 

English and native Mandarin speakers, factor analyses revealed a set of common 

neurosemantic dimensions that constitute the basis for the representation of abstract 

concepts across languages: verbal representation, internality–externality, social content, 

and rule-based content (Vargas and Just, 2022). The successful cross-language 

classification suggests that the underlying semantic dimensions provide a sufficient 

basis for decoding abstract word concepts across languages. Although the neural 

dimensions used for representing abstract concepts are common across languages, 

differences in the meaning of some individual concepts can be accommodated in terms 

of differential salience of particular dimensions. These semantic dimensions constitute a 

set of neurocognitive resources for abstract concept representation within a larger set of 

regions responsible for general semantic processing. These results raise an interesting 

theoretical and psychological question regarding the role of neural language systems, 



156 

 

particularly LIFG, in the verbal representation of abstract concepts. That is, what does it 

mean, neurally and psychologically, for an abstract concept to be verbally represented? 

 

Abstract concepts as verbal representations 

What does it mean for an abstract concept to be represented in regions involved 

in verbal processing and to evoke activation in LIFG? When LIFG is artificially lesioned 

through the repeated use of transcranial magnetic stimulation (TMS), otherwise healthy 

participants show a 150 ms slower response time for comprehending abstract concepts 

(e.g., chance) (Hoffman, et al., 2010). This same TMS-based lesioning procedure 

showed no influence in the amount of time needed to respond to concrete concepts (e.g., 

apple). However, these differences in the impact of TMS were nullified when the 

abstract concepts were presented within a context (e.g., “You don’t stand a chance”). 

These results suggest that the abstractness of a concept is dependent on whether it 

requires integration of meaning across multiple contexts (Crutch and Warrington 2005; 

Crutch and Warrington, 2010; Hoffman 2016; Hayes and Kraemer, 2017). Moreover, 

the LIFG seems to be involved in the context-dependent integration of meaning.  

Given that LIFG appears to be involved in the contextualization of the meaning of 

abstract concepts (Hoffman et al., 2010) and that the magnitude of activation in LIFG is 
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directly proportional to the degree that it is verbally represented (Vargas and Just, 

2020), taken together these results suggest that the activation in LIFG reflects the 

magnitude of mental activity required to contextualize the meaning of a lexical concept. 

LIFG has been shown to elicit greater activation for sentence-level representations as 

compared to word-level concepts (Xu et al., 2005). It may be the case that the central 

cognitive mechanism underlying the neural activation in LIFG represents the 

integration of meaning across multiple representations in order to form a new 

representation that is a product of its components. That is, the components of meaning 

of apple require less computation (in LIFG) to generate a composite representation than 

the concept of chance. Also, providing a context for chance, as in “You don’t stand a 

chance”, reduced the cognitive workload by providing a more explicit version of its 

meaning. A similar mechanism can account for the greater activation in LIFG for 

sentences than for individual words, because constructing a sentence-level 

representation requires combining the meanings of individual concept representations 

in a mutually context-constraining way.  

As previously discussed, another region involved in the integrating of meaning 

for concepts is the anterior temporal lobe (ATL). ATL has been implicated in the 

integration of semantic features to form a composite representation of object concepts 

(Coutanche and Thompson-Schill, 2015). However, unlike LIFG, ATL does not appear to 
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differentiate between abstract concepts that vary based on the degree that they are 

verbally represented (as defined by their factor scores in Vargas and Just (2020)).  

In sum, the integration of abstract concept representations with other concepts in 

a sentence seems to require additional computation. However, it is unclear whether 

these integrating computations are processing some episodic contexts (as suggested by 

the results of Hoffman et al., 2010), or some specific concept representations, or use 

some more general amodal representational format. 

 

Incompatibility between behavioral and neural conceptual geometries 

 It is unclear whether it would be possible to directly map the semantic 

organization of concepts across behavioral and neural environments. To our knowledge, 

there has not been an attempt to replicate behavioral conceptual geometries from neural 

activation. The mapping between behavioral and neural representational spaces is 

complicated by the exhaustive nature of neural data. The neural evocation of a concept 

constitutes all aspects of its representation – from activation related to the early visual 

processing of viewing light corresponding to the stimulus word on a computer screen to 

activation associated with executive function to maintain attention to task demands. 

This is further complicated by the distributed and piecemeal nature of neural activation 
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patterns (Meyer and Damasio, 2009). As shown in the two projects examining the 

neural representation of abstract concepts, each semantic organization principle is 

represented not as a single region but rather an interplay between a distributed network 

of associated brain regions. The advantage of examining the neural organization 

principles of concepts lies in the method’s ability to identify the mechanistic processes 

that contribute to the evocation of a set of concepts. Behaviorally measured conceptual 

geometries are shielded from these complexities but are susceptible to other possible 

confounds such as response bias to experimental tasks. Where neural concept 

representations reflect the composition of concept, I suspect behavioral geometries 

reflect inter-concept relations of the composed concept. Thus, I suspect behavioral and 

neural geometries reflect distinct constructs. Behavioral measures of concept geometry 

capture how people think about a concept while the neural geometries reflect what goes 

into thinking about a concept. 

 

Preliminary evidence for differences in concept representation based on 
environmental factors 

 

 Although there has been a tremendous amount of research examining the 

influence of environmental factors on biased attributions towards racial group there has 

been less research examining whether concept associations reflect disparities in the 
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experience of those concepts. The bias-of-crowds model suggests that implicit concept 

associations reflect environmental contextual and situation factors including situational 

and chronic experiences with those concepts. The vast and well documented empirical 

research on racial disparities between Black and White Americans provides this chronic 

experiential context for the socioenvironmental concepts where these disparities persist. 

The wisdom-of-crowds phenomena suggests the transience of concept representations 

dissipates when examining over a large group of people. This demand for larger sample 

sizes is prohibitive for the examination of differences in representation of 

socioenvironmental concepts using an fMRI methodology. Thus, to gain an initial 

understanding of the influence of concept differences, a large-scale online behavioral 

study was conducted. By examining behaviorally-measured associations between 

socioenvironmental concepts pertaining to institutions where these disparities are 

present, preliminary evidence suggesting a double-dissociation in the represent of the 

concept police. Black participants seem to show less trust and greater fear towards the 

police relative to White participants. Although this finding is modest in isolation, follow 

up research and analyses could provide insight into the geometry of socioenvironmental 

concepts now that the behavioral tasks for measuring concept associations has been 

established. 
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 Generally speaking, differences in treatment on a systemic level across Black and 

White Americans are likely driving the differences in conceptual geometries. This 

systemic influence creates a persistent contextual mechanism for differential experience 

of concepts central to living in American society. This widespread mechanism makes it 

difficult to pinpoint which exact facets or contextual factors are driving the differences. 

This raises the question of how differences in conceptual geometries could be better 

measured to capture differences reflected in the racial disparities literature? With a 

limited number of attributions in Study 2 it is unclear what attributional mechanisms 

could be underlying concepts where racial disparities exist. It is likely the case that 

neither fear nor trust are appropriate for capturing how people feel towards certain 

concepts (e.g., community).  Moreover, having additional attribution could provide 

possible explanations for significant non-attributional associations between concept 

pairs (e.g., police-healthcare and community-voting are significantly more associated 

for White participants than Black participants)(Table 4.5). Insight into which other 

attributes could be included into the concept set could be gained from the study of 

emotions. Theoretical work on basic emotions suggests that 6 basic emotions underlie 

human cognition (i.e., joy, love, sadness, fear, anger, and surprise)(Shaver et al., 1987). 

The similarity ratings of each of these basic emotions with socioenvironmental concepts 
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could provide insight into the nuanced and complex emotional association people have 

towards these concepts. 

 

 

Future direction 

Taken collectively, this dissertation provided a conceptual springboard for the 

investigation of social factors on concept associations related to societal institutions. 

The first two projects of this dissertation provide a neurosemantic basis for the 

underlying semantic structure of abstract concepts. With this basis for the 

generalizability of abstract concepts across individuals, we can begin to ask questions 

about abstract concepts in the context of our social world. However, in the spirit of the 

wisdom-of-crowds phenomena special consideration needs to be taken to not draw 

inferences about a social identity (such a race) based on a small sample of participants. 

Future behavioral work would need to collect large samples using psychometrically 

sound measurements and techniques (such as the SpAM and PRaM). Using population-

level data is the key to understanding the semantic structure underling these concept 

associations. In addition to population-level data, larger concept set sizes are needed to 

extrapolate more nuanced dynamics constituting societal concept geometries. Moreover, 

further work needs incorporate measurements of possible contributing mechanisms 
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such as social dominance orientation and the importance of someone ’s identity to their 

association.  

 Further work could also investigation the relationship between societal concept 

geometries and behavior, specifically, language use and decision making. The 

relationship between concept geometries and language could be linked by examining 

social media data through a natural language inference (NLI) perspective. This would 

potentially illuminate discrepancies in how people view their societal world and how 

they choose to communicate in a way that reflects associations between societal 

institutions. Moreover, by investigating the link between concept associations and 

decision-making, specific links can be made between thought and people’s differential 

decisions to reward or punish in-group versus outgroup members. The goal is to strive 

for an understanding of the composition and contributions to an individual’s world view 

as they navigate a social world. 
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