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Abstract

Cardiovascular disease is the number one cause of death for humans worldwide [76]. While

much is known about conventional risk factors for CVD [5, 23, 26, 75, 96, 105, 109, 160, 167,

176], as well as pharmacologic [32, 61, 139] and surgical [30, 117] therapies, comparatively

little is known about the influence of the high-level brain areas (e.g., telencephalon, dien-

cephalon) on early CVD pathophysiology and later stage CVD clinical risk. A growing body

of work in human neuroimaging suggests that CVD risk may be associated with functional

and structural brain measures [10, 66, 161, 166] and indeed that brain-based predictions

of cardiovascular health outcome can rival the performance of conventional clinical markers

[83, 84, 152]. Here we utilize machine learning methods on neuroimaging and cardiovascular

data to investigate how neural variability associates with markers of CVD risk, including

regulatory control of cardiac function. To do so, we test prediction accuracy and reliability

and characterize the networks of brain regions most critical in the brain-heart relationships.
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Chapter 1

Introduction

1.1 Cardiovascular disease and risk

Cardiovascular disease (CVD) is the leading cause of death for both men and women in the

United States, responsible for one out of every five deaths [76]. CVD is an umbrella term that

encompasses many distinct types of heart disease, including coronary artery disease, heart

failure, arrhythmia, valvular disease and cardiomyopathy, among others. Atherosclerotic

coronary artery disease is the most common type of CVD, with 50% of Americans older than

45 [8, 13] and 10% Americans ages 33-45 living with some form of subclinical disease [8, 98].

Each year, 7% of deaths in the United States are attributed to overt coronary artery disease

[8]. Numerous complications of CVD including ischemia and myocardial infarction contribute

to the morbidity and mortality of the disease [6, 47]. Perhaps even more alarmingly, there

exist persistent and increasing health disparities in the prevalence of CVD and resulting

complications across racial and age groups, despite an overall decline in CVD prevalence

[103, 104, 119].

Conventional risk factors for CVD include unmodifiable (age, sex, race/ethnicity), mod-
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ifiable (BP, cholesterol and triglyceride levels), behavioral (smoking, BMI, diet, physical

inactivity) as well as more recently recognized risk factors (systemic inflammation and bio-

chemical markers, SES) [121]. During the development of treatment and therapies for CVD,

there is an obvious focus on addressing risk factors that can be minimized. For example,

regarding behavioral risk factors, extensive evidence has proven the detrimental effect of

cigarette smoking on cardiovascular health. In particular, it has been shown to accelerate

atherosclerotic plaque formation and trigger acute CVD events [9, 21]. High BMI is known

to be associated with increased insulin resistance, systemic inflammation and clotting, imbal-

ance of lipids and endothelial dysfunction [126]. Regular exercise is known to be protective

in multiple ways - directly decreasing progression of atherosclerotic plaques and also help-

ing to minimize other risk factors, including BP, BMI, and blood lipid and glucose levels

[123]. Recent studies have also shown that social disadvantage is positively associated with

increased risk of hypertension, diabetes, obesity, smoking, systemic inflammation, and CVD

events and mortality [2, 86, 174].

Importantly, it is common for multiple cardiovascular risk factors to be prevalent within

the same individuals concurrently [41, 102, 177]. Furthermore, risk factors combine and

interact to increase an individual’s total CVD risk profile, jumping from a four-fold risk

from one factor to a 60-fold risk from five factors [41, 173]. It has also been demonstrated

that the majority of CVD events do not occur in individuals that have a significant increase

in risk due to only one risk factor, but rather occur in individuals with almost insignificant

increases in numerous risk factors. An unfortunate result therefore is that death is the first

and only CVD event [41]. Evidence from trends in CVD deaths support this, showing that

even as rates of death from CVD are slowing, the total number of CVD events occurring is
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rising [8, 41].

1.2 Neurocardiology: brain-heart relationships

While there has been significant study of the risk factors for CVD [5, 23, 26, 75, 96, 105,

109, 160, 167, 176] (including factors related to tobacco use, diet, sleep, physical activity and

genetics), and pharmacologic [32, 61, 139] and surgical [30, 117] interventions and treatments,

comparatively little is known about the influence of the brain on early CVD pathophysiology

and later stage CVD clinical risk.

The brain plays a central role in regulating cardiovascular function and peripheral phys-

iology, mainly via visceral control circuits, defined as cortical and subcortical brain regions

that govern autonomic and neuroendocrine function across a range of behavioral states, as

shown in Figure 1.1 [10, 66, 161, 166]. Given emerging epidemiological findings, it is hypoth-

esized that these circuits may relate to CVD risk via intermediate peripheral physiological

parameters under neural control [43, 45, 151]. Functional brain activity from magnetic reso-

nance imaging (MRI) and PET has been linked to peripheral physiological parameters that

confer CVD risk, such as markers of autonomic nervous system function, blood pressure,

and heart rate [10, 66, 161, 166]. Indeed, the emerging field of neurocardiology [142, 143]

has shown that late stage CVD outcomes, such as myocardial infarction and metabolic dys-

regulation, associate in longitudinal studies with baseline brain activity and the preclinical

pathophysiological and peripheral end organ functions that the brain influences and regu-

lates as part of its response to internal physiologic and external environmental triggers [84,

152]. There is also mounting evidence showing brain-based predictions of various cardio-
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vascular health outcomes that rival the performance of conventional clinical markers. For

instance, (a) PET/CT imaging of the amygdala demonstrated prediction of future adverse

clinical CVD events (e.g. myocardial infarction, stroke, heart failure, coronary death) [152],

(b) brain measures and activity from structural MRI and PET imaging predicted individ-

ual differences in blood pressure (BP) response to pharmacological treatment [84], and (c)

measures of regional cerebral blood flow from MRI during a cognitively challenging task

predicted longitudinal progression of BP [83].

Figure 1.1: Schematic of visceral control circuit brain regions involved in physiologic medi-
ators of cardiovascular health, likely via interactions with the baroreflex response, and also
engaged by psychological stressors. Reproduced with permission from Gianaros and Wager,
2015.

Consider, for a moment, a central cardiac control function: heart rate. Heart rate has

been shown to be a dominant risk factor for CVD [16, 124], for example, high resting heart

rate is mechanistically linked to atherosclerosis [17, 39, 57, 116]. There is extensive evidence

from animal studies [72, 113] and human lesion studies [36, 37, 155] that shows that heart
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rate is under autonomic control via pattern generators in the brainstem [162]. A growing

body of work from non-invasive human neuroimaging studies validates this link and offers

the opportunity to further expand our knowledge about how networks of higher level brain

regions interact with the brainstem’s autonomic control [36, 37]. Much less is concretely

known about which upstream brain regions regulate the brainstem via top-down modulation

and the underlying mechanisms of such control. This is important knowledge as these same

upstream regions react to emotional and environmental stressors, known processes that play

a critical role in risk factors for CVD [42, 91, 153].

Figure 1.2: Schematic of autonomic regulation of heart rate through the SA node. NTS = nu-
cleus tractus solitarius, CVLM = caudal ventrolateral medulla, RVLM = rostral ventrolateral
medulla, NA = nucleus ambiguous, DMN = dorsal motor nucleus, IML = intermediolateral,
SA = sinoatrial.
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Figure 1.2 shows a schematic of brain regions and pathways associated with cardiac

control. Multimodal recordings in animal models have shown connections between fore-

brain and midbrain regions, including prefrontal cortex, insula and amygdala [143]. Both

animal studies and human neuroimaging metaanalysis provides evidence for associations be-

tween the hypothalamus and the nucleus tractus solitarius (NTS) in the brainstem [7, 138].

Anatomical pathways downstream of the brainstem can be separated into parasympathetic

and sympathetic outflow tracts and have primarily been elucidated through animal studies,

with human anatomical and neuorimaging studies providing additional confirmation. The

parasympathetic outflow tract from the NTS activates through the nucleus ambiguous (NA)

and dorsal motor nucleus (DMN), to the superior and then inferior ganglia of the Vagus

nerve before reaching the intrinsic cardiac ganglia, which act as parasympathetic pregan-

glionic synapses within the heart itself [7, 120, 154]. The sympathetic outflow tract from

the NTS first traverses the caudal ventrolateral medulla (CVLM) to inhibit the rostral ven-

trolateral medulla (RVLM) within the brainstem. From the medulla, the tract continues

through the intermediolateral (IML) cell column of the spinal cord to the dorsal root gan-

glion (preganglionic efferents) and the gray rami communicantes (postganglionic efferents)

[7, 36, 120, 141, 154]. The parasympathetic and sympathetic outflow tracts converge at the

cardiac plexus before reaching the sinoatrial (SA) node, which is the electrical pacemaker of

the heart atria [79, 134, 141]. The stellate ganglion, located along the cervical sympathetic

trunk also provides a sympathetic pathway between the cardiac plexuses and the SA node

[54, 134].

Yet, to date, risk factors for CVD most conventionally refer to the unmodifiable, mod-

ifiable and behavioral risk factors discussed in section 1.1 [121]. Most of these predictors
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of CVD risk are based on peripheral parameters (e.g. heart rate), they are not comprehen-

sive, generally use late-stage outcomes, and do not incorporate the effects of visceral control

circuits [84, 152]. Moreover, identification of pre-clinical disease in particular has not been

amenable to existing methods and analytical strategies. Additionally, the mechanisms by

which brain circuits relate to control of cardiac functions and physiological risk factors for

CVD is not fully understood. Neurocardiology findings thus far have shown neural predic-

tors to be independent of and complementary to these conventional risk factors [84, 152].

This raises the possibility that there may be value to be added to traditional risk prediction

measures. In turn, this could pave the way for development of new therapies for CVD that

target the brain and related processes, as has been done for hypertension [100, 112] and

comorbidities of CVD, such as depression [48, 58].

It is clear that there is a wealth of opportunity for advancing our collective understanding

of brain-heart connections and in particular our understanding of how the brain influences

CVD risk. Addressing the field’s open questions could have an important impact on treat-

ment and prevention efforts, for example, the development of a brain-based biomarker that

complements existing peripheral clinical predictors and that could be used as a surrogate

outcome measure in future research. There is also the opportunity to develop novel thera-

pies that take into account the role of the brain in regulating cardiovascular physiology and

influencing risk to target early stage intervention, prior to the occurrence of adverse clinical

events.
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1.3 Specific aims

The first step towards development of novel risk factors, treatments, and prevention strategies

for CVD is to more fully understand the role of the brain, in particular neocortical control

mechanisms, in cardiac function and CVD risk. Our group has demonstrated that brain

patterns and structural metrics identified by MRI and machine learning methods predict

individual differences in a vascular marker of preclinical CVD risk, carotid-artery intima-

media thickness (CA-IMT), as well as markers of autonomic and cardiovascular function [63,

64]. This thesis will replicate and extend these prior findings in novel ways using rigorous data

science and machine learning methods, and larger datasets with multiple MRI modalities

and state-of-the-art concurrent cardiovascular data. Specifically, we aim to understand how

neural variability between individuals (Aim 1) and within individuals (Aim 2) associates

with markers of CVD risk (Aim 1) and control of cardiac function (Aim 2).

Much of the CVD research focuses on late stage disease health outcomes, such as CVD

mortality. This thesis instead focuses on subclinical disease - reflecting early, pathophysio-

logical stages of atherosclerotic CVD. Such a focus is promising from a clinical and research

perspective, given the increased likelihood of avoiding research confounds (e.g. medication

use, clinical events, comorbidities) and the improved possibility of successful early inter-

vention and prevention. More generally, this dissertation’s focus on (1) the central neural

control mechanisms of peripheral physiology as predictors of CVD risk, and (2) building reli-

able brain-based biomarkers for cardiovascular health, are advancements that can contribute

to the growing field of neurocardiology.

In this dissertation I will explore two central aims at understanding brain-heart relation-
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ships.

Specific Aim 1: Characterize brain networks predictive of individual differences in CA-

IMT, a vascular marker of cardiovascular risk. We developed a stacked prediction model

(linear support vector regression with random forests) that uses structural and functional

brain measures from standard, clinically accessible MRI scans (T1 and resting-state fMRI)

to predict individual differences in CA-IMT. We hypothesized that our multimodal model

would reliably predict variability in CA-IMT across individuals and furthermore that the

brain regions and subnetworks that comprise the visceral control circuits would be most

influential in the prediction of CA-IMT. For this aim, we intentionally implemented parsi-

monious models that can be readily extended to address questions about how our models

relate to existing risk factors: Are our models independent of conventional CVD risk factors,

or do they add predictive value synergistically? Do conventional CVD risk factors modify

observed associations between brain activity and early stage markers of CVD risk? Aim 1

is addressed in Chapter 2.

Specific Aim 2: Characterize brain networks predictive of prevailing heart rate within in-

dividuals, an important component of cardiovascular risk. We developed a machine learning

model from neuroimaging data that predicts dynamic changes in the prevailing heart rate

from instantaneous fMRI measures with concurrent ECG data within individuals. Sub Aim

2.a: Develop a python toolbox to extract and clean physiological signals obtained during

MRI. Sub Aim 2.b: Use L1-constrained principal component regression (LASSO-PCA) on

fMRI data to create a model that predicts instantaneous heart rate. Hypothesis 2.1: Our

model will reliably predict modulation of heart rate from hemodynamic responses in the

brain. Hypothesis 2.2: The brain regions that are most important for this prediction are
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the visceral control circuits. Transient fluctuations in the activity of upstream brain regions

comprising the visceral control circuits should track with transient fluctuations of heart rate

(because these upstream brain regions control the descending pathways that regulate heart

rate). This would bolster our argument about the benefits of studying the brain to more

fully understand CVD. Chapters 3 and 4 focus on Specific Aim 2.a and 2.b, respectively.

The overarching hypothesis that connects my thesis projects is as follows: we hypothesize

that neural biomarkers, influenced primarily by visceral control circuits, will reliably predict

peripheral markers of CVD risk, such as mean CA-IMT and prevailing heart rate.
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Chapter 2

Multimodal Imaging and Subclinical Atherosclerosis

The following text was adapted from Sentis, Rasero, Gianaros, and Verstynen 2022 [140].

Human neuroimaging evidence suggests that cardiovascular disease (CVD) risk may relate to

functional and structural features of the brain. The present study tested whether combining

functional and structural (multimodal) brain measures, derived from magnetic resonance

imaging (MRI), would yield a multivariate brain biomarker that reliably predicts a subclin-

ical marker of CVD risk, carotid-artery intima-media thickness (CA-IMT). Neuroimaging,

cardiovascular, and demographic data were assessed in 324 midlife and otherwise healthy

adults who were free of (a) clinical CVD and (b) use of medications for chronic illnesses

(aged 30-51 years, 49% female). We implemented a prediction stacking algorithm that com-

bined multimodal brain imaging measures and Framingham Risk Scores (FRS) to predict

CA-IMT. We included imaging measures that could be easily obtained in clinical settings:

resting state functional connectivity and structural morphology measures from T1-weighted

images. Our models reliably predicted CA-IMT using FRS, as well as for several individual
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MRI measures; however, none of the individual MRI measures outperformed FRS. More-

over, stacking functional and structural brain measures with FRS did not boost prediction

accuracy above that of FRS alone. Combining multimodal functional and structural brain

measures through a stacking algorithm does not appear to yield a reliable brain biomarker

of subclinical CVD, as reflected by CA-IMT.
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2.1 Introduction

Cardiovascular disease (CVD) encompasses many heart and vascular conditions that con-

tribute to a primary cause of death for both men and women in the United States [164].

Atherosclerotic coronary artery disease is the most common CVD, with 50% of Americans

older than 45 [13, 164] and 10% Americans ages 33-45 living with some form of subclinical

disease that prestages later clinical conditions [98, 164]. In 2018, 13% of deaths in the United

States were attributed to overt coronary artery disease [164]. Numerous complications of

atherosclerotic CVD, including ischemia and myocardial infarction, contribute to morbidity

and mortality [6, 47].

Typically, CVD is not considered in relation to brain-based biomarkers. For example,

most clinical diagnostic and assessment criteria, like the Framingham Risk Score [40], focus

on peripheral physiological factors, health behaviors (e.g., smoking), and demographics to

predict someone’s risk of CVD [51, 87]. Yet, there is cumulative evidence that structural and

functional features of the brain associate with CVD risk factors and that CVD risk factors

(e.g., blood pressure, lipid levels, etc.) may be precursors to neurocognitive decline, some

dementias, and brain aging [107, 147].

There are both efferent and afferent mechanisms by which brain structure and function

can be linked to subclinical CVD. On the efferent or brain-to-body side, the brain systems

for autonomic, neuroendocrine, and immune control shape peripheral physiology in ways

that confer CVD risk [66, 152]. For instance, recent findings suggest the possibility that

increased amygdala activity may increase hematopoietic tissue activity, which in turn leads

to increased arterial inflammation and incident CVD events [152]. There is also a large body
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of evidence supporting afferent or body-to-brain contributions as well, with longstanding

evidence linking risk factors for CVD to premature brain aging, including cognitive decline

[101, 147]. Hence, it is well established that CVD is a risk factor for neurocognitive de-

cline [111, 148]. Carotid-artery intima-media thickness (CA-IMT), a surrogate measure of

preclinical atherosclerosis [63], is associated with risk factors for CVD (and cerebrovascular

disease), including hypertension, diabetes and smoking [38]. Moreover, CA-IMT itself has

been shown to associate with progressive cognitive decline [171] and increased risk of de-

mentia [169]. In these regards, CA-IMT may plausibly reflect decreased perfusion of brain

tissue as reflected by reduced CBF, which in turn can result in silent brain infarctions and

microvascular damage as precursors to neurocognitive decline [107].

In fact, many CVD outcomes, such as myocardial infarction and preclinical markers of

CVD risk, have recently been associated with functional and structural features of macro-

scopic brain systems. Longitudinal studies, for example, suggest that baseline metabolic ac-

tivity in the amygdala predicts future myocardial infarction and components of the metabolic

syndrome [152], and that baseline levels of stress reactivity in the rostromedial prefrontal

cortex are associated with future major adverse cardiovascular events [106]. Moreover, struc-

tural MRI measures of brain aging (composite measures of ventricle size, sulcal size and white

matter hyperintensities) and regional cerebral blood flow relate to individual differences in

the magnitude of blood pressure lowering induced by antihypertensive medication [84], as

well as the longitudinal progression of blood pressure over multiple years [83]. Lastly, func-

tional activation in insular, anterior cingulate, medial prefrontal, hypothalamus and brain-

stem regions, measured in response to mental stress and emotional stimuli, has been shown

to predict clinical CVD events [106], mental stress-induced blood pressure reactivity [64],
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and CA-IMT [63].

It is also important to consider the influence of the cardiovascular system on the brain.

For example, carotid artery stenosis, narrowing of the carotid artery usually due to atheroscle-

rosis (plaque build-up), has been theorized to have a negative effect on cognitive function

through reduced blood flow to the brain in asymptomatic cases and ischemic brain damage

in symptomatic cases [168]. Nickel and colleagues studied patients with high-grade carotid

artery stenosis without ischemic brain lesions. Patients had lower cognitive function com-

pared to controls, however there was no corresponding association with cortical thickness

[110]. Cheng and colleagues also studied patients with asymptomatic carotid artery stenosis

and found that patients displayed lower cognitive and memory performance than controls

and this difference correlated with disruption in resting-state functional connectivity (FC)

across multiple networks [31]. Thus, given the associations between cardiovascular system

and neurocognitive systems, it should be possible to identify a reliable, predictive association

between brain measures and preclinical markers of CVD.

At present, however, there is largely mixed evidence as to whether there are reliable

functional and structural brain imaging correlates of subclinical markers of CVD, particularly

indexed by CA-IMT. Functional evidence shows, for example, that CA-IMT is associated

with higher regional cerebral blood flow in some areas (medial frontal gyrus, putamen, and

hippocampal regions), but also lower regional cerebral blood flow in other areas (lingual,

inferior occipital, and superior temporal regions) [145]. Other findings indicate that CA-IMT

associates with lower cerebral blood flow (CBF) in gray matter and across the entire brain

[27]. This association with CBF is particularly interesting given ongoing work showing that

variability in CBF is detectable in the resting blood oxygenation level dependent (BOLD)
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signal measured with functional MRI (fMRI). For example, work by Fukunaga and colleagues

(2008) utilized the ratio between BOLD signal activation and cerebral blood perfusion to

demonstrate that resting-state activity incorporates both a neuronal or metabolic component

as well as a vascular component (i.e., blood flow; [60]). Furthermore, cerebral perfusion has

been shown to correlate with resting-state BOLD signal and connectivity in terms of spatial

distribution across the brain [165]. Since CA-IMT is associated with CBF, and CBF is

associated with the resting state BOLD signal, this would appear to support the possibility

of detecting associations across individuals in the variability of CA-IMT as related to the

resting BOLD signal itself.

Separately from functional neuroimaging studies, there is structural brain imaging ev-

idence indicating that CA-IMT is inversely associated with total brain tissue volume, as

well as cortical tissue volume more specifically [108, 159]. In parallel, however, other lines

of evidence suggest no association between CA-IMT and total brain tissue volume or gray

matter tissue volumes [27]. Lastly, some structural neuroimaging findings suggest an inverse

association of CA-IMT and cortical thickness [24], but again not all findings are consis-

tent with the latter observations [3]. This heterogeneity in functional and structural brain

imaging findings, as well as the isolated (unimodal) treatment of functional and structural

brain imaging measures have created an open question as to whether the simultaneous (mul-

timodal) modeling of functional and structural brain features would combine to predict a

known marker of subclinical CVD and predictor of future clinical events; namely, CA-IMT.

Moreover, whether such multimodal modeling would add to the prediction of subclinical

CVD beyond established demographic, behavioral, and biological risk factors is unknown.

To elaborate, a majority of studies on the brain correlates of CVD risk, particularly
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CVD markers such as CA-IMT, use conventional analytical approaches that include univari-

ate correlation and regression methods. A problematic feature of these methods is that they

are not combined with out-of-sample validation testing, limiting inferences about model and

sample generalizability. Moreover, these studies have historically relied on brain measures

from a single neuroimaging modality, e.g., task-based or resting-state fMRI, structural con-

nectivity, metabolic activity via PET. Such unimodal analyses do not exploit or account

for the distinct neurobiological properties of different neuroimaging modalities, that when

combined may improve predictive power. Lastly, a focus thus far on the brain correlates of

CVD risk has been on particular neural systems or networks, rather than all systems and

networks across the entire brain. Taken together, it appears that integrating and combining

whole-brain modalities into a transmodal machine learning model [133, 175] has the poten-

tial to overcome methodological limitations to improve the predictive utility and robustness

of putative brain biomarkers of CVD risk to facilitate replication and generalization.

In the above regards, an effective biomarker or multimodal brain correlate of CVD risk

would have the following characteristics. First, it would take into account the unique vari-

ability inherent to the different measures derived from imaging modalities (e.g., cortical

thickness, cortical surface area, and tissue volumes derived by structural MRI, as well as

dynamic activity measures reflecting neural networks derived by fMRI). Second, it would

rely on either standard clinical brain imaging sequences (e.g., T1 weighted anatomicals) or

MRI data acquisition sequences that are amenable to clinical contexts and testing in diverse

populations of people (e.g., resting-state fMRI). Third, it would reliably predict CVD risk,

not just associate with it (e.g., out of sample validation testing). Finally, a reliable brain cor-

relate of CVD risk would account for additional variability above-and-beyond that already
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accounted for by other established risk factors for CVD. To these ends, the present study

examined whether morphological and basic functional measures derived from T1-weighted

and resting-state fMRI data could be combined in a multimodal machine learning analysis

framework (with predictor variables comprised of cortical surface area, cortical thickness,

subcortical volumes and whole-brain resting-state FC) to reliably predict inter-individual

variability in CA-IMT in a sample of neurologically healthy adults. For this we modified

an identical multimodal machine learning approach used previously to predict “brain age”

[93] - a measure of brain aging when compared to chronological age that has been shown to

correlate with numerous risk factors of CVD, including smoking and diabetes [33]. We then

evaluated performance against the prediction of CA-IMT by Framingham Risk Score [40].

2.2 Methods

2.2.1 Participants

Neuroimaging, cardiovascular, and demographic data were collected from N=324 healthy

participants (ages 30-51, 49% female) from the Pittsburgh Imaging Project (see Table 1).

All participants provided informed consent. The University of Pittsburgh Human Research

Protection Office granted study approval. Detailed information about the study population

has been published in [63]. This is the first report bearing on the multimodal prediction of

CA-IMT from this sample and these results have not been published previously. Data and

code are available at https://github.com/CoAxLab/multimodal-imt.
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Characteristic Mean or (%) SD

Age (years) 40.3 6.28
Race (%)

Caucasian 66
African-American 28.4
Multiracial/ethnic 5.6

BMI (kg/m2) 26.93 5.07
Smoking status (%)

Never 62.65
Former 20.06
Current 17.28

Systolic BP (mm Hg) 120.8 10.01
Diastolic BP (mm Hg) 72.63 8.75
Seated resting HR (bpm) 74.1 9.63
Glucose (mg/dL) 88.34 9.75
HDL (mg/dL) 50.73 16.06
Triglycerides (mg/dL) 94.43 56.94
CA-IMT (mm) 0.61 0.08
FRS 5.35 5.99

Table 2.1: Sample Characteristics (N=324; 164 Men, 160 Women). Note: SD = standard
deviation, BMI = body mass index, BP = blood pressure, HDL = high-density lipoproteins,
CA-IMT = carotid artery intima-media thickness, FRS = Framingham Risk Score.

2.2.2 Preclinical atherosclerosis

Carotid-artery IMT was measured at three locations (distal common carotid artery, carotid

artery bulb, and internal carotid artery) by trained ultrasound sonographers using an Acuson

Antares ultrasound device (Acuson-Siemens, Malvern, PA). Measurements were obtained on

both the left and right carotid artery in three specific locations: 1) both the near and far walls

of the distal common carotid artery, located 1 cm proximal to the carotid bulb (the location
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at which the near and far walls of the common carotid are no longer parallel and extending

to the flow divider), 2) far wall of the carotid bulb, and 3) the first centimeter of the internal

carotid measuring from the distal edge of the flow divider. These three measurements were

then averaged bilaterally and across locations to calculate the mean CA-IMT, which was

used as the outcome variable. Further information about measurement methods and test-

retest reliability of CA-IMT measurements can be found in [63]. Figure 2.1 panel A shows

example images of IMT acquisition. Figure 2.1 panel B shows the CA-IMT values in our

sample, which are approximately normally distributed [94, 128].

2.2.3 Framingham risk

Framingham Risk Score (FRS) was calculated for each participant according to [40]. This

metric incorporates age, sex, smoking, hypertension and cholesterol data from each partici-

pant. Five participants had missing FRS data. For analysis purposes, these missing values

were imputed using the mean FRS. Figure 2.1 panel C shows the distribution of FRS.

2.2.4 MRI data acquisition and processing

Functional blood oxygenation level-dependent images were collected on a 3 Tesla Trio TIM

whole-body scanner (Siemens), equipped with a 12-channel phased-array head coil. Resting-

state functional images were acquired over a 5-minute period with eyes open and the following

acquisition parameters: FOV = 205×205mm, matrix size = 64×64, TR = 2000ms, TE =

28ms, and FA = 90°. Thirty-nine slices (interleaved inferior-to-superior, 3mm thickness,

no gap) were obtained for each of 150 volumes (three initial volumes were discarded to

allow for magnetic equilibration). T1-weighted neuroanatomical magnetization prepared
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Figure 2.1: A) Left panel shows CA-IMT acquisition using ultrasound. Middle and right
panels show example ultrasound images with the CA-IMT indicated. B) Raincloud plot
showing distribution of CA-IMT (mm) in our sample. C) Raincloud plot showing distribution
of FRS in our sample. D) Scatterplot showing the linear regression of FRS on CA-IMT.
Line of best fit shown in blue. CA-IMT = carotid artery intima-media thickness, FRS =
Framingham Risk Score.

rapid gradient echo (MPRAGE) images were acquired over 7 min 17 sec with the following

parameters: FOV = 256×208mm, matrix size = 256×208, TR = 2100ms, inversion time =

1100ms, TE = 3.31ms, and FA = 8° (192 slices, 1mm thickness, no gap).

Resting-state fMRI data were preprocessed using SPM12 and included slice-timing cor-

rection, realignment to the first image using a six-parameter rigid-body transformation,

co-registration to skull-stripped and biased-corrected MPRAGE images, normalization to

standard Montreal Neurological Institute (MNI) space and smoothing using a 6mm full-

width-at-half-maximum (FWHM) Gaussian kernel. Head motion at the individual partici-

pant image level was estimated via framewise displacement (FD) according to Power et al.,
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2015 [130] for use during FC processing (described further below).

Resting-state data were denoised, including six motion parameters, white matter (WM),

cerebrospinal fluid (CSF), and global signal (GS). The first principal component for each of

WM, CSF and GS was used. Data were also bandpass filtered with a range of 0.009 - 0.08

Hz. A functional correlation matrix was calculated using the Craddock 200 parcellation [34]

by first computing the average time series from the voxels within each of the 200 parcels,

and then calculating the z-transformed Pearson correlation coefficient between pairs of parcel

time series. The upper triangular elements were extracted from the functional correlation

matrix to form a vector of 19,900 FC features for each participant. FD was regressed out

and the final FC vector for each participant is comprised of the resultant residuals. By this

approach, correlations that are partial for FD between all possible ROIs in the Craddock

atlas.

MPRAGE images were analyzed using FreeSurfer (v6), with 148 cortical thickness and

cortical surface area measures from the thickness and area freesurfer files respectively, using

the Destrieux Atlas [46], as well as 67 subcortical volume measures directly extracted from

the aseg.stats freesurfer file of each participant.

2.2.5 Multimodal prediction of IMT

We adopted a transmodal approach to stacking learning for prediction of CA-IMT [133,

175]. In machine learning, stacking is classified as an ensemble learning method and involves

combining predictions from a set of models into a new meta feature matrix for subsequent

input into a new model for final prediction [93, 135].

As detailed in Figure 2.2, our model comprised a two-step process that used multiple
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output predictions for each participant from a first level support vector regression (SVR)

model as the inputs into the second level random forest model. The set of first level SVR

models used different groups of features, or channels, corresponding to 1) resting-state FC, 2)

cortical surface area, 3) cortical thickness and 4) subcortical volume measures. Performance

of the predictive models at the first and second levels of analyses was determined using

cross-validation. This model was predicated on the work of Liem et al., 2017, who used this

transmodal approach to predict brain age. In order to validate our model implementation,

we predicted brain age in our sample and compared the results to those presented in Liem

et al., 2017.

Figure 2.2: Prediction stacking model schematic, with linear SVR and linear regression used
in the unimodal predictions and random forest used in the multimodal prediction. FC =
functional connectivity, SVR = support vector regression, LR = linear regression, RF =
random forest.

To do so, we first split the data such that 80% were used for training and the remaining

20% for testing. Next, we used five-fold cross-validation during the training stage to generate
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out-of-sample SVR predictions for each channel on the training set data. We used a previ-

ously tuned parameter, C, for this type of data from Liem et al., 2017. As input into the

second level, the out-of-sample predictions from the training set as well as the test set predic-

tions were stacked across channels, forming new matrices of 80% observations x 4 channels

and 20% observations x 4 channels, respectively. The second level random forest model was

then tuned for the tree depth hyperparameter and trained using five-fold cross-validation to

generate out-of-sample predictions on the new training matrix and tested on the new test

matrix to generate the final predictions for brain age. Performance of the single-channel

and stacked models was then evaluated by comparing participant’s chronological age with

the participant’s predicted brain age in the out-of-sample test data. Prediction error was

measured using the coefficient of determination, R-squared, and the root mean squared error

(RMSE). All predictive analyses were performed using scikit-learn [122].

Once validated using age, this analysis pipeline was used to predict CA-IMT as the target

outcome variable. An additional fifth channel consisting of a participant’s FRS was included

in this pipeline. Since over parameterization is not a concern with a single feature model,

simple linear regression (LR) was used for the single channel prediction of CA-IMT from

FRS. Thus, five single channels (four brain measures plus FRS) were stacked as input into the

second level random forest model. Performance was similarly evaluated through comparison

of observed CA-IMT values with the predicted CA-IMT values in the out-of-sample test

data.

We subsequently evaluated and compared model performance on CA-IMT prediction for

every possible combination of single data channels, again using the coefficient of determina-

tion, R-squared, representing model goodness-of-fit as the measure of model performance.
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Finally, in order to test robustness of our analysis and confirm that results were not de-

pendent on a particular training/testing data split, we generated 100 random training/testing

splits, using different random seeds, for analysis through our cross-validated, channel com-

bination implementation. Final model performance was evaluated using the median of the

Pearson correlation coefficient, coefficient of determination, RMSE and Bayesian information

criterion (BIC) values of each partition.

2.3 Results

We first tested whether we could confirm previously reported patterns in our data set. Our

primary outcome measure, mean CA-IMT, was measured using ultrasound (Fig. 2.1 panel

A; see Methods 2.2.2). Consistent with the assumptions of our statistical models, these

CA-IMT values across our sample were approximately normally distributed (Fig. 2.1 panel

B), with a slight skew, in ranges consistent with an unbiased sample across the population

[149]. We next wanted to replicate the well established relationship between FRS and CA-

IMT [127, 136]. FRS values were approximately normally distributed (Fig. 2.1 panel C).

As expected the linear regression of the association between FRS and CA-IMT confirms

a positive association, with a Pearson correlation coefficient of r=0.3857, p <0.001 (Fig.

2.1 panel D). Taken together, these results are in line with the literature and constitute a

replication of effects shown previously [49, 127, 136].

In order to validate the feasibility of our transmodal stacking approach, we first at-

tempted to replicate the findings of Liem et al., 2017 and predict chronological age using

morphological brain measures as well as resting-state FC. This prior study was able to pre-
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dict chronological age from the same imaging measures used here, with an accuracy of +/-

4 years. Implementing our own version of the pipeline, applied it to our sample, revealed an

association between chronological age and predicted brain age that was positive and equiv-

alent in magnitude to the original report, with a Pearson’s correlation coefficient of r =

0.5246, p <0.001 and coefficient of determination, R-squared = 0.2732 for the hold-out test

set. Figure 2.3 shows the observed versus predicted scatter plot for chronological age and

brain age. Our age prediction error (≈ 4 years) approximated that of the results presented

in Liem et al., 2017, confirming the validity of our stacking approach.

Figure 2.3: Scatterplot showing correlation between participants’ chronological age and pre-
dicted brain age according to multimodal model. Blue line represents the line of best fit.
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In order to evaluate our primary aim of determining whether clinically obtainable brain

imaging measures boost the prediction accuracy of individual differences in markers of CVD

risk, we applied our stacked learning approach to predicting CA-IMT. Figure 2.4 shows the

distribution of four different metrics for each random Monte Carlo data partition for both

the single channel predictions of CA-IMT, as well as every possible channel combination for

the second level random forest prediction of CA-IMT. Panel A shows Pearson correlation

coefficients, r values, panel B shows RMSE values (with the horizontal dotted line represent-

ing the standard deviation of CA-IMT in our sample, 0.084 mm), panel C shows coefficient

of determination, R-squared values, and panel D shows BIC values.

Across all panels, the blue bars show the first level SVR and linear regression CA-IMT

predictions using the single channel brain measures and FRS. Figure 2.4 panel A shows that

FRS has the largest median Pearson correlation coefficient, r = 0.3916 (95% CI [0.3739,

0.4058]), with the brain measures showing much smaller associations (resting-state FC me-

dian r=-0.0132 (95% CI [-0.0375, 0.0096]), cortical SA median r=0.1111 (95% CI [0.0959,

0.1402]), cortical thickness median r=0.1373 (95% CI [0.1237, 0.1560]), subcortical volume

median r=0.1435 (95% CI [0.1245, 0.1646])). Figure 2.4 panel B demonstrates that the single

channel predictions of CA-IMT from the brain measures had the largest median RMSE val-

ues (resting-state FC median RMSE=0.0869 mm, cortical SA median RMSE=0.0868 mm,

cortical thickness median RMSE=0.0862 mm, subcortical volume median RMSE=0.0.0974

mm), and were higher than the standard deviation of CA-IMT (Fig. 2.4B). The single

channel FRS prediction of CA-IMT had the lowest RMSE out of all models, with a median

RMSE=0.0778 mm, and was the only single channel model with an RMSE value beneath

the standard deviation of CA-IMT in our sample. Figure 2.4 panel C shows that median R-
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Figure 2.4: For all panels, blue bars show single channel predictions of CA-IMT. Yellow bars
show channel combination predictions that include only brain measures. Green bars show
channel combinations predictions that include FRS. Error bars indicated 95% confidence
intervals (calculated using 1000 bootstrap iterations). Channel combinations are indicated
numerically with 1 = resting-state FC, 2 = cortical SA, 3 = cortical thickness, 4 = subcortical
volume, 5 = FRS. Median values for the Monte Carlo simulation for single channel and every
possible channel combination prediction of mean CA-IMT: A) Pearson correlation coefficient,
r, B) RMSE (horizontal dotted line represents the standard deviation of CA-IMT in our
sample, 0.084 mm), C) coefficient of determination, and D) Bayesian information criterion.
CA-IMT = carotid-artery intima-media thickness, FRS = Framingham Risk Score, FC =
functional connectivity, SA = surface area.

squared values for the single channel brain measure predictions of CA-IMT are all negative,

indicating that our model does not appropriately predict CA-IMT using brain measures.

However, the median R-squared value for single channel prediction of CA-IMT using FRS is

positive, R-squared=0.1314 (95% CI [0.1139, 0.1421]), indicating that FRS accounts for over

13% of the variance in CA-IMT. Figure 2.4 panel D shows a large range of BIC values for
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the single channel predictions of CA-IMT, with FRS being the most negative (resting-state

FC median BIC = 82,454, cortical SA median BIC = 306.18, cortical thickness median BIC

= 305.06, subcortical volume median BIC = -38.99, FRS median BIC = -332.89). Note that

BIC reflects the amount of information lost by a model, so lower values are better. This

confirms the results from panels A-C, demonstrating that the FRS single channel model is

preferred over the single channel brain measure models.

In all panels, the yellow bars show the second level random forest CA-IMT predictions

from the channel combinations comprised of brain measures only. Figure 2.4 panel A shows

the median Pearson correlation coefficients, which ranged between r=0.0328 (95% CI [0.0025,

0.0467]) and r=0.1143 (95% CI [0.0963, 0.1383]). Stacking only the brain measures did not

improve performance accuracy over the best single channel brain measure. Figure 2.4 panel

B shows the RMSE values, which hovered around the standard deviation of CA-IMT, and

slightly improved upon the RMSE values of the single channel brain measures. Figure

2.4 panel C shows that median R-squared values for the channel combination predictions

of CA-IMT using only brain measures are all negative, albeit less negative than the R-

squared values from the single channel brain models. This indicates that our model does

not appropriately predict CA-IMT using brain measures. Figure 4D shows improved median

BIC values for the channel combination predictions of CA-IMT using only brain measures

compared to that of the single channel brain measure models, ranging from BIC=-312.89 to

BIC=-314.22. However, these BIC values do not improve upon the median BIC value from

the single channel FRS model, indicating that a combination of brain measures will not be

a better feature selection choice than FRS.

In all panels of Figure 2.4, the green bars show the second level random forest CA-IMT
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predictions from the channel combinations that include FRS. Individually, some brain mea-

sures perform above chance in predicting CA-IMT, specifically the morphometry measures

from T1, when looking at the correlation between observed and predicted values. However,

the effect size is smaller compared to that of the single channel FRS model. In Figure 2.4

panel A, the median predicted vs. observed correlation values for the channel combinations

that include FRS were more than three times that of the maximum value of the channel

combinations that only include brain measures, ranging between r=0.3436 (95% CI [0.3261,

0.3653]) and r=0.3727 (95% CI [0.3412, 0.3772]). Figure 2.4 panel B shows that the inclusion

of FRS resulted in a reduction in median RMSE values, hovering around 0.079 mm. Figure

2.4 panel C demonstrates positive median R-squared values for the channel combination pre-

dictions of CA-IMT that include FRS, ranging between R-squared=0.09 (95% CI [0.0731,

0.1051]) and R-squared=0.11 (95% CI [0.0810, 0.1131]), though all are lower than that of the

single channel FRS model. Similarly, Figure 2.4 panel D shows median BIC values that are

smaller than that of the channel combinations that only include brain measures, but larger

than that of the single channel FRS model, ranging between BIC=-320.90 and BIC=-322.23.

Adding in FRS resulted in an overall increase in performance across all metrics shown in

Figure 2.4. However, this is solely driven by FRS, as none of the channel combinations that

include FRS perform better than FRS alone. These results indicate that brain measures do

not assist in the prediction of CA-IMT beyond FRS.
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2.4 Discussion

Our goal for this study was to evaluate whether structural and functional brain measures

from standard, clinically accessible MRI scans (T1 and resting-state fMRI) could be used

to boost prediction of a marker of preclinical CVD above what is achievable from more

standard clinical metrics, namely the FRS. Results show that our stacking algorithm is a

sound methodology. We also see a strong association between FRS and CA-IMT, as expected.

By comparison, we fail to find an improvement in our model predictions when using these

brain measures individually, or in combination.

Our findings emphasize the complex nature of the role of the brain in CVD risk. Emerg-

ing mechanistic insights that link markers of CVD risk with structural and functional brain

measures provide support for the need to further understand the role of the brain in CVD

risk. Subclinical markers of CVD risk have been shown to associate with cerebral hypoxia

and silent brain infarctions [131]. CVD risk factors (such as smoking, diabetes, obesity, hy-

pertension) also demonstrate associations with inflammation, oxidative stress, brain atrophy,

ischemic changes and reduced CBF, which can also contribute to neurocognitive decline [20,

89, 118, 146, 172]. In addition, there is emerging evidence that functional and structural

alterations within the brain, particularly in brain systems for peripheral physiological con-

trol, may confer CVD risk via efferent or brain-to-body pathways [66]. Thus, based on this

evidence in the literature, we predicted CA-IMT could connect with resting-state fMRI in

two ways (body-to-brain and brain-to-body pathways), yet failed to detect an association.

Alignment of our work with prior literature is seen in a few different ways. Firstly, we

replicate existing findings that demonstrate a substantial relationship between FRS and CA-
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IMT [49, 127, 136]. Secondly, our methodological approach replicates that of Liem et al.,

2017 in a new sample, validating stacked learning as a useful tool for predicting individual

differences from MRI-based measures. Finally, our results confirm some of the findings in the

neuroimaging literature, namely that individually, cortical thickness and brain volumes are

associated with CA-IMT [24, 108, 159]. However, these associations are weak in comparison

to that of FRS and do not add to that model’s predictive power. Our findings also contrast

with prior literature showing no association between CA-IMT and structural brain measures,

including cortical thickness and brain volumes [3, 27], though it is possible that differences

in the demographic makeup of the sample populations preclude direct comparisons.

Our failure to detect a reliable prediction of CA-IMT from the sole functional measure,

resting-state FC, contrasts with recent work from our group showing reliable prediction

of CA-IMT using task-based fMRI measures [63]. This contrast is particularly revealing.

Resting-state FC is a passive measure reflecting global intrinsic brain networks [59, 137].

Thus, targeted recruitment of specific brain networks during stressful or engaging tasks is

likely necessary in order to use such functional brain signals as a predictor of individual

differences in CA-IMT [55]. Indeed, this type of task-based functional brain measure could

boost the predictive power of FRS. However, there is a vast body of tasks that needs to be

explored before this type of functional data can be incorporated into our stacking model.

Furthermore not all task-based fMRI work has observed an association between CVD risk

factors and neural activity patterns (e.g., there is no association between the cortico-limbic

network activation during a social threat fMRI task and an individual’s cardiometabolic risk

[92]). Finally, it is possible that alternative resting-state FC analysis methods, including

dynamic resting-state FC, graph analysis metrics (global efficiency, degree centrality), or
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wavelet methods for determining connectivity, may provide different measures of the un-

derlying resting hemodynamic response which may include signal for detecting individual

differences in CA-IMT. However, a full survey of these different methods and their relation-

ship to CA-IMT is itself an entire study in its own right, constituting a promising next step

in investigation.

One interpretive consideration regarding the findings of this study centers on the par-

ticular model used and whether it is truly effective for using multimodal brain measures to

predict CA-IMT. Notably, we first replicated the method exactly by successfully predicting

brain age in our sample, demonstrating that the method works as expected. We also see

above chance prediction performance from individual brain measures as well as FRS. Fi-

nally, we showed successful stacking with FRS, despite no performance improvements when

we include brain measures.

Another important consideration when interpreting our findings relates to our sample

population. It is possible that the study selection criteria may have restricted the range of

subclinical CVD present in the sample, which could partly explain the failure of multimodal

brain measures to predict CA-IMT. We note, however, that FRS explained a moderate

amount of the variance in CA-IMT across individuals (see Figure 2.4). Notwithstanding,

a useful future direction would be to replicate and extend our approach in a more diverse

sample, spanning a range of preclinical and clinical phenotypes of CVD.

It is also possible that predictive performance in the present study was limited by the

use of CA-IMT, which has been suggested to have limited performance in the prediction

of clinical CVD outcomes [70, 97]. Nevertheless, evidence from intervention trials indicates

that CA-IMT progression is an important outcome measure, especially for the detection of
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early pathophysiological vascular changes [77]. Moreover, it has been noted that carotid

ultrasound is feasible in nearly all persons, relatively inexpensive, and associated with the

incident (future) development of atherosclerotic plaques [125, 158]. In these regards, CA-

IMT is regarded as a surrogate measure of the atherosclerotic disease process that predicts

later CVD events [6, 114, 125, 170]. Taken together, while CA-IMT has advantages as a

subclinical CVD marker, it is possible that predictive performance from MRI measures could

be improved by using other subclinical disease markers, such as coronary calcium scores or

omnibus metrics based upon CA-IMT, such as arterial stiffness and endothelial function,

which reflect vascular morphology and function [90].

The brain imaging modalities we used may have further constrained predictive perfor-

mance, creating the possibility that other imaging modalities may capture brain features

that are more reliably associated with subclinical CVD (e.g., arterial spin labeling for the

assessment of cerebral blood flow and diffusion imaging for the assessment of white matter

morphology) [82].

In addition, our cross-sectional findings do not rule out the possibility that baseline brain

measures could forecast future (prospective) changes in disease endpoints, as has been found

previously. Baseline amygdalar activity has been shown to predict future occurrence of CVD

events [152], changes in visceral adipose tissue [81] as well as risk of Takotsubo syndrome

[132]. Levels of stress reactivity within the rostromedial prefrontal cortex are also associated

with future adverse CVD events [106].
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2.5 Conclusion

In summary, the present cross-sectional human neuroimaging findings suggest that sub-

clinical CVD reflected by CA-IMT does not reliably relate to a combined brain biomarker

generated by stacking functional and structural features of the brain. Rather, CA-IMT pre-

dicted by FRS alone outperformed aggregate and individual MRI measures. In these regards,

combining multimodal functional and structural brain measures by prediction stacking may

not have utility in otherwise healthy midlife adults to characterize the neural correlates of

subclinical CVD indexed by CA-IMT.
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Chapter 3

niphlem : NeuroImaging-oriented Physiological Log Ex-

traction for Modeling

Here we present niphlem, a pip-installable python toolbox that extracts physiological record-

ings from MRI sessions and performs quality control. The niphlem toolbox can generate

multiple models of physiological noise to include as regressors in future GLM models from

either ECG, pneumatic breathing belt or pulse-oximetry data. Niphlem operates in three

distinct stages: preprocessing, data cleansing, and artifact model generation. Input files

are BIDS consistent data files for either 1) ECG channels, 2) pulse oximetry, or 3) pneu-

matic respiration belt. Preprocessing may include data transformations, such as demean,

and filtering. In the case of ECG input files, additional preprocessing steps may include

combining signals from multiple channels. Data cleansing consists of detection of signal

peaks (e.g., R peaks within the QRS waveform for ECG signals) and removal of artifacts

in the detected peaks. Artifacts are identified through two one-sided Grubb’s tests for out-

liers and subsequently corrected. Text files of the mean filtered timeseries and timepoints

of the detected peaks are optionally saved as outputs. An html quality control report can
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also be generated and saved that includes filtered signal statistics and visualization of data

preprocessing and cleansing steps. Finally, niphlem generates two classes of artifact models:

RETROICOR or variability models. RETROICOR is a phasic decomposition method that

isolates the fourier series that best describes the spectral properties of the input signal. The

variability model for low frequency signals (such as respiration from pneumatic belt and

low-pass filtered pulse-oximetry) computes the combined respiration variance and response

function. The variability model for high frequency signals (such as ECG or high-pass filtered

pulse-oximetry) generates the heart-rate variance and cardiac response function. Through

preprocessing, analysis and quality control of ECG data collected alongside resting-state

fMRI, we show that niphlem is effective at identifying and removing physiological noise

artifacts for future use in neuroimaging analyses.
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3.1 Introduction

It is now well known that the hemodynamic blood oxygenation level dependent (BOLD)

response that forms the basis of functional MRI (fMRI) includes both oxygenated changes

related to neural activity, as well as blood flow changes related to local activity, but also

contains artifacts arising from mechanical and physiological processes, such as heartbeats and

respiration [69]. More specifically, approximately 50% of the variance in fMRI signals can be

attributed to noise associated with these physiological processes, depending on the location

within the brain and acquisition parameters [157]. There are also multiple mechanisms

through which these cardiac and respiratory physiological processes can influence the BOLD

fMRI signal, including pulsatile movement, field modulations as well as direct changes of

blood oxygenation [15, 18, 29, 69, 99]. This uncertainty in what is signal versus what

is noise in the BOLD response can have troubling implications, particularly for functional

connectivity analyses or when physiological responses can be phase-locked to task events. To

overcome this uncertainty, it is important to understand how these physiological processes

affect the hemodynamic BOLD response so that we can account for these sources of noise in

analyses of neural data. Failure to do so could result in erroneous interpretation of results

as attributed to neural processes, when in actuality a large portion of the variance could be

due to physiologic artifact.

Given this signal-to-noise uncertainty, there has been substantial work focused on both

characterizing and building analytical tools to account for these physiological artifacts [14,

15, 28, 29, 44, 69, 73]. For example, modeling and incorporating the phasic fluctuations of

cardiac and respiratory signals [28, 69] as well as information about variations in cardiac
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and respiratory characteristics (e.g., heart rate and breath volume), into the design matrix

of a GLM can improve the clarity of the underlying neural processes by removing portions

of variance associated with physiological artifacts [14, 15] (see [22, 95] for reviews). Methods

like cardiac-gating [71] have also been applied to account for physiological, in this case

cardiac, artifacts in diffusion and cerebral blood flow measures, but these sorts of time-locked

acquisition approaches have limited effectiveness in contexts where task-based activation are

of interest, as is the case with fMRI.

With these limitations, there has been renewed interest in modeling and accounting for

physiological signals in fMRI. This is particularly important for fields like health neuroscience

[52], for example neurocardiology [142], where these cardiorespiratory signals can be both

artifact and signal. This mixing of artifact and signal only emphasizes the need for adequate

removal of physiological artifacts from neural signals. In such cases, the physiological signals

themselves may also need to be cleaned before use in analyses, something that most current

toolboxes for modeling physiological artifacts do not do.

With this in mind, we developed the NeuroImaging-oriented Physiological Log Extraction

for Modeling (niphlem) toolbox. Niphlem is a pip-installable python toolbox that extracts

physiological recordings from MRI sessions, performs quality control and estimates the signal

phases for future use as covariates. Niphlem can generate multiple models of physiological

noise to include as regressors in future GLM models from either ECG, pneumatic breathing

belt or pulse-oximetry data. The toolbox is the python version of the original PhLEM

toolbox written in Matlab (and no longer supported). The goal of niphlem is to be simple

and flexible to use and as open as possible. In this paper we describe the toolbox functions in

detail and demonstrate example usage with cardiac and respiration data collected in concert
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with resting-state fMRI data. Further information (including API references and tutorials)

is available on the niphlem website and github repository.

3.2 Methods

3.2.1 Toolbox installation

Niphlem is installable through PyPI as follows:

pip install -U niphlem

The toolbox’s current dependencies include matplotlib, numpy, outlier utils, pandas,

scikit-learn and scipy, which are installed if necessary during niphlem installation.

3.2.2 Toolbox functions

Niphlem operates in three distinct stages: preprocessing, data cleansing, and artifact model

generation. Input signals are BIDS consistent data files from electrocardiogram (ECG),

pulse-oximetry, or pneumatic respiration belt.

3.2.2.1 Preprocessing

Quality control reports can be generated that conveniently implement the preprocessing and

data cleansing steps, though users are also able to separately perform these steps using indi-

vidual functions. Preprocessing of the physiological data signal includes data transformation

steps, such as demean, and filtering. In the case of ECG input files, additional preprocessing

steps may include combining signals from multiple channels. Data cleansing consists of de-

tection of signal peaks (e.g., R peaks within the QRS waveform for ECG signals) and removal
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of artifacts in the detected peaks. Peak detection uses Eli Billauer’s MATLAB algorithm

translated into python. Artifacts are identified through two one-sided Grubb’s tests for out-

liers and subsequently corrected, by either adding a missed peak or removing an incorrect

peak. The html quality control report contains relevant statistics and visualizations for the

preprocessed and cleansed physiological data signal. In addition, the report function returns

a data object containing the preprocessed and cleansed physiological signal as well as the

timepoints of peaks within the signal. The report and data objects can be optionally saved

at the users discretion.

Niphlem’s function make ecg report takes the ECG signal (of shape n samples x n channels)

and signal-related parameters as inputs and returns the report and data objects described

above. The input parameters include: the signal sampling rate (Hz), the minimum sepa-

ration (in physiological recording units) between signal peaks, the relative height of signal

peaks, the order of Fourier series expansion, time window (s), the column in the input ECG

signal to be used as a ground channel, high-pass and low-pass filtering frequencies (Hz). For

a detailed example of how to use the report functions, we recommend viewing the tutorials

on coaxlab.github.io/niphlem.

3.2.2.2 Noise models

Niphlem currently generates two classes of artifact models: RETROICOR [69] or variability

models [14, 15, 28], although the open-source structure of niphlem makes it possible to

incorporate newer modeling approaches as they arise.

3.2.2.2.1 RETROICOR

RETROICOR stands for Retrospective Image Correction and is a phasic decomposition
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method that isolates the Fourier series that best describes the spectral properties of the

input signal [69]. For physiological signals used in fMRI analyses, RETROICOR calculates

the Fourier series expansion using phases from cardiac and respiratory cycles.

The algorithm is as follows (see Figure 3.1 for a graphical representation):

1. Identify the peaks in the physiological data signal. For ECG signals, the peak corre-

sponds to the R component of the QRS complex. For pneumatic belt signals, the peak

expansion of the diaphragm. And for pulse-oximetry signals, the maxima in the local

blood oxygenation.

2. Estimation of a phase time to be between 0 and 2π between consecutive time peaks t1

and t2, i.e., as having full phase cycles: ϕ(t) = 2π(t−t1)
(t2−t1)

.

3. Computation of sines and cosines of these phases up to a specified order, k, i.e.,

[sin(k(t)), cos(k(t))], with k = 1, 2, ...

4. Downsampling each of these terms to match the scanner time resolution.

These steps allow us to obtain a series of phase regressors that we can then use in future

analyses, e.g., fMRI models, to account for the physiological signal.

Niphlem implements a class called RetroicorPhysio, that preprocesses the physiological

signal (transforms and filters) and implements this algorithm to generate RETROICOR

cardiac and respiration regressors. The class takes a number of signal-related parameters

as inputs: the physiological signal sampling rate (Hz), TR (s), the minimum separation (in

physiological recording units) between signal peaks, the relative height of signal peaks, the

order of Fourier series expansion, time window (s), preprocessing options (demean, z-score,
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Figure 3.1: RETROICOR algorithm procedure (reproduced with permission from Verstynen
and Deshpande, 2011 [163]). A) Individual events in the signal were identified using a peak
detection procedure (vertical lines). B) Samples between each event were recategorized to
being between 0 and 2π. The cumulative summed phase time served as an estimate of the
primary Fourier series for the signal of interest. The sine (gray lines) and cosine (black lines)
of this phase were then computed. C) These phase regressors were down-sampled to the TR
interval and saved as covariate regressor terms in the GLM.

absolute value), high-pass and low-pass filtering frequencies (Hz), channel options (i.e., how

to handle multiple signal input channels), and whether to implement peak outlier detection

and correction. For a detailed example of how to use this class, we recommend viewing the

tutorials on coaxlab.github.io/niphlem.

3.2.2.2.2 Variability models

Niphlem can also generate nuisance regressors for variation in respiration rate/volume and

heart rate. The variability model for low frequency signals (such as respiration from pneu-

matic belt and low-pass filtered pulse-oximetry) computes the combined respiration vari-

ance and response function [15]. The algorithm for variability artifacts from respiration

rate/volume is as follows (see Figure 3.2 for a graphical representation):
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1. Computation of the standard deviation of the signal within a time window (usually

of length 3*TR) centered at each TR [28]. This yields a time series at the scanner

acquisition time resolution.

2. Z-score normalization.

3. Convolution with the respiratory response function (RRF (t)), where: RRF (t) =

0.6t2.1e−t/1.6 − 0.0023t3.54e−t/4.25.

The niphlem class RVPhysio preprocesses the physiological data signal (transforms and

filters) and implements this algorithm to generate respiration rate variability regressors. The

class takes a number of signal-related parameters as inputs: the physiological signal sampling

rate (Hz), TR (s), time window (s), preprocessing options (demean, z-score, absolute value),

high-pass and low-pass filtering frequencies (Hz), and channel options (i.e., how to handle

multiple signal input channels).

The variability model for high frequency signals (such as ECG or high-pass filtered pulse-

oximetry) generates the heart-rate variance and cardiac response function [28]. The algo-

rithm for variability artifacts from heart rate is as follows (see Figure 3.3 for a graphical

representation):

1. Computation of the average deviation in inter-event interval (i.e., ms between R-

components of the QRS complex), per second, within a time window (usually of length

3*TR) centered at each TR [28]. This yields a time series at the scanner acquisition

time resolution.

2. Z-score normalization.
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Figure 3.2: Variations in breathing rate/volume procedure (reproduced with permission from
Verstynen and Deshpande, 2011 [163]). A) Respiration variance (RV) was calculated by
taking the standard deviation of the respiration signal (black line; either from the pneumatic
belt or pulse-oximetry) between each successive TR (gray line). B) The respiration response
function (RRF) was simulated using parameters derived elsewhere (Birn et al., 2008; Eq.
(3)). C) The RV was convolved with the RRF to produce a model regressor.

3. Convolution with the respiratory response function (CRF (t)), where: CRF (t) =

0.6t2.7e−t/1.6 − 16√
18π

e−
1
2

(t−12)2

9 .

The niphlem class HVPhysio preprocesses the physiological data signal (transforms and

filters) and implements this algorithm to generate heart rate variability regressors. The class

takes a number of signal-related parameters as inputs: the physiological signal sampling

rate (Hz), TR (s), the minimum separation (in physiological recording units) between signal

peaks, the relative height of signal peaks, time window (s), preprocessing options (demean,

z-score, absolute value), high-pass and low-pass filtering frequencies (Hz), channel options

(i.e., how to handle multiple signal input channels), and whether to implement peak outlier

detection and correction.
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Figure 3.3: Variations in heart rate procedure (reproduced with permission from Verstynen
and Deshpande, 2011 [163]). D) Heart-beat variation (HR; gray line) was calculated as the
average deviation in inter-event interval for pulsations between each TR (black line). E) The
cardiac response function (CRF) was simulated according to Chang et al., 2009; Eq. (5). F)
The HR was then convolved with the CRF to produce a model regressor.

3.2.3 Data

In the test analysis below, we draw from a resting-state data set collected from one healthy

participant (white male, age 43). Functional blood oxygenation level-dependent images were

collected on a Siemens Prisma 3T scanner, equipped with a 64-channel head coil. Over a 8

minute 54 second period with eyes open, functional images were acquired with acquisition

parameters as follows: 2mm iso voxels, FOV = 212x212mm, TR = 1500ms, TE = 30ms,

FA = 79°, multiband acceleration factor = 4. Sixty-eight interleaved slices (2mm thickness,

no gap) in the ascending direction were obtained for each of 353 volumes (with three initial

volumes discarded to allow for magnetic equilibration). Electrocardiogram (ECG) data were

collected concurrently during functional MRI (fMRI) scans at a sampling rate of 400 Hz

using the Siemens physiological monitoring unit’s standard configuration. Pneumatic belt
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data were also collected concurrently at a sampling rate of 400 Hz.

3.2.4 Analysis

To showcase niphlem’s functionality, we performed quality control and generated RETROICOR

regressors for a single ECG and pneumatic belt signal collected alongside a resting-state fMRI

scan. ECG preprocessing steps are as follows: 1) subtraction of ground ECG channel from

remaining channels, 2) demean channels, 3) Butterworth bandpass filtering (0.6 Hz - 5 Hz),

4) average channels. Additional parameters for the ECG quality control report include a

minimum peak separation of 200 and a relative peak height of 0.75. Second order cardiac

RETROICOR regressors were generated. Pneumatic belt preprocessing steps included de-

meaning and Butterworth bandpass filtering (0.1 Hz - 0.5 Hz). Additional parameters for

the pneumatic belt quality control report include a minimum peak separation of 800 and

a relative peak height of 0.5. Second order respiration RETROICOR regressors were gen-

erated. Nilearn was used to generate design matrices and run first level GLM analyses for

each of the cardiac and respiration signals [1]. Specifically, the design matrices included an

intercept term, three translational motion parameters, three rotational motion parameters

as well as the four (two sine and two cosine) cardiac or respiration RETROICOR regressors.

The first level GLMs fit these design matrices to our resting-state fMRI data on a voxelwise

basis, across the whole brain, to estimate the cardiac and respiration physiological artifact

response, respectively.

57



3.3 Results

3.3.1 Physiological signal curation

We used niphlem’s quality control function to preprocess and cleanse the ECG signal. The

full report is included as supplementary material. Figure 3.4 is an excerpt of the graphs

generated during the quality control process. These graphs draw from raw, or unfiltered,

ECG data as well as the filtered ECG data. Panel A shows a portion of the raw, or unfiltered

ECG signal in blue as well as the transformed, or filtered ECG signal in orange. Transfor-

mation includes the ECG preprocessing steps described in section 3.2.4 (ground subtraction,

demeaning, bandpass filtering, averaging). Panel B shows the power spectrum for the unfil-

tered and filtered ECG signal. It is clear that the power of the signal drops off above 5 Hz,

showing the effect of filtering. Panel C shows a portion of the filtered ECG signal with red x’s

marking the location of identified peaks of the signal, i.e., the R peak of the QRS complex.

Panel D shows the average QRS waveform over the entire ECG signal timeseries, as well as

the average heart rate of the timeseries. We can see that the shape of the QRS waveform is

as expected from an ECG signal. Panel E shows the RR interval (difference between succes-

sive R peaks) histogram and statistics, according to the identified peaks of the filtered ECG

signal. Panel F shows the instantaneous heart rate of the ECG signal timeseries, where the

instantaneous heart rate is calculated as follows: instantaneous HR = sample frequency
RR interval

∗ 60.

Figure 3.5 depicts another set of graphs from niphlem’s quality control report that com-

pares ECG signal characteristics before and after anomaly correction. Panels A and B show

the average QRS waveform across the filtered and corrected timeseries respectively. While
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Figure 3.4: Excerpt from ECG quality control report demonstrating filtering and peak de-
tection steps. A) Unfiltered and filtered ECG signal (first 2000 msec). B) Power spectrum
of ECG signal. C) ECG signal snapshot (first 2000 msec) with identified peaks. D) Average
QRS waveform across the entire ECG signal and average heart rate. E) ECG RR interval
histogram. F) Calculated instantaneous heart rate across ECG signal.

there aren’t visually discernible changes in the shape of the waveform, the corrected aver-

age heart rate increases by a few beats per minute. Panels C and D show the RR interval

histograms before and after anomaly correction. The set of RR intervals around 700ms in

the filtered, but uncorrected ECG data (panel C) are due to peaks that were not identified.

Niphlem’s anomaly correction procedure identified these missed peaks and thus the 700ms

RR interval outliers are not present in the histogram in panel D. Panels E and F show the
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instantaneous heart rate before and after anomaly correction. The low instantaneous heart

rate spikes in panel E correspond to the missed peaks and the 700ms RR intervals and con-

stitute artifacts. These artifacts are corrected in panel F and the resultant instantaneous

heart rate is much smoother.

Figure 3.5: Excerpt from ECG quality control report demonstrating comparison of ECG
signal and measures before (left) and after (right) anomaly correction. A, B) Average QRS
waveform across the entire ECG signal timeseries and average heart rate. C, D) ECG RR
interval histogram. E, F) Calculated instantaneous heart rate across ECG signal.
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3.3.2 Artifact detection in voxelwise responses

We next used niphlem’s RetroicorPhysio class to generate second order cardiac RETROICOR

regressors. We generated a design matrix that included an intercept term, six motion regres-

sors (three translational and three rotational) and the four cardiac RETROICOR regressors.

Using Nilearn [1], we performed a first level GLM analysis using this design matrix on our

resting-state fMRI data. Figure 3.6 shows the design matrix in panel A and the recovered

artifact effects, estimated from the average regression parameters for the RETROICOR noise

terms in the GLM. Regions in red indicate areas with increased intensity of activation in

response to cardiac signals. These are located in regions near the large vessels of the cortex

as well as the edges of the brain, both are areas expected to have increased presence of

cardiac noise.

Figure 3.6: A) Design matrix generated using Nilearn with RETROICOR regressors for ECG
included from niphlem output. B) First-level GLM results generated using Nilearn applied
to resting-state fMRI with design matrix in panel A.

We next performed preprocessing (demeaning and bandpass filtering) and data cleansing

steps on the pneumatic belt signal using niphlem’s quality control function for respiration.

The full report is included as supplementary material. Figure 3.7 shows the instantaneous

respiration rate before (panel A) and after (panel B) niphlem’s anomaly correction procedure.
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Figure 3.7: A) Instantaneous respiration rate across the filtered pneumatic belt signal time-
series. B) Instantaneous respiration rate across the filtered and corrected pneumatic belt
signal.

Using second order respiration RETROICOR regressors generated through niphlem, we

created the design matrix shown in Figure 3.8, panel A, which includes an intercept term,

motion regressors and respiration regressors. We again used this design matrix in a first

level GLM analysis. Results are shown on the brain in Figure 3.8, panel B. Compared to the

cardiac GLM results (Figure 3.7), we see greater activation in frontal and superior regions

of the brain, where variation in frontal distortion fields (from sinus cavities) due to head

movements associated with breathing are expected to be present.

Figure 3.8: A) Design matrix generated using Nilearn with RETROICOR regressors for
pneumatic belt included from niphlem output. B) First-level GLM results generated using
Nilearn applied to resting-state fMRI with design matrix in panel A.

62



3.4 Discussion

Here we have described and demonstrated the functionality of niphlem, including prepro-

cessing and cleansing of input physiological signals, as well as generating covariates based on

physiological signals, that can be used to decontaminate task or network related signals from

the hemodynamic BOLD response. We show the effect of preprocessing and cleansing of an

ECG signal as part of niphlem’s quality control pipeline. We also use niphlem-generated

physiological noise regressors (from cardiac and respiration sources separately) in a first

level GLM analysis applied to resting-state fMRI data and see expected activation in areas

of the brain affected by cardiac pulsatility and head motion due to respiration. The ultimate

goal of these functions is to facilitate the use of the cleaned physiological signals themselves,

with a degree of certainty about their quality, and to incorporate them into neuroimaging

analyses, as is standard in the field.

There is increasing interest in studying the bidirectional brain-body relationships that

are the foundation of the field of health neuroscience [52]. These relationships include brain-

behavior and brain-physiology connections, which emphasize the necessity of removing non-

neural confounds that are the result of physiological processes. The fields of health neu-

roscience and neurocardiology must account for these artifacts in order to use the BOLD

response for further study. More generally, any task-based and functional connectivity driven

analyses of fMRI signal cannot rule out phase-locking of physiological artifacts, which risks

conflating noise with true signal.

Mass univariate neuroimaging analysis methods, such as GLM, connectivity based ap-

proaches, as well as multivariate analyses for activation estimates require the neural signal
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to first be preprocessed in part to remove the influence of physiological artifacts. This is

the case for both task-based fMRI and resting-state fMRI data. For task fMRI, it is not

sufficient to assume that averaging across blocks or trials will eliminate the effects of noise,

since they could be due to motion, heart rate or breathing changes that are associated with

the task. For estimates of functional connectivity from resting-state fMRI, which rely on

temporal correlation of signal fluctuations across brain regions, connectivity could be due

to the influence of physiological noise on multiple brain regions simultaneously, rather than

coordinated activation of brain regions [156]. RETROICOR and variability methods are

popular model-based choices for generating covariates that can be included as additional

variables to account for influence of physiological noise, and provide more certainty that the

results of fMRI analyses are not in fact due to noise artifacts.

Niphlem was built to accomplish a few specific goals, including preprocessing of physio-

logical signals collected during MRI sessions and generation of noise models. The toolbox is

a good option for automated cleansing of ECG, pneumatic belt and pulse-oximetry signals -

removing artifacts that do not truly represent the underlying heart rate or respiration rate.

Helpful quality control reports can be optionally generated that summarize the preprocessing

and data cleansing steps for a given input signal. Finally, niphlem is also highly flexible,

providing the user with the ability to modify toolbox options, steps and outputs depending

on individual needs.

There are, however, some clear limitations of the current version of niphlem that are

worth discussing. First, and most obviously, the toolbox does not provide data-driven noise

correction [22]. While these approaches can be helpful in certain circumstances, especially

when physiological data is not collected in concert with neuroimaging data, they are beyond
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the scope of the toolbox. Second, we focused here on ensuring that niphlem is flexible to allow

for broad usage according to individual users’ needs. However, taking advantage of niphlem’s

flexibility necessitates some baseline knowledge of python on the part of the user, to be able to

manipulate the inputs and outputs as desired. Additionally, unlike comprehensive toolboxes

such as SPM and FSL, niphlem does not have a graphical user interface that would provide

an option for interfacing with the code. We believe this acts as a positive in terms of the

flexibility of the toolbox if users have a certain level of python knowledge as well as in terms

of the toolbox not acting like a black box. However, this same flexibility could be an obstacle

to overcome, for instance if inclusion in existing automated pipelines is the goal. Another

limitation of niphlem is the lack of automated visualization of the entire signal for visual

quality assessment, as well as the absence of options for manual user modifications/changes

to certain toolbox functions, e.g., the ability for users to manually select peaks to add or

remove from a signal. Though it could be argued that this is outside the goals of our toolbox.

In future iterations of niphlem, we hope to include more sophisticated anomaly correction

algorithms for detected peaks. It could also be beneficial to add functionality that would

calculate some popular physiological characteristics, for instance HRV. Although, by being

an open-source toolbox, each of these limitations can be overcome with greater community

involvement in developing and expanding niphlem.

3.5 Conclusion

Niphlem is a flexible python toolbox that can be used to evaluate the quality and effectively

clean physiological signals from ECG, pneumatic belt and pulse-oximetry collected during
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MRI sessions for further analyses of the signals themselves or for use in removing noise

artifacts in future neuroimaging analyses. The toolbox also contains functionality to generate

model-based covariates of physiological noise artifacts.
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Chapter 4

Cortical and Subcortical Brain Networks Predict Pre-

vailing Heart Period

Resting heart rate is a critical risk factor for cardiovascular disease (CVD) for individuals

with and without pre-existing conditions. While the brainstem’s autonomic control over

heart rate is well established, there exists a need to investigate the role of higher-level corti-

cal and subcortical brain regions and the mechanisms by which they interact with regulatory

cardiac control. The present study sought to characterize the brain networks that predict

variation in prevailing heart rate within individuals. To do so, we used machine learning ap-

proaches designed for handling complex, high-dimensional datasets, to predict instantaneous

heart period (the inter-heartbeat-interval) from temporal variation in whole brain hemody-

namic signals measured using fMRI. Task-based and resting-state fMRI, as well as peripheral

physiological recordings, were used from two datasets that included extensive repeated mea-

surements within individuals. We implemented a LASSO-PCA continuous regression model

that predicted instantaneous heart period from the hemodynamic BOLD signal. Our models

reliably predicted instantaneous heart period from whole brain fMRI data both within and
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across individuals, though prediction accuracies were marginally lower when we tested gen-

eralizability across participants. We found that a network of cortical and subcortical brain

regions work in concert to modulate regulatory cardiac control, as indexed by heart period.

This work adds to an increasing body of work that investigates brain-heart connections and

constitutes an incremental step towards developing clinically-applicable biomarkers of brain

contributions to CVD risk.
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4.1 Introduction

Resting heart rate (HR) is not only an indicator of overall physical health, as measured by

all-cause mortality, but it is specifically a notable risk factor for cardiovascular disease in indi-

viduals with and without pre-existing cardiovascular disease (CVD; [16, 57, 116, 124]). High

resting HR has been shown to be associated with progression of coronary artery atherosclero-

sis and the occurrence of myocardial ischemia and arrhythmias as well as being detrimental

to left ventricular function [17, 39, 57, 80, 116, 124]). Indeed, health risks seem to increase

steadily as HR increases [57]. Conversely, reduction of resting HR has long been associated

with the prevention of activity related angina and ischemia [57]. High resting HR is of-

ten comorbid in individuals with other cardiometabolic risk factors, including hypertension,

blood lipid and glucose level, and overweight BMI [54, 115]. However, it is nonetheless an

independent risk factor. A large scale, long-term follow up epidemiological study found high

resting HR to be a significant risk factor for all-cause mortality as well as death from acute

myocardial infarction, after adjusting for possible confounds such as age, BMI, systolic BP,

diabetes diagnosis and level of physical activity [57, 85].

Evidence from animal studies and human lesion studies have shown conclusively that HR

is under autonomic control, with the brainstem performing extensive regulation [37, 72, 113,

155, 162]. This brain-heart link has been more recently validated by human neuroimaging

studies [36, 37]. This link also extends further “up” the brain, to evolutionarily newer brain

regions like the telencephelon (i.e., neocortex), which seems to play a particularly critical role

in stress-related modulation of HR [67], in which the cortex appears to exert control, either

directly or indirectly on the autonomic nervous system (specifically, sympathetic activation
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followed by parasympathetic inhibition), elevating HR and other peripheral physiological

responses in response to both physical and psychological stress [19, 25, 88, 150]. Indeed,

the role of psychological stress in modulating cardiac function provides a particularly clear

indication of the role that cortical function has on HR control [42, 50, 67, 91, 153]. Given

what we know about resting HR as a risk factor for CVD, this offers an opportunity to

expand our knowledge further, delving into questions about the role of higher-level cortical

and subcortical brain regions and the mechanisms by which they interact with and regulate

the brainstem’s autonomic control over HR.

Here we sought to characterize the brain networks that predict variation in prevailing

HR within individuals. To do so, we used machine learning approaches designed for han-

dling complex, high-dimensional datasets, to predict instantaneous heart period (the inter-

heartbeat-interval) from temporal variation in whole brain hemodynamic signals measured

using fMRI. Our hypotheses were twofold. First, we hypothesized that our model would

reliably predict modulation of heart period from hemodynamic responses in the brain within

individuals. Second, we hypothesized that the brain regions that are most important for this

prediction would encompass part or all of the visceral control circuits.
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4.2 Methods

4.2.1 Human QA dataset

4.2.1.1 Participants

Neuroimaging and cardiovascular data were collected from one healthy participant (white

male, age 43) at 14 repeated scan sessions over a period of 20 weeks. Three fMRI scans

with concurrent electrocardiogram (ECG) and pneumatic belt physiological signals were

collected at each session, along with a structural MRI scan, for a total of 42 runs. The

participant provided informed consent to complete the study, which was approved by the

Carnegie Mellon University (Pittsburgh, PA) Institutional Review Board.

4.2.1.2 MRI data acquisition and processing

4.2.1.2.1 Acquisition

Functional blood oxygenation level-dependent images were collected on a Siemens Prisma 3

Tesla scanner, equipped with a 64-channel head coil. Over a 8 minute 54 second period with

eyes open, resting-state and task dependent functional images were acquired with acquisition

parameters as follows: 2mm iso voxels, FOV = 212x212mm, TR = 1500ms, TE = 30ms, FA =

79°, multiband acceleration factor = 4. Sixty-eight interleaved slices (2mm thickness, no gap)

in the ascending direction were obtained for each of 353 volumes (with three initial volumes

discarded to allow for magnetic equilibration). T1-weighted neuroanatomical magnetization

prepared rapid gradient echo (MPRAGE) images were collected in 208 slices (1mm thickness,

no gap) over a 7 minute 58 second period with acquisition parameters as follows: 1mm iso
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voxels, FOV = 256x256mm, TR = 2300ms, TE = 2.03ms, TI = 900ms, FA = 9°.

4.2.1.2.2 Preprocessing

Preprocessing was performed using fMRIPrep version 20.2.7 ([53]; RRID:SCR 016216). Eight

T1-weighted images collected across the 14 sessions were combined into one average T1-

weighted reference map. Anatomical and functional images were normalized to the ICBM

152 Nonlinear Asymmetrical template version 2009c ([56], RRID:SCR 008796; TemplateFlow

ID: MNI152NLin2009cAsym).

4.2.1.2.3 Gray Matter (GM) mask

Using the GM tissue probability reference image in MNI152NLin2009cAsym standard space

output from fMRIPrep, we generated a binary mask (thresholded at probability >0.2) to

limit our analysis to GM voxels.

4.2.1.3 Heart period from ECG

ECG data were collected concurrently during functional MRI (fMRI) scans at a sampling rate

of 400 Hz using the Siemens physiological monitoring unit’s standard configuration. Data

were processed using niphlem and included the following steps: 1) subtraction of ground

ECG channel from remaining channels, 2) demean channels, 3) bandpass filtering (0.6 Hz

- 5 Hz), 4) average channels. Signal peaks were identified (specifically, the R peaks within

the QRS waveform) with subsequent detection of artifacts through two one-sided Grubb’s

tests for outliers and correction. The processed ECG signal peaks were then downsampled

to match the fMRI TR, to allow for a one-to-one correspondence of our X and y data for

our prediction models.

It is known that heart rate behaves non-linearly in many contexts, especially with re-
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spect to underlying autonomic input [12, 62]. An alternative measure is heart period (the

interbeat interval, or the time between ECG signal peaks), which is the inverse of heart rate.

While both measures are controlled in part by autonomic inputs, there exists a more linear

relationship between autonomic control and heart period, when compared to heart rate [12,

62]. Thus heart rate and heart period are not interchangeable with respect to autonomic

control. For this reason, we use heart period as our target variable.

4.2.1.4 Analysis

Figure 4.1 shows the structure of our analysis pipeline, which involves three stages: prepro-

cessing, denoising, and model analysis. Preprocessing was performed using fMRIPrep and

niphlem for the fMRI and physiological data, respectively as detailed in sections 4.2.1.2 and

4.2.1.3.

Figure 4.1: Analysis pipeline schematic.

Denoising constituted removal of physiological noise from the hemodynamic signal itself.
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To do so, we used niphlem to generate variability regressors from the cardiac and respiratory

response functions [15, 28]. We then conducted a GLM of these variability regressors onto

our fMRI signal to capture the artifact components from mechanical physiological noise.

We removed these artifacts from the fMRI signal by isolating the GLM residuals to use for

further analysis.

The next stage of our pipeline was a leave-one-run-out nested cross-validated LASSO-

PCA model that took the GLM residuals as input and predicted instantaneous heart period.

We set up multiple models (13 total), each of which predicted instantaneous heart period

from fMRI timeseries data at time points ranging from t-3 seconds to t+15 seconds (shifting

by one TR at a time, i.e., 1.5 seconds). This range of lag time shifts between the fMRI

signal and instantaneous heart period ensures that we take into account the HRF delay (6-8

seconds) inherent with BOLD data. See Figure 4.2 for a graphical illustration of the lag time

shifts to isolate the desired drive signal. Thus, for each run across sessions, instantaneous

heart period was predicted at every TR from GM voxels of the fMRI signal. First, as part

of the PCA step, singular value decomposition was performed to reduce the dimensionality

of the predictor matrix. This also addresses the issue of multicollinearity across voxels. The

inner loop then performed five-fold cross-validation on the training runs to optimize lambda

(λ), the shrinkage parameter that controls the L1 penalty in LASSO, using a sequence of

100 λ values. Finally, the outer leave-one-run-out cross validation loop performed the entire

LASSO-PCA algorithm using this optimal lambda value. We repeated this analysis using

the preprocessed timeseries before removal of artifacts for comparison.

Overall model performance was evaluated using prediction accuracy on a hold-out test

set. This was done by comparing predicted heart period and observed heart period using
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Figure 4.2: A) Prediction of heart period from physiological noise component of fMRI signal.
B) Prediction of heart period after removing artifacts from the fMRI signal and accounting
for the HRF delay.

fMRI runs that were not included in the model training. Model performance was measured

using Pearson correlation coefficient, r.

In order to visualize which brain regions were contributing the most to the prediction

of heart period, we projected the voxelwise decoding maps into approximations of their

encoding representations [74]. For this LASSO coefficients were extracted from each model

run and multiplied by the V matrix (from the singular value decomposition X = USV T )

to generate weights in feature space. These weights were then multiplied by the covariance

matrix of X (our voxel data) to convert to encoding weights [74].

To minimize computation time and excessive memory requirements of our analysis pipeline

with large datasets, we adopted a modular approach that takes advantage of model averaging

[78]. We trained individual LASSO-PCA models for each run and extracted the associated

weights. For the outer leave-one-out cross-validation loop, we averaged these weights from

the n−1 trained models, using the mean voxel decoding weights, to test our model’s hold-out
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prediction accuracy.

We performed a one-sample t-test on the encoding weights for lag time shift +7.5 seconds

for each run with a false discovery rate (FDR) <0.00005 to generate a statistically thresh-

olded weight map corresponding to the Human QA dataset participant. Visualization of the

participant’s projected weights on the 3D brain was performed using Surf Ice.

4.2.1.5 Power analysis

We conducted a power analysis to test the number of runs needed for reliable prediction

of heart period from fMRI data, using sample sizes n = 2, 4, 8, 10, 16, 20, and 30. For

each sample size, we randomly selected n runs from the 42 total runs to use in our analysis.

Working with the cleaned fMRI data at lag time shift +7.5 seconds, we trained a LASSO-

PCA model on each run then used a leave-one-out cross-validation scheme to test each model

on the average weights from the n− 1 trained models, as described in section 4.2.1.4. This

procedure was repeated 40 times for each sample size. Hold-out test set prediction accuracy

was evaluated using Pearson correlation coefficient and the mean r value and 95% confidence

interval was calculated for each sample size.

4.2.2 Natural Scenes Dataset (NSD)

4.2.2.1 Participants

Neuroimaging and cardiovascular data from eight healthy participants (six females; aged

19–32 years) from the NSD were used for Experiment 2. A detailed description of the Natural

Scenes Dataset (NSD) is provided elsewhere [4]. Physiological data was only available for a

subset of scan sessions: four participants had data from ten scan sessions (S1, S2, S5, S7;
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nsd21-30), two participants had data from nine scan sessions (S3, S6; nsd21-29) and two

participants had data from seven scan sessions (S4, S8; nsd21-27). Each session contained

14 functional runs (12 task and two resting-state scans). The total number of runs for each

participant are as follows: S1 n = 140, S2 n = 140, S3 n = 126, S4 n = 93, S5 n = 140, S6

n = 126, S7 n = 139, and S8 n = 84.

4.2.2.2 Heart period from pulse-oximetry

Physiological data from pulse-oximetry and pneumatic belt were used to record cardiac and

respiration events respectively. Niphlem was used as described in section 4.2.1.2 to extract

instantaneous heart period and generate cardiac and respiratory variability regressors. In

this case however, heart period was derived from the pulse-oximetry data.

Runs with noisy or interrupted pulse-oximetry data that prevented recovery of heart

period were excluded from analysis: five runs for S4, one run for S7, and 14 runs (one entire

session) for S8.

4.2.2.3 MRI data acquisition and processing

4.2.2.3.1 Acquisition

FMRI data in the NSD were collected at 7T using a whole-brain, 1.8mm, 1.6 second, gradient-

echo, echo-planar imaging (EPI) pulse sequence. Further details can be found in [4].

4.2.2.3.2 Preprocessing

We used the 1.8mm volume preparation of the preprocessed NSD timeseries data. FMRI

preprocessing involved two steps. First, a temporal resampling was performed using a cubic

interpolation. The timeseries for each voxel was upsampled to 1.333 second to correct for
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slice-time differences (resulting in 226 volumes for each run). Second, a spatial resampling

was performed using a cubic interpolation to correct for head motion, EPI distortion, gradient

nonlinearities, and across-scan-session alignment.

4.2.2.3.3 GM mask

We used the surface-based HCP MMP1 parcellation [68] available in 1.8mm functional space

for each participant to generate binary masks that limited our analyses to GM voxels.

4.2.2.4 Individual participant analysis

Analyses for the NSD data were performed separately for each participant using the methods

detailed in section 4.2.1.4. We again set up 13 models in total, each of which predicted

instantaneous heart period from fMRI timeseries data at time points ranging from t-2.66

seconds to t+13.3 seconds (shifting by one TR at a time, i.e., 1.33 seconds).

We performed one-sampled, two-sided t-tests on the encoding weights for lag time shift

+7.99 seconds across runs for each participant with FDR <0.05. For three participants we

were able to use more conservative thresholds: S3=0.0001, S5=0.005, and S7=0.001.

4.2.2.5 Group analysis

We tested each participant’s average trained model on every other participant for lag time

shift +7.99 seconds. In order to do so, we first converted each participant’s GM mask

into MNI space (using the nsdcode mapping utility) and then created a global participant

mask from the union of the individual masks in MNI space. After converting the individual

participant weight maps back into nifti images, we used the union MNI GM mask to extract

matrices of a common size across participants. These weight matrices were averaged for each
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participant. Each average weight matrix was used as the trained model and tested on each

individual run for every other participant, resulting in 56 group models. For each of these

group models, we calculated the Euclidean distance between weight maps as a measure of

similarity. We also replicated the within-participant analysis in MNI space for lag time shift

+7.99 seconds.

To visualize the common brain regions involved in prediction of heart period across

participants, we generated two probability maps (one for positive weights and one for negative

weights) that show the probability of a voxel being significant across participants. To do

so, we thresholded and then binarized the positive and negative weights from the individual

participant t-tests separately, using FDR <0.05. We then averaged the positive and negative

weight maps separately across participants. Each voxel has a value between 0 and 1 that

represents the probability of that voxel being significant across all participants. Positive and

negative probability maps were overlaid and visualized using Surf Ice.

4.2.3 Generalization

We conducted a cross-dataset analysis to test the generalizability of our method and models,

most notably across MRI acquisition resolutions. Using the NSD union MNI GM mask

described in section 4.2.2.5, we repeated the physiological denoising steps discussed in section

4.2.1.4 on the Human QA dataset to extract the GLM residuals (X data) using an identical

voxel mapping for both datasets. We then averaged the model decoding weights from lag

time shift +7.99 seconds for all runs across all NSD participants to use as our average trained

model. Finally, we tested each Human QA dataset run at lag time shift +7.5 seconds on

the average NSD trained model, resulting in 42 total models. Model accuracy was again
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evaluated using Pearson correlation coefficient, along with mean and confidence interval

summary measures.

4.3 Results

4.3.1 Within-participant decoding performance

4.3.1.1 Prediction of instantaneous heart period

We first set out to show that the modular approach, where we average decoding maps across

runs to predict instantaneous HR in a hold out run (see section 4.2.1.4 above), performs as

well as a more conventional approach where a single decoding map is generated from data ag-

gregated across training set runs. This was done on a subset of the single-participant dataset

(four sessions, 12 runs total). Supplementary Figure 4.7 shows the Pearson correlation co-

efficient values for both analysis approaches. The modular approach achieves qualitatively

similar results, if not has overall higher prediction accuracy, than the conventional modeling

approach. We found this to be acceptable to move forward with the modular approach for

all subsequent analyses.

Results for the single-participant dataset from our leave-one-run-out cross-validation

pipeline can be seen in Figure 4.3. Here we show that our LASSO-PCA model predic-

tion accuracy in the form of the correlation between observed and predicted heart period

using clean, or denoised data (i.e. the residuals from the GLM of cardiac and respiration

variability regressors), and the raw data (i.e., without the artifact signal from the physiologi-

cal noise removed). When we look at how well our model predicts instantaneous heart period
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across lag time shifts, (Figure 4.3A), we see several patterns emerge. First, the cleaned data

(blue lines), with the physiological noise artifacts removed, performs generally much better

across lag time shifts than the raw data (orange lines). Second, we see the expected peak

in prediction accuracy around the 0 and +1.5 second lag time shift, which reflects the point

at which the physiological artifacts from cardiac and respiratory events would be expressed

in the hemodynamic signal (see Figure 4.2A). Finally, there is an expected peak in model

performance for the cleaned data but not for the raw data at lag time shift +7.5 seconds,

as represented by the dashed vertical line in panel A, which accounts for any potential drive

signals in the brain that regulate variation in instantaneous heart period. In particular, we

only see this boost in model performance at this time shifted lag in the data where physi-

ological artifacts have been removed from the signal. Figure 4.3B shows the instantaneous

heart period timeseries from a single run in green, with the predicted heart period from the

cleaned data model at lag time shift +7.5 seconds overlaid in purple. The close tracking of

the predicted heart period timeseries with the observed instantaneous heart period visually

demonstrates the peak in model performance associated with the brain’s drive signal which

regulates instantaneous heart period.

The current results use a large within-participant dataset to predict instantaneous heart

period from variations in the whole brain hemodynamic signal (i.e., 42 fMRI runs collected

across 14 separate sessions). However, is a dataset this large necessary to predict instanta-

neous heart period within an individual? In order to determine the number of required runs

needed for reliable prediction of heart period, we conducted a power analysis using sample

sizes n = 2, 4, 8, 10, 16, 20, and 30 at lag time shift +7.5 seconds. As shown in Supple-

mentary Figure 4.8, the correlation between observed and predicted heart period increases
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Figure 4.3: A) Mean out-of-sample Pearson correlation coefficient, r, of predicted vs. ob-
served instantaneous heart period across 14 sessions (42 runs total) for each lag time shift for
the original (orange) and cleaned (blue) fMRI signal. Shaded regions represent 95% confi-
dence intervals (calculated using 1000 bootstrap iterations). Dashed vertical line represents
the drive signal at lag time shift +7.5 seconds. B) Example observed and predicted instan-
taneous heart period across the timeseries at lag time shift +7.5 seconds for a representative
run. C) One-sample t-test (FDR correction <0.00005) of encoding weight maps of instanta-
neous heart period prediction across sessions and runs for the Human QA dataset participant
at lag time shift +7.5 seconds. Positive weights are shown in red-yellow. Negative weights
are shown in blue-green.

with increasing sample sizes, plateauing at approximately r = 0.35 at n = 16. However, the

largest jump in prediction accuracy occurs when increasing from sample size n = 2 to sample

size n = 4, with a greater than 0.1 increase in Pearson correlation coefficient, r. Sample sizes
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greater than n = 8 show diminishing increases in prediction accuracy.

4.3.1.2 Areas that associate with instantaneous heart period

Figure 3.3C shows the encoding maps, derived from the decoding weights, that reflect the

brain regions that positively (red-yellow) and negatively (blue-green) associate with down-

stream changes in instantaneous heart period. Brain regions including the bilateral occipital

cortex, superior parietal cortex, temporal pole, precuneus, supramarginal, dorsolateral pre-

frontal cortex (dlPFC), right insula, left cerebellum and a portion of the left medial PFC

(mPFC) were positively associated with heart period prediction. Specifically, for these re-

gions increases and or decreases in fMRI BOLD signal were associated with corresponding

increased and or decreased instantaneous heart period. Bilateral occipital, superior pari-

etal, supramarginal, temporal pole, superior temporal and temporoparietal junction appear

to have the strongest positive association with heart period prediction. Comparatively, bi-

lateral superior frontal, ventromedial PFC (vmPFC), middle temporal, anterior cingulate,

angular gyrus, thalamus and periaqueductal gray (PAG) regions were negatively associated

with prediction of heart period. For these brain regions, there was an anticorrelated rela-

tionship between fMRI BOLD signal and instantaneous heart period, e.g., an increase in

the BOLD signal corresponded to a decrease in the instantaneous heart period. Bilateral

anterior cingulate, middle temporal, left vmPFC and right posterior cingulate seem to have

the strongest negative association with heart period prediction.
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4.3.2 Across-participant performance

4.3.2.1 Replicating single-participant results

In order to replicate our within-participant analysis and extend results to characterize

between-participant performance, we re-ran our model on the eight participants that make

up the NSD (see section 4.2.2.1). For this we repeated the same analysis shown in section

4.3.1 for each NSD participant across lag time shifts -2.67 seconds ≤ t ≤ 13.3 seconds with

the same LASSO-PCA method as used for the Human QA dataset. Figure 4.4A shows the

individual model accuracies for each NSD participant as quantified by the correlation be-

tween observed and predicted heart period across lag time shifts. We see an expected peak

around lag time shift +1.33 seconds, as indicated by the leftmost dashed vertical line, that

reflects the time window during which physiological artifacts manifest in the BOLD signal.

Three participants (S1, S6, S7), plotted in different shades of gray, have unexpectedly lower

artifact signal correlation values (i.e., poor prediction at lag time shifts that should recover

the physiological artifacts themselves). The rightmost dashed vertical line on the right at lag

time shift +7.99 seconds represents the drive signal and is closest timepoint to the identified

drive signal from the Human QA dataset at lag time shift +7.5 seconds. Focusing on how

well the individual participant models predict instantaneous heart rate as part of the drive

signal that regulates variation in heart period at lag time shift +7.99 seconds, there are some

differences across participants. The majority of participants’ average model accuracies fall

in the 0.15 ≤ r ≤ 0.2 range (S2, S4-8), while S3 has a larger mean correlation value of r

= 0.3065 and S1 has the smallest mean correlation value, of r = 0.0609. However, these

patterns also persist across lag time shifts. It is also interesting to note that peak model
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performance associated with the drive signal does not appear to be located at lag time shift

+7.99 seconds for most participants, and indeed the peak performance for NSD participants

varies somewhat across lag time shifts. For example, for participants S3 and S8, the peak

performance during the time window associated with the drive signal occurs at +5.33 sec-

onds, while for S4 and S7, it occurs at +6.67 seconds. Additionally, participants S3, S4 and

S8 have more obvious drive signal peaks than participants.

It is clear from Figure 4.4A that most, but not all, participants show reliable model

performance. However, three participants appear to have overall low prediction accuracy,

even in the baseline condition of predicting the time-window when the physiological artifacts

are present. Figure 4.4B shows the prediction accuracy from the window that predicts the

artifact signal, at lag time shift +1.33 seconds, as shown by the leftmost dashed vertical line

in panel A. For each participant bar (along the x axis), the correlation between observed

and predicted heart period for every run is plotted as a separate point. The bar itself is the

mean value and the error bars are 95% confidence intervals from 1000 bootstrap iterations.

Participants are plotted in ascending order from left to right: S6 mean r = -0.0044, S1 mean

r = 0.0582, S7 mean r = 0.1028, S2 mean r = 0.3133, S8 mean r = 0.3147, S4 mean r =

0.3773, S5 mean r = 0.389, S3 mean r = 0.4937. Given the different artifact signal response

for participants S1, S6, and S7, we might expect diminished results when generalizing to test

across participants.

To see how well the pattern of encoding regions observed in the single-participant experi-

ment (section 4.3.1) replicates to a new dataset, we performed the same encoding projection

procedure in the NSD sample. Supplementary Figure 4.9 shows these results for all partic-

ipants except S6, for which no voxels survived correction at FDR <0.05. For participants

85



Figure 4.4: A) Mean out-of-sample Pearson correlation coefficient, r, of instantaneous heart
period for each participant for each lag time shift for the clean fMRI signal. Shaded regions
represent 95% confidence intervals (calculated using 1000 bootstrap iterations). Dashed
vertical lines represent the artifact signal (left) at lag time shift +1.33 seconds and the drive
signal (right) at lag time shift +7.99 seconds. B) Correlation coefficients for each run for
each participant at lag time shift +1.33 seconds, reflected as the leftmost dashed line in
panel A. Bars represent the mean r values, error bars show the 95% confidence intervals.
C) Probability map of encoding weights of instantaneous heart period prediction averaged
across all participants at lag time shift +7.99 seconds. Positive weights are shown in red-
yellow. Negative weights are shown in blue-green.

S3, S5 and S7, we used more conservative thresholds of FDR <0.0001, 0.005, and 0.001,

respectively. To visualize the common brain regions across participants, we performed a
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one-sample, two-sided t-test using the average encoding weight maps for each participant.

However, no voxels survived after correcting for multiple comparisons at a fairly liberal

threshold, FDR <0.05. Instead, we generated probability maps from the individual partici-

pant t-tests that display the probability of a voxel surviving correction across all participants.

Given the large percentage of voxels that are significant for at least one participant, 57%,

Figure 4.4C shows only the voxels with a positive probability of 0.25 or greater, and voxels

with a negative probability of 0.125 or greater. Brain regions along the bilateral medial

wall and in the posterior cingulate and superior parietal areas were positively correlated

with heart period prediction for at least two participants. Bilateral temporal pole, anterior

cingulate, superior frontal and left cerebellum brain regions were negatively correlated with

heart period prediction for at least one participant. Thus we were largely able to replicate

the cortical regions that regulate variation in instantaneous heart period.

4.3.2.2 Generalization across participants

In order to further evaluate the reliability of our models’ decoding weight maps, we tested

within-dataset generalization across NSD participants, using the average trained model from

one participant and testing it on every other participant. This allowed us to gauge the level

of individual differences between decoding weight maps during the drive signal at +7.99

seconds. Figure 4.5A shows the average correlation between observed and predicted heart

period for lag time shift +7.99 seconds for each training and testing participant combination

of the group analysis. Darker colors represent lower prediction accuracy and lighter colors

represent higher drive signal prediction accuracy. As anticipated, we are able to predict

instantaneous heart period within participants more accurately than across participants, as
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shown in the lighter colors along the diagonal and darker colors off the diagonal. There are

some exceptions for particular participants however. Decoding weight maps for S8 predicted

instantaneous heart period for S5 (mean r = 0.1592) more accurately than their own heart

period signal (mean r = 0.1215). Similarly, S1 predicted S7 more accurately (mean r =

0.1037 compared to mean r = 0.0572). The horizontal and vertical white lines separate

the participants with expected artifact signals (S2, S3, S4, S5, S8) from those that behave

somewhat as outliers (S1, S6, S7), with either low or no peak in prediction accuracy during

the artifact time window. Indeed as expected, when the decoding weight maps from these

outlier participants are used as the training model, drive signal prediction accuracy performs

more poorly in general, as shown in the darker colors of the lower left section of the heat map.

Comparatively, it is interesting to note though, that when the outlier participants are used

as test participants (upper right rectangle), model performance is generally higher. Focusing

on the participant combinations in the top left rectangle, we show that generalization across

participants is somewhat possible, albeit with lower performance. However, it is also clear

that certain participant combinations have better model performance, which emphasizes the

individual nature of the decoding weight maps that predict instantaneous heart period.

To get a clearer picture of this between-participant generalization, we plotted the within-

and between-participant model accuracies separately in Figure 4.5B. Specifically, this com-

pares the diagonal entries of the heat map (within-participant analysis) with the off-diagonal

entries of the heat map (between-participant analysis), with gray dots representing a train-

test participant combination that includes at least one outlier participant (S1, S6, S7).

The within-participant analyses have higher mean prediction accuracies (mean r = 0.1588)

compared to the between-participant analysis (mean r = 0.0570). The outlier participant
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combinations have slightly lower mean prediction accuracies on average, though there is not

a dramatic difference.

One factor that might explain this variability in between-participant prediction accuracy

is the overall similarity in their decoding weight maps. To test this we calculated the Eu-

clidean distance between decoding weight maps for each pair of participants and then saw

how well this distance was associated with the ability of one participant’s model to pre-

dict the other’s. As a way of visualizing the association between the similarity of different

participant weight maps and the average prediction accuracy, we generated the scatterplot

shown in Figure 4.5C. Each point represents a between-participant pair (e.g. S1-S2), with

gray points again representing participant combinations that contain one or more outlier

participants. While there is no significant relationship overall (Pearson r = -0.2022, 95%

confidence interval [-0.4416, 0.0641]), it appears that the weight maps of participants that

are not outliers are more similar than outlier participants, regardless of prediction accuracy.

Thus, similarity in maps may correlate with the ability to generalize, but the current sample

may be too small to discern a reliable statistical effect

4.3.3 Across scanner generalization

Finally we set out to see how well decoding maps generated from one MRI scanner, in this

case the 7T scanner, generalizes to data from another scanner (the 3T, single-participant

dataset). We did this by using the average NSD trained model (across all participants) and

testing on the Human QA dataset runs for the drive signal timepoint (+7.99 seconds for NSD,

+7.5 seconds for Human QA). This is a true generalization in that scanner strength, scan

acquisition parameters and physiological recording methods were different across the two
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Figure 4.5: A) Heat map of mean out-of-sample Pearson correlation coefficient values from
the group analysis across participants at lag time shift +7.99 seconds, with training par-
ticipants on the y axis and testing participants along the x axis. B) Breakdown of within-
participant model r values (heat map diagonals) and across participant model r values (heat
map off diagonals). Bars represent the mean r values, error bars show the 95% confidence
intervals. Gray points indicate the presence of S1, S6 or S7 in the train-test participant
combination. C) Scatter plot of inter-participant euclidean distance, on the x axis and the
average decoding accuracy (r values) on the y axis for between-participant models.

datasets. The correlation between observed and predicted heart period across runs ranged

from r = -0.0568 to r = 0.4040, with a mean value of r = 0.1424 and 95% confidence interval
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[0.1058, 0.1775] (generated from 1000 bootstrap iterations), as shown in Figure 4.6. This

demonstrates that our model is generalizable, though prediction accuracy is not as robust

as in individual participant analysis.

Figure 4.6: Correlation coefficient for each run from across scanner generalization models.
The bar shows the mean r value, the error bars show the 95% confidence interval.

4.4 Discussion

Being able to reliably estimate the neural control of cardiac function at the single-participant

level would present a critical first step in developing clinical biomarkers of brain contribu-

tions to CVD. Using machine learning approaches optimized for high-dimensional datasets,

we successfully predicted instantaneous heart period from whole brain hemodynamic data

both within and across individuals. We demonstrated these findings in two separate datasets

that used different MRI and heart rate acquisition methods. We first observed robust pre-

diction accuracy of instantaneous heart period for single participants. The strength of this

within-participant effect has to do with the high statistical power of predicting events across
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individual BOLD samples, as opposed to the trialwise or blockwise event-related designs

of typical fMRI experiments. This allows for reliable prediction of individual participant

effects. Models are also modestly generalizable across individuals, though with marginally

lower prediction accuracies than within-participant models. Finally, brain regions in the

parietal, frontal and temporal poles and in the anterior cingulate appear to reliably con-

tribute to heart period prediction, suggesting that a network of cortical and subcortical

brain regions work together to modulate the downstream brainstem’s control of heart pe-

riod. Furthermore, we have shown that only a handful of runs are needed to adequately

power for predicting instantaneous heart period. Therefore, we have shown that dynamic

fluctuations in the hemodynamic activity of upstream brain regions comprising the visceral

control circuits track with transient fluctuations of heart period.

Despite the individual differences in brain regions associated with heart period prediction

across participants in our study, taken together, the overlapping regions from both datasets

are largely in line with existing literature. Eisenbarth et al. (2016) demonstrated a mul-

tivariate pattern of social threat evoked fMRI activity that predicts heart rate [50]. The

positive predictive weights for this model were located in the dorsal anterior cingulate and

negative predictive weights in the medial prefrontal cortex, which coincide with our results

from both datasets. In addition, Gianaros et al. (2004) studied the associations between

heart period and regional cerebral blood flow (rCBF) during a working memory task. Nega-

tive correlations between heart period and rCBF in the insula, anterior cingulate also align

with results from both of our datasets [65]. Similarly, Porro and colleagues (2003) also

reported correlations between heart rate and fMRI activity during pain anticipation [129].

Brain regions in the parietal cortex were positively correlated while regions in the medial
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prefrontal cortex and cingulate cortex were negatively correlated, which again overlap with

our findings. Finally, Critchley et al. (2000) found associations with heart rate and rCBF

during motor and arithmetic tasks [35]. Their negative correlations in the medial prefrontal

and cingulate cortices with heart rate also coincide with our results. Altogether, these col-

lective findings emphasize the relationship between specific cortical and subcortical brain

regions that might regulate the chronotropic aspect of cardiac activity, and by extension

cardiovascular risk. Where our results extend this prior work is in showing that not only

are these critical brain regions in higher-level cortex (i.e., upstream from the brainstem)

associated with cardiac function, but can reliably predict it on a moment-by-moment basis

and at the single-participant level.

With this in mind, there are two main methodological limitations to consider when

interpreting the results of the present study. First, there are temporal differences between

the parasympathetic and sympathetic heart rate responses [11], that we did not explicitly

address in our model. It is possible that we only captured the parasympathetic response

that occurs more immediately in response to stress. Intentionally incorporating these two

autonomic heart rate responses into our model and investigating how this may alter both the

accuracy of prediction and the brain regions involved would be a worthwhile future endeavor.

Second, we treated task and rs-fMRI data identically as the tasks from both datasets were

not explicitly designed to evoke changes in heart rate, but any spurious changes in cardiac

activity only increased usable variance for our models to pick up on. However, it is still

possible that there are different brain processes across task-states that may have had some

influence on our models. Follow-up work will explore this difference between situations where

there may be more top-down control of cardiac function (e.g., tasks) from those where the
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system may be in a more passive state (e.g., rest).

Also, while our model predictions showed fairly high consistency at predicting heart

period across participants, it is worth noting that the encoding maps showed substantial

variability as well. In some ways this is not surprising. The decoding model used here was

optimized for prediction, not localization, and uses correlated patterns across the entire brain

to build its prediction. This can introduce substantial variability in the decoding weights,

and consequently, the encoding projections used to localize regions of influence. Our results

in the 7T dataset suggest that any questions on precise localization of control should rely

on much larger datasets where consistent patterns across individuals can be more reliably

discerned.

Despite these limitations, our study makes clear the feasibility of measuring the cortical

and subcortical control signals, including brainstem areas, that associate with variation in

cardiac function in humans. To expand on the relevant next steps, repeating our analysis

with extended lag time shifts to look for a sympathetic response and trying to tease out the

distinction between the two responses could provide some additional nuances to our current

results. It would also be valuable to examine any differences between the brain regions most

important for parasympathetic versus sympathetic heart rate responses. Performing a simu-

lated lesion analysis, by removing certain brain regions in turn, would be another method of

evaluating the relative importance of individual brain regions (or networks) contributions.

Finally, replicating this analysis on much larger datasets, of hundreds or thousands of par-

ticipants, would boost our ability to reliably localize consistent regions of control in the

normative human brain. All of these approaches reflect important next steps in our work.
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4.5 Conclusion

We have added to the growing existing body of literature looking at brain-heart connections,

showing that heart period is reliably predicted by brain activity, even at the single-participant

level, within cortical and subcortical regions that overlap with visceral control circuit net-

works. These results offer a promising step towards the development of a clinically applicable

brain-based biomarker for CVD risk.
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4.6 Supplementary Figures

Figure 4.7: Mean out-of-sample Pearson correlation coefficient of predicted and observed
instantaneous heart rate across four sessions (12 runs total) for each lag shift for both the
clean fMRI signal and the artifact fMRI signal for the conventional analysis (A) and modular
analysis (B) approaches. Shaded regions represent 95% confidence intervals (calculated using
1000 bootstrap iterations).
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Figure 4.8: Mean out-of-sample Pearson correlation coefficient of predicted and observed
instantaneous heart period across different sample sizes of Human QA dataset runs. For
sample sizes n = 2 through n = 30, results are averaged across 40 iterations with randomly
selected runs. The shaded region represents 95% confidence intervals (calculated using 1000
bootstrap iterations).

97



Figure 4.9: One-sample, two-sided t-tests of encoding weight maps of instantaneous heart
period prediction for each NSD participant at time shift +7.99 seconds. A) S1, FDR <0.05,
B) S2, FDR <0.05, C) S3, FDR <0.0001, D) S4, FDR <0.05, E) S5, FDR <0.005, F) S7
FDR <0.001, G) S8, FDR <0.05. Note: S6 is not included since no voxels survive correction
at FDR <0.05. Positive weights are shown in red-yellow. Negative weights are shown in
blue-green.
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Chapter 5

Conclusion and Future Directions

The goal of this dissertation was to investigate the relationship between the brain and the

heart using human neuroimaging and machine learning models. I achieved this goal by

addressing two overarching aims. I first sought to predict a subclinical marker of atheroscle-

rotic CVD risk, CA-IMT, using clinically accessible functional and structural brain measures.

From there, I focused on the regulation of cardiac control circuits. To do so, I, along with my

colleagues, developed niphlem, a toolbox to preprocess physiological data collected during

MRI scans. I then utilized this toolbox in the prediction of instantaneous heart period from

fMRI.

In Chapter 2, I tested whether combining multimodal brain measures that can be easily

obtained in clinical settings (resting-state functional connectivity and structural morphology

measures from T1-weighted images) would yield a multivariate brain biomarker that reliably

predicts CA-IMT. I found that while individual brain measures reliably predict CA-IMT,

they do not outperform FRS. And moreover, stacking functional and structural brain mea-

sures with FRS did not boost prediction accuracy above that of FRS alone. However, from

a methodological perspective, I showed that prediction stacking is a flexible approach that
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can be used to determine added predictive utility and furthermore, that multimodal stacking

can be applied to individual difference factors. Altogether, these results indicate that while

a brain-based biomarker indexed by CA-IMT may not provide additional clinical relevance,

multimodal stacking of brain measures remains a useful method that should be utilized for

the further investigation of other subclinical CVD markers.

Chapter 3 focuses on detailing the functionality of niphlem, our physiological processing

toolbox. I described niphlem’s three distinct stages: preprocessing, data cleansing and arti-

fact model generation. Using example cardiac (from ECG) and respiration (from pneumatic

belt) data, I demonstrated the effectiveness of the toolbox at identifying and removing phys-

iological noise artifacts. I also showed how the noise models generated in niphlem can be

utilized in neuroimaging analyses. Ultimately, we believe the toolbox facilitates the use of

cleaned physiological signals from MRI sessions for analysis alone as well as when incorpo-

rating into neuroimaging analyses and in doing so provides a degree of certainty about their

quality.

Finally, Chapter 4 applies our work developing niphlem to explore the brain networks

involved in predicting prevailing heart rate. Using two datasets that consist of extensive

repeated data collection within-participants, I tested within- and between-participant pre-

diction of instantaneous heart period using LASSO-PCA, a method optimized for high di-

mensional data, to identify top-down drive signals that may regulate the fast modulation of

cardiac activity. I found reliable heart period prediction within individuals, which is general-

izable across individuals, though not as robust. Results indicated that cortical brain regions

involved in regulation of heart rate are encompassed within visceral control circuit networks,

highlighting the cortex’s role in controlling or, at the very least, modulating cardiac function.
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There are numerous future directions to pursue from this dissertation, both focusing on

extensions for individual aims and combining what we have learned across aims. A worth-

while next step for Aim 1 (Chapter 2) would be a straightforward replication analysis in

additional samples, for example, the Neurobiology of Adult Health dataset (NOAH; PD Gi-

anaros, Co-PI Verstynen). More generally, important future directions involve testing for

the generalizability of brain-based biomarkers to related clinical markers of atherosclerotic

CVD, such as arterial stiffness (measured by pulse wave velocity) [144]. Additionally, incor-

porating the successful methods used to capture the brain regulatory networks associated

with HR from Aim 2 (Chapter 4) into the aims of Chapter 2 constitutes a promising future

direction. More specifically, this would help answer the question of whether we can build a

reliable brain-based predictor of CVD risk from these direct cardiac control signals or indeed

from the prediction residuals.

Relevant next steps for Aim 2 (Chapter 4) would be to add a layer of information to

our models that captures relevant task data (e.g., featurization of NSD task images) and to

more directly test generalization across individuals using larger datasets, such as NOAH or

Human Connectome Project. This also has the potential to address the issue we encountered

involving variation in the localization of brain regions that influence prediction of cardiac

control across individuals, since a larger sample could allow for characterization of more

reliable and consistent patterns. Further extensions that provide more direct clinical appli-

cability center around the following questions. Does the prediction residual of heart rate

correlate with known CVD risk factors or clinical markers of CVD and risk? How are the

brain-heart connections and the possibility of a brain-related biomarker altered by stress?

Another valuable extension project with clinical relevance involves simulating lesions (e.g.,
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stroke damage) in brain regions that reliably regulate HR to determine the impact of their

removal on modulation of cardiac control. This would involve building a causal model of

the brain circuits, which in turn would provide additional information about the nature of

brain-heart connections.

Taken together, this dissertation provides incremental steps in our understanding of brain-

heart relationships with respect to subclinical CVD risk markers and cortical regulation of

heart rate. It is clear, however, that there is a wealth of opportunity for knowledge expansion

in this field. Continued work to elucidate the role of the brain’s cortical control mechanisms

on cardiovascular function and disease risk is essential to further the development of novel

therapies and prevention strategies for CVD.
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Frick. “Heart rate variability and progression of coronary atherosclerosis”. en. In:

Arterioscler. Thromb. Vasc. Biol. 19.8 (Aug. 1999), pp. 1979–1985.

116



[81] Amorina Ishai, Michael T Osborne, Brian Tung, Ying Wang, Basma Hammad, Tomas

Patrich, Blake Oberfeld, Zahi A Fayad, Jon T Giles, Janet Lo, Lisa M Shin, Steven K

Grinspoon, Karestan C Koenen, Roger K Pitman, and Ahmed Tawakol. “Amygdalar

Metabolic Activity Independently Associates With Progression of Visceral Adipos-

ity”. en. In: J. Clin. Endocrinol. Metab. 104.4 (Apr. 2019), pp. 1029–1038.

[82] J Richard Jennings, Alicia F Heim, Dora Chieh-Hsin Kuan, Peter J Gianaros, Matthew

F Muldoon, and Stephen B Manuck. “Use of total cerebral blood flow as an imaging

biomarker of known cardiovascular risks”. en. In: Stroke 44.9 (Sept. 2013), pp. 2480–

2485.

[83] J Richard Jennings, Alicia F Heim, Lei K Sheu, Matthew F Muldoon, Christopher

Ryan, H Michael Gach, Claudiu Schirda, and Peter J Gianaros. “Brain Regional Blood

Flow and Working Memory Performance Predict Change in Blood Pressure Over 2

Years”. en. In: Hypertension 70.6 (Dec. 2017), pp. 1132–1141.

[84] J Richard Jennings, Matthew F Muldoon, Ellen M Whyte, Joelle Scanlon, Julie Price,

and Carolyn C Meltzer. “Brain imaging findings predict blood pressure response to

pharmacological treatment”. en. In: Hypertension 52.6 (Dec. 2008), pp. 1113–1119.

[85] Xavier Jouven, Jean-Philippe Empana, Peter J Schwartz, Michel Desnos, Dominique

Courbon, and Pierre Ducimetière. “Heart-rate profile during exercise as a predictor

of sudden death”. en. In: N. Engl. J. Med. 352.19 (May 2005), pp. 1951–1958.

[86] Safi U Khan, Zulqarnain Javed, Ahmad N Lone, Sourbha S Dani, Zahir Amin, Sadeer

G Al-Kindi, Salim S Virani, Garima Sharma, Ron Blankstein, Michael J Blaha, Miguel

Cainzos-Achirica, and Khurram Nasir. “Social Vulnerability and Premature Cardio-

117



vascular Mortality Among US Counties, 2014 to 2018”. en. In: Circulation 144.16

(Oct. 2021), pp. 1272–1279.

[87] Michael King, Joe Kingery, and Baretta Casey. “Diagnosis and evaluation of heart

failure”. en. In: Am. Fam. Physician 85.12 (June 2012), pp. 1161–1168.
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[93] Franziskus Liem, Gaël Varoquaux, Jana Kynast, Frauke Beyer, Shahrzad Kharabian

Masouleh, Julia M Huntenburg, Leonie Lampe, Mehdi Rahim, Alexandre Abraham,

R Cameron Craddock, Steffi Riedel-Heller, Tobias Luck, Markus Loeffler, Matthias L

Schroeter, Anja Veronica Witte, Arno Villringer, and Daniel S Margulies. “Predict-

ing brain-age from multimodal imaging data captures cognitive impairment”. en. In:

Neuroimage 148 (Mar. 2017), pp. 179–188.

[94] Richard S Liu, Sophie Dunn, Anneke C Grobler, Katherine Lange, Denise Becker,

Greta Goldsmith, John B Carlin, Markus Juonala, Melissa Wake, and David P Burgner.

“Carotid artery intima-media thickness, distensibility and elasticity: population epi-

demiology and concordance in Australian children aged 11-12 years old and their

parents”. en. In: BMJ Open 9.Suppl 3 (July 2019), pp. 23–33.

[95] Thomas T Liu. “Noise contributions to the fMRI signal: An overview”. en. In: Neu-

roimage 143 (Dec. 2016), pp. 141–151.

[96] Lloyd-Jones Donald M., Hong Yuling, Labarthe Darwin, Mozaffarian Dariush, Appel

Lawrence J., Van Horn Linda, Greenlund Kurt, Daniels Stephen, Nichol Graham,

Tomaselli Gordon F., Arnett Donna K., Fonarow Gregg C., Ho P. Michael, Lauer

Michael S., Masoudi Frederick A., Robertson Rose Marie, Roger Véronique, Schwamm
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