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     Abstract  
 

Concepts are internal representations of characteristics of the external world with an 

ontological structure that associates related concepts together, like an apple tastes sweet 

and can sometimes be red. Concepts can be associated to form new ideas and concepts, 
can instantiate our lived experiences into language, and can be used to communicate our 

emotions and feelings towards people or institutions.   

Although there has been extensive neuroscientific and behavioral research on the 

semantic properties of concrete concepts there has been far less work examining the 
underlying semantic structure of abstract concepts. Abstract concepts are not 

immediately experienced by taste, smell, hearing, touch, sight, via proprioception 

(awareness of our bodyôs position in space or relative to an object), or via our vestibular 
system (information to maintain our bodyôs orientation in space). These aperceptual 

abstract concepts are important in that they represent key domains of human 
knowledge, critical for many complex huma n decisions and allowing us to form new 

ideas based on old ideas. Neuroscientific research on the semantic structure of abstract 

concepts is sparse and the degree of homogeneity of meaning of abstract concepts across 
individual s remains a question. Moreover, the inverse question of whether differences in 

meaning for the same concept (abstract or concrete) can be measured still remains . 

Across people that share a common language there may be variation in concept 
associations driven by differences in experiences of those concepts. 

This dissertation outlines three projects: First, fMRI -measured activation patterns were 
obtained during a thinking task for 28 abstract concepts (spanning 7 categories) from 
native English speakers. An examination of the underlying semantic structure revealed 3 
dimensions underlying the 28 concepts, suggesting a brain-based ontology for this set of 
abstract concepts. The 3 dimensions corresponded to 1) the degree a concept was 
Verbally Represented; 2) whether a concept was External (or Internal) to the individual, 
and 3) whether the concept contained Social Content. Second, the degree of 
commonality of these dimensions across fMRI-measured activation patterns for the 
same 28 abstract concepts were compared across native Mandarin and English 
speakers. The semantic dimensions identified in the first project were replicated across 
languages; however, despite comparing different languages, there is no reason to 
hypothesize differences in concept meaning. Third, differences in behaviorally measured 
concept representations were assessed by measuring socioenvironmental concepts (e.g., 
healthcare, police ) that have been shown to reflect racial disparities between White and 
Black Americans. Moreover, a novel implicit  measure of semantic association, the 
Implicit Semantic Association Procedure, is proposed, and evaluated against gold-
standard measures, as a tool for implicitly measuring concept semantic associations. 
Collectively this work measures the underlying structure of abstract concepts in the 

brain, the generalizability of these semantic structures across languages, and takes 
initial steps for measuring whether differences in experience leads to differences in 
concept representations.   
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Overview  

 Concepts are internal representations of characteristics of the external world with 

an ontological structure that associates related concepts together, like an apple tastes 

sweet and can sometimes be red. Concepts can be associated to form new ideas and 

concepts, can instantiate our lived experiences into language, and can be used to 

communicate our emotions and feelings towards people or institutions. Concepts also 

give us the means to communicate aperceptual information, also referred to as abstract 

concepts --  not immediately experienced by taste, smell, hearing, touch, sight, via 

proprioception (awareness of our bodyôs position in space or relative to an object), or via 

our vestibular system (information to maintain our bodyôs orientation in space). These 

aperceptual abstract concepts are important in that they are at the core of every domain 

of study scaffold the progress of human knowledge allowing us to form new ideas based 

on old ideas. Despite this importance there has been considerable research linking 

representations of object concepts and other perceptually grounded representations to 

the brain (Grill -Spector and Malach, 2004; Martin, 2007), our understanding of 

abstract concepts such as gravity , spirituality , and prejudice  is far less understood. 

Neuroscientific research on the semantic structure of abstract concepts is sparse and the 

degree of homogeneity of meaning of abstract concepts across individuals remains a 
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question. Moreover, the inverse question of whether differences in meaning for the 

same concept (abstract or concrete) can be measured still remains. Across people that 

share a common language there may be variation in concept associations driven by 

differences in experiences of those concepts. 

 Chapter 1 consists of a published book chapter describing prevailing theories on 

the neuroscience of concepts, the literature on methodological approaches to 

understanding the link be tween concepts and the brain, and the current body of 

neurosemantic literature on concrete and hybrid concepts ïconcepts that are not 

concrete nor purely abstract (Vargas and Just, 2021).  

 Chapter 2 consists of a published article of one of the first MVPA examination of 

abstract concepts (Vargas and Just, 2020). In this study, fMRI -measures activation 

patters are obtained during a thinking task for 28 abstract concepts (spanning 7 

categories) from a set of native English speakers. Using modern MVPA approaches, this 

study identified 3 semantic dimensions underlying the neural activation patterns of 

these 28 abstract concepts. The 3 dimensions corresponded to 1) the degree a concept 

was Verbally Represented; 2) whether a concept was External (or Internal) to the 

individual, and 3) whether the concept contained Social Content. 
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 Chapter 3 is a published article which assesses whether the semantic dimensions 

identified in the study described in Chapter 2 are common across people of differing 

cultures and languages by examining the fMRI -measured neural activation patterns of 

the same 28 abstract concepts across American native English speakers and Chinese 

native Mandarin speakers (Vargas and Just, 2022). MVPA analyses revealed the same 

set of semantic dimensions underlying the set of abstract concepts including an 

additional dimension related to the conceptôs degree of reliance on rule-driven 

principles. Chapter 2 and 3 identified a common underlying semantic structure that 

spans languages and cultures but there was no basis to expect differences in the neural 

patters of the proposed set of 28 concepts besides polysemous meaning. 

 Chapter 4 aims extend upon Chapter 3 by describing a series of behavioral 

studies aimed at measuring differences in concept meaning (rather than commonalities) 

driven by differing experiences. Racial disparities between Black and White Americans 

have been well documents and empirically studied across numerous domains and 

institutions of society. This chapter contextualizes the Bias of Crowds model, which 

asserts that concept associations reflect environmental factors (broadly described as 

context and situations)(Payne et al., 2017). Contexts can be as proximal as a specific 

personal encounter or as distal as the systemic and cultural norms of the nation the 

individual resides in. Contexts can also be as isolated as a one-time incident or as 
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chronic as repeated exposure to associations such as media exposure. To measure 

differences in concept association, two gold-standard measures of concept geometry 

(Spatial Arrangement Method (SpAM) and the Pairwise Rating Method (PRaM)) will be 

utilized in addition to a novel proposed implicit measure of concept geometry, the 

Implicit Semantic Association Procedure (ISAP). The first study of this chapter assesses 

the reliability and validity of these three metrics using a set of simple object concepts 

and attributes with clearly defined associations. The second half of this chapter utilizes 

the measures of semantic association to assesses whether racial disparities between 

Black and White Americans are reflected in the association of concepts related to 

institutions within our American society (e.g., healthcare, police ).   
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Chapter 1. Approaches for understanding and analyzing the neural 
representations of conc ept  

 

Although the study of concept knowledge has long been of interest in psychology 

and philosophy, it is only in the past two decades that it has been possible to 

characterize the neural implementation of concept knowledge. With the use of 

neuroimaging t echnology, it has become possible to ask previously unanswerable 

questions about the representation of concepts, such as the semantic composition of a 

concept in its brain representation. In particular, it has become possible to uncover 

some of the fundamental dimensions of representation that characterize several 

important domains of concepts.  

Much of the recent research has been done with fMRI to predict and localize 

various concept representations and discover the semantic properties that underlie 

them. Commonly used experimental designs in this research area present single words 

or pictures of objects, measure the resulting activation pattern in multiple brain 

locations, and develop a mapping between the topographically distributed activation 

pattern and the semantic representation of the concept. The primary research topics 

concerning concept representations pertain to three issues: the composition of concept 

representations, the neurally defined underlying semantic dimensions; and the relation 

between neuroimaging findings and cognitive and psycholinguistic findings. It is these 
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types of relationships between cortical function and meaning representation that allow 

us to understand more about both the way knowledge is organized in the human brain 

and the functional role that various brain systems play in representing the knowledge.  

Concepts are often qualitatively different from one another with regard to their 

perceptual grounding. As a result, one area of research has largely focused on the neural 

representations of concrete object concepts. However, as imaging technology and 

analytic techniques continue to improve, the neural representations of seemingly 

ethereal, abstract concepts such as ethics and truth have recently become a topic of 

increasing inter est. In addition to the interest in such highly abstract concepts, recent 

research has also investigated hybrids between concrete and abstract concepts such as 

emotions, physics concepts, and social concepts. These hybrid concepts are not directly 

perceptually grounded but they can nevertheless be experienced. This chapter provides 

an overview of contemporary neuroimaging research examining the neural instantiation 

of concrete concepts, abstract concepts, and concepts that fall somewhere in between, 

which we call hybrid concepts. 

 

Hub-and-spoke model of feature integration in concept representations  
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Any individual concept representation is thought to be composed of a network of 

semantic features (Collins and Loftus, 1975). Connections to more similar (closer) 

semantic representations are more likely and easier to come to mind than more distal 

ones. The anterior temporal lobe (ATL), sometimes referred to as the convergence zone 

or hub, has been credited with incorporating individual semantic features of concep ts 

(the spokes, in this analogy) into an integrated representation of that concept (Meyer 

and Damasio, 2009). Recent fMRI research suggests that this integration of semantic 

features in the brain is localized to the ATL. One study showed that by combining color-

related activation coded in right V4 and shape-related activation coded in the lateral 

occipital cortex (LOC) allowed visual objects to be distinguished in the ATL (Coutanche 

and Thompson-Schill, 2015). Although the ATL has also been shown to activate for 

abstract concepts (Hoffman 2016), a study similar to Coutanche and Thompson-Schill 

(2015) has yet to be conducted showing that individual abstract concepts can be 

decoded from ATL based on their composite semantic features. In sum, the ATL is 

thought  to act as a cognitive mechanism that integrates perceptual and verbal (i.e., 

concrete and abstract) information comprising the representation of a concept (Lambon 

Ralph, 2014). 

 

General Semantic Network   
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A prevailing neuroscientific framework for explaini ng concept and semantic 

processing is the General Semantic Network theory (Binder et al., 2009; Liuzzi et al., 

2020). The authors computed a meta-analysis of 120 articles examining semantic and 

concept processing totaling 187 univariate activation maps. The activation maps were 

restricted to those which directly measured some form of semantic information. The 3 

most common semantic maps included: Word versus pseudoword tasks that required 

participants to access word meaning; Semantic decision tasks with word stimuli; and 

high versus low meaningfulness tasks (e.g., names of animals versus tones; Binder et al., 

1999). The meta-analysis converged upon a network of regions that could be 

attributable to semantic processing regardless of specific semantic categorization or task 

structure.  

The result of this meta-analysis describes a set of brain locations responsible for 

the processing of semantic information (See Figure 1.1).  This network of regions 

includes: 1) inferior parietal lobe (AG and portions of SMG), 2)  lateral temporal cortex 

(MTG and portions of ITG), 3) ventral temporal cortex (mid - fusiform and adjacent 

parahippocampal gyrus), 4) DMPFC, 5) IFG, 6) ventromedial prefrontal cortex 

(VMPFC), and 7) posterior cingulate gyrus (Binder et al., 2009).  

This framework provides a convenient vessel for modern multivariate pattern 

analytic (MVPA) approaches for understanding semantic structures underlying 
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qualitatively distinct concepts. Using this framework, semantic dimension identified for 

individual sets of concepts (e.g., shelter dimension, frequency  dimension, valance 

dimension; Just et al.,2010) can be thought as being distributed sub-systems which 

serve as organization principles for processing specific types of information subsumed 

within this network.  

 

 

 

Figure 1.1.  Summary  diagram of the regions comprising the general semantic network. This figure was 
adapted from Figure 7 as published in Binder et al., 2009.  

 

Neuroscientific methods for understanding concepts  

Univariate -based analyses 
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The initial approach  of task-related fMRI imaging was to measure the difference 

in activation for a class of stimuli (such as a semantic category, like houses) relative to a 

ñrestò condition. At each 3-dimensional volume element in the brain (a voxel), a general 

linear regression model (GLM) is fit to relate the occurrence of the stimuli to the 

increase in activation relative to the rest condition. The result is a beta weight whose 

magnitude reflects the degree of condition-relevant activation in each voxel. This 

approach proves useful for investigating the involvement of cortical regions whose 

activation systematically increases or decreases relative to rest for a specific mental 

activity. However, with this voxel -wise univariate approach, complex relations between 

the activation in different brain regions within a network are often not apparent 

(Kriegeskorte, et al., 2006; Mur, et al., 2009). Moreover, treating each voxel 

independently of the others misses the fact that the activation pattern corresponding to 

a concept consists of a set of co-activating voxels that may or may not be proximal to 

each other. Nevertheless, the univariate approach was successful in identifying which 

brain regions activated in response to a given class of concepts. 

 

Multivariate pattern analysis (MV PA) 
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The advent of higher-resolution imaging analyses aided in shifting the research 

focus from identifying the cortical regions involved in the representation of concepts to 

focusing on the coordinated activation across a network of brain regions or subregions 

(Haxby et al., 2001; Haynes and Rees, 2006). Instead of assessing the activation evoked 

by a class of concepts in terms of individual voxels in various brain regions considered 

independently of each other, multivariate analyses treated the activating voxels in 

conjunction with each other, as multiple dependent variables. Multivariate pattern 

analysis (MVPA) is graphically illustrated in Figure 1.2. MVPA refers to a family of 

analyses designed to take into account the multivariate relationships among the voxels 

that represent various concepts. Some of the most common analyses for investigating 

concept representations include: 1. Representational Similarity Analysis (RSA), which 

enables comparison of the multivariate activation patterns of different conce pts; 2. 

Factor Analysis or Principle Components Analysis (PCA) which enables discovery of the 

lower-dimensional structure of distributed patterns of activation; 3. Predictive 

Modeling, which enables assessment of various postulated interpretations of underlying 

semantic structures by predicting activation patterns of concepts; and 4. Encoding 

Models which enable quantitative assessment of various organizational structures 

hypothesized to drive the activation. These techniques tend to answer somewhat 
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different questions. 

 

Figure 1.2 Conceptual schematic showing differences between GLM activation-based approaches and 

pattern -oriented MVPA, where the same number of voxels activate (shown as dark voxels) for two 

concepts but the spatial pattern of the activated voxels differs 

 

Representational similarity analysis (RSA)  

RSA is often used to measure the similarity (or dissimilarity) of representational 

structures of various individual concepts or categories of concepts. The representation 

of a concept or a category of concepts can be defined as the evoked activation levels of 

some set of voxels. These activation patterns can be computed with respect to all of the 

voxels in the whole cortex but are often restricted to the voxels in semantically relevant 

regions. The most common technique is to redefine the representation of a concept from 

being an activation pattern to a similarity pattern with respect to the other concepts in 
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the set (Kriegeskorte, et al., 2008a). For example, the neural representation of a concept 

like robin can be thought of in terms of its similarities to a set of other birds. This 

approach makes it possible to compare various brain subsystems in terms of the types of 

information they represent, and thus to characterize the processing characteristics of 

each subsystem. For example, RSA has been used to demonstrate the similarities in the 

visuospatial subsystems of humans and monkeys in the representations of visually 

depicted objects (Kriegeskorte et al., 2008b). The strength of this approach is its higher 

level of abstraction of the neural representation of concepts, representing them in terms 

of their relations (similarities) to other concepts. The cost of this approach is its limited 

focus on the representation of the properties of individual con cepts. 

 

Extracting dimensions of semantics (Factor Analysis / PCA)  

Factor analysis and PCA are used to extract neurally meaningful dimensions from 

high-dimensional activation patterns. ñNeurally meaningfulò refers to a subset of 

concepts systematically evoking activation from a subset of relevant voxels. For 

example, concrete objects that entail interaction with parts of the human body (such as 

hand tools) evoke activation in motor and pre -motor areas, such that a neural 

dimension of body -object interaction  emerges (Just et al., 2010). This approach focuses 
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on dimensions that are shared by some concepts and de-emphasizes the differences 

among the concepts that share the dimension. The regions corresponding to the 

dimension can be localized to particular brain areas (by noting the factor loadings of 

various clusters of voxels). 

After the dimension reduction procedure finds a dimension and the items and 

voxels associated with it, the dimension requires interpretation. The source of the 

interpretation often come s from past knowledge of the functional roles of the regions 

involved and the nature of the items strongly associated with the dimension. For 

example, if hand tools obtain the highest factor scores on some factor, then that factor 

might plausibly be interp reted as a body-object interaction factor. (The itemsô factor 

scores indicate the strength of the association between the items and the factor). One 

approach to assessing an interpretation of a dimension (such as a body-object 

interaction dimension in the example above) is to first obtain ratings of the salience of 

the postulated dimension, say body-object interaction, to each of the items from an 

independent group of participants. For example, the raters may be asked to rate the 

degree to which a concept, such as pliers, is related to the hypothesized dimension body-

object interaction (Just et al., 2010). Then the correlation between the behavioral 

ratings and the activation -derived factor scores of the items provides a measure of how 

well the interpretatio n of the dimension fits the activation data. This technique has been 



15 

 

used to extract and interpret semantically meaningful dimensions underlying the 

representations of both concrete nouns and abstract concepts (Just et al., 2010). 

 

Predictive modeling  

The goal of a predictive modeling procedure is to assess whether the activation 

pattern of a concept that was left out of the modeling can be predicted with reasonable 

accuracy, given some theoretical basis. The prediction process starts by generating a 

hypothesis about the underlying factor or dimension (which is based on how the items 

are ordered by their factor scores and on the locations of the voxels with high factor 

loadings). Then a linear regression model is used to define the mapping between the 

salience ratings of all but one item and the activation levels evoked by those items in 

factor-related locations (voxel clusters with high factor loadings in factor analyses that 

excluded the participant in question). The mapping is defined for all of the underl ying 

factors. Then the activation prediction for the left -out item is generated by applying the 

mappings for all of the factors to the ratings of the left -out item. This process is 

repeated, each time leaving out a different item, generating an activation prediction for 

all of the items. Activation predictions for each concept can be made within each 

participant and then averaged over participants. The accuracy of the predictions 

provides converging evidence for the interpretation of the neurosemantic facto rs. Unlike 
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the correlational measure described above, this approach develops a mapping that is 

generative or predictive, applying to items uninvolved in the modeling.  

 

Hypothesis-driven encoding modeling  

Encoding models provide another more general way to test whether a 

hypothesized semantic organization structure is capable of explaining the activation 

data for some set of concepts. A first step in the modeling is the specification of a 

theoretically plausible feature set that is hypothesized to account for the relationship 

between a stimulus set and the corresponding evoked activation patterns (Naselaris et 

al., 2011). For example, the co-occurrence of noun concepts with verbs in a large text 

corpus may account for the relationship between individual concepts and activation 

patterns for those concepts say in a regression model. The resulting beta-weights from 

the regression model quantify the degree to which each feature determines the 

relationship between the stimuli and neural activity (Mitchell et al., 2 008). The ability of 

this mapping to generalize to novel concepts, either in activation space or in feature 

space, provides a quantitative assessment of the plausibility of the hypothesized 

relation. This approach is especially useful for representations that are less clearly 
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mapped in the brain, such as abstract concepts, enabling an evaluation of the neural 

plausibility of theories of abstract concept representation (Wang et al., 2018). 

More recently, encoding models have been used with semantic vectors, a feature 

structure constructed by extracting information from the co -occurrence of words in a 

large text corpus, to serve as a basis for predictions of large-scale sets of concept 

representations (Pereira et al., 2018). Encoding models have also been used to measure 

the ability for theoretically derived semantic feature structures to explain neural 

activation data for sentences (Yang et al., 2017). Encoding models are a flexible tool that 

allow for the quantitative evaluation of the ability of theoreticall y motivated feature 

structures to account for brain activation patterns.  

 

Neurosemantic structure of concrete object representations  

Object concepts are the most perceptually driven of concept representations. 

Consequently, the neural representation of object concepts is well understood because 

the neural organization of low - level perceptual information is well understood (Grill -

Spector and Malach, 2004; Martin, 2007). Haxby and colleagues (2001) showed that 

pictures of different objects could be related to each other based on their pattern of 

activation in the visuospatial pathway, specifically in the fusiform face area (FFA) and 
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parahippocampal place area (PPA). Patterns of activation in these regions were 

distinguishable in terms of the object categories being represented (i.e., faces versus 

houses). It seems clear that a substantial part of concrete object representations consists 

of the representation of their perceptual properties.  

Moreover, it has been possible to determine the sequence in which various types 

of perceptual information becomes activated as the thought of a concrete object 

emerges. Recent MEG research has shown that the temporal trajectory of the neural 

activation for object representations starts with low - level visual properties such as 

image complexity which begins to be activated about 75 ms after stimulus onset in the 

early bilateral occipital cortex. Later, at 80 -120 ms, information concerning more 

complex categorically defined shapes (e.g., has eyes, has 4 legs) begins to be activated 

along the left ventral temporal cortex and anterior temporal regions (Clarke et al., 2013). 

The early onset object representation suggests that coarse categorical distinctions 

between objects are rapidly represented along a left-hemispheric feed-forward neural 

pipeline. After this initial representation is generated, more complex semantic features 

take form through recurrent activation and the integration of more distributed cortical 

systems at 200-300 ms. This temporal trajectory from simple to complex i nformation 

suggests a cumulating pipeline designed to construct meaning from distributed 

semantic features. 
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Beyond the understanding that concrete object representations are based in large 

part on the objectsô perceptual properties, several interesting questions remain, such as 

how the differing perceptual properties of an object are integrated in the object 

representation and what semantic properties underlie the organization of the 

representations of differing objects.  

 

Semantic dimensions of concrete concepts 

Contemporary research into concrete object concepts has progressed beyond the 

focus on perceptual aspects of concept representations and begun to examine higher-

level semantic properties of concrete concept representations. This approach generally 

ut ilizes dimension reduction techniques such as factor analysis, first on an individual 

participant level then at the group level, to investigate semantic dimensions that are 

present in the neural representations across individuals (Just et al., 2014). This 

dimension reduction approach applied to a set of activation patterns has the advantage 

of discovering neurally driven dimensions of meaning rather than imposing a previously 

hypothesized semantic organization. 

Just and colleagues (2010) utilized this approach to uncover 3 semantic 

dimensions underlying the representation of 60 words referring to concrete nouns (e.g., 
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hammer, apple). Specifically, they found that these 60 concrete concepts could be 

characterized by the way they relate to eating, manipulation (or body -object 

interaction), and shelter (or enclosure). Moreover, each of these dimensions was 

associated with a small set of cortical regions. The shelter dimension was associated 

with activation in regions of bilateral parahippocampal place area, bila teral precuneus, 

and left inferior frontal gyrus. The manipulation dimension was associated with 

activation in regions of left supramarginal gyrus and left pre -  and post-central gyrus (the 

participants were right -handed). The eating dimension was associated with activation in 

regions of left inferior and middle frontal gyrus and left inferior temporal gyrus. These 

results indicate the beginnings of a biologically plausible basis set for concrete nouns 

and highlight semantic properties beyond a visuospatial domain. 

Other research has sought to discover semantic dimensions of non-word or 

picture concept representations using a different approach. Principal Components 

Analysis (PCA) was applied to the activation evoked by 1800 object and action concepts 

shown in short movie clips (Nishimoto et al., 2011). This approach sub-divided the brain 

based on the similarities of the activation patterns among the concepts to their co-

occurrence with a large text corpus. This technique was also applied to the activation 

patterns evoked by natural continuous speech (Huth et al., 2016). Both the video clip 

and the natural-speech studies related neural activation similarities to corpus co-
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occurrence information to locate semantically consistent regions within the cerebral 

cortex based on domain-specific information. This parcellation approach associated the 

activation of various regions and semantic categories with individual concepts. The 12 

interpretable semantic categories from the PCA were: mental (e.g., asleep); emotional 

(e.g., despised); social (e.g., child);  communal (e.g., schools); professional (e.g., 

meetings); violent (e.g., lethal ); temporal (e.g., minute ); abstract (e.g., natural ); 

locational (e.g., stadium ); numeric (e.g., four ); tactile (e.g., fingers ); and visual (e.g., 

yellow ). Aside from the format of stimulus presentation, the notable distinction between 

the dimension reduction approaches in Just et al. (2010) and Huth et al. (2016) was that 

Huth generated semantic dimensions based on the mapping between activation and co-

occurrence while Just (2010) generated dimensions from the activation patterns. The 

exploration of the underlying dimensions of concrete concepts helps provide a basis for 

the semantic organization of perceptible concepts beyond basic visuospatial properties.  

 

Neurosemantic signatures of abstract concepts  

The representations of abstract concepts, such as ethics and law, are neurally and 

qualitatively distinct from those of concrete concepts. Abstract concepts, by definition, 

have no direct link to perception with the exception of some form of symbolic 
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representation (e.g., lady justice holding a scale to represent the concept of law or 

justice). The conventional view of abstractness portrays it as an absence of a perceptual 

basis, that is, the opposite of concreteness (Barsalou, 1999; Barsalou, 2003; Brysbaert et 

al., 2014; Wang et al., 2010). Although it is easy to define abstract concepts as those 

lacking concreteness, this definition does not describe the psychological or 

neurocognitive propert ies and mechanisms of abstract concepts. 

Concrete and abstract concepts generally evoke different activation patterns, as a 

meta-analysis showed (Wang et al., 2010). This meta-analysis indicated that the two 

types of concepts differ in their activation in areas related to verbal processing, 

particularly the left inferior frontal gyrus (LIFG). Abstract concepts elicited greater 

activation than concrete concepts in such verbal processing areas. By contrast, concrete 

concepts elicited greater activation than abstract concepts in visuospatial processing 

(precuneus, posterior cingulate, and fusiform gyrus). This meta -analysis was limited to 

univariate comparisons of categories of concepts and did not have access to the 

activation patterns evoked by individual con cepts. This limitation potentially overlooks 

nuanced distinctions in the representational structure. As described above, univariate 

contrasts potentially overlook critical relationships across neural states and neural 

regions (Mur et al., 2009). Through th e use of MVPA techniques, more recent studies 

have begun to examine the underlying semantic structure of sets of abstract concepts. 



23 

 

The section below focuses on various imaging studies examining the neural activation 

patterns associated with abstract concepts and explores the possible semantic structures 

that are specific to abstract concepts. 

As in the case of concrete concepts, the semantic dimensions underlying abstract 

concept categories can be identified from their activation patterns. One of the first  

attempts to decode the semantic content of abstract semantic information was 

conducted by Anderson and colleagues (2017). A set of individual concepts that 

belonged to various taxonomic categories (tools, locations, social roles, events, 

communications and attributes) were decoded from their activation patterns. Whether a 

concept belonged to 1 of 2 abstract semantic categories (i.e., Law  or Music ) was also 

decoded from the activation patterns of individual concepts. Although these abstract 

semantic categories could be decoded based on their activation patterns, the localization 

of this dissociation is unclear. 

 

Hybrid concepts: neither completely concrete nor completely abstract  

Hybrid concepts are concepts that can be experienced directly but require 

addit ional processing beyond the 5 basic perceptual faculties to evoke. These concepts 

do not neatly fit within the dichotomy of concrete versus abstract. For example, the 
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concept envy cannot be tasted, seen, heard, smelled, and touched but it inarguably can 

be experienced as an internal event which could have perceptual repercussions (e.g., 

feeling lethargic, crying). We propose that envy and other concepts referring to 

psychological states are hybrid. 

The view of embodied cognition (Barsalou, 1999) expands upon the definition of 

perception beyond our 5 basic perceptual faculties to also include the experiences of 

proprioception and emotions. Hybrid concepts fall outside the strict realm of the 

sensory-perceptual but within the realm of psychological experience as described by 

embodiment theory (e.g., proprioception and emotion). Emotions, physics, and social 

concepts are not usually defined exclusively with respect to their 

concreteness/abstractness but serve as excellent exemplars of hybrid concepts in that 

they can be perceptually experienced without evoking any of our 5 senses directly. 

Additionally, the neural understanding of the semantic underpinning of hybrid concepts 

is not well understood. The following three sections describe research investigating the 

neurosemantic organization of hybrid concepts, specifically, the neurosemantic 

organization of emotions, physics concepts, and social concepts. 

 

Neurosemantic dimensions of meaning underlying emotions concepts 
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Meta-analyses of activation contrasts investigating emotion concepts reveal six 

functional networks (Kober et al., 2008) including limbic regions (i.e., amygdala, 

hypothalamus, and thalamus), areas related to top-down executive control function (i.e., 

dorsal lateral prefrontal cortex), the processing of autobiographical information (i.e., 

posterior cingulate cortex) (Klasen et al., 2011), visual association regions, and 

subregions within the motor cortex (Phan et al., 2002). These networks suggest that 

emotion representations partially involve cognitiv e functions related to more complex 

perceptual functioning (i.e., motion and visual association). Furthermore, the 

involvement of regions related to top -down executive functioning and regions related to 

the processing of autobiographical information suggest that emotion concepts recruit 

cognitive faculties for not only basic perceptual representations but also for higher -

ordered cognitive functions. Although these findings identify regions involved in 

emotion representation and processing, they do not provide insight into how different 

emotions are neurally distinguished.  

Recent MVPA analyses examining the neural representations of emotion 

concepts have provided insight into the way the representations of different emotions 

are neurally organized. Kassam and colleagues (2013) examined the evoked neural 

activation patterns of 18 emotion concepts such as happiness, pride, envy and sadness. 

The participants in this study didnôt just think about the meaning of a presented 
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emotion word: they tried to evoke the emotion in themselves at that moment. Factor 

analyses of the activation profiles for the 18 emotion concepts followed by a predictive 

model to validate the interpretations revealed three underlying dimensions of meaning. 

The underlying semantic dimensions organize these emotions concepts according to the 

valence of the emotion (positive or negative), its degree of arousal (fury versus 

annoyance) and degree of social involvement (i.e., whether another person is included in 

the representation, as is the case for envy but not necessarily so for sadness). Each of 

these dimensions of representation were found to correspond to activation distributed 

across several cortical regions. The brain locations associated with the valence of an 

emotion concept included the rig ht medial prefrontal cortex, left hippocampus, right 

putamen, and the cerebellum. The brain locations associated with the arousal 

dimension included the right caudate and left anterior cingulum. Finally, brain locations 

associated with sociality included the bilateral cingulum and somatosensory regions. 

Both univariate and multivariate approaches provided neural evidence for the 

involvement of perceptual and higher -cognitive faculties. The multivariate analyses 

provided additional insight into the dimension s along which the individual emotion 

concepts are differentiated from each other. So even though emotions are very different 

from object concepts, the principles underlying their neural representations are rather 

similar to those of other types of concepts. 
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Neurosemantic dimensions of meaning underlying physics concepts 

Research investigating the neural representation of physics concepts suggests 

their neural organization somewhat reflects the physical world they refer to, such as the 

movements or interact ions of objects. Mason and Just (2016) investigated the neural 

activation patterns of 30 elementary physics concepts (e.g., acceleration, centripetal 

force, diffraction, light, refraction). Factor analyses of the activation patterns evoked by 

the 30 concepts revealed four underlying semantic dimensions. These dimensions were 

periodicity (typified by words such as wavelength, radio waves, frequency), causal-

motion/visualization (e.g. centripetal force, torque, displacement), energy flow (electric 

field, ligh t, direct, current, sound waves, and heat transfer), and algebraic/equation 

representation (velocity, acceleration, and heat transfer) which are associated with 

familiar equations.  

The regions associated with each semantic dimension provide insight into the 

underlying cognitive role of the region. The periodicity dimension was associated with 

dorsal premotor cortex, somatosensory cortex, bilateral parietal regions, and the left 

intraparietal sulcus. These regions have been shown to activate for rhythmic finger 

tapping (Chen et al., 2006). The causal-motion/visualization dimension was associated 
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with the left intraparietal sulcus, left middle frontal gyrus, parahippocampus, and 

occipital- temporal-parietal junction. These regions have been shown to be involved in 

attributing causality to the interactions between objects and data (Fugelsang et al., 

2005; Fugelsand and Dunbar, 2005). The algebraic/equations dimension includes the 

precuneus, left intraparietal sulcus, left inferior frontal gyrus, and occipital lob e. These 

regions have been implicated in the executive processing and integration of visuospatial 

and linguistic information in calculation (Benn, et al., 2012) and more general 

arithmetic processing. The regions associated with energy flow were middle temporal 

and inferior frontal regions. In the context of physics concepts, these regions are 

attributed with representing the visual information associated with abstract concepts 

(Mason and Just, 2016). Together, these results suggest that the neural representations 

of physics concepts, many of them developed only a few hundred years ago, draw on the 

human brainôs ancient ability to perceive and represent physical objects and events. 

 

Neurosemantic dimensions of meaning underlying social concepts 

Research comparing the neural representation of social concepts between healthy 

controls and individuals with high - functioning autism has revealed three semantic 

dimensions involved in the neural representations of social interactions (Just et al., 

2014). Participants in this study thought about the representations of 8 verbs describing 
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social interactions (compliment, insult, adore, hate, hug, kick, encourage, and 

humiliate) considered from the perspective of either the agent or recipient of the action. 

Factor analyses of neural activation profiled for these 16 concept- role combinations 

revealed semantic dimension associated with self- related cognition (hate in the agent 

role and humiliate in the recipient role), social valence (adore and compliment), and 

accessibility/ familiarity relating to the ease or difficulty of semantic access.  

The self dimension was associated with activation in posterior cingulate: an area 

commonly implicated in the processing of autobiographical information. The social 

valence factor included the caudate and putamen for both controls and individuals with 

autism. The accessibility/familiarity factor included regions that are part of the default 

mode network, particularly middle cingulate, right angular gyrus, and right superior 

medial frontal.  

Because this study involved a comparison between young adult healthy controls 

and participants with high - functioning ASD, it provided an important glimpse into how 

a psychiatric or neurological condition can systematically alter the way a certain class of 

concepts is thought about. The use of fMRI neuroimaging allows the precise 

measurement of how a given concept is neurally represented, and specify precisely how 

a condition like ASD can alter the representation. The interesting finding was that the 

members of the two participant groups could be very accurately distinguished by their 
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neural representations of these social interaction concepts. More specifically, the ASD 

group showed a lack of a self dimension, showing little activation in the regions 

associated with the self dimension in the healthy control group. The findings suggest 

that when the ASD participants thought about a concept like hug, it involved very little 

thought of themselves. By contrast, the control group thought about themselves when 

thinki ng about what hug means. Thus the assessment of neural representations of 

various classes of concepts has the potential to identify the presence and the nature of 

concept alterations in psychiatric or neurological conditions. The neurosemantic 

architecture  of hybrid concepts (as exemplified by emotions, physics, and social 

concepts) suggests these concepts relate us with the external world (e.g., causal-motion 

visualization dimension for physics concepts or self/other for social concepts). 

Moreover, the neural activation associated with magnitudes of perceptual experience 

are also captured by the neural representations (e.g., degree of arousal with emotion 

concepts). Taken together, these results suggest that hybrid concepts are composed, in 

part, of perceptual states that translate our perceptual world into various mental states.  

 

 

Relating neuroimaging findings and corpus co -occurrence measures 
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One particular class of encoding models, as was previously discussed, attempts to 

relate neural representations to some well-defined feature set. Defining the meaning of 

a concept in some computationally tractable way has long been a challenge and it is 

relevant here because it has the potential to be systematically related to the neural 

representation of the concept. One of the early answers to this challenge suggested that 

concepts can be characterized in terms of the concepts with which they co-occur in some 

large text corpus (Landauer & Dumais, 1997). The lower dimensions (about 300) of a 

large co-occurrence matrix  produce a semantic vector representation of the words in the 

corpus (Pennington et al., 2014; Deerwester et al., 1990). The method of deriving this 

lower dimensional feature space can vary, depending on the specific approach. The 

utility of semantic vecto r representations comes from their convenience in natural 

language processing applications. But can the semantic vector representation of a 

concept like apple be informative about the neural representation of apple? 

The semantic vector representations can be used as the predictive basis of an 

encoding model. Predicted images can be generated from the learned mapping relating 

brain activation data from a matrix containing semantic vectors. This learned mapping 

can then be used to generate predicted brain images for concepts with no previously 

collected data (Mitchell et al., 2008). This approach provides the basis for generating a 

set of concept representations which can then be explored for its semantic properties 
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(Pereira et al., 2018). Moreover, it enables the study of many more concept 

representations than can easily be acquired in time and cost- limited fMRI studies. 

However, it is unclear whether encoding models based on semantic vector 

representations illuminate the difference between concrete and abstract concepts 

representations. 

Co-occurrence structures have also been used to evaluate the neural instantiation 

of the associative theories of abstract concept representations. Wang and colleagues 

(2018) utilized RSA to compare the organizational structures  of 360 abstract concept 

representations by examining the representational structure of fMRI activation patterns 

across the whole brain and concept co-occurrence properties in a large corpus. The goal 

was to show that each of these viable organization principles is instantiated uniquely 

within the brain.  

Co-occurrence properties represent the theoretical view that abstract concepts 

are represented in terms of their association with other concepts. Their results showed 

that the relationship between co-occurrence representations and brain activity for 360 

abstract concepts was largely left lateralized and seemed to uniquely activate areas 

traditionally associated with language processing such as left lateral temporal, inferior 

parietal, and inferior frontal re gions. 
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Conclusions 

The understanding of how concepts are represented in the human brain has 

advanced significantly based on innovations in imaging technology and multivariate 

machine learning techniques. One new insight concerns how human and self-centric 

concept representations are. No dictionary definition had specified how a hammer is to 

be wielded, and yet that is an important part of how it is neurally represented. Thus, 

part of the neural representation of a physical object specifies how our bodies interact 

with the object (Hauk and Pulvermuller, 2004; Just et al., 2010). Part of the neural 

representation of gossip specifies a social interaction. The concept of spirituality evokes 

self- reflection. Thus this insight is that many neural representations of concepts contain 

human-centric information in addition to semantic information.  

A second insight concerns the dependence of abstract concepts on the verbal 

representations of other concepts. Representing the meaning of abstract concepts may 

require a greater integration of meaning across multiple other concept representations 

than is the case for concrete concepts. Abstract concepts evoke activation in cortical 

regions associated with language processing, particularly LIFG, which may reflect the 

neurocomputational demand for this increased integration of meaning.  
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A third insight is that the semantic components of a neural representation of a 

concept consist of the representations within various neural subsystems, such as the 

motor system, the social processing system, and the visual system. These neural 

subsystems constitute the neural indexing or organizational system. 

A fourth insight concerns the remarkable degree of commonality of neural 

representations across people and languages. Although concept representations 

phenomenologically seem very individualized, the neural representations indicate very 

substantial commonality, while still leaving room for some individuality. The 

commonality probably arises from the commonality of human brain structures and their 

capabilities, and from commonalities in our environment. We all have a motor system 

for controlling our hands, and all apples have a similar shape, so our neural 

representations of holding an apple are similar.  

A fifth insight is that the principles regarding the neural representations of 

physical objects extend without much modification to more concrete and hybrid 

concepts. Although it is easy to see why the concept of apple is similarly neurally 

represented in all of us, it is more surprising that a n emotion like anger evokes a very 

similar activation pattern in all of us. Moreover, even abstract concepts like ethics have a 

systematic neural representation that is similar across people. 
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Although there is much more to human thought than the representa tion of 

concepts, these representations constitute an important set of building blocks from 

which thoughts are constructed. The neuroimaging of these concept representations 

reveals several of their important properties as well as hints as to how they might 

combine to form more complex thoughts.  
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Chapter 2. Project  1: The Neural Representation of Abstract Concepts  
 

Chapter 1 described the literature on the neuroscientific examination of concepts 

by briefly describing theoretical frameworks such as the hub-and-spoke model and the 

general semantic network model of how concepts are represented in the brain. 

Additionally, Chapter 1 described contemporary methodological approaches for 

understanding underlying semantic structure of concepts from brain activation using 

multivariate pattern analytic techniques. Lastly, Chapter 1 described how these 

methodologies allowed for the examination of concrete and hybrid concepts (e.g., 

physics and emotion concepts) in the brain. Chapter 2 describes a published empirical 

study examining the neural representation of abstract concepts using similar 

methodologies described in Chapter 1. 

 

Introduction  

 The human ability to formalize planetary orbit, argue what is ethical or just, or 

communicate about the feelings of others hinges on our ability to speak of concepts that 

do not explicitly take a physical form, or, abstract concepts. However, the neural 

characterization of abstract concepts such as ethics and justice remains relatively 

unexplained. A concept can be defined, in neural terms, as a systematic, distributed 
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pattern of activation across a network of cortical regions that occurs when a person 

thinks about that concept. Unlike concrete concepts, there are no explicit cortical 

systems or theories for explicitly measuring the embodied instantiation of abstract 

information. According to the now well -documented embodiment hypothesis, the 

representation of many concepts is rooted in how their referents are perceived and 

interacted with. This view has provided a valuable theoretical basis for understanding 

the neural instantiation of concrete concepts (Barsalou, 1999). However, there is much 

less clarity concerning the neural representation of abstract concepts (Binder et al., 

2005).  

A meta-analysis of functional magnetic resonance imaging (fMRI) studies 

examining concrete and abstract concepts revealed that areas responsible for language 

processing (namely, left inferior gyrus) reliably activate more for abstract concepts 

relative to concrete concepts (Wang et al., 2010). In addition, a number of studies have 

shown that several other cortical areas related to executive functioning, motion, and 

emotion processing were also involved in the processing of abstract concepts (Pecher et 

al., 2011; Vigliocco et al., 2014). These varied cortical activation findings suggest that 

abstract concept representations rely on the integration of multiple neural systems 

associated with a variety of cognitive functions.  



38 

 

The aperceptual nature of abstract concepts also raises the question of the 

commonality of their neural representations across individuals. Whereas the neural 

commonality of concrete concepts across people (Just et al., 2010) could be based on 

common perceptual properties, it is unclear what the common basis might be for more 

abstract concepts. The concept of justice, for example, is likely to be related to a wider 

variety of experiences than a concept such as apple, suggesting that the neural activation 

pattern associated with the concept could vary substantially across individuals. Previous 

research has shown that concrete concepts can be decoded across individuals from their 

neural signature; this commonality of representation can be characterized by lower -

dimensional semantic primitives such as eating and shelter (Just et al., 2010; Coutanche 

& Thompson-Schill, 2015). This method of decoding concepts from neural signatures 

and characterizing their commonality across participants has been applied to 

perceptually less grounded categories of concepts such as physics concepts (Mason & 

Just, 2016) and emotion concepts (Kassam et al., 2013). However, although physics 

terms and emotions concepts are less concrete than apple or hammer, according to an 

embodied view of concept representation, they are still related to proprioception and 

emotional content. Thus, the commonality of the neural representation of abstract 

concepts across participants remains unknown. 
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The goal of the current study was to determine the neural and semantic ontology 

of individual abstract concepts. Although at least one previous study used multivariate 

pattern analytic techniques (MVPA) to decode taxonomic categories and domains of 

abstract concepts such law and music (Anderson et al., 2014), there has been no attempt 

to predict the neural representation of individual abstr act concepts nor to uncover the 

semantic organization of abstract concepts in a neurally-based ontology. The current 

study assessed the neural activation patterns of 28 abstract concepts by applying MVPA 

including factor analysis to fMRI data. First, the i dentifiability and commonality of the 

conceptsô neural signatures were assessed within and across participants using a pattern 

classifier. Second, a dimension-reduction technique (factor analysis) was used to derive 

a lower-dimensional semantic structure of the concept representations. These 

interpretations of the resulting semantic dimensions were then tested by obtaining 

independent ratings of the concepts along each of the dimensions as we interpreted 

them, and then using the ratings to predict the conceptsô activation patterns. These 

findings provide a brain -based account of the way abstract concepts are neurally 

represented.  
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Methods  

Participants  

Ten right -handed adults (7 Females; age range from 20 to 38, M=25.9) from the 

Carnegie Mellon community participated in a 30 min -scanning session. Informed 

consent was obtained from all 10 participants in accordance with the Carnegie Mellon 

Institutional Review Board. Data from 1 participant was excluded due to the participant 

falling asleep during the scan.  

 

Experimental Paradigm  

Stimuli were 28 words referring to abstract concepts distributed among 7 

categories. Although the category labels were never mentioned nor presented to 

participants, they are listed here in parentheses for expository purposes, preceding the 

actual stimuli: ( mathematics ): subtraction , equality , probability , and multiplication ; 

(scientific ): gravity , force, heat, and acceleration ; (social ): gossip, intimidation , 

forgiveness, and compliment ; (emotion ): happiness, sadness, anger , and prid e; (law ): 

contract , ethics, crime , and exoneration ; (metaphysics ): causality , consciousness, 

truth , and necessity; (religiosity ): deity , spirituality , sacrilege, and faith . Focusing on 

the neural representations of individual concepts provides a higher resolution of 
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semantic content than examination on a categorical level. The representations of 

individual concepts contain information about item -level elements of meaning rather 

than superordinate representational structures. The set of 28 stimuli was presented 6 

times, to enable averaging out effects of noise in the fMRI signal and to provide separate 

datasets for training and testing the machine learning classifier in its cross -validation 

protocol. On each trial, participants were presented with the stimulu s concept for 3 s, 

and were asked to think about the properties they associate with the given concept. 

Participants were instructed to think of the individual concept and the various 

components of its meaning, referring back to the properties of the concept they had 

generated. This instruction has previously been used to enable participants to evoke 

semantically rich representations of concepts that are consistent across multiple 

presentations (Just et al., 2010, 2017; Mason & Just, 2016; Bauer & Just, 2017).  

Following this 3 s period, participants were instructed to clear their mind over 

the course of 7 s while watching a blue ellipse shrink to nonexistence, to allow the 

hemodynamic response to approach baseline before the next concept appeared. A 

shrinkin g ellipse was presented during the inter-stimulus interval to provide a fixation 

target and to convey the progress through the 7 s interval. There was a total of 6 

presentation blocks of the same 28 stimulus concepts (using different random 

permutation ord ers in the different presentations) in the scanning session, distributed 
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between 3 runs (2 blocks per run) to allow participants a brief rest between runs. A 17-

second ñXò was presented at the beginning of each block (2 per run) to use as a baseline 

measure of neural activity.  

Prior to the scan, participants were instructed to write down 3 properties for each 

of the 28 abstract concepts. Possible properties were synonyms, definitions, or 

experiences associated with the concept intended to guide participants to mentally 

evoke a consistent representation for each concept. Participants were instructed to write 

properties that came to mind quickly and naturally. Participants briefly practiced the 

experimental paradigm in a mock MRI scanner while receiving head-motion feedback to 

minimize movement.  

 

fMRI Parameterization and Image Processing  

Functional images were acquired on a Siemens Verio 3.0 T scanner and a 32-

channel phased-array head coil (Siemens Medical Solutions, Erlangen, Germany) at the 

Scientific Ima ging and Brain Research facility at Carnegie Mellon. Scans were acquired 

using a gradient-echo echo-planar imagining pulse sequence (TR=1000 ms, TE=25 ms, 

and a 60Ɓ f lip angle); each volume contained 20 5-mm thick AC-PC aligned slices (1-

mm gap between slices). The acquisition matrix was 64 × 64 with 3.125 × 3.125 × 5-mm 
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voxels. SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) was used to correct for head motion 

and normalize to the Montreal Neurological Institute template (Collins et al., 1994). The 

percent signal change (PSC) relative to the fixation condition was computed at each gray 

matter voxel for each stimulus presentation (the PSC data was converted to z-scores). To 

isolate the neural instantiation of concept representations, voxel activation levels were 

averaged over the four brain images acquired within a 4 s window (at a TR of 1000) 

offset 5 s from the stimulus onset (i.e., images 5 to 8). Mean PSCs were normalized 

across voxels for each trial (MPSC). Previous studies have reported that the use of these 

four images yields the highest classification accuracies obtained by a classifier that 

attempts to relate the activation pattern to the concept (Just et al., 2010; Mason & Just, 

2016; Bauer & Just, 2017). Additionally, using these four images allows for the 

comparison with previously collected concept- level fMRI data.   

 

Voxel Stability  

The analysis focused on the most stable voxels, those whose activation levels were 

systematically modulated by the set of 28 abstract concepts each time the set was 

presented. Voxel stability is a criterion for feature selection that selects voxels in the 

training set that respond consistently across repetitions of the concepts across blocks. It 
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has been established as a method of feature selection for discriminating concept 

representations (Just et al., 2010, 2017; Kassam et al., 2013; Wang et al., 2013; Mason & 

Just, 2016; Bauer & Just, 2017; Yang et al., 2017). A voxelôs stability was computed as 

the mean pairwise correlation of its 28 MPSC activation levels (for the 28 abstract 

concepts) across all pairwise combinations of the presentations blocks in the training 

data. Thus, a voxel with high stability is one that has a stable tuning curve over the set of 

stimuli. Stable voxels were used as features in classification and factor analyses. The 

stable voxels selected in the training data for classification are then used to select the 

voxels in the test set. The 120 most stable voxels in the whole brain were used as 

features for classification. This approximate number of voxels has been shown to 

reliably capture meaningful information in the neural representation of individual 

concepts (Just et al., 2010; Mason & Just, 2016). To ensure the analysis was not 

particularly sensitive to variations in the number of features, the classif ication analysis 

was repeated varying the number of stable voxels used from 20 to 10 000 (in 20 voxel 

increments); the peak classification accuracy occurred between 120 and 180 stable 

voxels. The mean classification accuracy gradually decreased with the inclusion of 

additional stable voxels beyond 180. To be consistent with previous studies, 120 stable 

voxels were chosen to be used as features. 
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Discriminative Classification: Within -Participant  

Gaussian Naïve Bayes (GNB) classifier was trained to decode the 28 concepts in 

each participantôs data. The classifier was trained on the activation data from 4 of the 6 

presentations and was tested on the mean of the 2 left-out images. This cross-validation 

procedure was followed in 15 (6 choose 2) folds. The features used by the algorithm 

consisted of the activation levels of the 120 most stable voxels in the training set from 

anywhere in the whole brain. The classifierôs normalized rank accuracy was used to 

assess decoding accuracy (i.e., the mean over folds of the normalized rank of the correct 

response in a probability - ranked list of all 28 alternatives, where the chance level is 0.5). 

Above-chance performance at p < 0.001 was achieved for concept- level predictions for 

all participants, as determined using a 10,000- iteration permutation test on each 

participant separately (mean cutoff for  p < 0.001 = 0.60; SD= 0.004).  

 

Discriminative Classification: Between -Participant  

A GNB classifier was trained on the neural signatures from 8 of the 9 participants 

and tested on the left -out participantôs data. The alignment across participants was 

accomplished by selecting the voxels with the highest stability across participants (i.e., 

having a similar pattern of activation responses to the 28 stimuli). To compute the 



46 

 

cross-participant stability in the between -participant classification, the MPSC data were 

first averaged across presentations for each participant and then the mean pairwise 

correlation of a voxelôs 28 MPSC activation levels (for the 28 abstract concepts) was 

computed between all pairs of the 8 participants in the training data. The 120 most 

stable voxels (i.e., those with the highest mean pairwise correlations) from the whole 

brain across the 8 participants were selected as features for the training set. Predictions 

were cross-validated across participants and the mean rank accuracy was computed 

across the resulting 9 folds. Above-chance performance at p < 0.01 is 0.57 for concept-

level predictions as determined using a 10,000- iteration permutation test.  

 

Factor Analysis Procedure 

To explore the semantic structure underlying the representations of the 28 

abstract concepts, a two- level factor analysis was computed; a factor analysis was first 

applied to the data of individual participants while the second factor anal ysis used the 

factor scores from the first level as input (using a procedure described in detail in Just et 

al., 2014). This procedure was implemented using a principal factor analytic algorithm, 

including varimax rotation, in MATLAB (Version 6.5; The Math Works, Natick, MA).  
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The data from all 9 participants were analyzed to determine whether 

interpretable factors could be extracted. Stability was averaged across the 9 participants 

for each voxel (voxels with negative stability were set to 0). The locations of the 800 

most stable voxels were first used to indicate the major participating cortical regions [as 

defined using Automated Anatomical Labeling (AAL; Tzourio -Mazoyer et al., 2002)] to 

be included in the factor analysis. Then, the input to the first - level factor analysis 

(performed within each participant) consisted of the mean activation levels of the most 

stable voxels for each of the concepts in each of the contributing AAL regions. The total 

number of voxels used in this factor analysis was 410, similar to the number used in 

previous studies (Kassam et al., 2013), with the number per AAL-defined ROI based on 

the numerosity of the ROIôs stable voxels: 40 voxels from left inferior frontal gyrus 

(LIFG); 30 voxels from left posterior cingulate cortex; 60 v oxels from frontal cortex 

bilaterally; 60 voxels from occipital cortex bilaterally; 60 voxels from temporal cortex 

bilaterally; and 160 voxels from parietal cortex bilaterally. This first - level factor analysis 

was run on all 9 participants individually, ex tracting 7 factors for each subject, resulting 

in a total of 63 vectors of factor scores. The number of factors to be extracted was 

informed by previous studies (Mason & Just, 2016); modifications from the initial 

parameterization resulted in only minor di fferences in results.  
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The goal of the first- level factor analysis, applied to individual participants, was 

to partition the set of input stable voxels into subsets that each systematically but 

differentially responded to the abstract concepts, specifying 7 factors. This analysis 

produced factor scores for the 28 concepts, for each of the 7 factors, for each of the 9 

participants. Each of the 9 participantsô 7 sets of factor scores were concatenated and 

used as input into the second, group- level factor analysis (a total of 63 sets of 28 factor 

scores) to further reduce dimensionality to 5 dimensions and to seek consistency across 

participants. A voxel was determined to belong to a factor if its factor loading exceeded a 

cutoff 0.4 (a typical value for a factor loading threshold): this threshold was also 

informed by previous work using this procedure (Just et al., 2010; Just et al., 2014; 

Mason & Just, 2016). 

To evaluate the robustness of the results to the number of voxels used, factor 

scores from each of the 5 second-order factors were correlated across the different voxel 

set sizes used in the factor analysis (i.e., 205 voxels, versus the original number of 410, 

and 615 voxels). The mean correlation between the factor scores from the 410 voxel set 

(original parameterization) and 615 voxels factor analyses was 0.94 (with all 

correlations exceeding 0.9). Thus the outcomes are not sensitive to an increase in the 

numbers of voxels used in the factor analysis. The correlations between the factor scores 

from the 410 voxel set size (original parameterization) and the 205 voxel set were 
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somewhat lower: most of the correlations fell to Ḑ0.85 with one of the correlations 

(corresponding to an Externality/Internality semantic dimension) falling to 0.64. 

Although the same 5 factors are present when using only 205 voxels, the factor scores 

are not as similar to the 410 set size. The set of 410 stable voxels was thus used for the 

factor analysis. 

 

Predictive Modeling Procedure  

The goal of the predictive modeling procedure was to assess whether the 

activation pattern of a concept that was left out of the modeling could be predicted, 

based on the mapping between the behavioral ratings and the activation patterns of all 

of the other concepts. Accurate predictions would provide converging evidence for the 

factor interpretations (on which the ratings were based). That is, the correlation 

between the behavioral ratings of the concepts along the dimensions as we interpreted 

them and the conceptsô factor scores are a test of the interpretation of the factors from 

the factor analysis. To obtain converging evidence for the factor interpretations, an 

independent group of participants was asked to rate each stimulus concept on a scale 

from 1ï7 with respect to its salience to the dimensions as they have been interpreted 

here (e.g., the degree to which a concept, such as faith, was verbally versus perceptually 
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based). These ratings were then used in a multiple regression model to predict the 

activation patterns of concepts for which the model had no activation data (Mitchell et 

al., 2008). Activation predictions for each concept were made within each participant , 

by developing a separate regression model for each participant to separately predict 

each concept, basing the model and the weights it derives on the data from the 27 

concepts other than the 28th target concept. The resulting model weights were then 

applied to the dimension ratings and character length of the target concept (Just et al., 

2010). These models made predictions of activation values in factor locations obtained 

from factor analyses that were based on all but the participant in question. The mean 

prediction accuracies for the 28 concepts were then averaged across participants. A 

predictionôs accuracy was assessed by computing the Euclidean distance between the 

activation pattern predicted by the model and the observed activation data, relative t o 

the distance to the representations of the other 27 concepts. The normalized rank of the 

distance between the predicted and test images (among the 28 distances) was the 

measure of prediction accuracy. Significance was computed using a permutation test. 

The results of the predicted images with correct labels were compared against the 

distribution of rank accuracies of predicted images with random labels for 100,000 

random permutations.  
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Results  

Systematicity and Commonality of Abstract Concepts  

Within -Participant Classification  

The mean normalized rank accuracy of the classification of the 28 concepts, first 

computed for each participant and then averaged over participants, was 0.82, p < 0.001 

(where chance is 0.5). The mean classification accuracy for each of the 9 participants 

individually was also reliably above chance (range = 0.76 to 0.94, p < 0.001). These 

results indicate that these abstract concepts have distinctive neural signatures that can 

be characterized by the multivoxel activation pattern capt ured by the classifier. 

Although previous studies have shown that abstract domains such as law and music can 

be decoded from neural signatures (Anderson, et al., 2014), this finding reveals that 

individual abstract concepts can be decoded from their neural signatures.  

To address the possibility that some of the decoding accuracies could be due to 

low- level representations of the concept presentation rather than just the concepts, the 

analyses were repeated excluding left fusiform gyrus (which includes visual word form 

areas) and bilateral Heschlôs gyrus (to account for low- level auditory information) in 

addition to the previously excluded occipital lobe. The minimal difference between the 

inclusion and exclusion of these regions (a minor decline from 0.82 t o 0.80 in rank 
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accuracy) suggests that the lower- level word representations have little influence on the 

overall results. 

 

Representational Similarity between Activation Patterns for Individual Concepts  

To explore the similarities among the neural representations of the 28 individual 

abstract concepts, representational distance matrices (RDMs) were generated using the 

activation patterns for the 120 most stable voxels for each participant separately. The 

resulting concept-by-concept RDMs of activation patterns were then averaged across 

participants. The resulting mean RDM contained 2 clusters of similar concepts. One 

cluster was related to mathematics  and scientific  concepts (top left box of Figure 

2.1), including concepts such as subtraction and acceleration. A second cluster indicates 

similarity of activation patterns among the remaining 5 categories relating to social , 

emotions , law , metaphysics , and religiosity  (bottom right box of Figure 2.1).  
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Figure 2.1.  Representational similarity between neural act ivation (blue colors indicate higher similarity) 
for indiv idual concepts. Dotted lines indicate category separation.  

 

Commonality of Neural Representations across Participants 

In addition to establishing that the neural representations of abstract concepts  

were systematic and decodable within each participant, a between-participant 

classification was performed to determine whether these abstract concept 
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representations were similar across participants. When the classifier was trained on the 

data of all but one participant, the mean rank accuracy for the test data from the left -out 

participant was 0.74, p < 0.01, indicating that the neural signatures had a substantial 

amount of commonality across participants. All 28 individual concepts were reliably 

classifiable between participants with a range of 0.58 to 0.94 (p < 0.01). Thus these 

highly abstract concepts are neurally represented as activation patterns that are highly 

common across participants. 

 

Factor Analysis for Uncovering Underlying Neurosemantic Dime nsions 

A two- level factor analysis (first applied to individual participants, then to the 

pooled data) was used to uncover the dimensions underlying the activation evoked by 

the abstract concepts. Four of the five resulting second- level (common) factors that 

accounted for the most variance were interpretable, using two criteria: 1) the ordering of 

the 28 concepts by their factor scores for a given factor, particularly the concepts near 

the two extremes of the ordering; 2) the locations of voxels with high l oadings on the 

factor. These 4 factors were interpreted as corresponding to Verbal Representation, 

Externality/Internality (to oneself), Social Content, and Word Length. These 4 factors 

accounted for a total of 33.2% of variance in the group- level factor analyses: Verbal 



55 

 

Representation accounted for 10%; Externality/Internality accounted for 7.9%; Social 

Content accounted for 6.9%; and Word Length accounted for 8.4%. 

 

Verbal Representation Factor 

This dimension is interpreted as the degree to which a concept is represented in 

verbal as opposed to perceptual terms (Barsalou, 2003). The interpretation of this factor 

and the others is tested below. This dimension was present for every participant and 

accounted for the most or second most variance in first-order  factor analyses. Concepts 

with large positive factor scores for this factor included compliment , faith , and ethics 

while concepts with large negative scores for this factor included gravity , force, and 

acceleration  as shown in Table 2.1. 

The main cortical regions containing voxels with high loadings on this factor 

consisted of LIFG, left anterior supramarginal gyrus (LSMG), and left lateral occipital 

complex (LLOC; highlighted in red in Figure 2.2). These regions are consistent with a 

previous meta-analysis examining contrasts between concrete and abstract concepts 

(Wang et al., 2010). In Wang et al. (2010), GLM contrasts revealed that the areas 

around LSMG and LLOC activated more for concrete concepts and less for abstract 

concepts while LIFG activated more for abstract and less for concrete concepts. Even 
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though the 28 concepts in the present study were all designed to be abstract, the 

distribution of factor scores along this dimension indicates that some of these concepts, 

such as force and acceleration  have more perceptual content than others (such as faith  

and ethics). The Neurosynth meta-analytic database provides converging evidence for 

the interpretation of the functional role of LIFG (verbal processing), LSMG 

(somatosensation), and LLOC (object processing) (http://neurosynth.org; Yarkoni et al., 

2011). 

 

Table 2.1.  Six concepts with the highest and lowest factor scores for each interpretable factor. 

 

 

Externality/Internality Factor  

The second interpretable factor corresponds to the degree to which a concept is 

experienced as an external versus internal state or event. An event that is external is one 
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that requires the representation of the world outside oneself and the relative 

noninvolvement of oneôs own state. An internal event is one that involves the 

representation of the self. The main cortical region containing voxels loading on this 

factor was right supramarginal gyrus (RSMG; see Figure 2.2). This region has been 

shown to be related to emotional  egocentricity, that is, ñthe tendency to project oneôs 

own mental state onto othersò (Silani et al., 2013). At one extreme of the dimension lie 

concepts that are external to the self (e.g., causality , sacrilege, and deity ). At the other 

extreme lie concepts corresponding to events that are internal to the participant, such as 

spirituality  and sadness (Table 2.1). Neurosynth failed to suggest any consistent 

functional role for the Externality dimensionôs associated voxel cluster locations. The 

current interpretation is largely based on the ordering of the co ncepts by their factor 

scores on this dimension. 

 

Social Content Factor 

A third factor was interpreted to correspond to social content, as it pertains to 

personal experience. The concepts at one extreme of the dimension included pride , 

gossip, and equality  while the concepts at the other extreme included heat, necessity, 

and multiplication  (Table 2.1). The main cortical region containing voxels with high 
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loadings for this factor was the left posterior cingulate cortex (LPCC; Figure 2.2), which 

is associated with the contextualization of oneself in space and emotions (Maddock et 

al., 2003; Bird et al., 2015; Guterstamet al., 2015). Neurosynth suggests the LPCC is 

involved in the processing of episodic and autobiographical memories 

(http://neurosynth.org; Yark oni et al., 2011). In the context of this study, the LPCC may 

be involved in the retrieval of memories of previous social interactions.  

 

Word Length Factor  

This fourth factor characterizes concepts based on their word length. The 

concepts that lie on the two extremes of this factor clearly represent the longest and 

shortest words in the set of concepts. Concepts at one extreme for this factor included 

acceleration , exoneration , and spirituality  while concepts at the other extreme included 

heat, crime , and anger (happiness lying on the ñshort-wordò extreme was an exception). 

The only cortical region that loaded on this factor was the left occipital pole (Figure 2.2). 

This finding regarding word - length provides a face validity check for the factor analysis 

methods and interpretations.  
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Figure 2.2.  Locations of the voxel clusters with the highest factor loadings for each of the 4 interpretable 

factors. Voxels were thresholded to have a minimum cluster size of 15 and mean correlations above 0.2 (in 
either positive or negative direction) between their activation values and their factor loadings. Cluster 

centroid XY Z coordinates for: Verbal representation: LIFG  (-53.8 22.2 13.4), LSMG (ī58.0 ī34.1 35.1), 
and LLOC (ī54.3 ī62.0 ī9.1); Social Content: LPCC (ī5.8 ī54.0 29.7); Externalization: RSMG (42.9 

ī41.6 47.4); and Word Length: left occipital pole (ī13.0 ī96.8 ī6.6). 
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Testing the Factor Interpretations Using Behavioral Ratings and a Predictive Model  

Ten participants who were not in the fMRI study rated the salience of the 3 

semantic factor interpretations to each of the 28 concepts. For example, they rated on a 

1ï7 scale how verbal (as opposed to perceptually instantiable) items like gravity and 

ethics were. The correlation between the mean ratings and the factor scores were 0.63 

for Verbal Representation, 0.59 for Externality, and 0.55 for Social Content (all 

significant at p < 0.01), as shown in Figure 2.3). To determine agreement among raters, 

intraclass correlation was computed for the 3 rated dimensions across participants; ICC 

was 0.88 for verbal representation, 0.93 for Externality, and 0.97 for Social Content (all 

significant at p < 0.01). 

A generative model using the independent ratings (and word length (i.e., number 

of characters in each word)) was developed to predict the activation of ñnewò concepts 

(i.e., concepts left out of the modeling) in the locations corresponding to the factor -

associated clusters, based on their association with each of the factors. The mean 

behavioral ratings served as model weights in a regression model, where the 

independent variables were the four factors (3 semantic factors and Word Length). To 

eliminate contamination betw een the training data that determined the locations and 

the data, on which the model was tested, the 2- level factor analysis was computed on 

only 8 participants and the model was tested on the remaining participant. In all 9 
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iterations of the modeling, the  4 interpretable second-order factors were identified by 

correlating the factor scores from the 5 second- level factors from the 9-participant 

factor analysis with each of the 5 second- level factors from the 8-participant factor 

model. In all iterations, th e 4 factors were present with correlations of 0.9 or greater. In 

each of the 9 iterations of the predictive model, each factor was associated with a set of 

voxel clusters, and each cluster was characterized by an enclosing cuboid. The 6 most 

stable voxels were selected from each cuboid of each factor. The mean number of 

cuboids identified across all 9 iterations are as follows: Verbal Representation 

contributed a mean of 13.22 (SD= 1.48) cuboids; Externality/Internality contributed a 

mean of 7.89 (SD= 2.71) cuboids; Social Content contributed a mean of 5.89 (SD= 1.17) 

cuboids; and Word Length contributed a mean of 2.56 (SD= 1.33) cuboids. 

Model predictions were made by leaving out one of the 28 concepts, predicting 

the activation for that concept using the behavioral ratings (and word length), and 

computing the Euclidean distance between the predicted activation pattern generated 

by the model and the observed (test) mean activation data. The normalized rank of the 

distance between the predicted and test images (among all inter - item distances) was 

used as a measure of prediction accuracy. This leave-one-out procedure was repeated 

for all 28 concepts. The mean normalized rank accuracy of the predictions across 

concepts was 0.78 (SD= 0.09; where chance = 0.5). Mean rank accuracies for all 
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participants were significantly above chance (p < 0.001) as determined using a 100,000-

iteration permutation test. Although  the factor analysis and its interpretation are 

exploratory, the correlations between the factor scores and the behavioral ratings, as 

well as the predictive modeling, provide a clear empirical test of the factor 

interpretations.  

 

 



63 

 

 

Figure 2.3.  Scatter plot of factor scores for each of the 3 semantic dimensions versus the mean 
behav ioral ratings of the 28 concepts, and their correlations. Although these correlations are significant, 

they  are based on 28 items and therefore the effect sizes should be interpreted with caution. 

 

Further Exploration of the Verbal Representation Dimension  

Previous studies have suggested that the relationship between abstractness and 

activation levels differs for the three regions in the Verbal Representation factor (i.e., 
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LIFG, LSMG, and LLOC; Wang et al., 2013). Correlations between the second- level 

factor scores from this dimension and the MPSC activation levels were computed for 

each voxel in these 3 subregions for each participant separately. The correlations values 

were then averaged over the participants within each voxel. LIFG activated more for 

concepts that are more verbally represented (r = 0.38, p < 0.05) whereas LSMG and 

LLOC activated more for concepts that are more perceptually represented (r = 0.46, p < 

0.05), as shown in Figure 2.4. These results suggest that the abstractness of a concept 

corresponds to the degree to which it is represented in verbal terms, which can be 

thought of as a point along a verbal-perceptual continuum. To further investigate 

whether one of the variables underlying the Verbal Representation factor is 

concreteness, the 28 conceptsô factor scores for this dimension were compared with 

their concreteness ratings from Brysbaert et al. (2014), resulting in a substantial 

correlation (r =ī0.47, p < 0.05).  
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Figure 2.4.  Correlation between the Verbal Representation factor scores and MPSC activation. As 
concepts become more verbally represented they recruit more LIFG and show less activation in regions 
associated with the v isual representation of concepts (LSMG and LLOC). Positive correlations shown in 
green; negative correlations in red. 

 

Discussion  

The human ability to think about abstract entities plays a central role in scientific 

and intellectual progress. The ability to deeply understand the nature of the world 

around us (including the sociopolitical world) depends on the repeated application of 

this ability over millennia. Despite the intuitive consensus of which concepts are 

abstract, it was not known what neurally characterizes an abstract concept, beyond its 
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preferential recruitment of left frontal language -based areas (Binder et al., 2005; Wang 

et al., 2010). 

The primary results of this study can be summarized as follows: first, there is 

enough consistent and common informatio n in the neural signatures of abstract 

concepts to reliably identify a set of 28 such concepts within and across participants. 

Second, the neural representations of these concepts are underpinned primarily by 3 

semantically interpretable dimensions ( Verbal Representation, Externality/Internality , 

and Social Content). Third, the abstractness of a concept is defined not only by the 

absence of concreteness but also in terms of its verbal characterization. This study 

provides new insight into the neural systems and underlying implicit semantic 

structures that are used to represent abstract concepts. 

 

Systematicity and Commonality of Abstract Concepts  

Given the absence of common perceptual content related to abstract concepts, 

there was reason to anticipate substantial individual differences in the representations 

of such concepts. Nevertheless, the between-participant classification was reliably 

accurate, indicating considerable nonperceptual commonality in the meaning 

representations. The variation among the concepts in their across-participant 
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classification accuracy provides hints at what makes an abstract concept representation 

less or more common. Concepts such as anger  and multiplication  were less well 

predicted than others across participants (although stil l reliably so), and these concepts 

tended to be highly instantiable. By contrast, concepts such as necessity, which are 

highly verbally represented, were extremely well predicted across participants. Thus a 

post hoc hypothesis is that across-participant commonality is greater for more verbally -

based concepts and somewhat lower for more instantiable concepts, which may be 

instantiated differently across participants.  

 

Semantic Primitives Associated with the Neural Representation of Abstract Concepts  

The three semantic dimensions underlying the representation of abstract 

concepts are Verbal Representation, Externality, and Social Content. That is, we propose 

that abstract concepts are represented based on: their meaning across a wider variety of 

contexts than concrete concepts (Crutch & Warrington, 2005, 2010; Hoffman, 2016); 

their reliance on using the self as a reference point; and their use of social contexts as a 

reference point. It is useful to highlight that these representations of abstract concepts 

were based on neural activation patterns. It is possible to assess semantic 

representations of abstract concepts based on different types of data, such as 
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cooccurrence properties in large corpora or behaviorally measured semantic features 

(Wang et al., 2017). The dimensions identified in this study provide a neurally -driven 

foundation for understanding the semantic underpinning of abstract concepts.  

The factor analysis procedure identifies regions reflecting the organization of the 

28 concepts along various dimensions. However, none of the factor locations included 

the anterior temporal lobe (ATL), which has been shown to activate to both concrete and 

abstract words (Jefferies et al., 2009; Hoffman, 2016) and has also been shown to be 

involved in the integratio n of low- level perceptual features of visual objects (Coutanche 

& Thompson-Schill, 2015). A GLM contrast of the 28 abstract concepts vs. fixation 

revealed activation in the superior portion of the ATL, indicating that ATL may serve a 

similar function for a ll 28 abstract concepts.  

One of the strengths of the approach that was used here is the quantitative 

assessment of the fit of the interpretation of each dimension to the activation data. 

Although the interpretations  fit the data well, as with any theoreti cal proposal, 

alternative interpretations can be generated and quantitatively assessed. 

 

Degree of Abstractness as a Point on a Gradient between Language and Percepts 
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The Verbal Representation factor organizes conceptual representations based on 

the dissociation of activity in neural structures associated with verbal processing (LIFG) 

and spatial/object processing (Figure 2.4; Grill -Spector et al., 2001). LIFG has been 

reliably shown to be involved in verbal processing (Yarkoni et al., 2011; Hoffman, 2016). 

It is incomplete to say that the abstract concepts evoke less activation in regions 

associated with perceptual processing; rather, abstract concepts both evoke less 

activation in regions associated with perceptual processing and evoke more activation in 

regions strongly associated with verbal processing. This dissociation in neural 

patterning suggests that the degree of abstractness of a concept is a point on a 

continuum between language systems and perceptual processing systems. This result 

provides a neural realization for the intuitive idea that abstractness is not a binary 

construct but rather a gradient - like translation of a concept into amore verbal  

encoding. 

This point raises an interesting theoretical question regarding the role of neural 

language systems, particularly LIFG, in the verbal representation of abstract concepts. 

LIFG has been implicated in the integration of semantic relationships among different 

contexts. Abstract concept representations require an integration of meaning from a 

greater variety of contexts relative to concrete concepts (Crutch & Warrington, 2005, 

2010; Hoffman, 2016; Hayes & Kraemer, 2017). Thus, LIFG may become more activated 
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for the concept ethics than gravity because ethics requires integration across more 

semantically  variable contexts. The activation in LSMG (and LLOC), by contrast, is 

related to the instantiability of a concept (Figure 2.4). The critical finding here is that 

the degree of perceptual involvement varies systematically across abstract concepts. 

 

Conclus ion  

The lack of a perceptual grounding makes abstract concepts difficult to 

characterize in semantic and psychological terms, but a neural framework provides a 

good beginning to the answer. What neurally defines the abstractness of a concept is its 

place on a continuum between perceptible experience and a purely verbal entity. This 

continuum emerges even among a set consisting entirely of abstract concepts. 

Moreover, the present study suggests that abstract concepts rely on semantic features 

that are also not necessarily perceptually grounded, such as our ability to construe 

abstract concepts relative to ourselves, or to use social contexts as a reference. 
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Chapter 3 . Project  2: Similarities and differences in the neural 
representations of abstract concept s across English and Mandarin  

 
 
 

Chapter 2 provided a published empirical examination of  28 abstract concepts for 

speakers of the same language. Three semantic dimensions describing the underlying 

structure of abstract concepts were identified including:  Verbal representation ; 

Internality/Externality ; and Social . These dimensions provide a framework for 

understanding how abstract concepts are represented in the brain. However, the 

question of the generalizability of these dimensions remains. Chapter 3 describes a 

published empirical study examining the neural representation of the same set of 28 

concepts across speakers of different languages, specifically, American native English 

speakers and Chinese native Mandarin speakers. Using similar MVPA methodologies, 

the underlying structure of abstract concepts will be assessed across both languages. 

 

Introduction  

Although the neural representations of concepts are generally similar across 

speakers of the same language, the extent of this similarity across languages has yet to 

be measured. When the concept corresponds to a concrete entity, such as an apple, the 

common basis in large part consists of the perceptual and physical properties of the 
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referent (Just et al., 2010). Recent studies using multivariate pattern analyses (MVPA) 

and machine learning techniques have reported cross- language decoding of fMRI 

signatures, namely, across English and Portuguese nouns, (Buchweitz et l., 2012), across 

English, Portuguese, and Mandarin sentences (Yang et al., 2017a, 2017b) as well as 

English, Mandarin, and Farsi stories (Dehghani et al., 2017).  

The shared representational basis of abstract concepts such as ethics and 

causality are more difficult to identify. Given that abstract concepts do not often reflect a 

shared experience of the physical world, require schooling to acquire (Mason & Just, 

2016), and are built on existing conceptual knowledge, there is reason to question the 

degree of commonality across languages in the meaning representations underlying 

abstract concept knowledge. Some theories have suggested that the psychological 

representations of abstract concepts, such as time, are dependent on cultural and 

language differences (Fuhrman et al., 2011; Lai & Boroditsky, 2013) while other theories 

suggest that there are culturally- invariant neural activation patterns for concepts across 

brain regions (Han & Northoff, 2008). Although abstract concepts have been shown to 

be represented similarly across speakers within a given language (Vargas & Just, 2020), 

it has yet to be measured whether or not this common representation extends across 

languages.  
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Among English speakers, the neural activation patterns for abstract concepts 

have been shown to be underpinned by a set of three neurosemantic dimensions, 

namely the degree to which a concept is verbally represented; whether a concept uses 

the self as an internal reference; and whether the concept contains social content. 

Furthermore, in English, the neural representation of abstract concepts has been shown 

to involve regions associated with motor and visuospatial functioning (Dreyer & 

Pulvermüller, 2018; Harpaintner et al., 2020). Other research has supported the 

emphasis of verbal and linguistic-based processing of abstract concepts in Mandarin 

speakers (Wang et al., 2018). The current study compared the neural representations of 

the same abstract concepts in English and Mandarin to illuminate commonalities and 

possible differences between languages in the representation of abstract concepts. 

This study had two main aims: First, to test whether a shared set of semantic 

dimensions underlie the neural activation patterns of abstract concepts across English 

and Mandarin speakers and to determine how well the observed organization of abstract 

concepts along these dimensions corresponds to behavioral judgments of concept 

meaning. Second, to identify differences in the representation of individual concepts 

despite a common underlying structure. Taken together, this study aims to determine 

whether there is a common neural basis for representing abstract concept information 
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across languages while providing a framework for identifying language-specific 

differences in the meaning of individual abstract concepts.  

 

Methods  

Participants  

Ten right -handed native Mandarin speaking adults (age range from 18 to 26, M = 

20.2; six females) and 10 right-handed native English-speaking adults (sample 

previously reported in Vargas & Just, 2020) age range from 20 to 38, M = 25.9; seven 

females;) from the Carnegie Mellon community pa rticipated in a 45 -min fMRI scanning 

session. To mitigate cross-cultural familiarity, the group of native Mandarin speakers 

included only those who had spent less than 1 year living outside of the Peoples Republic 

of China. Informed consent was obtained from all participants in accordance with the 

Carnegie Mellon Institutional Review Board. Data from two Mandarin speakers and one 

English speaker were excluded due to the participant falling asleep during the scan. An 

additional Mandarin speaking participant' s data was excluded due to their 

misunderstanding of instructions, resulting in data analysis of seven Mandarin speakers 

and nine English speakers.  
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Experimental Paradigm  

For both language groups, the stimuli were 28 words referring to abstract 

concepts distributed among seven categories. Although the category labels were never 

mentioned nor presented to participants, they are listed here in parentheses for 

expository purposes, preceding the actual stimuli: (social ): gossip, intimidation , 

forgiveness, and compliment ; (emotion ): happiness, sadness, anger , and pride ; (law ): 

contract , ethics, crime , and exoneration ; (metaphysics ): causality , consciousness, 

truth , and necessity; (religiosity ): deity , spirituality , sacrilege, and faith ; 

(mathematics ): subtractio n, equality , probability , and multiplication ; (scientific ): 

gravity , force, heat, and acceleration . The set of concepts was translated from English 

to Mandarin by two independent native Mandarin speakers and then back -translated to 

English by a separate independent Mandarin speaker. The translations were then 

verified by a fourth independent Mandarin ïEnglish bilingual to ensure the meaning 

best matches the original English concept (see Table 3.1 for Mandarin translations).  
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T able 3.1.  Table of all 28 abstract concepts stimuli presented to English and Mandarin speaking 
participants

 

 

Concept abstractness ratings were compared across the languages. English 

abstractness ratings were obtained from the Brysbaert et al. (2014) database while 

Mandarin ratings were  obtained from MELD -SCH (Xu & Li, 2020). Because the 

concepts in the MELD-SCH were limited to words with two characters, abstractness 

comparisons were restricted to the 18 concepts present in both databases (18 of 28 

concepts), r = 0.64, p < 0.01. Word frequencies were compared across languages using 

English (Brysbaert et al., 2014) and Mandarin (Cai & Brysbaert, 2010) word frequency 

databases. The correlation comparing the word frequencies of the concepts across 

languages was r = 0.3, p = 0.12, indicating some minor differences in word frequency 

across languages.  

Prior to the scanning session, participants were presented with a list of the 28 

concepts and asked to write down three prominent properties of the concept's meaning. 

Possible properties included synonyms, definitions, or experiences associated with the 
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concept intended to guide participants to mentally evoke a consistent representation for 

each concept. Participants were instructed to write properties that came to mind quickly 

and naturally.  

There was a total of six presentation blocks of the same 28 stimulus concepts 

(using different random permutation orders in the different presentations) in the 

scanning session, distributed between three runs (two blocks per run) to allow 

participants a brief rest between runs. A 17 s ñXò was presented at the beginning of each 

block (two per run) to use as a baseline measure of neural activity. The set of 28 stimuli 

was presented six times to provide multiple datasets for training and testing the 

machine learning classifier in its cross-validation protocol. Prior to the scan, 

participants briefly practiced the experimental paradigm in a mock MRI scanner while 

receiving head-motion feedback to minimize movement.  

On each trial, participants were visually presented with the stimulus word 

concept in their native language for 3 s and were asked to think about the properties 

associated with that concept. Following this 3 s period, participants were instructed to 

clear their mind over the course of 7 s while watching a blue ellipse shrink to 

nonexistence, to allow the hemodynamic response to approach baseline before the next 

concept appeared. The shrinking ellipse provided a visual fixation target and conveyed 

the progress through the 7 s interstimulus interval.   
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fMRI p arameterization and image processing  

Functional images were acquired on a Siemens Verio 3.0T scanner and a 32-

channel phased-array head coil (Siemens Medical Solutions, Erlangen, Germany) at the 

Scientific Imaging and Brain Research facility (SIBR) at Carnegie Mellon. Scans were 

acquired using a gradient-echo echo-planar imagining pulse sequence (TR = 1,000 ms, 

TE = 25 ms, and a 60↔ flip angle); each volume contained 20 5-mm thick AC-PC aligned 

slices (1-mm gap between slices). The acquisition matrix was 64 x 64 with 3.125 x 3.125 

x 5-mm voxels. SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) was used to correct for head 

motion and normalize to the Montreal Neurological Institute template. The percent 

signal change (PSC) relative to the fixation condition was computed at each gray matter 

voxel for each stimulus presentation (the PSC data was converted to z-scores).  

The main measure of activation evoked by a concept consisted of the voxel 

activation levels acquired around the peak of the hemodynamic BOLD response, namely 

the mean of four brain images acquired once per second (i.e., a TR of 1,000) within a 4 s 

window, offset 5 s from the stimulus onset (i.e., images 5ï8). Mean PSCs were 

normalized across voxels for each trial (MPSC). Previous studies have reported that the 

mean activation across these four images (as opposed to a GLM measure) yields a high 
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classification accuracy obtained by a classifier that relates the activation pattern to the 

concept (Bauer & Just, 2017; Just et al., 2010; Mason & Just, 2016). 

 

Voxel Stability  

The analysis focused on the most stable voxels, those whose activation levels were 

similarly modulated by the set of 28 abstract concepts each time the set was presented. 

This property selects voxels whose activation levels constitute neural signatures of a set 

of concepts (Bauer & Just, 2017; Just et al., 2010, 2017; Kassam et al., 2013; Mason & 

Just, 2016; Mason & Just, 2020; Yang et al., 2017a, 2017b). Thus, a voxel with high 

stability is one that has a stable tuning curve over the set of stimuli. A voxel's stability 

was computed as the mean pairwise correlation of its 28 MPSC activation levels (for the 

28 abstract concepts) across all pairwise combinations of the presentation blocks in the 

training data. Stable voxels were used as features in classification and factor analyses. 

The stable voxels selected in the training data for classification are then used in the test 

set. The 120 most stable voxels in the whole brain were used as features for 

classification. This approximate number of voxe ls has been shown to reliably capture 

meaningful information in the neural representation of individual concepts (Just et al., 

2010; Mason & Just, 2016). To demonstrate that the results and conclusions are not 
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particularly sensitive to variations in the nu mber of features, the classification analysis 

was repeated varying the number of stable voxels used from 20 to 10,000 (in 20 voxel 

increments); the peak classification accuracy occurred between 120 and 180 stable 

voxels. The mean classification accuracy gradually decreased with the inclusion of 

additional stable voxels beyond 180. To be consistent with previous studies, 120 stable 

voxels were used as features. 

 

Within -participant Classification  

The data were analyzed using various classification approaches, each informing a 

different aspect of the underlying concept representations. Within participant concept 

classification captures participant specific reliability as well as idiosyncrasies in concept 

representations. High accuracies in the within participan t classification analyses suggest 

individual participants were able to think about a specific concept consistently and 

distinctly, making them identifiable by the classifier. A Gaussian Naïve Bayes (GNB) 

classifier was trained to decode the 28 concepts, based on its training on an independent 

subset of the activation data from four of the six presentations and it was tested on 

the mean of the two left-out presentations. This cross-validation procedure was followed 

in 15 (six choose two) folds. The features used by the classifier consisted of the activation 
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levels of the 120 most stable voxels in the training set from anywhere in the whole brain. 

The classifier's mean normalized rank accuracy was used to assess decoding accuracy 

(i.e., the mean over folds of the normalized rank of the correct response in a probability -

ranked list of all 28 alternatives, where chance level is 0.5). Chance performance was 

determined using a 10,000- iteration permutation test on each participant separately for 

each concept- level prediction.  

 

Between participant, within language classification  

Between participant within - language classification quantifies the commonalities 

of the neural representations across participants of the same language. For each 

language group separately, a GNB classifier was trained on the neural signatures of the 

concepts from all but one participant and tested on the left -out participant's data. The 

mean rank accuracy was computed across the resulting nine folds for the English group 

and seven folds for the Mandarin group. Chance performance was determined using a 

10,000- iteration permutation test. The voxels used in the classification across 

participants were those with the highest stability across participants from that 

participant's language group. To compute the cross-participant stability of voxels, the 

MPSC data was first averaged across all presentations for each participant, and then the 



82 

 

mean pairwise correlation of a voxel's 28 MPSC activation levels (for the 28 abstract 

concepts) was computed between all pairs of the remaining participants in the training 

data. The 120 most stable voxels (i.e., those with the highest mean pairwise correlation) 

from the whole brain across the training participants (eight for the English group, six for 

the Mandarin grou p) were selected as features for the classifier. The methods for the 

cross- language classification, which was based on the factor locations, are described 

below after the factor analyses. 

 

Factor Analysis  

To uncover the semantic dimensions underlying the r epresentations of the 28 

abstract concepts, a two- level factor analysis was computed based on the combined data 

from the participants of both languages; a factor analysis was first applied to the data of 

individual participants and then the second factor a nalysis used the factor scores from 

the first level as input (using a procedure described in detail in Just et al., 2014). The 

factor analysis of the English-specific activation data was previously reported and used 

similar methods (Vargas & Just, 2020). T he factor analysis of the Mandarin-specific 

data followed the same procedure with the exception that 6 second- level factors were 
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extracted instead of five. The factor analysis was implemented using a principal factor 

analytic algorithm in MATLAB (R2011a; v ersion 7.12; The MathWorks, Natick, MA). 

The inclusion of brain regions in the combined - language second level factor 

analysis was based on broad AAL (Automated Anatomical Labeling) regions containing 

voxels that met three criteria: the voxels had to: (1) be stable in the cross-participant 

stability map; (2) have factor loadings above a threshold of Ó 0.4; and (3) form clusters 

of at least 15 contiguous voxels. Spheres were then generated using the centroids of 

these clusters. The data from all 16 participants (seven Mandarin and nine English) 

were analyzed to identify interpretable factors. As described in Vargas and Just (2020), 

an initial map of the union of 800 stable voxels from each language was generated. This 

map was then parcellated using AAL (Tzourio-Mazoyer et al., 2002). The parcellated 

map was then used to identify AAL-defined regions with large numbers of stable voxels 

relative to the total number of voxels in the AAL region. Then, the input to the first - level 

factor analysis (performed within ea ch participant) consisted of the mean activation 

levels of the most stable voxels in each of the contributing AAL regions. The total 

number of voxels used in this factor analysis was 410, similar to the number used in 

previous studies (Kassam et al., 2013; Vargas & Just, 2020). The 410 voxels were 

selected with the number per AAL-defined ROI based on the numerosity of the ROI's 

stable voxels in the initial map: 40 voxels from left inferior frontal gyrus (LIFG); 30 
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voxels from left posterior cingulate cortex ; 60 voxels from frontal cortex bilaterally; 60 

voxels from occipital cortex bilaterally; 60 voxels from temporal cortex bilaterally; and 

160 voxels from parietal cortex bilaterally. Because the results have been shown to be 

insensitive to minor variations  in the data analysis parameters, the same parameter 

values were used in this study as in Vargas and Just (2020). To assess the dependency of 

the analyses on the choice of particular parameter values, the combined- language 

second- level factor analyses were computed with systematic variation of several 

parameters, namely the number of input voxels, number of first level factors, and 

number of second level factors. The effects of these variations were evaluated by 

correlating the factor -scores from the second- level dimensions across the variations and 

comparing the locations of the voxel clusters with high factor loadings across the 

variations. The effects of these variations were found to be minor, so the parameter 

values used in the analysis of this study were the same as those used in the previous 

study of these concepts (Vargas & Just 2020).  

This first - level factor analysis was performed on all 16 participants individually, 

extracting seven factors for each subject, resulting in a total of 112 vectors of factor 

scores. A voxel was determined to belong to a factor if its factor loading exceeded a 

threshold 0.4 (a typical value for a factor loading threshold). This same threshold was 

used in previous studies that characterized brain locations identified throu gh factor 
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analysis (Just et al., 2010, 2014; Mason & Just, 2016). To eliminate isolated single 

voxels, the factor- loading voxels were required to form clusters containing a minimum 

of 15 voxels. Spheres for each factor were generated based on the centroids of clusters 

and extend to account for minor inter -participant variations in specific voxel locations 

for that factor.  

The goal of the first- level factor analyses was to partition the set of input voxels 

into subsets that responded similarly across the set of abstract concepts, specifying 

seven factors. This analysis produced factor scores for the 28 concepts, for each of the 

seven factors, for each of the 16 participants. The 16 participants' seven sets of factor 

scores were concatenated and used as input into the second, group- level factor analysis 

(a total of 112 sets of 28 factor scores) to further reduce the dimensionality to six 

dimensions and to seek consistency across participants and languages. To evaluate the 

robustness of the factor results, analyses were computed with varying number of input 

voxels and factors. Although there were minor variations in the scores of individual 

concepts, the overall factor interpretation and factor scores for concepts remained 

generally unchanged. 

To confirm there i s a common neural basis across languages, a factor analysis was 

computed on both languages separately and the factor scores were correlated between 

languages for each identifiable dimension. The correlations for the second- level factor 
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scores across languages for each identifiable dimension are as follows: Verbal 

representation: r = 0.55, p < 0.01; rule-based: r = 0.45, p < 0.05; social content: r = 

0.42, p < 0.05; externality ïinternality: r = 0.32, p < 0.1; word length: r = 0.20, n.s. 

Notably, the previously unexplainable factor described in Vargas and Just (2020) was 

reliably correlated with the newly identified rule -based factor in the Mandarin group. 

Additionally, the lack of correlation between the low correlation of the word length 

factor scores across languages reflects language-specific orthographic differences. 

Regions for the factor analysis of both languages combined were selected based 

on their being populated by stable voxels. Whole-brain voxel-wise stability was 

computed for each participant separately and averaged across participants. This method 

allows for a spatially stable common set of voxels to be identified. The interpretation of 

each individual factor was largely based on the distribution of the corresponding factor 

scores across the 28 concepts (particularly the nature of the items at the two extremes of 

the factor scores) and based to some degree on previous findings that associated 

particular processes with the factor locations. Moreover, converging evidence for the 

factor interpretatio ns was provided by the correlation between the factor scores and 

independent participant ratings of the items with respect to the factor as interpreted.  
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Behavioral rating of semantic dimensions  

To obtain converging evidence for the factor interpretations,  an independent 

group of 20 participants (10 native English speakers and 10 native Mandarin speakers) 

were asked to rate each stimulus concept on a scale from 1 to 7 with respect to its 

salience to the dimensions as they were interpreted here (e.g., the degree to which a 

concept, such as ethics, was verbally vs. perceptually based). These ratings of the 

concepts along each of its dimensions were then used as independent variables in a 

multiple regression model to predict the activation pattern of a concept in the factor 

locations (Just et al., 2010; Vargas & Just, 2020).  

The correlations between the behavioral ratings of English and Mandarin 

participants for the 28 concepts on each dimension were as follows: Verbal 

representation, r = 0.67, p < 0.001; externalityïinternality, r = 0.93, p < 0.001; rule -

based, r = 0.94, p < 0.001; social content, r = 0.9, p < 0.001. Given the highly reliable 

correlation between English and Mandarin behavioral ratings, averaged ratings were 

used as input to the regression model. 

 

Predictive modeling  
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To evaluate the how well the factor interpretations fit the activation data, a 

predictive modeling procedure was used to assess whether the activation pattern of an 

individual concept could be predicted, based on the mapping between behavioral ratings 

of all the other concepts in the set (i.e., leaving out the to-be predicted item) with respect 

to the factor interpretations and their activation patterns. Accurate predictions would 

provide face validity for the factor interpretations. Activation predictions for each 

concept were made by developing a separate regression model for each participant to 

predict a left -out concept's activation pattern, based on the model weights from the 

remaining 27 concepts. The factor locations used were obtained from factor analyses 

based on all participants except for the one being predicted. The mean prediction 

accuracies for the 28 concepts were then averaged across participants. A prediction's 

accuracy was assessed by computing the Euclidean distance between the activation 

pattern predicted by the model and the observed activation data, relative to the distance 

to the representations of the other 27 concepts. The normalized rank of the distance 

between the predicted and test images (among the 28 distances) was the measure of 

prediction accuracy. Significance was computed using a permutation test. The results of 

the predicted images with correct labels were compared against the distribution of rank 

accuracies of predicted images with random labels for 10,000 random permutations.  
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Factor -based cross-language classification  

Cross- language factor-based classification quantifies the commonality of 

representation across languages based on the semantic dimensions underlying the 

concept representations. To test whether the factors (or dimensions) are sufficient for 

identifying the neural signatures of individual abstract concepts across languages, a 

GNB classifier was trained on the neural signatures from all participants from one 

language and was tested individually on each of the participants from the other 

language. The data consisted of the mean MPSC values of each concept across 

repetitions for each participant in the factor locations of the five interpretable factors in 

the factor analysis including both lang uages. A classifier was trained on the data of all 

nine native English speakers and was tested on each of the seven native Mandarin 

speakers and vice versa. The 28 rank accuracies from each participant in the test 

language were then averaged. There were minimal differences in accuracies between the 

two classifiers t(27) = 0.01, n.s., so the accuracies of the two classifiers were averaged. 

Above-chance performance at p < 0.01 is 0.56 for concept- level predictions as 

determined using a 10,000- iteration permut ation test. 
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Results  

Commonality of abstract concept representations within and across languages  

Within -participant classification in the two languages  

The individual 28 abstract concepts were reliably identified from their multi -

voxel neural signatures within each language by a classifier. This mean classification 

accuracy for native English participants, 0.83, was reliably above chance (range = 0.76ï

0.94, p < 0.001; mean cutoff for p < .001 = 0.60; SD = 0.003) as was that of the seven 

native Mandarin par ticipants (mean = 0.77; range = 0.66ï0.84). Although the concepts 

of all participants in both groups were identifiable, a t - test comparing the within -

participant classification accuracies of the 28 concepts across languages indicated that 

the classification accuracy was reliably higher in the English participants, t(27) = 6.70, p 

< 0.001.  

Although the concepts differ in their overall identifiability between the two 

language groups, these results indicate that these abstract concepts have distinctive 

neural signatures in both languages that can be characterized by the multi-voxel 

activation pattern captured by the classifier.  

 

Commonality of the concept representations across speakers of the same language 
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A between-participant, within - language classification was performed to 

determine whether these abstract concept representations were similar across speakers 

within a language group. For English speakers, when the classifier was trained on the 

data of all but one participant, the mean rank accuracy of the concept identification in 

the data from the left -out participant was 0.74, p <.01, indicating that the neural 

signatures had a substantial amount of commonality across participants (Table 3.2). All  

28 individual concepts were reliably classifiable between English-speaking participants, 

with a range of 0.58ï0.94 (p < 0.01=0.55). For Mandarin speakers, when the classifier 

was trained on the data of all but one participant, the mean rank accuracy of the concept 

classification in the test data from the left -out participant was 0.73, p < .01 (Table 3.2). 

All 28 individual concepts were reliably classifiable between Mandarin -speaking 

participants, with a range of accuracies from 0.57 to 0.92 (p < 0.01 = 0.54) except for 

contract which was classifiable only at p < .05. Thus, there is a comparable degree of 

commonality across participants within each language group in their neural 

representation of the abstract concepts. Below, the underlying dimensions of the 

concept representations across languages are described, followed by an assessment of 

the commonality of the neural representations of individual concepts across languages, 

taking the underlying dimensions into account. In the few cases where between-
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participant decoding was more accurate than within -participant decoding within a 

language, the difference might be attributable to the different way the stable voxels 

were selected in the two cases. The consensually chosen stable voxels in the between-

participant analysis could have reduced idiosyncratic properties in th e concept 

representations. 
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T able 3.2.  Commonality of concepts within and across languages as measured using conceptlevel 
decoding rank accuracy. Dashed lines separate concept categories. 

 

Mandarin -specific factor analysis 

The Mandarin -specific factor analysis indicated a common neurosemantic basis 

for the set of 28 abstract concepts across English and Mandarin, revealing five 

interpretable dimensions, namely: Verbal representation, social content, rule -based, 

externality/internality, and word length. Th e concepts located at the extremes of each of 
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these dimensions and their respective factor scores are shown in Table 3.3. The 

correlations between the Mandarin behavioral ratings and Mandarin -only factor scores 

for the 28 concepts on each dimension were as follows: Verbal representation, r = 0.57, 

p < 0.01; externalityïinternality, r = 0.66, p < 0.001; rule -based, r = 0.34, p = 0.07; 

social content, r = 0.27, p = 0.16. The brain locations of the voxel clusters with high 

loadings on the interpretable factors  for the Mandarin -specific analysis are shown as 

spheres in Figure 3.1. 

 

Figure 3.1.  Locations for five interpretable factor dimensions from Mandarin -specific analysis. These 
spheres were specified using the centroids of clusters of voxels (containing a minimum of 10 voxels) with 

high loadings (>0.4) on each of the factors. 
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T able 3.3.  Mandarin -only factor analysis output including: six  concepts with the highest and lowest 
factor scores for each mapped dimension, factor locations, and correlations between factor scores and 
behav ioral ratings.

 

 

Combined- language factor analysis 

The commonality of neural representation for abstract concepts in the two 

languages was characterized by six underlying dimensions, five of them readily 

interpretable. Of the five i nterpretable dimensions, four were semantic in nature, which 

we have labeled: Verbal representation, internalityïexternality to self, rule -based, and 

social content. (Each dimension is further described in the Discussion). The remaining 

non-semantic dimension corresponded to the length of the printed word that named the 

concept. The five interpretable group- level factors accounted for 36% of the variance in 

the participant - level factors. All but one of these factors (rule-based concepts) have been 

identifie d in a previous study of abstract concepts (Vargas & Just, 2020). The brain 

locations of the voxel clusters with high loadings on the interpretable factors are shown 
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as spheres in Figure 3.2. The concepts located at the extremes of each of these 

dimensions and their respective factor scores are shown in Table 3.4.  

Behavioral ratings of each concept reflecting the saliency of each dimension (as it 

had been interpreted) were used as independent variables in a linear regression model 

that predicted the activation level of each concept in the factor locations. The mean rank 

accuracy of predictions for left -out concepts, averaged first over concepts and then over 

participants, was 0.73, p < 0.001. Performing the predictive modeling analysis while 

excluding the word length dimension resulted in a mean classification accuracy of 0.72, 

p < 0.001, which was not significantly different from the accuracy when word length was 

included, t(27) = 1.80, n.s.  

 

Figure 3.2.  Locations for five interpretable factor dimensions from combined -language analysis. These 
spheres were specified using the centroids of clusters of voxels (containing a minimum of 10 voxels) with 

high loadings (>0.4) on each of the factors. 
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The correlation for a given dimension between the factor scores of the 28 

concepts and their behavioral ratings were reliable for all semantic dimensions for both 

languages. The correlations between ratings and factor scores from the language-

specific factor analyses for each semantic dimension are as follows: the externality 

dimension had an r = 0.63, p < 0.001 for Mandarin and r = 0.70, p < 0.001 for English;  

the social dimension had an r = 0.52, p < 0.01 for Mandarin and r = 0.46, p < 0.05 for 

English; and the rule -based dimension had an r = 0.40, p < 0.05 for Mandari n and r = 

0.39, p < 0.05 for English. The similarity between languages in the correlations between 

factor scores and mean behavioral ratings for the Verbal dimension: in the case of the 

English ratings, it was r = 0.82, p < 0.001, and for the Mandarin rati ngs, it was r = 0.42, 

p < 0.05. These significant correlations between the behavioral ratings and factor scores 

indicate convergent validity for the interpretations of the semantic dimension for both 

English and Mandarin samples. 

 

T able 3.4.  The six  concepts with the highest and lowest factor scores for each interpretable dimension 
from the combined-language factor analysis. 
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Common representation supported by cross- language classification 

To assess the similarity of individual concept representations across languages 

based on the underlying factors, a classifier was trained on one language to predict 

individual concepts in the other language. Cross- language classification of individual 

concepts resulted in a mean rank accuracy (averaged over concepts, direction of 

decoding, and participants) of 0.65, p < 0.001. (The right -most column in Table 3.2 

shows the accuracies for individual concepts.) When individual concepts were averaged 

within categories, the categories with the highest accuracies were mathemati cs (0.67), 

scientific  (0.78), emotion  (0.70), and social  (0.70). When the features for the 

between participant cross- language classification were defined independently of the 

factors, using the union of 120 stable voxels from each language regardless of their 

association with any of the factors, the mean accuracy was 0.69, p < 0.01. The 
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classification accuracy was only slightly lower (0.65 vs. 0.69) when computed using only 

stable voxels associated with factors, indicating how well a factor-based account of the 

data accounts for the similarity between languages in their neural representations of 

abstract concepts. 

 

Differences in the neural representation of concepts across languages  

 Although a common set of dimensions was identified (as indicated by the reliable 

correlations of factor scores across the two language specific factor analyses in Table 

3.5), the distribution of the items along corresponding factors was similar but not 

identical (Table 3.3 and Table 3.1). Independently collected behavioral ratings provided 

converging evidence that a few individual abstract concepts are represented somewhat 

differently along the verbal representation dimension. English speakers rated emotions 

(e.g., happiness and anger), social concepts (e.g., intimidation  and compliment ) and 

spiritual concepts (e.g., deity  and sacrilege) as being more verbally represented than did 

Mandarin speakers. Additionally, Mandarin speakers rated mathematical concepts (e.g., 

subtraction  and multiplication ) and scientific concepts (e.g., heat  and acceleration ) as 

more verbally represented than did English speakers.  
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T able 3.5.  Correlation matrix of factor scores across English (rows) and Mandarin (columns) factor 
analyses for each semantic dimension. 

 

 

Qualitative descriptions of the concept properties that participants reported 

suggest polysemous words such as equality were represented somewhat differently 

across languages. English speakers tended to interpret the concept of equality partly in 

the context of social equality while Mandarin s peakers tended to interpret equality in 

terms of its mathematical meaning. These results suggest that the difference between 

languages is not in brain function but in the meanings of the ñtranslation equivalentsò of 

the polysemous word equality in the two languages. These differences could be due in 

part to differences in relative frequency or prominence of the two senses of the word in 

the two languages. 

  


