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Abstract

Variation in cognitive ability arises from subtle differences in underlying neural architecture.

Understanding and predicting individual variability in cognition from the differences in brain

networks requires harnessing the unique variance captured by different neuroimaging

modalities. Here we adopted a multi-level machine learning approach that combines diffu-

sion, functional, and structural MRI data from the Human Connectome Project (N = 1050) to

provide unitary prediction models of various cognitive abilities: global cognitive function,

fluid intelligence, crystallized intelligence, impulsivity, spatial orientation, verbal episodic

memory and sustained attention. Out-of-sample predictions of each cognitive score were

first generated using a sparsity-constrained principal component regression on individual

neuroimaging modalities. These individual predictions were then aggregated and submitted

to a LASSO estimator that removed redundant variability across channels. This stacked pre-

diction led to a significant improvement in accuracy, relative to the best single modality pre-

dictions (approximately 1% to more than 3% boost in variance explained), across a majority

of the cognitive abilities tested. Further analysis found that diffusion and brain surface prop-

erties contribute the most to the predictive power. Our findings establish a lower bound to

predict individual differences in cognition using multiple neuroimaging measures of brain

architecture, both structural and functional, quantify the relative predictive power of the dif-

ferent imaging modalities, and reveal how each modality provides unique and complemen-

tary information about individual differences in cognitive function.

Author summary

Cognition is a complex and interconnected process whose underlying mechanisms are

still unclear. In order to unravel this question, studies usually look at one neuroimaging

modality (e.g., functional MRI) and associate the observed brain properties with individ-

ual differences in cognitive performance. However, this approach is limiting because it
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fails to incorporate other sources of brain information and does not generalize well to new

data. Here we tackled both problems by using out-of-sample testing and a multi-level

learning approach that can efficiently integrate across simultaneous brain measurements.

We tested this scenario by evaluating individual differences across several cognitive

domains, using five measures that represent morphological, functional and structural

aspects of the brain network architecture. We predicted individual cognitive differences

using each brain property group separately and then stacked these predictions, forming a

new matrix with as many columns as separate brain measurements, that was then fit using

a regularized regression model that isolated unique information among modalities and

substantially helped enhance prediction accuracy across most of the cognitive domains.

This holistic approach provides a framework for capturing non-redundant variability

across different imaging modalities, opening a window to easily incorporate more sources

of brain information to further understand cognitive function.

Introduction

Cognitive abilities are not modularly localized to individual brain areas, but rely on complex

operations that are distributed across disparate brain systems (e.g., [1]). Prior work on the

association between macroscopic brain systems and individual differences in cognitive ability

has, by and large, relied on correlational analyses that usually assess linear changes in a particu-

lar cognitive task or measure (e.g., general intelligence quotient) that coincide with specific

brain properties such as region size [2, 3], gray matter [4] and white matter [5] volume, cortical

thickness [6] and surface area [7], resting-state functional connectivity [8], task-related activity

[9], global functional network properties [10], white matter connectivity [11], and other unim-

odal measures. However, these correlation approaches, based on unimodal imaging methods,

suffer several critical limitations. First, due to the mass univariate nature of the analyses, a

large number of statistical tests is usually performed, thereby raising the chances of Type I

error (false positives) and decreasing the statistical power of the study after adjusting for multi-

ple testing. Second, they do not take into account the mutual dependencies between brain fea-

tures and therefore ignore redundant sources of variability. Finally, the lack of out-of-sample

validation tests leads to over-optimistic results (i.e., potential overfitting), thus lowering their

generalizability across studies and applicability in clinical routines.

To address some of these limitations, recent studies have adopted machine learning frame-

works that can accommodate all of these deficiencies by building predictive models from mul-

tivariate features across the whole brain and testing them on independent hold-out data

samples. These methodologies have been widely applied to predict cognitive performance (see

[12] and references therein) in out-of-sample test sets and have proven particularly popular

with resting-state functional connectivity paradigms due to their inherent multivariate nature.

For example, recent studies show that functional connectivity profiles, distributed across the

brain, can predict up to 20% of the variance in general intelligence [13] and 25% in fluid intelli-

gence, with regions within the frontoparietal network displaying a positive correlation and

regions in the default mode network an anti-correlation [14]. Similar sparse regression models

have shown how variability in white matter integrity of association pathways can reliably pre-

dict individual differences in cognitive ability [15]. By building predictive models that can be

evaluated in out-of-sample test sets, as opposed to simple association analyses, these machine

learning approaches can quantify the degree of generalizability of particular findings, provid-

ing key insights into potential for neuroimaging based biomarkers for cognitive function.
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Nevertheless, these multivariate methods do suffer from problems with interpretability. For

example, in the pursuit of maximizing performance, some approaches may rely on complex

non-linear models (e.g., deep neural networks), for which directly assessing feature impor-

tance can be challenging. Even in relatively simple multivariate linear models, which establish

a transparent relation between the input features and the response variables under investiga-

tion (e.g., sensory, cognitive or task conditions), large weights that carry no signal-of-interest

whatsoever can emerge [16]. In this regard, univariate methods are more straightforward to

interpret and therefore, it has been argued that multivariate and univariate analyses should be

considered complementary when exploring brain-behavior associations [17].

Despite the success in applying predictive modeling approaches to the mapping of brain

systems to individual differences in cognitive performance, previous work has largely focused

on unimodal methods, which may not be sufficient to capture enough neurobiological proper-

ties due to the fact that different neuroimaging modalities reveal fundamentally distinct prop-

erties of underlying neural tissue. For example, functional MRI (fMRI) and diffusion MRI

(dMRI) reveal separate, but complementary, properties of the underlying connectome that

independently associate with different aspects of cognition [18]. This means that different

measures of brain structure and function may reveal complementary associations with cogni-

tive abilities that collectively boost the power of predictive models.

One of the challenges of building multimodal models of individual differences is the

increased complexity of the explanatory model when one attempts to combine all the sources

of variation. Modeling variability from a single neuroimaging modality is an already high

dimensional statistical problem [19–21], with many more features than observations. Adding

more modalities exponentially increases model complexity, increasing the risk of overfitting,

even when traditional approaches to dimensionality reduction (e.g., principal component

regression) or sparse feature selection (e.g., LASSO regression) are applied. One way around

this dimensionality problem is transmodal learning [22], a multi-modal predictive approach

that combines elements from transfer [23] and stacking (sometimes also called stacked gener-

alization) [24] learning paradigms. Transmodal learning takes independent predictions from

separate channels (e.g., generated from separate imaging modalities) and runs a second model

using the single-channel predictions as the inputs. This second “stacked” model attempts to

find unique sources of variability in the different input channels. Redundancy in variance, i.e.,
if two different imaging modalities are picking up on the same sources of variability, is

accounted for through the use of feature selection methods. The end result is a more holistic

prediction model that tries to explain more variance than individual input channels. Such a

transmodal learning approach was recently shown to be effective at integrating structural and

functional MRI measures to generate a reliable prediction of participant age whose residuals

also explained individual differences in objective cognitive impairment [25].

In the present study, we used the transmodal, or stacked, learning method to quantify the

extent to which the combination of data from multiple neuroimaging modalities permits

increasing predictive performance in several cognitive domains, including intelligence, sus-

tained attention, working memory, spatial orientation and impulsivity. By using a large data-

set, comprised of multiple neuroimaging measures from 1050 subjects from the Human

Connectome Project [26], we demonstrate that for most cognitive domains a significant

enhancement in overall prediction capacity is achieved when multiple modalities are inte-

grated together, indicating that each brain measurement provides unique information about

the underlying neural substrates relevant for cognitive function. In addition, this analysis

yields a multi-modal weight pattern for each cognitive ability, namely, the subset of architec-

tural brain features whose combination yields a significant and complementary enhancement

of the prediction performance.
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Results

Our primary goal was to see if predictions that integrate across neuroimaging modalities pro-

vide a boost to the prediction capability of individual differences in cognitive ability. For pur-

poses of our analysis, the primary neural measures consisted of MRI-based assessments of

(1) functional networks defined as Fisher’s z-transformed Pearson correlation coefficients

between resting BOLD time series, (2) measures of cortical surface area, (3) cortical thickness

attributes, (4) global and subcortical volumetric information and (5) local connectome fea-

tures representing the voxel-wise pattern of water diffusion in white matter. Our multi-level,

stacked modeling approach (see Fig 1 and Material and methods section for details) uses a

L1-constrained (LASSO) variant of principal component regression (PCR) to generate predic-

tions of specific cognitive scores from single imaging modalities in a training set. These are

referred to as single-channelmodels. To integrate across modalities, we stacked these single-

channel predictions together and used them as inputs to a separate LASSO regression model

that performs a weighted feature selection across channels. This is referred to as the stacked
model and it produces a new set of predictions for cognitive scores of individuals by selecting

and reweighting the individual channel predictions. The use of a LASSO model at this new

learning level even with only five features (the number of single-channels) guaranteed that

redundant modalities did not contribute to the final predictions. Performance of the single-

channel and stacked models are then evaluated by comparing the observed scores with the

predicted scores in the out-of-sample sets. All models were fit on 70% of the data (training set)

and tested on the remaining 30% (test set). A Monte Carlo cross-validation procedure [27]

with 100 random stratified splits was employed to assess the generalization of these

predictions.

The overall performance of the single-channel and stacked models are depicted in Fig 2.

These accuracies were determined using the coefficient of determination R2 (see S1 Fig for

the mean absolute error scores), which shows the percent variance explained by each model

in out-of-sample test sets. In Fig 3, the contributions of each channel to the stacked model

(estimated by the LASSO weights) are displayed for those domains in which stacking bonus

is positive at the 95% confidence level, i.e. the scenario in which different measurements

aggregate complementary and non-redundant variability. Finally, in order to understand the

relative feature importance in the predictions of each brain measurement, we refitted the

LASSO-PCR estimator to each single-channel model using all observations. This allowed us

to access the pattern of feature weights estimated within each individual channel. As detailed

in the Material and Methods section and following the recommendations given in [16], these

were each further multiplied by their input data covariance matrix, to approximate the fea-

ture contributions as encoding weights. The resulting maps are depicted in Fig 4, only for

those measurements whose median cross-validated contribution to the stacked model is dif-

ferent from zero at α = 0.05 significance level. In the following sub-sections we shall elaborate

on the specific pattern of results for each cognitive factor represented by the scores given in

Table 1.

Global cognitive function

Global cognitive function was estimated by the Composite Cognitive Function score, a proxy

for a general estimate of intelligence. Here the single-channel models based on cortical surface

area and local connectome features produced the highest predictive rates for individual

modalities, with a median R2 = 0.049, 95% CI [0.040, 0.055] and 0.049, 95% CI [0.043, 0.052]

respectively. Moreover, the relative prediction accuracy of these two models did not differ sta-

tistically (one tailed Wilcoxon test p = 0.429, rank-biserial correlation W
S ¼ 0:021). Compared
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Fig 1. Stacking methodology for multi-modal data prediction. In the first step and for each brain measurement, a 5-fold cross-

validation is applied to the training set to simultaneously optimize a LASSO-PCR model and produce out-of-sample training set

predictions. The optimized trained LASSO-PCR model is then used to generate predictions from the test set. In the second learning

step, training and test set predictions are stacked across channels. A new LASSO model acting on the new training set matrix is then

optimized with an inner 5-fold cross-validation and fitted to generate the final predictions on the new test set.

https://doi.org/10.1371/journal.pcbi.1008347.g001
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Fig 2. Single-channel and stacked performances to predict cognition. The coefficient of determination, R2, between the observed and predicted values

of seven cognitive scores using each brain measurement separately and together by stacking their predictions. The scenario that yields the maximum

predictive accuracy in out-of-sample tests is shown in red.

https://doi.org/10.1371/journal.pcbi.1008347.g002
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Fig 3. Regression coefficient distribution of each single-channel in the stacked model. Across the 100 different data splits, the weight

distribution assigned to the out-of-sample predictions of each brain measurement by the stacked LASSO model in those cognitive scores in

which stacking significantly improved the overall performance.

https://doi.org/10.1371/journal.pcbi.1008347.g003
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Fig 4. Multi-modal neuroimaging patterns from cognitive prediction. Encoding weight maps of each brain measurement whose contribution to

predicting cognitive scores during stacking is statistically non-redundant (N.C.� Non-Contributing). Red and blue colors in the brain images (i.e.,
local connectome, cortical surface area, cortical thickness, and subcortical volumes) display positive and negative weights respectively. For the resting-

state connectivity features the strength maps are instead displayed, estimated as the sum over the rows (or columns) in the absolute matrix of links’

weights, thresholded to concentrate only on their 1% largest values. The weight map for the volumetric properties in Crystallized Intelligence is

marked as non-contributing (N.C.) since this channel did not survive after adding the confounders channel to the stacked model.

https://doi.org/10.1371/journal.pcbi.1008347.g004
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to the cortical surface area and local connectome models, a significant drop in prediction per-

formance occurred for resting-state connectivity (median R2 = 0.016, 95% CI [0.014, 0.020]),

cortical thickness (median R2 = 0.013, 95% CI [0.009, 0.017]) and global and sub-cortical volu-

metric (median R2 = −0.002, 95% CI [-0.005, 0.001]) features. Thus we see substantial variabil-

ity across individual neuroimaging modalities in their predictive utility on a measure of global

cognitive function.

After integrating predictions across modalities, however, an important improvement in

overall accuracy is observed. The stacked model raised the median R2 to approximately 0.078,

95% CI [0.072, 0.084] in global cognitive function. Thus, the stacked model predicted a signifi-

cant incremental median bonus B ¼ 0:030, 95% CI [0.025, 0.035] compared to the best single-

channel model.

Based on the LASSO weights in the stacked model (see Fig 3A), we identified the local con-

nectome and cortical surface areas as the strongest contributing measurements, with the for-

mer (median β = 0.601, 95% CI [0.582, 0.640]) contributing more than the latter (median β =

0.586, 95% CI [0.572, 0.608]). Interestingly, resting-state connectivity was still a reliable predic-

tor (median β = 0.461, 95% CI [0.412, 0.483]), as was cortical thickness (median β = 0.281, 95%

CI [0.203, 0.312]), although to a lesser degree. A median weight not statistically different from

zero (at the 0.05 significance level) assigned to the volume channel predictions showed that

these factors did not appear to reliably contribute to the stacked model.

For the largest contributing channel, the local connectome, global cognitive ability partic-

ularly associated in a positive way (warmer colors in Fig 4, first column) with signal in cra-

nial nerves and fibers along the rubrospinal and the central tegmental tracts. In contrast,

fibre bundles in the brainstems like the medial lemniscus and medial longitudinal fasciculus

and commissural pathways like the anterior commisure were negatively associated with

global cognitive ability (cooler colors). Estimated average positive and negative loadings for

an extensive list of white matter tracts in a population-based atlas of the sctructural connec-

tome [28] can be found in S1 and S2 Tables. For cortical surface area, regions in the ventral

temporal lobe, the somatosensory and the visual cortex were largely positively associated

with global cognition while negative associations were more scarce, mainly concentrating

on areas of the posterior multimodal network. Interestingly, a different pattern was observed

for cortical thickness, with a more pronounced emergence of negative associations, that

extend over the prefrontal cortex. Finally, resting-state connectivity to the visual cortex and

within the frontoparietal network appeared to be positive associated with global cognition,

whereas the largest contributions are negative associations from links connecting to the

default-mode network (see also S2 Fig). Loadings for the volumetric features are not shown

because this channel’s predictions did not survive the feature selection step in the stacked

LASSO model.

Table 1. Main descriptive statistics for the response cognitive variables.

Name of the test: measure score Mean Median Skewness Kurtosis Mild (Extreme)

% outliers

Lower-Higher

95% mean CI

NIH Toolbox Cognition: Total Composite Score 122.28 120.77 0.21 -0.49 0.00 (0.00) 121.37-123.17

NIH Toolbox Cognition: Fluid Composite score 115.43 114.15 0.26 -0.46 0.00 (0.00) 114.72–116.13

NIH toolbox Cognition: Crystallized Composite score 117.90 117.81 0.11 0.09 0.01 (0.00) 117.29–118.50

Delay Discounting Test: AUC for discounting of $200 0.26 0.20 1.33 1.57 0.04 (0.00) 0.25–0.27

Variable Short Penn Line Orientation Test: total number of correct responses 14.93 15.00 -0.27 -0.14 0.00 (0.00) 14.67–15.23

Penn Word Memory Test: total number of correct responses 35.64 36.00 -0.82 0.57 0.01 (0.00) 35.45–35.81

Short Penn Continuous Performance Test: sensitivity 0.96 0.97 -3.29 19.76 0.04 (0.01) 0.95–0.96

https://doi.org/10.1371/journal.pcbi.1008347.t001
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Fluid intelligence

Global cognitive ability is usually decomposed into two domains [29]: fluid intelligence (i.e.,
the ability to flexibly reason on new information) and crystallized intelligence (i.e., the ability

to utilize the knowledge and skills acquired through prior learning experience). Thus we next

wanted to determine how similar or different the prediction models were for these two sub-

components of general cognitive ability are. For fluid intelligence, extracted from the NIH

toolbox Cognitive Fluid Composite Score, local connectome fingerprints yielded the highest

coefficients of determination (median R2 = 0.023, 95% CI [0.020, 0.026]), significantly exceed-

ing those from cortical surface areas (median R2 = 0.018, 95% CI [0.013, 0.019]) and resting-

state connectivity (median R2 = 0.017, 95% CI [0.013, 0.019]). Both cortical thickness and volu-

metric features failed to predict statistically fluid intelligence (negative to null R2 at the 95%

confidence level). Stacked predictions raised the variability explained to a median R2 = 0.038,

95% CI [0.034, 0.043], which is translated into a 0.018, 95% CI [0.014, 0.020] of expected

median stacking bonus B.

Interestingly, despite not showing the largest predictive accuracy of fluid intelligence at the

single-channel level, resting-state connectivity features supplied the largest portion of non-

redundant variability to the stacked model (median β = 0.695, 95%CI [0.649, 0.739]), followed

by the local connectome (β = 0.608, 95% CI [0.576, 0.644]) and cortical surface area factors

(β = 0.486, 95% CI [0.437, 0.541]). On the other hand, cortical thickness attributes and volu-

metric information appeared to provide a null contribution to the stacked model (see Fig 3B).

Since fluid intelligence is one of the two components of the global cognitive ability score

(Pearson correlation coefficient with the global cognitive function score r = 0.849), it is not

surprising that the weight maps in both domains showed large correlations across the five

modalities (see S3 Fig). Regardless of this, subtle phenotypic differences can still be observed

(see Fig 4, second column); namely, the predominance of large positive loadings in the brain-

stem nerves over the cranial nerves (see S1 and S2 Tables), the predominance of resting-state

links connecting to the medial prefrontal cortex and the emergence of more positive correla-

tions to the visual and somatomotor cortex (see also S2 Fig), and the relative increase of nega-

tive weighs for cortical surface areas in the inferior temporal and fusiform gyri. Loadings for

global and subcortical volumes and cortical thickness features are not shown because they did

not survive the feature selection step in the stacked LASSO model.

Crystallized intelligence

For crystallized intelligence we extracted the NIH toolbox Cognition Crystallized Composite

Score. In this domain, the highest predictive accuracies were provided by cortical surface attri-

butes (median R2 = 0.046, 95% CI [0.036, 0.051]), statistically comparable (one tailed Wilcoxon

test p = 0.512, rank-biserial correlation W
S ¼ 0:003) with the performance from local connec-

tome features (median R2 = 0.041, 95% CI [0.037, 0.047]). These were followed by cortical

thickness (median R2 = 0.028, 95% CI [0.022, 0.033]), volumetric measurements (median R2 =

0.012, 95% CI [0.09, 0.017]) and resting-state connectivity (median R2 = 0.003, 95% CI [0.0,

0.007]). By stacking these predictions, we obtained a median bonus B ¼ 0:034, 95% CI [0.029,

0.038], with the stacked model reaching a median R2 = 0.078, 95% CI [0.072, 0.083].

In contrast to global cognition, variability in the stacked model was foremostly driven by

cortical surface area factors (median β = 0.571, 95% CI [0.548, 0.590]), which significantly

exceeded the contribution from local connectome (median β = 0.520, 95% CI [0.487, 0.547]),

cortical thickness (median β = 0.471, 95% CI [0.445, 0.522]) and volumetric properties

(median β = 0.215, 95% CI [0.105, 0.316]). Likewise, the stacked LASSO model shrunk away
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predictions from resting-state connectivity attributes at the 95% confidence level when com-

bined with the rest of channels (see Fig 3C).

Similarly to the fluid intelligence domain, multi-modal weight patterns of crystallized intel-

ligence (see Fig 4, third column) resembled those of global cognition (Pearson correlation

between crystallized intelligence score and global cognitive function score r = 0.769), with

main positive associations along fibre bundles in the brainstem which include the medial lon-

gitudinal fasciculus and central tegmental tracts and cranial nerves. Interestingly, for this

domain there is an enhanced negative association with some association pathways represented

by the bilateral cingulum tract (see also S1 and S2 Tables). In addition, a predominance of the

middle and inferior temporal gyri were found for cortical surface areas and an increase in neg-

ative associations with cortical thickness in regions of the frontal cortex.

Impulsivity

One factor not reliably measured in the Composite Cognitive Function score is impulsivity or

self-regulation, i.e., the ability to suppress contextually inappropriate behaviors. To assess this

we extracted the area-under-the-curve (AUC) for discounting of $200 from the Delayed Dis-

counting Task. Even though the percent variance explained by the single-channel models for

this impulsivity measure were low (see Fig 2D), their performance improved using the stacked

predictions (median R2 = 0.011, 95% CI [0.008, 0.016]). Indeed, the stacked model performance

exceeded that of the best single-channel, in this case volumetric factors (median R2 = 0.006,

95% CI [0.001, 0.010]), translated into a stacking bonus B ¼ 0:007, 95% CI [0.002, 0.010]. Such

stacking improvement took place even though the rest of the channels individually failed to

predict better than simply the average impulsivity score (R2 = 0) at a 95% confidence level.

Interestingly, unlike the models for global cognition and intelligence, for predicting impul-

sivity not only did the volumetric factors survive the LASSO feature selection step but they

emerged as the most important explanatory source of variability in the final out-of-sample pre-

dictions (median β = 0.494, 95% CI [0.459, 0.518]), which exceed those from cortical surface

areas (median β = 0.388, 95% CI [0.308, 0.454]) and local connectome properties (median β =

0.209, 95% CI [0.005, 0.309]). Resting-state connectivity and cortical thickness attributes

appeared to play a negligible role at the 95% confidence level in combination with the afore-

mentioned measurements in the stacked model (see Fig 3D).

Impulsivity weight maps for these contributing channels are depicted in Fig 4, fourth col-

umn. Subcortical attributes showed a strong positive influence of cerebellar cortex and the

amygdala and negative loadings in the brainstem, putamen and left nucleus accumbens. The

importance of the remaining volumetric features can be found in S3 Table, revealing an overall

positive association of cortical volumetric measures with impulsivity scores. With respect to

cortical surface areas, loadings were mainly positive, with greatest associations found in areas

of the medial frontal gyrus, the middle and inferior temporal gyri and the somatosensory cor-

tex. Finally, particularly important areas of local connectome features positively correlated

with impulsivity were found along fibers from the brainstem that include the dorsal and longi-

tudinal fasciculus, projection pathways like the occipitopontine tracts and cerebral pathways

represented by the superior cerebellar peduncle (see also S1 Table). In contrast, the largest neg-

ative loadings were located along the fornix, cingulum and medial lemniscus tracts (see also

S2 Table).

Spatial orientation

Another cognitive domain not covered under global cognitive functioning is spatial orienta-

tion, which is the ability to reference how the body or other objects are oriented in the

PLOS COMPUTATIONAL BIOLOGY Integrating across neuroimaging modalities boosts prediction accuracy of cognitive ability

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008347 March 5, 2021 11 / 25

https://doi.org/10.1371/journal.pcbi.1008347


environment and reflects a critical cognitive domain for spatial awareness. We extracted scores

from the Variable Short Penn Line Orientation Test to look at individual differences in spatial

orientation ability. The predictive models for spatial orientation followed the similar tendency

observed in our other models thus far, with the stacked predictions improving overall single-

channel accuracies. The best performing single-channel model was for cortical surface area

(median R2 = 0.022, 95% CI [0.017, 0.028]), which was greater than the local connectome

(median R2 = 0.015, 95% CI [0.011, 0.018]). The rest of measurements failed to predict better

than R2 = 0 at the 95% confidence level.

Like the previous cognitive measures, the prediction of individual differences in spatial ori-

entation improved when modalities were integrated together, with the performance of the

stacked model being R2 = 0.029, 95% CI [0.024, 0.034] and giving rise to a stacking bonus

B ¼ 0:009, 95% CI [0.005, 0.012] with respect to the best single-channel model. As shown in

Fig 3E, the stacked model eliminated the contributions of resting-state connectivity and volu-

metric features, suggesting that these factors did not provide unique contributions to predict-

ing spatial orientation ability above that of the cortical surface (median β = 0.546, 95% CI

[0.515, 0.589]) and white matter measures (median β = 0.554, 95% CI [0.508, 0.584]). Interest-

ingly, even though its predictive power as a single channel was poor, cortical thickness features

appeared to provide a small but non-redundant contribution to the stacked model (median β
= 0.209, 95% CI [0.023, 0.289]).

Finally, weight maps estimated from these contributing channels are displayed in Fig 4,

fifth column. Interestingly, we can appreciate a positive correlation with local connectome fea-

tures particularly along some projection pathways connecting to regions in the occipital cortex

(optical radiation, central tegmental and occipito-pontine tracts), which are involved in visual

demanding tasks, whereas negative associations are mainly dominated by the frontopontine

tract and fibres bundles in the association pathways including the frontal aslant tract and cin-

gulum. Regarding structural cortical attributes, positive loadings from surface area factors

were found in regions along the inferior and middle temporal gyri and in the somatomotor

network, whereas negative associations took place in parts of the precuneus like the parieto-

occipital fissure. On the other hand, except for regions in the visual cortex and the parahippo-

campal gyrus, thickness properties exhibited a negative correlation with spatial orientation

that spans over the entire brain cortex.

Verbal episodic memory

The Penn Word Memory test captures verbal memory abilities. For this response variable,

stacked prediction accuracy (median R2 = 0.013, 95% CI [0.010, 0.017]) did not improve the

single-channel’s best performance represented by the local connectome fingerprints (median

R2 = 0.019, 95% CI [0.016, 0.023]). The rest of the measurements all exhibited a negative

median R2, meaning that they perform worse than using predictions from the mean response

variable (see Fig 2F). As a consequence, neither the regression coefficients showing the single-

channel contributions to the stacked model nor the weight maps were reported for this cogni-

tive score.

Sustained attention

The Short Penn Continuous Performance Test is the measure of sustained attention. As

shown in Fig 2G, accuracies of single-channels and stacked model in this domain were overall

negligible and worse or not statistically different from those provided by the mean response

variable. Owing to this, neither the regression coefficients showing the single-channel contri-

butions to the stacked model nor the weight maps were reported for this cognitive score.
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Prediction adjustment for non-neuroimaging confounders

As a post-hoc analysis, in order to test the performance and contribution of each single-chan-

nel of brain measurements to the predictions in the presence of other non-neuroimaging con-

founders, we incorporated age, sex and education level variables together as an additional

channel to the stacking procedure.

As expected, compared to the neuroimaging measurements, predictions from this addi-

tional channel explained a greater portion of the data across all cognitive domains: crystallized

intelligence (median R2 = 0.246, 95% CI [0.228, 0.251]), global cognitive function (median

R2 = 0.165, 95% CI [0.156, 0.173]), fluid intelligence (median R2 = 0.065, 95% CI [0.058,

0.069]), impulsivity (R2 = 0.024, 95% CI [0.018, 0.028]) and spatial orientation (median

R2 = 0.025, 95% CI [0.020, 0.029]).

Importantly, except for the volumetric factors in crystallized intelligence, the contributions

from the neuroimaging channels survived after stacking the predictions with the confounders

and indeed, they followed the same pattern in terms of relative importance of the brain mea-

surements found before (see S4 Fig). As a consequence, this persistence of contributing chan-

nels helped raise the total variability explained by the neuroimaging and confounder features

together: crystallized intelligence (median R2 = 0.270, 95% CI [0.260, 0.279]), global cognitive

score (median R2 = 0.197, 95% CI [0.190, 0.210]), fluid intelligence (median R2 = 0.089, 95%

CI [0.081, 0.095]), impulsivity (R2 = 0.032, 95% CI [0.028, 0.035]) and spatial orientation

(median R2 = 0.045, 95% CI [0.039, 0.050]).

Testing for ceiling and floor effects

In order to rule out the possibility that ceiling and floor effects of some of the scores might be

influencing the poor performances obtained, we repeated the analyses for sustained attention

and impulsivity using respectively the Short Penn CPT Median Response Time for True Posi-

tive Responses score and the NEO-Five Factor Model (NEO-FFI) score for extraversion,

which both appeared to exhibit more friendly distributions (see S5 Fig). Interestingly, for both

scores all single-source channels as well as stacked predictions performed worse than random

guess (R2 < 0), supporting the effect sizes observed in these domains for the original scores.

Discussion

Here we tested whether multiple functional, diffusion, and morphological MRI-based mea-

surements of brain architecture constitute complementary sources of information for predict-

ing individual differences in cognitive ability. We accomplished this by means of a stacking

approach for multimodal data, a two-level learning framework in which groups of features are

first separately trained and their predicted response values subsequently stacked to learn a new

model that takes into account redundant effects across channels. Our results show that for

most of the cognitive measures tested integrating across different brain measurements pro-

vides a boost to prediction accuracy, highlighting how different imaging modalities provide

unique information relevant to predicting differences in human cognitive ability.

One of the strengths of our approach is the assessment of how performance in different

cognitive domains associates with a wide range of brain measurements. Overall, our results

show that effect sizes tend to be moderate (at most explaining less than 10% of the variance

after stacking), which nevertheless go in line with a recent research in a large sample size

(N = 10,145) reporting a similar degree of variability using cortical morphology information

for predicting fluid and crystallized intelligence [30]. Likewise, we adopted a rigorous strategy

that takes in consideration the effects of factors that are known to confound predictions of

individual differences in behavior and cognition (e.g., brain size and education level). While
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conservative, this approach highlights the importance of identifying optimal deconfounding

approaches to disentangle brain-behavior associations from spurious effects. Therefore, all this

raises the question of where the remaining variability may come from. It might be possible

that the metrics employed here, which largely reflect static architectural aspects of global brain

systems, are missing the fundamental dynamics of neural circuits during relevant behavioral

states for expressing specific cognitive functions. In this regard, specific task-evoked fMRI

measurements that directly assess the neural reactivity during cognitive evaluation [31–33]

could help raise the overall predictive power. For example, we recently showed that brain acti-

vation patterns during affective information processing tasks predict an important portion of

individual differences of cardiovascular disease risk factors, a finding that we could not have

reached had not we used the appropriate and specific task fMRI experiment [34]. Additionally,

increasing both spatial resolution to better capture features of structural-functional variation

[35] and temporal resolution for a more accurate decoding of the underlying brain dynamics

[36] could be valuable and complementary sources of cognitive performance correlation. Thus

we consider the work here a proof-of-principle for making holistic models that predict specific

cognitive abilities, which could be further improved with additional, more specific, inputs.

Of particular note is that the observed effect sizes from resting-state connectivity are consis-

tently small, which appears to be in conflict with previous results that reported a medium-

large correlation (r = 0.5) between patterns of resting-state connectivity and fluid intelligence

functioning [14]. In our case and for this particular domain, the maximum performance that

we achieved across all simulations is ostensibly smaller (R2 = 0.056, r = 0.25). Nevertheless,

such a decrease in the effect sizes was expected due to our use of a much larger sample size

(N = 1050 versus N = 126), which reduces inflated results caused by sampling variability and

therefore, findings are more reproducible and inferred patterns generalizable to a broader pop-

ulation spectrum [37]. In addition, it is important to note that our preprocessing pipeline does

not include a global signal regression step, which is supposed to improve resting-state func-

tional connectivity based behavioral prediction accuracies [38]. This step is still controversial

since it is not clear whether it supplies real or spurious information [39]. Finally, we relied on

the coefficient of determination, R2, to assess the predictive power of the learned models. For

regression tasks, this performance metric is recommended over the usual Pearson correlation

coefficient, which overestimates the association between predicted and observed values

[40, 41].

The overall stacking approach to multimodal integration that we applied here closely fol-

lows work by Liem and colleagues [25], who used a stacking approach with multimodal brain

imaging data to improve the performance in individual age prediction, although with two big

differences in structure. First is the choice of the algorithm for the second learning stage in this

transmodal approach. Albeit performances from a random forest algorithm, as used by Liem

and colleagues, would have been proven to be less variable compared to other well known

algorithms in similar scenarios [42], we decided to use a LASSO regression model because of

its simplicity (it only has one hyperparameter to tune) and due to the fact that the L1 penalty

term can automatically get rid of the redundant variability of the different channels. The sec-

ond difference is the number of neuroimaging modalities, since we have also included diffu-

sion data in our study. Indeed, we have demonstrated that the inclusion of local connectome

features played an important role for prediction, since they alone account for a moderate rate

of variability consistent across all cognitive domains. Moreover, such variability survives and

indeed prevails in some domains when combined with the rest of single-channel predictions.

This finding validates the role of the local connectome fingerprint as a reliable correlate of cog-

nitive factors at the individual level [15] and suggests its complementary role in combination

with other brain measurements. In particular, white matter diffusion tracts provide a putative
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structural basis for the macroscopic human connectome that is reflected in the correlation for

age [43] and cognition [44, 45]. Furthermore, it is important to stress that local connectome

fingerprints do not rely on fiber tracking algorithms, which reduces the risk of false-positive

bias when mapping white matter pathways [46–48]. Our findings here with respect to predict-

ing cognitive ability, along with the work of Liem and colleagues on age predictions [25], sim-

ply demonstrate how powerful a stacking approach can be to maximizing explainable variance

from multiple imaging modalities.

Interestingly, although stacked predictions clearly increase the variability explained at a

global cognitive level, this is not the case across all domains. For example, global, fluid, and

crystallized intelligence, impulsivity and spatial orientation all show improvements in predic-

tion accuracy, in contrast to attention and word memory function. These results might be

caused by the existence of a hierarchical cognitive categorization, with high complex functions

demanding the integration of multi-modal aspects of the brain compared to lower level func-

tions [49]. Alternatively, individual differences in some cognitive areas might be mostly

parametrized by one specific brain sub-system that captures all the variability. For instance,

white matter structure is an important substrate of cognitive performance whose deterioration,

notably in the hippocampus, is the first sign of memory decline at both early and late stages in

Azheimer’s disease [50, 51]. On the other hand, it might also happen that for certain cognitive

domains, the measurements considered in this study do not constitute a sizable source of vari-

ability and therefore stacking is only aggregating noise to the predictive model. Finally, associ-

ations with cognitive performance might be affected by the inherent nature of the cognitive

tests, either due to an imperfect design that adds unwanted variability, or because of some

properties (e.g., ceiling and floor effects) of the sampling distribution that can make them not

suitable for predicting interindividual differences. For example, in our dataset, scores in the

Short Penn test display a heavy deviation from normality, that can affect sensitivity in regres-

sion models. However, as we also showed, even after replacing these scores for others with

more desirable distribution properties, prediction accuracies did not improve, which high-

lights how challenging it can be to predict individual differences of cognitive performance

using neuroimaging data.

On the other hand, it is worthwhile emphasizing the justification of our stacking learning

approach compared to, for example, a simple regression model that includes all of the features

across all modalities. First, our framework effectively estimates the unique variance explained

by each neuroimaging modality in predicting cognitive performance, acting thus as a form of

feature selection at the neuroimaging modality level that accounts for redundancies in corre-

lated signals. Second, the distinct underlying noise structure across modalities is handled in

our approach by fitting each single-channel independently, in contrast to linear regression

models using all the data together. Finally, our predictive framework shares some characteris-

tics with resample-based ensemble methods (e.g., random forest), which in some cases might

be a more efficient way of handling wide datasets (number of features exceeding the number

of observations). For example, in a supplementary analysis predicting global cognitive function

(not shown in Results), we found that the same LASSO-PCR procedure applied to the

concatenated data across modalities (a matrix with 387082 features) performed significantly

worse (median R2 = 0.047 95% CI [0.044, 0.052]) than our stacking learning model.

A possible limitation of our study arises from the fact that predefined test scores were

employed as response variables, which in most cases are largely coarse measures of cognitive

ability that may rely on redundant underlying subprocesses, leading to a degree of similarity in

the brain architecture features that contribute to predicting individual differences. Regardless

of this, spatial correlation analysis shows that a portion of each cognitive measure’s weight

map is unique (including for the global cognitive score that is constructed from both
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crystallized and fluid intelligence scores) and therefore there exist brain structures whose roles

are specific to the area of cognition involved (see S3 Fig). Future studies might benefit from

adopting more sensitive approaches to measuring specific cognitive factors (e.g., psychophysi-

cal measurements) that can carefully isolate primary cognitive abilities.

Finally, our current framework treats brain measurements separately at a first step, based

on the assumption that they represent independent and non-overlapping sources of cognitive

variation. As we showed, this is far from true: there exists some degree of redundancy across

the imaging modalities. Future studies might attempt to find a decomposition into multidi-

mensional representations of unique and shared variance across brain measurements. This

would likely increase the number of single-channels whose individual predictions can be later

exploited by our stacking approach. Alternatively, we speculate that a similar scenario as the

one employed here could be accommodated using architectures of multi-layered neural net-

works. These models, however, require very large training sets, with tens of thousands of

observations or more, which dwarfs most of the largest neuroimaging data sets currently avail-

able. Though, neural network approaches seem to be an appropriate future extension to our

study as a stack of modality-wise neural networks, connected to a last hidden layer allowing

for inter-channels connections, once appropriately large data sets become available.

Despite these limitations, our work here builds on the growing body of work attempting to

integrate information from different neural sources so as to maximize explained variability of

individual differences. Our approach predicts individual differences in cognition by separately

fitting measurements of structural, functional and diffusion modalities and subsequently

stacking predictions to enhance overall accuracy while removing redundant contributions.

Even though a large portion of variance in the data remains unaccounted for, our results dem-

onstrate that effect sizes can be easily increased by using multimodal neuroimaging data and

establish a solid and reliable lower bound for cognitive prediction in different domains.

Materials and methods

Participants

We used publicly available data in the S1200 release from the Human Connectome Project

(HCP) Young Adult study (https://www.humanconnectome.org/study/hcp-young-adult).

Out of the 1200 participants released, 1050 subjects had viable T1-weighted, resting-state

fMRI, and diffusion MRI data. In addition, 22 subjects were discarded due to the presence

of missing information in some of the response and confounder variables used in this

study. The final dataset then comprised 1028 individuals (550 female, age range 22-37,

mean ± σage = 22.73 ± 3.68 years).

Predictor variables

Preprocessing steps included spatial artifact/distortion removal, surface generation, cross-

modal registration and alignment to standard space and the automatic ICA-FIX denoising of

functional acquisitions, among others (more details on these and other additional preprocess-

ing steps can be found in [52]).

Structural predictors were composed of cortical thickness (CT) and surface area (CS) values

of 360 regions in a multi-modal parcellation [53], and 65 features containing global, subcorti-

cal and other volume (VL) information, directly extracted from the aseg.stats freesurfer file of

each subject. The estimated intracranial volume, which was also part of the aseg.stats file, was

not considered a predictor but a confounder to adjust for (see below for more details).

Functional predictors were estimated from the resting-state data by first computing the

averaged time series from the voxels within each of the 718 regions in a parcellation which
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extends the aforementioned multi-modal atlas to include 358 subcortical regions [54]. Further-

more, this parcellation identified 12 different intrinsic functional networks, which included

the well-known primary visual, secondary visual, auditory, somatomotor, cingulo-opercular,

default-mode, dorsal attention and frontoparietal cognitive control networks; novel networks

like the posterior multimodal, ventral multimodal, and orbito-affective networks; and the

identification of a language network [54]. S6 Fig shows the spatial distribution of these 718

regions in the brain and their resting-state network assignment. Next, a functional connec-

tome for each subject was built by calculating the z-transformed Pearson correlation coeffi-

cient between pairs of time series. Finally, the upper triangular elements were extracted to

form the final vector of 257403 functional connectivity (FC) features per subject.

Diffusion predictors were represented by the local connectome fingerprint (LC), a structural

metric that quantifies the degree of connectivity between adjacent voxels within a white matter

fascicle defined by the density of diffusing spins [55]. The local connectome was computed by

reconstructing the spin distribution functions (SDFs) in all white matter voxels in a common

template space, previously derived from 842 subjects of the HCP dataset [28], using q-space

diffeomorphic reconstruction [56] and sampling the quantitative anisotropy [57] at peak direc-

tions within each voxel. This produces a fingerprint vector of 128894 fibers across the entire

brain for each subject. These features were obtained using DSI Studio (http://dsi-studio.

labsolver.org), an open-source toolbox for connectome analysis from diffusion imaging.

Response variables

A subset of seven cognitive test scores available in the HCP repository were used as response

variables [58]. Each of these measures assesses the individual performance in cognitive

domains that are different to a greater or lesser extent. In particular, we selected: (a) the Unad-

justed scale NIH Toolbox Cognition Total Composite Score, which provides a measure of

global cognitive function, (b) The Unadjusted NIH Toolbox Cognition Fluid Composite Score

for fluid intelligence, (c) The Unadjusted NIH Toolbox Cognition Crystallized Composite

Score for crystallized intelligence, (d) the area-under-the-curve (AUC) for Discounting of $200

in a Delay Discounting Test for impulsivity, (e) the total number of correct responses in a Vari-

able Short Penn Line Orientation Test for spatial orientation assessment, (f) the Total Number

of Correct Responses in a Penn Word Memory Test, which aims at testing verbal episodic
memory, and (g) sensitivity in a Short Penn Continuous Performance Test for sustained atten-
tion performance. The main descriptive statistics for these variables can be found in Table 1

and their sample distributions and similarity between scores in S7 Fig.

Prediction models

The prediction of each cognitive score was carried out adopting a transmodal approach to

stacking learning. Stacking belongs to the ensemble paradigm in machine learning and it is

based on a multi-level training in which predictions from a given set of models are combined

to form a new meta feature matrix [22, 24]. This new matrix can be then fed into a new model

for final predictions or passed to a successive and intermediate learning level.

Our transmodal scenario consisted of two-levels of learning and differs from usual stacking

approaches in that each predictive model comes from training separately our different groups

of features (called channels), each corresponding to the resting-state connectome, cortical

thickness attributes, cortical surface areas, global and subcortical volumetric information and

the local connectome fingerprints.

The entire prediction modeling procedure is illustrated in Fig 1. First, we split the data into

training and test set (see next section for more details on the cross-validation procedure for
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model performance assessment). We then adjusted for the effect of the intracranial volume on

the response variable computing the residuals from a linear regression model estimated using

only the training set information in order to avoid any data leakage. Next, a 5-fold cross-vali-

dation was applied to the observations in the training set using a principal component regres-

sion model with a L1 regularization term (LASSO-PCR) on each channel. This estimator

constitutes a pipeline with the following sequential steps:

1. Dimensionality reduction by PCA to the input matrix of features X of each channel:

X ¼ USVT ; ð1Þ

where the product matrix Z = US represents the projected values of X into the principal

component space and VT an orthogonal matrix whose row vectors are the principal axes in

feature space.

2. Regression of the response variable y onto Z, where the estimation of the β coefficients is

subject to a L1 penalty term λ in the objective function:

b̂ ¼ arg minbfky � Zbk
2
þ lkbkg ð2Þ

3. Projection of the fitted b̂ coefficients back to the original feature space to produce a weight

map ŵ ¼ Vb̂ used to generate final predictions ŷ:

ŷ ¼ Xŵ ð3Þ

This inner cross-validation loop (acting only on the training set) was used so as to deter-

mine the optimal value of λ and simultaneously generate out-of-sample predictions that are to

be used as the new training data at the subsequent learning level. After training each LAS-

SO-PCR model with the optimal level of shrinkage, single-channel predictions from the test

set were aggregated across all channels.

At the second level, both out-of-sample predictions from the training set and predictions

on the test set were stacked across the five channels to form a new training and test set. A new

LASSO regression model was then optimized and fitted to produce a final prediction. The

motivation to use a LASSO model with this small number of features (the number of single-

channels) at this learning stage was to perform a feature selection as well, that automatically

selected and weighted how much each channel contributed to the best final prediction. Addi-

tionally, at this stage we imposed a non-negative constraint to the determination of the regres-

sion coefficients due to its effectiveness in increasing the performance by stacked regressions

[59] and to aid the interpretation of the contributions from the single-channels. Finally, the

performance of this prediction was estimated through the coefficient of determination R2 and

the mean absolute error (MAE). All this framework was implemented using scikit-learn [60].

Cross-validation strategy for performance assessment

Training and test sets were obtained by splitting the data into 70% and 30% of the observations

respectively. In order to estimate the predicted metrics taking into account different partition

seeds, a Monte Carlo cross-validation was employed. In particular, we generated 100 random

splits and obtained the model performance in each of these partitions. A final cross-validated

performance was then reported using the median and its confidence intervals, computed by a

percentile bootstrapping (1000 bootstrap samples) at a significance level α = 0.05. The choice
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of the median was particularly suitable when summarizing the contributions of each single-

channel, since the stacked LASSO model produced sparse solutions.

To note, when generating the different training and test set partitions, we took into account

the fact that the HCP database includes pairs of monozygotic and dizygotic twins, which can

give rise to overoptimistic results if these pairs do not fall together in the same partition set

(either the training or the test set). Our dataset included 419 observations with twin zygosity

information as verified by genotyping. This odd number is due to some of the twins being dis-

carded during the data preparation process (see previous sections). As a consequence, each set

of twins were assigned with the same identification label and this information used to generate

randomized train/test indices that guaranteed that they were always together in the same parti-

tion set. We accomplished this using themodel_selection.GroupShuffleSplit class of scikit-learn.

Confounding adjustment

We adopted a hybrid strategy for confounder adjustment in the predictions depending upon

the variables whose effect we were controlling for, which we grouped into neuroimaging and

mediating confounders respectively.

In the first group, we considered the total intracranial volume, extracted directly from the

Freesurfer outputs for each subject, as the neuroimaging measure with a clear effect on the

brain architecture properties and which is known to be closely related to cognitive perfor-

mance. One possible way of controlling for this variable could be to include it as a covariate in

our prediction models. However, this approach would imply mixing measures of different

modalities in the feature matrix of each channel. As a consequence, we decided to partial out

its effect from the response variables, for which we employed linear regression models whose

intercept and slope coefficients were estimated using only the training sets in order to avoid

any data leakage.

In the second group, we considered those variables that are not neuroimaging measures but

can mediate an effect between these and cognitive performance, e.g., demographic factors.

Since our stacking approach deals naturally with measures of different modalities, we thus

decided to treat this group of variables as a different modality constituting an additional chan-

nel in our predictive framework. If the predictions from this confound channel were to carry

most of the variability of a particular response variable, then our second level LASSO model

should automatically shrink away the predictions from the rest of neuroimaging channels.

That is because the L1 constraint chooses the best representative feature out of a set of corre-

lated features. This strategy goes in accordance with recent work controlling for confounders

on the level of machine learning predictions, allowing for estimating the portion of perfor-

mance that can be explained by confounds and the portion of performance independent of

confounds [61]. In our case, we considered sex, age and education level in this group.

Weight maps of feature relevance

Our Monte Carlo cross-validation procedure allowed us to generate a distribution of LASSO

weights that quantifies the relative importance of each channel to cognitive performance pre-

diction. Thus, for each single-channel with a significant contribution to stacking at α = 0.05,

we fit a LASSO-PCR estimator to the entire set of observations and extracted their pattern of

weights W. It is intuitive to view these decoding weight maps as approximating their encoding

representations, such that the weights could be deployed as models for predicting the same

response variables on independent external datasets, with an expected accuracy provided by

our reported cross-validation median performances. However, these maps emerge from mod-

els that attempt to extract neural information from data (also known as backward or decoding
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models) and therefore, their interpretation regarding the importance of the brain properties

and cognition could be problematic [16]. This is due to the fact that that large weights in the

prediction models may appear as a consequence of the role of certain features simply to sup-

press noise in the data, although no direct relation between these features and the response

variable exists per se. Consequently, following the recommendations given in [16], we inter-

preted the link between cognitive performance and the different brain properties by trans-

forming these feature maps to encoding patternsA as follows

A ¼ SXWS� 1

Y ; ð4Þ

where SX is the sample covariance matrix between the input features in each single-channel

and SY the sample covariance matrix between the response variables. Since we are dealing

with each cognitive response variable separately, this latter matrix would simply correspond to

a scalar constant representing the variance. As a consequence, we omitted such a quantity

from the encoding patterns computation because it does not change the interpretation of each

feature’s relative importance with cognition.

Stacking bonus

In order to formally compare the integrated model, i.e., the model that integrates predictions

across modality, against the single-channel predictions, we defined a stacking bonus score B
which reads

B � R2
stacking � < R2>single ; ð5Þ

where R2
stacking is the out-of-sample coefficient of determination from the second-level LASSO

learning to the stacked predictions and< R2>single ¼
1

5
R2
FC þ R

2
CS þ R

2
CT þ R

2
VL þ R

2
LC

� �
is the

average performance across individual modalities. Therefore, this quantity aims to estimate

the difference in performance between the joint model and the average across its parts, which

in our case correspond to the different brain measurement channels.

Since the above definition may lead to very optimistic bonuses in the presence of poor

modalities, we finally adopted a more conservative definition by expressing this difference just

against the best single-channel performance R2
best as follows

B � R2
stacking � R

2
best ð6Þ

Supporting information

S1 Fig. Single-channel and stacked performances to predict cognition. Mean absolute errors

(MAE) between the observed and predicted values of seven cognitive scores using each brain

measurements separately and together by stacking their predictions. In red the scenario that

yields the maximum score.

(TIF)

S2 Fig. Resting-state connectivity weight patterns. Encoding weight maps from the resting-

state connectivity matrix coefficients for the two cognitive areas (global cognitive function and

fluid intelligence) in which these attributes significantly contributed to stacking. Red and blue

colors display positive and negative weights respectively. Loadings have been scaled to a [-1, 1]

range without breaking the sparsity using the function maxabs_scale in scikit-learn.

(TIF)
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S3 Fig. Prediction pattern similarity between cognitive domains. For each brain measure-

ment, the Pearson correlation coefficient is computed to assess the similarity between the

brain correlates of each cognitive score in which stacking led to a significant performance

enhancement. A cross along domains for a given brain measurement indicates that the LAS-

SO-PCR model failed to keep any feature during the optimization process.

(TIF)

S4 Fig. Contributions of each single-channel in the stacked model in the presence of con-

founders. Across the 100 different data splits, the weight distribution assigned to the out-of-

sample predictions of each brain measurement by the stacked LASSO model that includes also

a channel for confounders (gender, age and education level) in those original cognitive scores

in which stacking significantly improved the overall performance.

(TIF)

S5 Fig. Distributions for new scores of sustained attention and impulsivity. Univariate dis-

tributions for the Five Factor Model (NEO-FFI) score for extraversion, a proxy for impulsivity,

and the Short Penn CPT median Response Time For True Positive Responses for sustained

attention.

(TIF)

S6 Fig. A multi-modal brain parcellation. A parcellation consisting of 718 regions, for which

360 are cortical regions and the remaining subcortical. In colors, their assignment to 12 major

resting-state networks as provided in [54].

(TIF)

S7 Fig. Pairplot between cognitive scores. A pairplot where the diagonal shows the univariate

distributions for the response variables used in our study and the off-diagonals the similarity

between them, visualized by means of scatterplots and quantified using Pearson correlation

coefficients.

(TIFF)

S1 Table. Average positive weights of local connectome features per major tract. After

rescaling the weights of local connectome features to a range [-1, 1] without breaking their

sparsity, average positive loadings within each major tract in a population-based atlas [28]

were computed. An entry with a line mark denotes the lack of positive weights within that

tract. L�Left hemisphere, R�Right hemisphere.

(XLSX)

S2 Table. Average negative weights of local connectome features per major tract. After

rescaling the weights of local connectome features to a range [-1, 1] without breaking their

sparsity, average negative loadings within each major tract in a population-based atlas [28]

were computed. An entry with a line mark denotes the lack of negative weights within that

tract. L�Left hemisphere, R�Right hemisphere.

(XLSX)

S3 Table. Weights of volumetric properties. Loadings of global and subcortical volume fea-

tures for predicting the score of a Delay Discounting test, which assesses impulsivity abilities.

The names of the features are the same that can be found in the aseg.stats file from Freesurfer.

Weights have been scaled to a [-1, 1] range without breaking the sparsity using the function

maxabs_scale in scikit-learn. Four features (Left-WM-hypointensities, Right-WM-hypointen-

sities, Left-non-WM-hypointensities, Right-non-WM-hypointensities) are not shown here
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since they had zero variance and were therefore discarded by the estimator during the fitting

process.

(XLSX)
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