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Abstract

■ The dual-system model of sequence learning posits that dur-
ing early learning there is an advantage for encoding sequences
in sensory frames; however, it remains unclear whether this ad-
vantage extends to long-term consolidation. Using the serial RT
task, we set out to distinguish the dynamics of learning sequen-
tial orders of visual cues from learning sequential responses. On
each day, most participants learned a new mapping between
a set of symbolic cues and responses made with one of four
fingers, after which they were exposed to trial blocks of either
randomly ordered cues or deterministic ordered cues (12-item
sequence). Participants were randomly assigned to one of four
groups (n = 15 per group): Visual sequences (same sequence
of visual cues across training days), Response sequences (same

order of key presses across training days), Combined (same
serial order of cues and responses on all training days), and a
Control group (a novel sequence each training day). Across 5 days
of training, sequence-specific measures of response speed and
accuracy improved faster in the Visual group than any of the
other three groups, despite no group differences in explicit
awareness of the sequence. The two groups that were exposed
to the same visual sequence across days showed a marginal im-
provement in response binding that was not found in the other
groups. These results indicate that there is an advantage, in
terms of rate of consolidation across multiple days of training,
for learning sequences of actions in a sensory representational
space, rather than as motoric representations. ■

INTRODUCTION

Many complex skills require learning to bind temporally
distinct movements into a unified sequence of actions.
For example, when learning to play a novel arpeggio on
the piano, a student begins by playing each individual
note in successive fashion. With long-term practice, she
can eventually master executing whole phrases and melo-
dies as a singular, unified action. This mastery of complex
sequential skills can arise from learning at multiple levels.
For example, the student may learn the piece by serially
predicting the high-level action goals of the piece, as
would occur if she memorized the written notes on the
sheet of music or the sequence of spatial locations along
the keyboard. In contrast, the student may learn action-
specific motoric synergies such that individual finger
movements become encoded as a singular, sequential
action. Of course, these are not mutually exclusive, and
learning can occur at many levels of representation.
The idea that multiple systems are recruited during

sequential skill learning dates back to some of the first
studies of sensorimotor sequence learning (for review,
see Abrahamse, Jiménez, Verwey, & Clegg, 2010; Ashe,
Lungu, Basford, & Lu, 2006). In their initial experiments
with the serial RT task (SRTT), Nissen and Bullemer (1987)

found that explicit awareness afforded an advantage
when learning a novel sensorimotor sequence (see also
Curran & Keele, 1993). More recent studies suggest that
providing explicit knowledge of a cued sequence of
movements immediately improves motor vigor and ac-
curacy (Wong, Lindquist, Haith, & Krakauer, 2015), allud-
ing to the possibility that high-level concept knowledge of
action goals improves basic motoric efficiency in action
execution.

Hikosaka, Nakamura, Sakai, and Nakahara (2002) for-
mally proposed a dual-system model for sequence learn-
ing. According to their model, prefrontal cortico-basal
ganglia and cortico-cerebellar networks learn sequences
of high-level planning features, such as perceptually driven
spatial goals. This system learns quickly, is effector inde-
pendent, and has a relatively short time scale of retention,
on the order of a few seconds or minutes. In contrast,
cortico-basal ganglia and cortico-cerebellar circuits, routed
through the primary motor cortex, learn sequences of
motoric actions. This motor sequence system learns slowly,
is effector specific, and has a very long time scale of reten-
tion. According to their model, the basal ganglia circuits
evaluate reward likelihoods of individual actions, whereas
the cerebellar circuits monitor execution errors. Several
behavioral (Albouy et al., 2013; Witt, Margraf, Bieber, Born,
&Deuschl, 2010; Cohen, Pascual-leone, Press, & Robertson,
2005; Willingham, Wells, Farrell, & Stemwedel, 2000;
Willingham, 1999) and neuroimaging (Albouy et al., 2015;
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Rose, Haider, Salari, & Buchel, 2011) studies have also
validated the general dichotomy proposed by Hikosaka
and colleagues (2002). This dual-system model is also
consistent with more recent models of general response
planning, where potential decisions compete on two sepa-
rate levels: a competition between the relative values of
action goals and a competition between low-level execu-
tion response costs (Cisek, 2012).

Along with representing sequential goals or actions,
another key aspect of skill learning is the ability to bind
individual responses together into a unified action (Lashley,
1951), and this binding results in movements that can be
parceled into meaningful chunks (Verwey, 1994). In the
context of cued motor actions, chunking is typically stud-
ied by training a participant to learn a simple (i.e., three to
nine items) sequence. Here, the repetition structure of
specific elements in the sequence is manipulated so as
to be easily detectable (e.g., “1-2-3” or “1-3-1”). With
practice, the first item in the concatenated set of actions
exhibits a slower RT than the rest of the elements in the
set. A larger RT difference between the first and the
second action or between the first, second, and third
key press reveals the bound responses. This slowing is
used as an index of the segmentation of the learned chunk
(Verwey, Abrahamse, Ruitenberg, Jiménez, & de Kleine,
2011; Verwey, Abrahamse, & Jiménez, 2009; Kennerley,
Sakai, & Rushworth, 2004; Verwey & Eikelboom, 2003;
Verwey, Lammens, & Van Honk, 2002; Verwey, 1996,
2001). Several lines of evidence suggest that this type of
response binding may happen upstream from motor
execution systems: Chunking is correlated with working
memory capacity, but not simple motor production abil-
ities (Bo, Jennett, & Seidler, 2011; Bo & Seidler, 2009;
Bapi, Doya, & Harner, 2000), chunking efficiency is
context-specific (i.e., chunks of one sequence do not trans-
fer to another sequence with similar structure; Verwey,
2001), the structure of chunked responses is not affected
by manipulations of execution parameters (e.g., target
distance, effector; Sakai, Kitaguchi, & Hikosaka, 2003),
and chunking performance is impaired by disruptions
of striatal dopamine pathways, suggesting that reinforce-
ment learning mechanisms contribute to binding actions
together (Tremblay et al., 2009, 2010). More nuanced sig-
natures of response binding can emerge only after pro-
longed training, particularly as behavioral complexity
increases, chunking tends to emerge only after prolonged
training (Wymbs, Bassett, Mucha, Porter, & Grafton, 2012).
For example, in both humans (Verstynen et al., 2012) and
nonhuman primates (Acuna et al., 2014), only after many
days of practice do sequentially produced actions develop
a temporally correlative structure in their response dynam-
ics that reflects being part of a common command that
persists across individual cue–response trials. These find-
ings are consistent with the observation that motoric se-
quence learning uses coarticulation mechanisms to tune
activity patterns of trained effectors (e.g., fingers) when
repeatedly paired together (Verwey & Clegg, 2005).

Although aspects of skill crystallization, such as binding
and chunking, require several days of training, to date it
remains unclear whether one level of representation has
an advantage for binding sequential representations over
other levels of representation. Diedrichsen and Kornysheva
(2015) proposed that response chunking during move-
ment sequencing occurs at lower, motoric levels of repre-
sentation. According to this hypothesis, long-term skill
learning entrains synergies of motor primitives together
so that they are triggered by a singular upstream motor
command. This hierarchical model of sequence chunking
is effector-dependent and predicts a specific advantage for
repeating sequences of individual actions together, regard-
less of how they are cued. An alternative model is one in
which sequences of independent action plans or sensory
goals get bound with training, leaving low-level motor syn-
ergies contingent on high-level action plans. This is con-
sistent with the fact that learning is facilitated by explicit
awareness of sequence structure (Curran & Keele, 1993;
Nissen & Bullemer, 1987). It predicts that response binding
will be effector-independent and that serial ordering of
cues will be advantageous for chunking actions together.
Alternatively, response binding could happen between
levels of representation. For example, previous behavioral
models have proposed that learning of event sequences in
the SRTT is mediated by learning a relationship between
a current manual response and the stimulus cue that fol-
lows it (Ziessler & Nattkemper, 2001; Ziessler, 1998).
Here we set out to disambiguate long-term (i.e., mul-

tiday) sequence learning at sensory levels of representa-
tion (i.e., visual cues) from representations at motoric
levels (i.e., manual responses). Specifically, we wanted
to evaluate which level of representation better facilitates
learning rate across multiple days of training and tempo-
ral correlation measures of binding. The focus on multi-
day learning, as opposed to learning within one or two
training sessions, is necessary because stable response
binding is only observed after multiple days of training
(Acuna et al., 2014; Verstynen et al., 2012; Wymbs
et al., 2012). To do this, we used a version of the SRTT
to train participants to learn an embedded 12-item se-
quence. By remapping the cue–key associations on each
day of training, we could independently train sequences
of cues from sequences of responses across five consec-
utive days. Multiple measures of learning, including mea-
sures of response binding, show that sequences are
learned faster across days when they are presented in a
visual modality, but that learning may interact across mul-
tiple levels of representation as sequential actions are
bound into a unified chunk.

METHODS

Participants

Healthy college-aged adults (n = 62) were recruited from
the Carnegie Mellon University population and gave
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written consent to participate. All participants were finan-
cially compensated for their time. Inclusion criteria for
participation required unimpeded use of the right hand,
no history of carpal tunnel syndrome, and no familiarity
with the Cyrillic alphabet. Two participants dropped out
before completing the full 5 days of training, and these par-
ticipants were not included in the final analysis. Carnegie
Mellon University’s internal review board approved all
testing procedures.

Serial RT Task

All participants were tested in a version of the SRTT. At
the beginning of each training day, participants were
explicitly told the mapping of a specific cue to an individual
finger and given three practice repetitions of cue-to-digit
mapping with guided instruction. The cues consisted of
four Cyrillic symbols (“Ж,” “Є,” “Њ,” and “Л”) presented
individually in white font on a black background
(Figure 1A) on a 24-in. Asus monitor. Participants were
instructed to respond as quickly as possible to the cue
using one of four keys on the keyboard corresponding
to the right index (1; “j” key), middle (2; “k” key), ring
(3; “l” key), and pinky (4; “:/;” key) fingers, respectively
(see group definitions below). After a familiarization pe-
riod to get participants accustomed to the cue-to-digit
mapping, training commenced. The experimental blocks
were divided into two types: random blocks and sequence
blocks. The random blocks (Trial Blocks 1, 2, and 5) were
composed of 264 stimulus–response pairings with the
constraint that each element occur 25% of the time. The
trial-by-trial order of cues was selected pseudorandomly
with the restriction to not allow the repetition of two
contiguous stimuli. The first two random blocks were
designed to consolidate the cue-to-digit remapping on
each day so that this was well learned by the start of
the sequence blocks. The sequence blocks (Trial Blocks
3, 4, and 6) were composed of 22 repetitions of stimuli

from a 12-trial sequence: 1, 3, 2, 1, 4, 3, 1, 4, 2, 3, 4, 2.
Each block began at a random part of the sequence
so as to minimize immediate identification of the se-
quential pattern. Participants had 600 msec to respond
to the symbol once it was shown on the screen. Not
responding fast enough or responding with the wrong
key resulted in the symbol turning red for 50 msec. A
correct response within the allotted time resulted in
the symbol turning green for 50 msec. All testing pro-
cedures were run using PsychToolbox (Brainard, 1997
version 3.0) on an Ubuntu Linux system.

For two groups of participants, the mapping from cue-
to-digit was reset at the beginning of each training day
(Figure 1B). This mapping was randomly determined on
each day and allowed for us to disambiguate sequences of
cues from sequences of movements across all training
days. Participants were assigned to one of four groups that
defined the temporal trial structure of the sequence
blocks. For the Visual group (n = 15, 6 men), the 12-item
sequence defined the order of visually presented cues in
the sequence block on all days; however, because of the
remapping, the order of key presses varied from day to
day. For the Response group (n = 15, 6 men), the se-
quence defined the order of key presses performed in
sequence blocks on all days, but the trial-by-trial order
of the visual cues changed from one day to the next.
The Combined group (n = 15, 5 men) was not exposed
to remapping on each day, allowing them to be exposed
to the same sequence of cues and manual responses on
all training days. Finally, as a control for within-day learn-
ing rates, the Control group (n = 15, 7 men) learned a
novel sequence on each day by remapping both the cue-
to-key mapping and the cue ID mapping (i.e., which
symbol is mapped to which cue). Because of this, it was
possible for the Control group to have repeating cues
during sequence blocks, whereas no other group could
have the same symbol or key press in a row. This difference
in groups is adjusted in the data analysis (next section).

Figure 1. The SRTT. (A) Participants saw one of four cues on a computer screen that corresponded with a key under each finger of their right hand,
as indicated by the arrow in the figure. (B) All participants started with the same cue to key mapping on Day 1. On Days 2–5, the Combined
group continued with this cue–key mapping. However, starting on Day 2 the cue–key mapping was randomly changed for both the Visual and
Response groups. The Visual group had the same cue order during sequence blocks on all days, and the corresponding key presses changed on each
day. The Response group had the same order of key presses every day, and the order of the presentation of cues on the screen was remapped.
The Control group (not shown) remapped both cue–key mappings on each training day and cue identification numbers (i.e., symbol–cue mapping)
on each training day. See main text for details.

Lynch, Beukema, and Verstynen 127



Data Analysis

Custom Matlab (MATLAB 2012A, The MathWorks, Inc.,
Natick, MA) scripts were used to extract out the RTs and
accuracies for each trial in each experimental run. RTs
were calculated as the time between the onset of the
visual cue and the register of the key press on the key-
board. Average RTs and accuracies were calculated for
all participants across all groups. To estimate sequence-
specific learning on each day, a learning score was cal-
culated for both RT and accuracy using performance
from the last three blocks. The learning score for mean
RT was computed (Equation 1) by subtracting the aver-
age of the mean RTs of the sequence probes (Blocks 4, 6;
μ4, μ6) from the mean RT in the random probe (Block 5;
μ5):

δRT ¼ μ5−
1
2

μ4 þ μ6ð Þ (1)

Finally a learning score for accuracy was computed (Equa-
tion 2) by subtracting the mean accuracy in the random
probe block (α5) from the average of the mean accuracy
of the sequence probe blocks (α4, α6):

δAcc ¼ 1
2

α4 þ α6ð Þ−α5 (2)

Group effects for both learning scores were assessed using
repeated-measures ANOVA.

Because sequences were somewhat easier to identify
in the Control group (see Figure 3), sequence learning
scores were normalized to Day 1 performance to mea-
sure across day learning. This removes any biases in se-
quence structure between groups. A mixed between- and
within-factor ANOVA was applied to these normalized
learning scores to measure main effects of and inter-
actions between Training day and Groups.

To quantify the linear rate of learning across training
days, an across-day learning rate (Δ) was calculated for
each response learning score (Equation 1) and accuracy
learning score (Equation 2) for all participants. This was
computed as

Δ ¼ 1
4

X5

i¼2

δi−δi−1ð Þ (3)

where δi is the learning score on day i. This reflects the
mean change in learning per day across the entire ex-
periment and was used to test the directional effect of
group on learning rate using two-sample t tests.

To look at the intertrial binding of RTs during both
probe blocks, the first 12 trials (i.e., first sequence run)
were excluded from analysis, because these trials often
exhibited an exponential decrease in RTs during the
sequence probe block on later training days (see Verstynen
et al., 2012). The linear trend in subsequent trials was
removed using an ordinary least squares linear regression,
the time series was mean-centered, and the first 12 items
in the sequence were removed so as to eliminate any

exponential trends in the time series (see Verstynen
et al., 2012). Autocorrelation analysis was then performed
on this detrended vector using the xcorr.m function in
Matlab. The autocorrelation was estimated independently
for the random and sequence probe blocks on each day
for each participant. The number of consecutive lags with
significant positive correlations was then used as the sig-
nature for binding (see Verstynen et al., 2012). This auto-
correlation analysis was only performed on the last two
test blocks.
The autocorrelation functions during both probe blocks

were then used to measure the sequence-specific binding
score,

binding ¼ 1
3

X3

l¼1

ρSl−ρRl
� �

(4)

Here ρl
S and ρl

R represent the autocorrelation value at lag l
in the sequence and random probe blocks, respectively. A
max lag of 3 was chosen because of oscillation dynamics
present in both conditions at lag 4.
Finally, at the end of each training session, a post hoc

verbal questionnaire was administered to gauge explicit
learning of embedded sequences. Each participant was
asked the same questions, starting with “Did any of the
stimuli appear different than each other?” If the partici-
pant answered “no” or did not state any of the keywords
(“pattern,” “sequence,” “sequential,” “order,” or “order-
ing”), they were given a score of “0” and the session
was concluded. If the participant answered “yes” and
was capable of successfully replicating a part of the se-
quence, they were given a score of “4” and the session
was concluded. If the participant was aware of the exis-
tence of a pattern without explicit knowledge of the se-
quence, they were given a score ranging from 1 to 3, with
awareness of a pattern and any use of any of the men-
tioned keywords, a score of “1”; awareness of the occur-
rences of the patterns as always present, a score of “2”;
and the replication of any part of a sequence, a score of
“3.” A score of “2” served as the threshold for explicit
awareness of the nested sequences.

RESULTS

Speed and Accuracy

With training, all groups showed improvements in both
RT (Figure 2A, C, E, G) and accuracy (Figure 2B, D, F, H)
during the sequence blocks relative to the random blocks.
To better understand this sequence-specific learning on
each day, a learning score (δ) was calculated for both RT
and accuracy using performance in the last random probe
block as a control for general increases in response speed
(see Methods, Equations 1–2). Modest gains in both RT
and accuracy were observed during the sequence blocks
on the first day of training across all groups, as seen in
the positive δRT, δACC scores (all one-sample ts > 2.26,
ps < .02; Figure 3A, C). However, there was a significant
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main effect of Group in the learning scores for both δRT
(F(3, 8) = 8.80, p = .006) and δACC (F(3, 8) = 10.33,
p = .004) on the first day of training. Post hoc t tests
revealed that learning scores were substantially higher
for the Control group than any of the other groups. This
was due in large part to the regular presence of repeats
in the sequences presented to this group (average of
two repeated response pairs on each training day).
Therefore, to accommodate for this within-session bias

between the groups, all across-day learning patterns are
normalized to performance on the first day of training.

After normalizing to first day performance, all groups
showed an increase in sequence-specific response speeds
across the remaining training days (Figure 3B; F(3, 168) =
21.03, p < .001). However, there was a significant main
effect of Group on the across-day RT learning (F(3, 56) =
3.84, p = .014), with an advantage for the Visual group
in sequence-specific learning. Although the interaction

Figure 2. Blockwise
performance across days.
RT for the Response (A),
Visual (C), Combined (E),
and Control (G) groups are
displayed in the left column.
The right column shows the
blockwise accuracies for the
Response (B), Visual (D),
Combined (F), and Control
(H) groups. Gray bins highlight
random blocks of the task,
in which the cues were
pseudorandomly presented
to the participant. White bins
show blocks where the cues
were presented according
to a predetermined order
(12-item sequence). All error
bars show SEM.
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between Group and Training day was not significant (F(9,
168) = 1.02, p = .427), a significant main effect of Group
was found on Training Days 3 (F(3, 56) = 4.05, p = .011)
and 4 (F(3, 56) = 3.17, p = .031), with a marginal effect
of Group on Days 2 (F(3, 56) = 2.26, p = .060) and
5 (F(3, 56) = 2.21, p = .097).

Accuracy during sequence blocks also improved across
training days, with a significant main effect of Training day
on accuracy learning scores (Figure 3D; F(3, 168) = 3.92,
p = .009). Although the day-by-day means were more
variable than what was observed in the RT learning score,
there was still a significant main effect of Group on accu-
racy learning scores (F(3, 56) = 4.36, p= .007). There was
also a trend for an interaction between Group and Train-
ing day for accuracy (F(9, 168) = 1.88, p = .057). There
was a marginal main effect of Group on accuracy learning
on Training Days 2 (F(3, 56) = 1.76, p= .165) and 4 (F(3,
56) = 2.66, p= .057). The main effect of Group was signif-
icant onDays 3 (F(3, 56) = 6.54, p< .001) and 5 (F(3, 56) =
3.39, p = .024).

To get a more direct estimate of the rate of consoli-
dation across training days, we calculated the average
between-day change in sequence learning (Δ, Methods,
Equation 3). There was a significant main effect of Group
on RT learning rates (Figure 4A; F(1, 58) = 6.23, p =
.015). Post hoc t tests revealed that this main effect

was driven largely by the Visual group, which learned
significantly faster than the Response group (t(14) =
2.18, p = .038) and marginally faster than the Combined
(t(14) = 1.88, p = .071) and Control (t(14) = 1.95, p =
.061)groups. There was not a significant main effect of
Group on accuracy learning rates (Figure 4B; F(1, 58) =
2.64, p = .110).

Binding

Temporal binding of RTs was estimated by calculating
the autocorrelation of trial-wise RTs in the last random
(Block 5) and sequence (Block 6) blocks (Verstynen
et al., 2012; see Methods). Bound responses should ex-
hibit a significant positive correlation in RTs for early
lags. During the random probe block, we observed sig-
nificant peaks at Lags 4 and 8 that strengthened with
training (Figure 5A). This means that participants exhib-
ited a mild correlation in response speeds every fourth
key press, indicating rhythmicity in their natural produc-
tion regardless of whether the sequence was present or
not. During the final sequence block, this phasic four-lag
pattern was also present (Figure 5B); however, we also
detected a secondary increase in autocorrelation values
at early lags across training days.

Figure 3. Within-day sequence
learning scores. Left column
shows Day 1 learning scores
(δ) for RTs (A) and accuracies
(C) for each group. Right
column shows learning scores
(δ) for RTs (B) and accuracies
(D) for each group on the
remaining training days.
All error bars show SEM.
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To estimate sequence-specific response binding, we
subtracted the first three lags of the autocorrelation func-
tion of the sequence probe block from the first three lags
of the random probe block (Methods, Equation 4). There
was a marginal effect of Group on changes in sequence-
specific binding between the first and last days of training
(Figure 5C; F(1, 58) = 3.04, p = .087). Post hoc t tests
revealed that only the Visual (t(14) = 4.23, p < .001)
and Combined (t(14) = 2.03, p = .031) groups had a sig-
nificant change in binding with training.

Awareness of the Sequence

Explicit knowledge of the sequence can provide a perfor-
mance advantage in response speed and accuracy (Wong
et al., 2015; Curran & Keele, 1993; Nissen & Bullemer,

1987). To see whether the groups differed in explicit
awareness of the sequence, we analyzed the posttraining
questionnaire scores for all participants and all days
(Figure 6A). As expected questionnaire scores improved
with training, confirming that explicit awareness of the
sequence improved with training. To test for group dif-
ferences in awareness, we ran a logistic regression to es-
timate when participants were able to replicate any part
of the sequence (i.e., when their posttest questionnaire
score passed a value of 2) on each training day
(Figure 6B). Although there was a trend for the Com-
bined and Control groups to be more explicitly aware
of the sequence than the Response and Visual groups
on the first 2 days of training, we did not detect a sig-
nificant Group effect on any training day (all Fs > 2.17,
all ps > .102). Thus, despite robust differences in the

Figure 5. Response binding. (A) The autocorrelation function for the random probe block (Block 5), with the y axis showing the correlation between
the vector of trial-by-trial RTs and a shifted version of itself and the x axis showing the different shift lags. Each day is indicated by a separate line.
Error bars show the SEM. (B) The autocorrelation function for the sequence probe block (Block 6). Same plotting conventions as in A. (C) Difference in
bindings scores (see Methods, Equation 4) between the first and last days of training for all groups. Same plotting conventions as Figure 4.

Figure 4. Between-day learning rates. Average change between training days for sequence-specific learning for (A) RT (ΔRT) and (B) accuracy
(ΔAcc). All error bars show SEM.
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performance measures, the groups did not differ in their
explicit awareness of the sequence.

DISCUSSION

Here we were able to disambiguate long-term, multiday
learning of serial orders of visual cues from serial orders
of responses, within the same experimental paradigm, by
reordering the cue–response mapping on each day of
training. We found that being exposed to the same order
of visual response cues confers an advantage for long-
term sequential skill learning across training days, partic-
ularly for response speed and accuracy, whereas learning
to execute serially ordered actions has a much slower
learning rate. We also found that binding of temporally
adjacent actions occurs primarily when visual sequences
are repeated across days, but not when manual response
sequences are repeated across days. These findings are
consistent with the dual-system model of sequence learn-
ing (Hikosaka et al., 2002), where sequences of response
selections can be represented in both sensory and motor
reference frames; however, our results extend this work
by showing that the representation of sequential orders
of cues is learned faster across days than sequences of
motoric responses, and this difference does not relate
to differences in explicit awareness of the sequence
structure.

At first glance, it is tempting to think of the difference
in learning rates between the Visual and Response
groups as reflecting the differential recruitment of ex-
plicit and implicit learning systems, respectively. Previous
studies have found that explicit awareness of a trained se-
quence improves task performance and the efficiency of
learning relative to conditions where participants are not
aware of the sequential structure (Hazeltine, Grafton, &
Ivry, 1997; Willingham, Peterson, Manning, & Brashear,
1997; Grafton, Hazeltine, & Ivry, 1995; Curran & Keele,
1993; Nissen & Bullemer, 1987). Indeed, this behavioral
distinction between explicit and implicit learning is asso-
ciated with differences in neural circuits that are recruited

during learning. Frontal, parietal, striatal, and medial-
temporal lobe circuits have all been associated with the
efficiency of explicit sequence learning (Reber & Squire,
1998; Willingham, 1998; Hazeltine et al., 1997; Grafton
et al., 1995), whereas striatal, cerebellar, and premotor
circuits are commonly associated with implicit sequence
learning (Peigneux et al., 2000; Vakil, Kahan, Huberman,
& Osimani, 2000; Owen, Doyon, Dagher, Sadikot, & Evans,
1998; Berns, Cohen, & Mintun, 1997; Doyon, 1997; Rauch
& Savage, 1997; Grafton et al., 1995; Knopman & Nissen,
1991). Some areas, such as the striatum and medial-
temporal lobe, have been implicated in both explicit and
implicit sequence learning (e.g., see Schendan, Searl,
Melrose, & Stern, 2003; Turk-Browne, Yi, & Chun, 2006);
however, the observation of at least partially distinct corti-
cal and subcortical networks is consistent with a dual-
system model of sequence learning.
It is important to point out that our posttest awareness

assessment did not reveal a difference in explicit aware-
ness between any of the four groups, although it did
show that explicit awareness was generally high for all
groups. It is entirely possible that the questionnaire itself
encouraged participants to attend to the sequence and
thus quickly become fully aware of it by the second day
of testing. If so, it is possible that awareness confers a
specific advantage for detecting visual sequences, but
not response sequences. In this way, explicit awareness
could bias learning when visual sequences are repeated
across days. Thus, it is possible that a strictly implicit ver-
sion of our task would show a different long-term learn-
ing advantage. Although it should be noted that there is
some evidence to suggest that it is possible to implicitly
encode sequences in a perceptual reference frame, sug-
gesting that awareness and level of representation may
be independent aspects of sequence learning (Cohen
et al., 2005).
The current results are also largely consistent with pre-

vious findings on the level of sensorimotor sequence rep-
resentation. For example, Bapi and colleagues (2000)
showed that, during short-term learning, sequences are

Figure 6. Explicit awareness. (A) To determine whether explicit awareness of the sequence impacted the different group learning rates,
a posttest questionnaire was collected on each day that scored a participant’s awareness of the sequence on a 1–4 scale. See main text for details.
A categorical score above 2 indicated an explicit awareness of the trained sequence (dashed line). (B) Percentage of participants with questionnaire
scores greater than 2 on each day of training.
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encoded in an effector-independent reference frame.
These findings were crucial to the initial development
of the dual-system model proposed by Hikosaka et al.
(2002). In a similar vein Willingham (1999) found that,
within a single training day, passive viewing of the visual
sequence did not afford an advantage for future learned
sequences and that transfer learning was facilitated when
the sequence was maintained in the motoric reference
frame rather than in the visual reference frame. Although
at first this may seem to suggest that short-term se-
quences are stored as motoric representations, follow-
up experiments (Willingham et al., 2000) showed an
advantage for sequence learning when response location,
rather than motoric action, was held constant. Thus, par-
ticipants may learn the sequence of spatial locations
rather than motor articulations. Taken all together, this
previous work suggests that sensorimotor sequences
may be encoded at the interface of stimulus (i.e., visual)
and response (i.e., motoric) representations. Indeed, this
is consistent with findings from a visual search variant of
the SRTT showing that consolidation of motor sequences
is stronger when a more consistent stimulus–response
mapping is used (Ziessler & Nattkemper, 2001; Ziessler,
1998).
We should point out, however, that the performance

of our Combined group is inconsistent with the hy-
pothesis that sequences are learned as serial orders of
stimulus–response pairings, as it predicts that their over-
all performance should be as good or better than the
Visual group. Part of this discrepancy may be driven by
differences between the indirectly cued SRTT, used here,
and the visual search version of the SRTT (Ziessler & Natt
Kemper, 2001; Ziessler, 1998). The emerging consensus,
instead, is that sequence learning happens at multiple
levels of representation. For example, Dirnberger and
Novak-Knollmueller (2013) used a stimulus–response re-
mapping procedure to probe the nature of sequence rep-
resentations within a single training day. They found that
the degree of motoric and visual sequence learning was
highly correlated within an individual and that motoric
sequences were consolidated more quickly during train-
ing than perceptual sequences. The current results fit
nicely within this multisystem framework by showing that
long-term consolidation is possible when sequences are
presented reliably as either serial orders of responses or
visual cues, with representing sequences in a visual refer-
ence frame affords an advantage for long-term, multiday
sequence learning. In addition, we show that learning
sequences of visual responses is advantageous not only
for typical speed and accuracy measures but also for mea-
sures of temporal response binding as well.
Beyond the level of representation, the acquisition of

sequential skills also appears to rely on multifaceted feed-
back signals to drive learning. Reinforcement learning al-
gorithms, like the upper confidence bound algorithm
(Auer, 2003) and temporal difference learning (Sutton
& Barto, 1998), have had great success at solving serial

order problems in machine learning (see Littman, 2015).
This reinforcement learning hypothesis of sequence learn-
ing is consistent with observations of cortico-basal ganglia
networks being recruited during long-term sequence learn-
ing (Wymbs & Grafton, 2015; Wymbs et al., 2012; Bassett
et al., 2011; Bischoff-Grethe, Goedert, Willingham, &
Grafton, 2002; Hazeltine et al., 1997) and that impairments
in dopamine function also impair sequence learning
(Pendt, Reuter, & Müller, 2011; Shin & Ivry, 2003). Thus,
dopaminergic reward pathways play a clear role in learn-
ing sequential actions. However, along with reward out-
come signals, production errors are also essential to
learning sequential actions. For example, in nonhuman
primates, muscimol injections of the dentate nucleus,
the primary output nucleus of the cerebellum, impair
the production of overly learned sequences but not the
production of novel sequences (Hikosaka, Miyashita,
Miyachi, Sakai, & Lu, 1998). In humans, patients with
lesions of the cerebellum are impaired at learning spatial-
temporal sensorimotor sequences (Shin & Ivry, 2003).
Although some have argued that cerebellar-dependent
error correction only serves to support fast adaptive
corrections during the sequence production but not di-
rectly contribute to learning the sequences themselves
(Doyon, Penhune, & Ungerleider, 2003). Nonetheless, this
would count as a contribution of production error signals
to the efficiency of sequence learning. Within the context
of the current study, it is possible that the learning of serial
orders of cues relies on different feedback signals than
learning sequential orders of responses. For example,
visual sequence acquisition may rely on cortico-striatal
reinforcement learning systems, with very long time scales
of consolidation, whereas the sequence learning at the
response level may rely on faster cerebellar dependent
error correction. Characterizing the precise feedback sig-
nals that contribute to cue and response learning is left
to future studies.

More recent studies have suggested that feedback-free
associative learning may also contribute to sequence learn-
ing (Acuna et al., 2014; Verstynen et al., 2012). For exam-
ple, using a state space model, Verstynen and colleagues
(2012) suggested that temporal pairing of two actions
increases the likelihood that the current action primes
the upcoming response. This associative process has
many similarities with statistical learning (Saffran, Aslin, &
Newport, 1996) whereby temporally associated events
become bound or chunked together (for a review, see
Perruchet & Pacton, 2006). Statistical learning has been
proposed as a mechanism for naturalistic language acqui-
sition by using passive experience to identify sequential
or hierarchical structure in grammatical systems (Saffran,
2002). At the neural level, statistical learning has been
associated with activity in both the hippocampus and early
visual areas (Turk-Browne, Scholl, Johnson, & Chun, 2010;
Turk-Browne, Scholl, Chun, & Johnson, 2009; Breitenstein
et al., 2005), suggesting that the medial-temporal lobe may
serve as a temporal association detector for high-level
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perceptual areas to bind representations for stimuli that
follow regular temporal patterns. Indeed, as with other
forms of hippocampal dependent learning, the consolida-
tion of complex response sequences is improved follow-
ing a normal sleep cycle (Spencer, Sunm, & Ivry, 2006;
Walker, Brakefield, Morgan, Hobson, & Stickgold, 2002).
This common association with the hippocampus suggests
that passive associative learning mechanisms may be at
play during sequence learning, particularly when regulari-
ties of statistical structure occur in the perceptual domain.

The Visual group’s learning advantage, particularly in
binding, is also at odds with recent models of complex
skill learning. Diedrichsen and Kornysheva (2015) pro-
posed that binding multiple responses into a single
chunk happens in levels of the motor planning hierarchy
that are closer to motoric execution. According to this hi-
erarchical model, the binding of low-level motor syner-
gies reduces computational complexity by allowing for
the recruitment of a single high-level motor command
to produce a single spatiotemporal sequence of low-level
muscle commands. This would predict that the Response
group should exhibit an advantage for learning over the
Visual group. In fact, our results show the opposite pat-
tern. In both measures of response speed and response
binding, the Visual group exhibited the greatest degree
of learning. However, from a behavioral flexibility stand-
point, it makes sense to have the binding process occur
above the execution level. Pure binding of motor syner-
gies, such that engaging one action automatically exe-
cutes other bound movements, would lead to behavioral
entrenchment. In many incidences, this would prove prob-
lematic for adapting to changes in environmental context.
For example, automatically typing the letters “h” and “e”
every time the letter “t” is pressed on the computer key-
board, just because the word “the” is one of the most fre-
quently typed words in the English language, would prove
inefficient every time you desired to type a word beginning
with the letter “t.” But binding high-level motor plans or
even representations of sensory cues that guide actions
would allow for the efficiency of chunking actions together
while maintaining flexibility at the motoric level to adapt
in changes of context. In this way, the letters “t,” “h,” and
“e” may be conceptually bound together into the word
“the,” triggering a cascade of motor actions that type the
target word, but just typing the letter “t” would not trigger
the automatic execution of “the.” Thus, from this per-
spective, it would make sense that the group exposed to
serially presented cues, presumably encoded at higher
levels of representation, would learn sequences faster than
the group exposed to consistent response sequences but
different visual cues.

One unexpected result in the current study is that the
Combined group, which was exposed to the same se-
quence at the cue and response level, had across-day
learning rates that were lower than the Visual only group
and in similar ranges as the Control group that learned a
new sequence each day. If learning sequences of re-

sponses were a pure top–down process, where high-level
cue representations or action plans become bound to-
gether, then the Visual and Combined groups should
have equal performance across training. On the other
hand, if sequence learning happens via multiple learning
systems and at multiple levels of representation that sum
together, then the Combined group should outperform
the Visual group because the sequential pattern is ex-
pressed at multiple levels of representation. Our results
suggest an alternative, bottlenecking hypothesis, where
learning happens at multiple levels; however, the slower
learning rate at the response level constrains the effi-
ciency of the overall output. Indeed, neuroimaging evi-
dence suggests that during sequence learning striatal
systems, implicated in learning response contingencies,
and hippocampal systems, implicated in learning temporal
associations of events, interact and possibly compete
(Albouy et al., 2013, 2015). If the Visual group primarily
learns temporal associations of visual cues, that is, relies
mostly on hippocampal systems but does not rely as much
on striatal response sequencing systems that might have a
slower learning rate, this would predict an advantage for
learning in the Visual group over the Combined group.
Although this hypothesis is intriguing from a theoretical
perspective, more experimental and modeling work is
needed to both validate this effect and understand its
mechanistic underpinnings.
When considering how to interpret the present results,

we should point out that, although we assume that the
difference in performance between the Visual and Re-
sponse groups reflects differences in learning rates at
two levels of representation, we cannot rule out the pos-
sibility that learning only occurs at a single representa-
tional level. For example, the design of our experiment
does not preclude the possibility that the entirety of se-
quence learning occurs at a high level of the sensorimo-
tor hierarchy. According to this alternative hypothesis,
the performance improvements observed in the Re-
sponse group may simply reflect improvements in that
group’s ability to pick up on the sequential cue pattern
on each consecutive day. Disambiguating the single from
multiple representational system models will require
neuroimaging or neurophysiological measures that allow
for explicitly measuring representational patterns in se-
quential coding (see Kriegeskorte, Mur, & Bandettini,
2008) and looking for where signatures of learning are
expressed along the hierarchy from visual cues to motoric
responses in frontoparietal networks. Finally, Franz and
McCormick (2010) showed how the nature of verbal in-
struction biases performance in a seemingly procedural
bimanual coordination task. It is possible that our in-
struction to respond quickly to the visual cue might
bias attention to visual coordinate frames over motoric
coordinates and thus afford an advantage for visual
learning. Future work should focus on how minor varia-
tions in instructions could impact this form of long-term
skill learning.
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Nonetheless, our current results highlight an explicit
divide in how sequential information can be represented
during long-term skill learning. Learning serial orders of
visual cues occurs faster than learning sequential orders
of responses, particularly for response speed and mea-
sures of response binding. This provides critical insights
into the level of representation that complex skills are
encoded at long time scales of training and raises interest-
ing questions about how learning at multiple levels may
interact with each other during complex skill learning.
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