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Abstract

The level set tree concisely describes the hierarchy of modes in a probability density

function and is a statistically principled tool for clustering and topographical data

analysis. To make level set trees more useful for practical data analysis, we generalize

the method to non-Euclidean data and develop a suite of tools for interactive tree

visualization, data exploration, and clustering. We also propose several descriptive

and quantitative techniques for comparing level set trees, enabling inference about

differences between underlying populations and evaluation of uncertainty in tree

estimation.

We tested the proposed methods in a range of simulations and real applications.

Level set tree clustering performed as well as several popular off-the-shelf methods in

simulation experiments, and successfully captured multi-scale structure in popula-

tion genetic data with over 11,500 covariates and infinite-dimensional neuroimaging

data with 100,000 observations.

All of the methods discussed in this thesis are implemented in the publicly

available Python package DeBaCl. The software emphasizes speed, efficiency, and

easy customization; in combination with our methodological extensions, the toolbox

transforms the level set tree from an elegant theoretical construct into a powerful

and widely applicable data analysis technique.
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Chapter 1

Introduction

The level set tree of a probability density function (pdf) concisely represents the

hierarchy of the function’s modes. This simple idea was proposed at least as early as

1975 as a statistically principled way to define the slippery concept of a cluster (Har-

tigan, 1975), and offers numerous theoretical and methodological advantages as a

clustering solution. Despite the elegance of the approach, however, it remains un-

derutilized as a tool for practical data analysis. This thesis and the accompanying

software are intended to promote the use of level set trees in applied statistics by

showing the effectiveness of level set tree clustering and by demonstrating that the

level set tree provides a global, multi-scale, and easily visualized summary of data

topography that is more informative than any single clustering result.

Clustering is one of the most fundamental tasks in statistics and machine learn-

ing, and numerous algorithms are available to practitioners. Some of the most popu-

lar methods, such as K-means (MacQueen, 1967; Lloyd, 1982) and spectral cluster-

ing (Shi and Malik, 2000), rely on the key operational assumption that there is one

optimal partition of the data into K well-separated groups, where K is assumed to

be known a priori. While effective in some cases, this flat notion of clustering is in-

adequate when the data are very noisy or corrupted, or exhibit complex multimodal

1



2 CHAPTER 1. INTRODUCTION

behavior and spatial heterogeneity, or simply when the value of K is unknown. In

these cases hierarchical clustering provides a more fitting framework because the

multi-scale clustering features can be captured by a hierarchy of nested subsets of

the data. The expression of these subsets and their order of inclusions—typically

depicted as a dendrogram—provides information well beyond typical clustering out-

put. In particular, it serves as a useful global summary of the entire dataset and

allows the practitioner to identify and focus on interesting sub-clusters at different

levels of spatial resolution.

There are, of course, myriad algorithms for hierarchical clustering. In most cases,

however, their use is advocated on the basis of heuristic arguments or computational

ease, rather than well-founded theoretical guarantees. Single linkage clustering, for

example, is known to be inconsistent in dimensions greater than one (Hartigan,

1981) and suffers from the problem of chaining (Kuiper and Fisher, 1975). Complete

linkage and average linkage, on the other hand, capture spherical clusters but are not

suitable for complex data with irregular groups (Sneath, 1969). Furthermore, The

dendrograms that result from agglomerative hierarchical clustering do not indicate

the optimal number of clusters; to obtain a class assignment for each point, the

practitioner must specify the desired number of clusters or a threshold at which to

cut the dendrogram. Finally, the dendrograms that result from these methods are

rarely used as statistical descriptors in their own right.

The high-density hierarchical clustering paradigm proposed by Hartigan (1975) is

different. For intuition, suppose a sample Xn of independent draws from an unknown

probability distribution P on Rd with probability density function f (with respect

to Lebesgue measure). The probability of observing a data point inside a subset

A ⊂ Rd can be computed as

P (A) =

∫
x∈A

f(x)dx, (1.1)
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where the integral is the Lebesgue integral in d-dimensions.1 It is clear that a set

A where f takes on large values has a high probability of containing many of the

sample points. Consequently, points in the Xn are likely clustered inside such a set,

so it is natural to define clusters as regions of high density separated by regions of

low density (Hartigan, 1975).

This intuition can be formalized by defining the λ-upper level set of f to be

Lf (λ) = {x ∈ Rd : f(x) ≥ λ}, (1.2)

for any threshold value λ ≥ 0. A high-density cluster is a maximal connected com-

ponent of Lf (λ) for any λ and the level set tree T is simply the set of all such

clusters. T has a hierarchical structure in that for any two different high-density

clusters Ci and Cj , either Ci ⊂ Cj , Cj ⊂ Ci, or Ci ∩ Cj = ∅ (Hartigan, 1975),

and we implicitly include these parent-child relationships when discussing a level

set tree. Figure 1.1 illustrates how the tree is constructed by identifying upper level

sets and high-density clusters for successively higher values of λ. The tree property

can be seen in the fact that each high-density cluster is a subset of some cluster

portrayed immediately below it but is disjoint from all other clusters at the same

level.

This formalization has numerous advantages, particularly with respect to other

forms of hierarchical clustering: (1) it provides a probabilistic notion of clustering

that conforms to the intuition that clusters are the regions with largest probability

to volume ratio; (2) it establishes a direct link between the clustering task and

the fundamental problem of nonparametric density estimation; and (3) it allows for

a clear definition of clustering performance and consistency (Hartigan, 1981) that

is suitable for rigorous theoretical analysis. As a result, level set trees provide a

1Technically, A must be a measurable subset of Rd in order for the integral to be well defined; see
Billingsley (2012). Throughout we will implicitly assume that measurability holds, although from
a practical standpoint, this is inconsequential.
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means to represent and visualize data arising from complex and high-dimensional

distributions that is statistically accurate in the sense of being a faithful encoding of

the level sets of a bona fide density function. This property extends to any sub-tree

of a level set tree, so it is possible to extract subsets of data at multiple resolutions

while retaining the same probabilistic faithfulness, effectively allowing for dynamic

and multi-scale clustering.

Despite the methodological advantages and improving theoretical understanding

of level set trees, the approach has not caught on as a tool for applied statistical

analysis. One reason for this is that estimating level set trees is a computational

challenge. The first instinct is to use the level set tree of a suitable density estimate

f̂ as a tree estimate T̂ , because for a well-behaved f and a large sample size, f̂ is

close to f with high probability (Chaudhuri and Dasgupta, 2010). With a kernel

density estimator, for example, the plug-in estimate of Lf (λ) at any λ accurately

captures the true level set under certain conditions as n→∞. In fact, the stability

of level set and tree estimates can provide guidance for choosing the bandwidth of

the kernel density estimator (Rinaldo et al., 2012).

The plug-in approach is not feasible in practice even for low-dimensional data,

however, because it requires both evaluation of f̂ on a dense mesh in Rd and a

combinatorial search for connected components over all possible paths between each

proposed component.

Many methods have been proposed to overcome these computational obstacles.

One family of techniques remains faithful to the idea that clusters are regions of the

sample space. Members of this family include histogram-based partitions (Klemelä,

2004; Steinwart, 2011), binary tree partitions (Klemelä, 2005), and Voronoi tessel-

lations (Azzalini and Torelli, 2007). These techniques tend to work well for low-

dimensional data, but suffer from the curse of dimensionality because partitioning

the sample space requires an exponentially increasing number of cells (Azzalini and
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Torelli, 2007). The Steinwart algorithm is notable in that it is proven to find (asymp-

totically) the smallest value of λ where there are two clusters in the level set tree,

and correctly recovers the clusters at this level (as n→∞). This procedure can be

extended recursively to estimate the whole tree, although Steinwart notes that the

algorithm is not likely to work well in practice.

A second family of level set tree estimators produces high-density clusters of data

points rather than sample space regions. Conceptually, these methods estimate the

tree by intersecting the level sets of f with the sample points Xn and then evaluating

the connectivity of each set by graph theoretic means. This typically consists of three

high-level steps: estimation of the probability density f̂ from the data; construction

of a graph G that describes the similarity between each pair of data points; and a

search for connected components in a series of subgraphs of G induced by removing

nodes and/or edges of insufficient weight, relative to various density levels.

The variations between the graph-based methods of the latter category are found

in the definition of G, the set of density levels over which to iterate, and the way

in which G is filtered through the density levels. Edge iteration methods assign a

weight to the edges of G based on the proximity of the incident vertices in fea-

ture space (Chaudhuri and Dasgupta, 2010) or the value of f̂ at the incident ver-

tices (Wong and Lane, 1983) or on a line segment connecting them (Stuetzle and

Nugent, 2010). For these procedures, the relevant density levels are the edge weights

of G. Frequently, iteration over these levels is done by initializing G with an empty

edge set and adding successively more heavily weighted edges, in the manner of

traditional single linkage clustering. In fact, single linkage itself is a consistent esti-

mator for d = 1, but only weakly consistent for higher dimensions (Hartigan, 1975,

1981; Penrose, 1995).2

The Chaudhuri and Dasgupta algorithm (which is a generalization of Wishart

2Hartigan also points out that average and complete linkage are “hopelessly inconsistent” for
high-density clusters (Hartigan, 1981).
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(1969)) is a particularly interesting member of this family because it was the first

general level set tree estimator with provable consistency and finite-sample rates

of convergence (Chaudhuri and Dasgupta, 2010). Balakrishnan et al. show that

for data on or near a low-dimensional manifold embedded in Rd, the Chaudhuri-

Dasgupta tree estimator is consistent and converges quickly to the true level set tree

at a rate that depends on the manifold dimension but not d (Balakrishnan et al.,

2013). Unfortunately, the Chaudhuri-Dasgupta procedure is too computationally

demanding for practical use, because it requires estimation of connected components

in n2 filtered similarity graphs (see Chapter 6 for details).

A different class of graph-based level set tree estimator, point iteration methods

construct G with unweighted edges to indicate similarity, and assign weights to the

vertices according to the value of f̂ at the corresponding data point. Subgraphs

are created by removing vertices from G in increasing order of these weights. A

somewhat complicated version places an edge eij in G if the amount of probability

mass that would be needed to fill the valleys along a line segment between xi and

xj is smaller than a user-specified threshold (Menardi and Azzalini, 2013). Another

proposed method uses the Gabriel graph for G, with vertices representing data

points and edges eij when there is no other vertex in the smalled closed ball which

has xi and xj on its border (Oesterling et al., 2011). Oesterling et al. augment this

graph by adding a vertex at the midpoint of each edge if the density estimate at

the augmented vertex is lower than at the adjacent vertices. Graph filtration can

be done very quickly by estimating the join tree with a union-find algorithm (Carr

et al., 2003).

A third version of the point iteration estimator class uses a k-nearest neighbor

(kNN) similarity graph for G, with vertices for data points and edges eij if xi or

xj are among the other point’s k-closest neighbors. (Kpotufe and Luxburg, 2011).

This method is straightforward and reasonably computationally efficient (although
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not generally as fast as construction of the join tree with union-find). Combined

with a particular tree pruning scheme, it is also supported by theoretical results.

Under the assumption that f is bounded and Hölder continuous: (1) the connected

components of any level set can be recovered by subgraphs of G for sufficiently large

n; (2) in a finite sample all clusters in T̂ correspond to a cluster at some level of T ;

yet (3) salient clusters will be recovered; and (4) the pruned tree estimate is a con-

sistent estimator for T . This is the method that we adopt as our standard estimator,

although we typically use a more intuitive pruning method for applications.

Because the level set tree is such a fundamental probabilistic object, it is closely

related to many other density-based statistical methods. The most obvious relation-

ship is with procedures that estimated individual density level sets and high-density

clusters at a fixed value of λ. There are numerous results in this field (see, for

example, Polonik (1995); Cuevas et al. (2000); Maier et al. (2009); Rinaldo and

Wasserman (2010) and Cadre et al. (2013)), but it is not generally clear how to

extend these results to hold over all levels of the level set tree.

One very popular method in this category is Density-Based Spatial Clustering

of Applications with Noise (DBSCAN ) (Ester et al., 1996). DBSCAN finds clusters

that consist of core points—defined as having k neighbors within a distance ε—and

border points—defined as being within ε of a core observation whose ε-neighborhoods

intersect. Although this formalization does not explicitly utilize the pdf, it is clear

that core observations are the same data points that have high estimated density

while fringe observations have intermediate estimated densities so that DBSCAN

clusters are indeed clusters with high density. A recently proposed modification finds

the optimal values of k and ε in a data-driven fashion, where optimal is defined as in

Steinwart (2011) as the lowest density level where two clusters occur (Sriperumbudur

and Steinwart, 2012). The clusters returned by DBSCAN at these parameter values

are consistent.
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The mean shift algorithm uses iterative estimates of the density gradient to si-

multaneously find modes and define clusters as the basins of attraction around those

modes (Fukunaga and Hostetler, 1975; Cheng, 1995; Comaniciu and Meer, 2002).

This type of method is the subject of a great deal of recent and ongoing research, par-

ticularly with the goal of improving computational performance (Carreira-Perpinan,

2006; Yuan et al., 2012). Also of note is an algorithm that find K high-density modes

if K is specified a priori (Carreira-Perpinan and Wang, 2013).

Mean shift and DBSCAN estimate clusters based on the density function, but

do not describe the cluster hierarchy or overall structure of the data. The OPTICS

algorithm is an exception (Ankerst et al., 1999). Like level set trees, it orders data

points by estimated density and allows for the retrieval of clusters at any density level

or dendrogram visualization of overall cluster structure. The ordering is designed

so that observations that are spatially proximal are also proximal in the OPTICS

output; the clusters at a given density level are essentially obtained from DBSCAN.

Finally, the level set tree is similar—especially in name—to the mode tree (Min-

notte and Scott, 1993), which illustrates the locations of the modes in a one-

dimensional pdf as the bandwidth of a density estimator varies. As the bandwidth

decreases, more modes appear, and the tree structure is imposed artificially by des-

ignating these as either “new” or as children of modes at larger bandwidth values.

Contrast this with the level set tree, which represents the hierarchy of high-density

clusters over levels in the true density, or for a fixed bandwidth in the case of tree

estimation.

This thesis extends level set trees in two primary directions. First, we improve

the use of level set trees for clustering, the original motivation behind the method. In

Chapter 3 we show how level set trees can be used to quickly retrieve many different

clustering results for a single sample, and we show in a range of simulations that

clustering with level set trees is at least as accurate as several standard methods in
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low-dimensional but challenging problems. For reasons of both numerical instability

and poor statistical performance, density-based methods are often not used with

high-dimensional data, but we show that high-dimensional level set trees can be

effective nevertheless by successfully clustering individuals in the Human Genome

Diversity Project, whose genetic information is measured at over 11,500 single nu-

cleotide polymorphisms. An even more fundamental limitation of the level set tree

method is the requirement of a pdf, which would seem to preclude the method’s

application to infinite-dimensional functional data. In Chapter 4 we overcome this

hurdle by applying level set trees to pseudo-densities (Ferraty and Vieu, 2006) for

functional data rather than bona fide density functions. The method is used success-

fully to cluster North Atlantic hurricane tracks and deterministic fiber streamlines

from diffusion weighted neuroimaging (DWI).

The second and more fundamental way in which we extend the level set tree

method is to show that the trees solve another fundamental statistical challenge: the

estimation and description of structure in a density function. The pdf is a highly

intuitive way to describe the distribution of a random variable, but direct visualiza-

tion of density functions is impossible in more than three dimensions. The power of

level set trees is in their simple, low-dimensional representation of the key features

of density functions. Toward this end, in Chapter 2 we first describe the α scale

that indexes high-density clusters by the mass of the upper level set to which they

belong (Rinaldo et al., 2012) and we propose a new κ index to further improve the

interpretability and generality of level set trees. Then we describe a procedure for

construction of the level set tree dendrogram that emphasizes the clear communi-

cation of key tree features, and in Chapter 3 we show that the dendrogram is a

highly useful scaffold for interactive data exploration and clustering, particularly

for complex or high-dimensional data where direct visualization is difficult. Finally,

Chapter 5 presents several ideas for the use of the level set trees as statistics, from
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which we can infer and predict things about the underlying distributions. The po-

tential power of these ideas is illustrated in a simple exercise discriminating different

Gaussian mixture distributions as well as a comparison of level set trees for DWI

fiber streamlines from multiple individuals.

All of the methods described in this thesis are implemented in the Python DeBaCl

toolbox (for DEnsity-BAsed CLustering). This toolbox—and the code used to gen-

erate the results in this document—are available online and comments are welcomed

by the author. In addition to the standard level set tree algorithm that we prefer to

work with, DeBaCl also contains the first implementation (of which we are aware) of

the Chaudhuri-Dasgupta level set tree algorithm. This algorithm and the challenges

of its practical implementation are discussed in Chapter 6.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.1: Level set tree construction. (a) The density function for a mixture of
three Gaussian distributions in R1 (black curve), with a highlighted density level at
λ = 0.008 (dashed red line), and the upper level set at λ = 0.008 (solid red line).
Note that the upper level set is an interval in R1, but is shown above the abscissa
for illustration. (b) The single connected component of panel (a) is represented
on the dendrogram by a single dot at a height of λ = 0.008. (c) Three more λ-
upper level sets and their high-density clusters are added to the pdf. (d) Each high-
density cluster of panel (c) is represented by a disc on the dendrogram. (e) The final
dendrogram. (f) The dendrogram with selected λ levels and clusters highlighted.





Chapter 2

Tree indexing and dendrograms

2.1 Alpha tree index

Interpretation of λ-indexed level set trees is difficult because the tree depends on the

height of f , which is specific to individual distributions. It is not clear without further

context, for example, whether we should consider λ = 1 as a high or low density

threshold. To remove this scale dependence, level set trees can also be indexed to

the probability content of upper level sets. Let λα be the density level such that the

λα-upper level set of f has probability content no smaller than α (Rinaldo et al.,

2012):

λα = sup

{
λ :

∫
x∈Lf (λ)

f(x)dx ≥ α

}
. (2.1)

The map α 7→ λα gives a monotonically decreasing one-to-one correspondence be-

tween values of α in [0, 1] and values of λ in [0,maxx f(x)]. In particular, λ1 = 0

and λ0 = maxx f(x). Because this map is monotonic, we can express the height of

the tree in terms of the probability content α instead of λ without changing the

topology (i.e. number and ordering of the branches) of the tree. The α-indexing is

generally not, however, a linear re-indexing of λ, so the re-indexed tree will be a

deformation of the original tree in which some branches are dilated and others are

13
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compressed.

Indexing a level set tree to α values is useful for several reasons. First, the high-

density clusters at a particular α-upper level set are the 1 − α fraction of “most

clusterable” points. In addition, because α ∈ [0, 1] it is easy to compare α-index

level set trees across different distributions, even in spaces of different dimension.

Finally, the α-index is more effective than the λ index at representing regions of

high probability content but low density.

2.2 Cluster trees

For many applications and analyses of level set trees it is useful to switch to the

cluster tree representation, where all of the tree nodes in a density mode are collapsed

into a single node that contains a birth level λ′, death level λ′′, and a reference to

the node’s parent in the cluster tree (Stuetzle and Nugent, 2010).

Formally, for any cluster Ci in the level set tree, let λ′′ be the lowest level such

that Lf (λ) ∩ Ci has more than one connected component (i.e. a mode splits) or

Lf (λ) ∩ Ci = ∅ (i.e. a mode vanishes). Let E be the collection of all high-density

clusters with the same λ′′ such that Ci, Cj ∈ E =⇒ Ci ⊂ Cj or Ci ⊃ Cj . E

corresponds to a single node l of the cluster tree R, associated with a scalar λ′′l and

a maximal high-density cluster Cl such that Cl = Ci for some Ci ∈ E and Cl ⊃ Cj

for all other Cj ∈ E . Let parentl be the smallest node of R such that Cparentl
⊃ Cl.

For notational simplicity, let λ′l = λ′′parentl be the birth density level of cluster node

l. Note that each cluster tree node also has birth and death mass levels α′ and α′′,

derived directly from Equation 2.1.



2.3. KAPPA TREES 15

2.3 Kappa trees

Although α-indexed level set trees are better than λ-indexed trees at representing

probability content in an intuitive way, they are often misinterpreted as showing

the mass of cluster tree nodes rather than the mass of each α-upper level set. The

κ-index cluster tree facilitates this “size-based” intuition by precisely encoding the

probability content of each tree branch rather than density level.

Suppose cluster tree node i represents cluster C. In addition to a parent (defined

in Section 2.2), node i has mass Mi =
∫
Ci f(x)dx; children kidi, the set of nodes

whose clusters are maximal disjoint subsets of Ci in the cluster tree; and siblings

sibi, the set of nodes {j} such that kidparenti = (i, {j}).

Assuming the cluster tree is rooted, the κ tree is defined recursively by associ-

ating with each node of the cluster tree two scalar values κ′ and κ′′, as follows:

κ′0 = 0 (2.2)

κ′i = κ′′parenti (2.3)

κ′′i = κ′i +Mi −
∑
j∈kidi

Mj (2.4)

We designate the quantity κ′′i − κ′i as the littoral mass of cluster tree node i. Figure

2.1 illustrates the areas that constitute cluster littoral masses for an example den-

sity function in R1. The κ tree is ideal for describing and conveying the true size of

high-density clusters, and—like the α tree—it allows for comparisons between trees

estimated for distributions in very different spaces. A major weakness of the κ tree,

however, is instability around flat regions of the density function. Small perturba-

tions in a flat density can dramatically change the littoral mass of nearby clusters,

and the more mass contained in a flat region the worse the instability can be.
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2.4 Estimation

2.4.1 Lambda trees

Except for the final pruning step, our standard algorithm for estimating λ-indexed

level set trees closely follows the algorithm of Kpotufe and Luxburg (2011). It accepts

as input the data Xn = {x1, . . . , xn}, a smoothing parameter k, a pruning parameter

γ, and a distance function. The standard algorithm assumes Euclidean distance ‖.‖.

The algorithm outputs an estimated level set tree T̂ , which is a collection of subsets

of Xn, ordered by inclusion relationships. The algorithm comprises the following

steps.

1. Compute a similarity graph G, whose vertices correspond to Xn. Typically

we use a k-nearest neighbor graph, where edge eij is included in G if xi is

one of the k closest points to xj or vice versa. More formally, let rk(xi) be

the radius of the smallest ball that is centered at xi and includes k + 1 data

points. Include eij in G if ‖xi − xj‖ ≤ max{rk(xi), rk(xj)} and i 6= j.

2. Estimate the density f̂ and evaluate it on Xn. Our standard method uses a

kNN density estimator:

f̂(x) =
k

n · vd · rdk(x)
(2.5)

where vd is the volume of a d-dimensional ball (Devroye and Wagner, 1977;

Maier et al., 2009). Let λj = f̂(xj).

3. Put the density estimates in increasing order and use them to filter the simi-

larity graph. Specifically, for each value λj :

(a) The data upper level set is L
f̂
(λj) = {xi : f̂(xi) ≥ λj}.

(b) The filtered graph Gλj is the subgraph of G induced by L̂λj .

(c) Find the connected components of Gλj .



2.4. ESTIMATION 17

4. Let T̂ be the set of all connected components, indexed by the density level (λ)

to which they belong and ordered by inclusions.

5. Prune T̂ by merging components with fewer than γn elements into larger

siblings.

Figure 2.2a shows the estimated density and level set tree for a sample drawn from

the distribution in Figure 1.1. The observations highlighted on the abscissa and the

density function in Figure 2.2a correspond to the high-density mode in Figure 2.2b

with the same color.

In this algorithm, the parameter k controls both the smoothness of the density

estimate f̂ and the degree of connectivity in the similarity graph G. Larger values

of k produce smoother and flatter density estimates with small variances but large

biases. As a result, choosing a large k reduces the chance of finding spurious clusters

but makes it harder to detect and separate true clusters that are very close to

each other. Choosing a small k yields nearly unbiased density estimates with large

variances. Based on our experiments we tend to favor relatively large values of k.

The final step is to prune small components of the tree that occur due to sam-

pling variability or insufficient statistical power. Pruning merges components that

contain fewer than γn data points into other nearby components. Larger values of γ

correspond to more aggressive pruning, where only connected components of large

relative size are deemed as separate clusters. On the other hand, setting γ to be very

small enhances the resolution of the clustering procedure but increases the chance

of seeing spurious clusters.

The algorithm allows for a great deal of flexibility in these choices of density

estimator and similarity graph. Most notably, the method works with kernel density

estimators and ε-neighborhood or Gaussian similarity graphs, and we experiment

with generalizations of the density estimator in Chapter 4. We prefer the kNN

density estimator for our standard tree estimation because it is computationally
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efficient, in that rk is already known from construction of G.

2.4.2 Computational complexity

Our estimation procedure is efficient, although determining a precise order of com-

plexity is challenging in part because of the high degree of flexibility in how each

phase is implemented. The first phase is computation of the similarity graph G,

which näıvely requires O(n2) computations to find all pairwise distances between

the n observations. A major advantage of the kNN similarity graph, however, is

that in many cases we need not compute all pairwise distances. For low-dimensional

Euclidean data the k-d tree provides an exact kNN query that is extremely fast

and memory efficient by representing a recursive axis-aligned partition of Rd in a

binary tree (Bentley, 1975). Although complexity analysis is somewhat challenging,

construction of the k-d tree is generally of order O(n log n) and the kNN query

for a single point is O(log n) (if we suppose each distance computation takes con-

stant time) (Friedman et al., 1977). To build the similarity graph then requires total

complexity of O(n log n), which is substantially faster than the O(n2) computations

required by the näıve computation of all pairwise distances.

For high-dimensional data the k-d tree fails because of the curse of dimension-

ality; each query requires traversal of a very high number of tree nodes. The k-d

tree also fails in the case of functional data stored in lists or a ragged array because

the k-d tree requires access to data elements at specific indices (Moore, 2000). In

these cases the ball tree can provide a fast, exact kNN query if the ground distance

satisfies the triangle inequality (Omohundro, 1989; Liu et al., 2006). There are many

different flavors, but construction generally requires no more than O(n log2 n) com-

putations (again assuming for simplicity that pairwise distance computation is O(1)

and the query for a single point is of the order O(log n) (Omohundro, 1989), yield-

ing a total complexity of O(n log2 n). For matrix-aligned data there are very fast
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implementations of both k-d trees and ball trees, and this thesis contributes to the

canon of statistical algorithms by providing a Python implementation of the ball

tree for functional data that cannot be reshaped to fit in a matrix.

Assuming construction of the similarity graph yields rk(x) as auxiliary information—

which is the case for the kNN graph—computation of the kNN density estimate for

each data point requires only constant time. Sorting the vertices in preparation for

graph filtration can be done with quicksort, which has O(n log n) run time. (Cormen

et al., 2009)

The run time of the connected component search over all density levels depends

heavily on the particular implementation. The most straightforward method is to

simply use a breadth- or depth-first search to identify connected components in

Gλj , for each value of λj . For a given level λj , the run time for both algorithms is

O(nλj +qλj ) (Cormen et al., 2009), where nλj is the number of vertices in Gλj and qλj

is the number of edges. Because we use a kNN graph, qλj ≤ knλj for any λj , and the

run time for a given density level can be simplified to O(nλj +knλj ) = O((k+1)nλj ).

Assuming k is small and fixed, this further simplifies to O(n). To find the connected

components over all density levels, the run time is O(n) +O(n− 1) + . . .+O(1) =

O(n2).

By using a more complicated implementation, however, the process of finding

connected components can be accelerated dramatically. For applications in image

processing, Najman and Couprie propose a method based on the union-find algo-

rithm with run time O(nα(n)), where α(n) is the diagonal inverse of the Ackermann

function. α(n) grows extremely slowly; for any practical value of n, α(n) is less than

4. (Najman and Couprie, 2006)

Finally, the worst-case complexity of pruning occurs when the un-pruned tree

has n clusters each containing a single point as the leaves. If γ is set to be large, the

pruned tree combines all of these leaves into a single root, which requires 2n merge
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operations, each of which involves only constant-time book-keeping. In sum, if the

connected components are found by straightforward breadth- or depth-first search,

the total procedure has O(n2) run time. If a union-find-type algorithm is used for

the component search, the limiting phase is construction of the similarity graph. If

all pairwise distances must be computed the total procedure is also O(n2), but if a

k-d tree or ball tree can be used (for example), then the total run time drops as low

as O(n log n).

2.4.3 Estimating alpha, kappa, and cluster trees

To estimate the α-indexed level set tree, we follow the standard algorithm from the

previous section with one key exception. Instead of filtering the similarity graph

over estimated density values λj in step 3, we iterate over α-quantiles of the sample

densities. For each α ∈
{

0, 1n ,
2
n , . . . ,

n−1
n , 1

}
, set λα to be the α-quantile of the n

estimated sample densities. The upper level set and filtered similarity graph are

constructed as before, using λα. The α level set tree again contains all connected

components ordered by inclusions, but each component is now indexed by a value

of α.

For any λ level set tree T̂ , estimation of the cluster tree R̂ follows immediately

from the definition of the cluster tree. First, create a cluster tree node l for each

unique death level λ′′ in T̂ . Associate with l the death level λ′′, the (unique) birth

level λ′ that corresponds to λ′′, and a maximal high-density cluster Cl that is the

superset of all clusters in T̂ with death level λ′′.

Because the map α 7→ λα is one-to-one and monotone, the sets and inclusion

relationships are identical in the λ and α level set trees, and the α level set tree can

be reduced to the same cluster tree estimate as T̂ . This cluster tree also contains

all of the information necessary to estimate the κ tree. Let M̂i be the fraction of

data contained in cluster tree node i. As with the population κ tree, we estimate



2.4. ESTIMATION 21

the sample κ tree recursively:

κ̂′0 = 0, (2.6)

κ̂′i = κ̂′′parenti , (2.7)

κ̂′′i = κ̂′i + M̂i −
∑
j∈kidi

M̂j . (2.8)

When estimating the κ tree it is often instructive to identify flat regions of the

density function, as these regions are potential sources of tree instability. Loosely

speaking, if there is a flat region at density level λ, the set Lf (λ) will have sub-

stantially larger volume than the set Lf (λ + ε). One way to check this in practice

is to examine the sequence of sorted density estimates for consecutive subsequences

where the density estimate increases by less than a small amount. This method re-

quires explicit specification of the subsequence length and density change thresholds

that trigger a warning, and finding such a subsequence does not necessarily imply a

flat density region. Nevertheless, it can be useful for flagging areas that need further

investigation.

A more direct way to look for instability in the κ tree is to estimate the tree for

numerous data subsamples or bootstrap samples, and to look for areas of large

variability in the dendrograms. See Chapter 5 for details on analysis of sets of

dendrograms.

The fact that the cluster tree estimate is the same for all three types of level

set trees, aside from the relevant birth and death values, makes cluster trees the

easier object to work with computationally. Table 2.1 shows the information in a

cluster tree for a simple Gaussian mixture simulation in R2. Each row of the table

corresponds to a node of the tree, which is associated with birth and death values

for α and λ indexing, pointers to the parent and children, and the indices of sample

points in the node’s cluster. This last set is represented in Table 2.1 as the “size” of
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the cluster; from this value it is trivial to compute the birth and death κ values if

needed.

node λ′ λ′′ α′ α′′ size parent children

0 0.000 0.001 0.000 0.007 1000 None [1, 2]
1 0.001 0.013 0.007 0.971 329 0 []
2 0.001 0.003 0.007 0.209 664 0 [3, 4]
3 0.003 0.014 0.209 0.984 255 2 []
4 0.003 0.017 0.209 1.000 280 2 []

Table 2.1: The summary table for an example cluster tree. Each row of the table
represents a node of the cluster tree, and shows the birth and death λ and α levels,
as well as the number of observations in the node’s cluster, and the parent-child
relationships of the node. Note that a node’s littoral mass can be obtained by sub-
tracting the size of its children from its own size. This tree was constructed from
a sample of 1,000 observations in R2 from a known Gaussian mixture distribution
with three components.

2.5 Dendrograms

The tree property of level set trees (and by extension cluster trees) implies that

they can be represented by dendrogram plots. In fact, for distributions with d > 2—

where density functions cannot be directly visualized—the ability to understand

and communicate the structure of a distribution in an intuitive visual way is one of

the most powerful features of level set trees (Oesterling et al., 2011). Both Klemelä

(2004) and Oesterling et al. (2013) have proposed interesting visualization techniques

for density-based trees, but for aesthetic and statistical (see Chapter 5) reasons we

describe our own dendrogram construction in this section.

The dendrograms for a level set tree and its corresponding cluster tree are iden-

tical, and it is easiest to construct the dendrogram from the cluster tree. For a

λ-cluster tree, node i is represented in the dendrogram by a vertical line segment

(called a dendrogram branch if i is an internal node of the cluster tree or leaf if i is a
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leaf node) whose endpoints are positioned vertically at λ′i and λ′′i . A horizontal line

segment connects the bottom of the branch for node i to the top of the branch for

parenti. For α and κ level set or cluster trees, the vertical positions of the branches

are α′ and α′′ or κ′ or κ′′, respectively.

Determining the horizontal position of the dendrogram branches is slightly less

straightforward than the vertical position. At a high-level, we first recursively con-

struct a set of silos that bound the horizontal positions of the branches, then set

the branch position within the silos. There are multiple options for each of these

phases. For silo construction there are two universal rules: the silo for the root node

0 is the interval [0, 1], and the dendrogram branches in a family are ordered from

left-to-right by decreasing mass. Silos are constructed recursively from the root to

leaf nodes. Suppose the silo for node i is set at [ai, bi]. For uniform silo construction,

equal-width silos are created for each node in kidi. For example, suppose node i has

two children: kidi = (j, j′). Then these children have silos [aj , bj ] =
[
ai,

ai+bi
2

]
and

[aj′ , bj′ ] =
[
ai+bi

2 , bi

]
.

For mass silos, the width of child silos is proportional to the mass of the child

clusters, Mj and Mj′ , with Mj > Mj′ (without loss of generality). In this case the

child silos are

[aj , bj ] =

[
ai, ai +

Mj

Mj +Mj′

]
(2.9)

[aj′ , bj′ ] =

[
ai +

Mj

Mj +Mj′
, bi

]
(2.10)

Both of these procedures are extended easily to nodes with more than two children.

For both theoretical and aesthetic reasons, we prefer mass silos for all the but the

simplest demonstration level set trees (see Section 5 for the theoretical considera-

tions).

There are also (at least) two options for setting the horizontal position of a
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dendrogram branch within its silo. Suppose the horizontal branch position for cluster

tree node i is zi. The most aesthetically appealing way to set zi is the mean method:

zi =


1
|kidi|

∑
j∈kidi zj if |kidi| 6= 0

ai+bi
2 else.

(2.11)

To define tree distances in Chapter 5 we instead use the boundary method for hori-

zontal positioning. For uniform silos, zi =
[
ai+bi

2

]
for all i. For mass silos:

zi =



ai+bi
2 if |kidi| = 0

ai +
Mj

Mj+Mj′
if |kidi| = 2

1
|kidi|

∑
j∈kidi zj if |kidi| > 2.

(2.12)

While this dendrogram construction is useful for defining tree distances, it tends to

be aesthetically jarring. Unless otherwise noted, the dendrograms in this thesis are

constructed with mass silos and mean-positioned branches. Even when uniform silos

are used, the mass of a cluster tree node is represented by the relative thickness of

its dendrogram branch.

Figure 1.1 illustrates dendrogram construction for a simple mixture of three

Gaussian distributions in R1. For the level set in 1.1b there is one connected compo-

nent, which maps to a single disc in the dendrogram canvas (Figure 1.1b). In Figure

1.1c three more upper level sets are shown at higher values of λ; each connected

component in these intervals corresponds to a disc of the same color on the dendro-

gram canvas (Figure 1.1d). When we sweep over all values of λ, the clusters form

vertical line segments in the dendrogram (Figure 1.1f). Each high-density cluster in

the level set tree has a specific location in the dendrogram, but for simplicity we

omit the discs and use only the vertical line segments to represent clusters in the

same mode (Figure 1.1e). Each vertical segment in the dendrogram corresponds to
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a node of the cluster tree, while branching points in the dendrogram correspond

exactly to levels at which two or more modes of the pdf, i.e. new clusters, emerge.

Segments that do not split are considered to be high-density modes.

As described in Section 2.1, the existence of a one-to-one map α 7→ λα means

that switching between λ and α indices does not change the overall shape of the tree.

Changing from a λ or α index to a κ index does change the topology, however, which

is frequently reflected in very different dendrograms. In particular, the tallest leaf

of the κ tree corresponds to the high-density mode with largest empirical mass. In

both the λ and α trees, on the other hand, leaves correspond to clusters composed of

points with high density values. The difference can be substantial, as demonstrated

in the “crater” example of Figure 2.3.

This example consists of a central Gaussian with high density and low mass

surrounded by a ring with high mass but low uniform density, shown in Figure 2.3a.

The red points belong to the central cluster and constitute 28% of the data, the

blue points are higher-density points of the outer ring and make up 37% of the

data, and the remaining 35% of the data is low-density, unclustered, gray points.

The λ tree (Figure 2.3b) correctly indicates the heights of the modes of the estimated

density function f̂ (not shown) but the λ dendrogram tends to produce the incorrect

intuition that the outer ring (blue node and blue points) is small. The α tree and

dendrogram (Figure 2.3c) ameliorates this problem by indexing node heights to

the quantiles of f̂ . The blue node appears at α = 0.35, when 65% of the data

remains in the upper level set, and vanishes at α = 0.74, when only 26% of the data

remains in the upper level set. It is tempting to say—incorrectly—this means the

blue node contains 0.74 − 0.35 = 0.39 of the mass. This interpretation is precisely

the design of the κ tree, however, where we indeed see that the blue node contains

0.72− 0.35 = 0.37 of the data, the red node contains 0.63− 0.35 = 0.28 of the data,

and the unclustered points form the remaining 0.35− 0.0 = 0.35 of the data.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1: Construction of the κ tree. Panels in the left column show the pdf for
a mixture of three Gaussian distributions in R1 (black curve); panels in the right
column show the κ dendrogram under construction. (a), (b) As λ increases from
0 to 0.067 (lower dashed line) there is a lone connected component whose littoral
mass is the shaded black area under the pdf. This is equal to the length of the black
line segment in the dendrogram. (c), (d) At λ = 0.067 two new clusters are born;
the first is a leaf of the tree, so its littoral mass is equal to its cluster mass (red area
and dendrogram branch). The second cluster has two children of its own, which
appear when λ is further increased to 0.123 (upper dashed line). The littoral mass
of this cluster is shown on both the pdf and the dendrogram in gray. (e), (f) The
final clusters are leaves, shown in blue and green on the pdf and the dendrogram.
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(a) (b)

Figure 2.2: Estimated level set tree. (a) Kernel density estimate for a sample of 2,000
points drawn from the distribution in Figure 1.1. (b) Estimated level set tree for the
sample. Color indicates the correspondence between high-density modes of the tree
and the observations in these modes.
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(a) (b)

(c) (d)

Figure 2.3: Comparison of tree indices. The “crater” distribution has a Gaussian
distribution at its core with high-density mean and 30% of the mass, while the outer
ring has 70% of the mass but uniformly low density. (a) A sample of 2,000 points
drawn from the crater distribution, colored according to membership in branches of
the sample level set tree. 28% of the data belong to the red cluster, 37% belong to the
blue cluster, while the remainder is background. Note the abuse of notation: x1 and
x2 refer here to dimensions of a single sample point, not separate observations. This is
true for all figures in this thesis. (b) The λ-indexed dendrogram correctly represents
the critical levels in the estimated density but gives the incorrect impression that the
blue cluster is small. (c) The α-indexed dendrogram. (d) The κ-indexed dendrogram,
whose branch heights precisely indicate the littoral mass of each cluster.



Chapter 3

Data exploration and clustering

3.1 Structured exploratory data analysis

The mode hierarchy in a level set tree is a very natural platform for statistically

principled interactive exploration of data. For data that are difficult to visualize

directly, either because of a high degree of complexity or d > 3, it is extremely

useful to be able to “walk through” interesting data subsets in a structured way.

For low-dimensional data these subsets can be isolated and visualized in feature

space but for high-dimensional data they must be projected into other meaningful

spaces or summarized numerically.

To facilitate the use of level set tree dendrograms for interactive data exploration,

we created two graphical user interface (GUI) software tools that allow a user to

select high-density clusters by clicking on dendrogram branches or density/mass

levels. We illustrate these tools here with an application to low-dimensional but

highly complex fiber endpoint neuroimaging data. Usage of the branch selection

tool is further illustrated in Chapter 4 for functional data.

The fiber endpoint data is derived from in vivo diffusion weighted brain imag-

ing (DWI) collected at the Scientific Imaging and Brain Research Center at Carnegie

Mellon University in 2012 for 30 neurologically healthy controls (the CMU-30 group).

29
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From the DWI data, deterministic fiber tractography was used to simulate smooth

1-dimensional manifolds (with boundaries) called fiber streamlines that represent

tracks of strong water diffusion in the brain (Hagmann et al., 2006). Streamlines

are represented as variable-length sequences of points in R3. Further detail about

participants, image acquisition, and fiber tractography can be found in Kent et al.

(2013) and at http://www.psy.cmu.edu/~coaxlab/?page_id=423.

For the analysis in this section, 10,000 fiber streamlines were mapped from the

cortex into the striatum for a single subject. To keep the demonstration simple, we

use only the last point of each streamline, located (by construction) in the striatum.

The raw data are shown in Figure 3.1. Although two views of the data are shown, it

is clear that a thorough understanding of the complex data structure is impossible

from a traditional scatterplot, due to overplotting effects.

The dendrogram provides a scaffold for isolating and visualizing coherent clusters

of data, ameliorating the overplotting problem to a great extent. Figure 3.2 shows

how the dendrogram and the branch selection GUI can be used to walk through the

complex fiber endpoint data. The points associated with one of the large branches

that begin near α = 0 are part of a spatially distinct cluster in the dorsal portion

of the striatum, specifically the dorsal caudate nucleus. By zooming in on differ-

ent dendrogram branches, we see that these correspond to coherent sub-clusters

at various “resolutions”. These are known, anatomically distinct sub-regions of the

projections (Haber and Knutson, 2010).

The second GUI tool allows a user to select a density or mass level in order

to visualize or retrieve high-density clusters. Figure 3.3 illustrates the high-density

clusters associated with two mass levels near interesting splits in the level set tree.

This tool allows us to quickly and interactively visualize how a level set tree encodes

high-density clusters at successively higher density or mass levels. For this dataset,

it reveals both the obvious split between points in the caudate and putamen and

http://www.psy.cmu.edu/~coaxlab/?page_id=423
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(a)

(b) (c)

Figure 3.1: Fiber streamlines and streamline endpoints for one subject in the CMU-
30 group. (a) 10,000 streamlines mapped from the middle frontal gyrus to the stria-
tum, with a deterministic fiber tractography algorithm, based on DWI data. (b), (c)
Striatal endpoints of the 10,000 streamlines, from two camera angles.

not-so-obvious high-density modes within each region.

3.2 Cluster retrieval options

Although the level set tree provides a great deal more information about data to-

pography than the typical clustering method, sometimes the goal is to obtain an
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Figure 3.2: Interactive exploration of data subsets with the dendrogram. The top
row shows the dendrogram for the striatal endpoints in Figure 3.1, with different
branches highlighted. The data subsets corresponding to the selected branches are
illustrated in the bottom row.

unsupervised partition of the data. When this is the case, level set trees provide

several ways to define clusters. The level selection GUI tool described in Section 3.1

is based on the most obvious method; because the level set tree is a compilation of

high-density clusters over many density or mass values, it is natural to select a value

of λ or α of particular interest and retrieve the corresponding high-density clusters.

In fact, the level λ (or α) provides a clustering resolution of sorts, with lower values

of λ corresponding to larger and coarser clusters and higher values to smaller, more

sharply defined clusters.

In addition to its definitional nature, this level-set method conveys the most in-

tuitive sense for where the highest density data subsets are located. It also allows the

investigator to control the number of points in the clusters; choosing a low mass level

produces clusters that contain most of the data, while high mass thresholds produce

clusters with only the peaks of the data modes. Finally, this method avoids the need

to specify a priori the number of clusters, which must be chosen heuristically in
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Figure 3.3: Interactive exploration of high-density clusters with the dendrogram.
The top row shows the dendrogram for the striatal endpoints in Figure 3.1, with
two different α levels selected (horizontal blue line). The bottom row shows the
high-density clusters for the respective α levels.

many popular clustering methods (k-means, for example).

On the other hand, if the clustering task demands a pre-set number of clusters,K,

this can be done with a level set tree by identifying the first K disjoint components

to appear in the tree as the level increases from λ = 0. Unlike k-means (and related

methods), however, there is no guarantee that there will be K disjoint nodes in a

level set tree. This first-K option is illustrated for the fiber endpoint data in Figure

3.4a.

The drawback of level-set and first-K clustering is that they require an arbitrary

choice of either λ, α, or K. All-mode clustering, which uses each leaf of a level

set tree as a cluster, automatically chooses the number of clusters and avoids the
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(a) (b)

Figure 3.4: Additional options for assigning cluster labels from the level set tree.
The top row shows the dendrogram for the striatal endpoints in Figure 3.1 and the
bottom row shows the corresponding high-density clusters (color indicates corre-
spondence between dendrogram and data). (a) The first-K method, which returns
the clusters produced by the first K − 1 splits in the tree as α increases from 0. (b)
The all-mode method, which designates each leaf of the cluster tree as a cluster.

arbitrary choice of a density or mass level at which to cut the tree (Azzalini and

Torelli, 2007) (see Figure 3.4b for an example). This method does remain sensitive

to the choice of smoothing and pruning parameters, however. In particular, for a

given degree of pruning, this method tends to produce more and smaller clusters

than level set clustering.

Each of these three methods assigns cluster labels to only a fraction of the

sample, and leaves the remaining background points unlabeled (see Figures 3.3 and

3.4 for examples). The fraction varies greatly depending on the choices of cluster
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labeling method and parameter values. Having unlabeled background points can be

an advantage in that it intelligently removes outliers, but it is a disadvantage if a full

data partition is needed. In the latter case, any classification method can be used to

label the unclustered points, although more sophisticated methods take advantage

of the already clustered data (see for example Azzalini and Torelli (2007)).

Taken together, the advantages of a level set tree approach—avoiding the need

to specify the cluster number, multiple cluster retrieval options, visualization of

many cluster permutations, interactive clustering exploration, and automatic outlier

removal—allow the practitioner to gain greater insight into the clustering behavior of

a data set, using fewer assumptions than would be necessary for standard methods.

Furthermore, all of these features can be explored from the level set tree structure,

avoiding the need to run the clustering algorithm repeatedly.

3.3 Performance Comparison Experiments

To analyze the effectiveness of level set tree clustering we tested it against several

standard clustering methods in a range of simulations. The experiment suggests that

level set clustering is at least as accurate in practical clustering tasks, particularly

with challenging non-convex clusters.

3.3.1 Methods

We compared the performance of level set trees against several popular methods: k-

means++ (Arthur and Vassilvitskii, 2007), Gaussian mixtures (Hastie et al., 2009),

hierarchical agglomeration with the Ward criterion (Hartigan, 1975), hierarchical

agglomeration with the single linkage criterion (Hastie et al., 2009), spectral clus-

tering (von Luxburg, 2006), diffusion maps (Coifman and Lafon, 2006), and DB-

SCAN (Ester et al., 1996). Where possible, the methods were given the true number

of clusters K in order to isolate the effectiveness of the algorithms from heuristics
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for choosing K.

The methods were tested in three scenarios in R3 with an increasing degree of

similarity to the hard problem of clustering fiber endpoints. The easiest scenario was

a mixture of six Gaussian distributions, the moderate scenario was a mixture of three

Gaussian distributions and three noisy arcs, and the difficult scenario was resampled

from a set of 10,000 fiber streamline endpoints from a real striatal fiber tractography

dataset, with Gaussian noise added to each resampled observation. For the hard

scenario the “ground truth” clusters were determined by a careful, manually tuned

application of level set tree clustering. The group means were contracted toward the

grand mean by a degree of ease coefficient ρ, which took 20 values on a grid ranging

from 0.1 to 1.2 (i.e. larger values mean an easier clustering task). Finally, for each

scenario and value of ρ, 20 datasets were simulated with 5,000 points apiece. Figures

3.5a, 3.5c, and 3.5e show examples of the simulation scenarios at large values of ρ.

For level set tree clustering, the smoothing and pruning parameters were set to

k = 150 and γ = 50, values which were intentionally not fine-tuned to optimize

the results. We retrieved cluster labels from each tree by finding the lowest density

level λ such that the upper level set L
f̂
(λ) had K high-density clusters. This is very

similar, but not identical to the first-K cluster retrieval method. Note also that this

ignores the ability of level set trees to identify the correct number of clusters with

the all-mode retrieval method. Background points were assigned to a cluster with a

kNN classifier (k = 11), which is a straightforward but sub-optimal approach.

Both types of agglomerative hierarchical clustering were implemented with the

R hclust function (R Core Team, 2012). K-means++, Gaussian mixture modeling

(GMM), and DBSCAN were implemented with the Python module scikit-learn

(Pedregosa et al., 2011). For DBSCAN we set the neighborhood parameter ε to be

the second percentile of all pairwise distances and the level set parameter (i.e. the

number of neighbors required for a point to be a core point) to be the first percentile
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of pairwise distances. Note that DBSCAN does not allow K to be specified, making

it difficult to compare to other methods.

We used our own implementations for spectral clustering and diffusion maps. For

spectral clustering we constructed a symmetric kNN graph on the data, with k set

to one percent of the sample size. The points in the first percentile of degree in this

graph were removed as outliers. For diffusion maps we used a complete similarity

graph with Gaussian edge weights:

eij = exp

(
−‖xi − xj‖

2

σ

)
(3.1)

with σ set to twice the squared median of all pairwise distances (Richards et al.,

2009a). For both spectral and diffusion map clustering we used the random walk

form of normalized graph Laplacian:

L = D−1(D −W ) (3.2)

where W is the similarity graph adjacency matrix, and D is the diagonal degree

matrix for W (von Luxburg, 2006). For diffusion maps the i’th eigenvector ψi is

scaled by a function of its corresponding eigenvalue ξi:

ψ′i =

(
1− ξi
ξi

)
ψi (3.3)

which creates a multi-scale diffusion map (Richards et al., 2009b). For spectral

clustering and diffusion maps we used k-means++ to cluster the data after it was

projected into the eigenspace, and for spectral clustering we used a kNN classifier

to assign outliers to clusters.
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3.3.2 Results

Not surprisingly, for the pure Gaussian mixture scenario all methods achieved perfect

identification of the true clusters when the groups were well separated (Figure 3.5b).

Single linkage hierarchical clustering had a very high error rate even at medium

degrees of separation between clusters, due to the well-studied problem of chaining,

discussed in Chapter 1. The density-based methods DBSCAN and level set trees

also required more separation between clusters before achieving the same error rate

as parametric methods, possibly due to the challenge of assigning low-density points

to a cluster.

The results are more difficult to interpret for the scenario with three arcs and

three spherical Gaussians (Figure 3.5d). Single linkage hierarchical clustering again

required the most separation between clusters to achieve highly accurate classifica-

tion. Spectral clustering was perfect when the clusters were well-separated and was

as good as any other method when the clusters were very close, but performed poorly

at mid-range degrees of separation. The closely related technique of diffusion maps

actually became less accurate at large degrees of separation. Level set tree clustering

performed poorly for tightly packed clusters, but was comparable to the parametric

methods (k-means++, Ward linkage, and Gaussian mixtures) for medium and well

separated clusters.

While the second simulation type is more challenging than the Gaussian-only

mixture, it is still much easier to cluster than the highly non-convex, multi-resolution

data in fiber tractography datasets. In the most complex and realistic setting with

points resampled from real fiber tractography data, the parametric methods per-

formed poorly, achieving only about 70% accuracy, even when the clusters are well

separated (Figure 3.5f). Each of the nonparametric methods (level set clustering,

DBSCAN, diffusion maps, and spectral clustering) performed best at some degree

of separation, making it difficult to identify clearly superior or inferior methods.
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DBSCAN and level set trees had accuracies somewhat less than 100% even for well

separated clusters, probably due to the problem of assigning low-density points to

clusters. A more nuanced classifier for this step in level set tree clustering would

likely improve the results for level set trees in particular.

3.4 High-dimensional experiments

For reasons of numerical instability and poor statistical performance, density-based

methods are not often used with high-dimensional data. However, a handful of theo-

retical results suggests that level set trees may still be useful in this domain, despite

their reliance on density estimation. First, note that estimating the level set tree and

retrieving “good” high-density clusters does not necessarily require accurate density

estimation; these are two distinct tasks. In fact, inconsistency in a density estimator

does not necessarily imply inconsistency in the resulting level set tree (Hartigan,

1981). As with pseudo-density estimation for functional data in the following chap-

ter, the level set tree requires only the order relationships between points based on

their estimated densities (Hartigan, 1981).

More concretely, suppose an i.i.d. sample and a kernel density estimator f̂(x)

with a fixed nonzero bandwidth h. The mollified density is

fh(x) = E(f̂(x)), (3.4)

which is equivalent to convolving the distribution P with a mollifier kernel. By fixing

h we introduce bias, which allows the density estimate to converge to the mollified

density at a rate that does not depend on d: supx |f̂(x) − fh(x)| = O(
√

log n/n),

a.e. P (Rinaldo and Wasserman, 2010). It seems possible to accurately estimate the

level set tree of fh(x) regardless of the dimension, and if fh(x) contains the same

clustering structure as P , then the level set tree will be accurate for P as well. The
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result of Balakrishnan et al. mentioned in the Introduction appears to confirm this,

showing that that level set tree estimation is possible in a high-dimensional setting

if the data lie near a manifold with lower dimension (Balakrishnan et al., 2013).

To illustrate the potential of level set trees for high-dimensional data analysis,

we applied the method to a human population genetics dataset. This analysis also

illustrates how the lack of a dominant heuristic for choosing k is often not a problem

for practical data analysis. We initially chose k to be larger than we thought optimal,

in order to oversmooth the density and connectivity estimates. Then we reduced k

until the clusters fragmented in non-useful ways.

3.4.1 Methods

The Human Genome Diversity Project (HGDP) dataset includes 1,064 individuals

sampled from 53 geographically isolated populations, chosen to represent a large

range of worldwide human genetic diversity (Li et al., 2008). The full dataset contains

genotypes at about 660,000 biallelic single nucleotide polymorphisms (SNPs) for

each individual; it is publicly available at http://www.hagsc.org/hgdp/files.

html.

Our data preprocessing steps followed the recipe in Crossett et al. (2010). First,

a small subset individuals were removed due to an excess of missing data or likely

relation to another subject, based on the results of both Crossett et al. and Rosen-

berg (2006). Second, SNPs with excessive missingness, low rare allele frequency,

or Hardy-Weinberg disequilibrium were removed from the data. Finally, a relatively

small number of SNPs were chosen by traditional hierarchical clustering (with Ward

linkage) to have low correlation with each other. The processed data for this exper-

iment had 931 individuals in 53 populations, genotyped at 11,667 SNPs. Further

detail about the data cleaning process can be found in Crossett et al. (2010).

The goal of level set tree estimation in this analysis is to identify the hierarchy

http://www.hagsc.org/hgdp/files.html
http://www.hagsc.org/hgdp/files.html
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of high-density clusters of individuals in the sample, ideally capturing the correct

membership in populations. Because the individuals lie in such a high dimension (d =

11, 667), we used a kNN pseudo-density estimate with the dimension set to d = 1.

Although the pseudo-density is not appropriately normalized, its order statistic is the

same as that of the properly normalized density and it is easier to compute. The order

statistic—which ranks the individuals by genetic proximity to their neighbors—is

the key input to the level set tree estimator (see Chapter 4 for more detail on pseudo-

densities). For all trees the pruning parameter was set so remove clusters with fewer

than 3 people.

3.4.2 Results

The level set tree in Figure 3.6a was constructed with k = 40 individuals, which

intentionally oversmooths the density and connectivity estimates (note 40/931 is a

much larger fraction than was used in the fiber endpoint analyses). Not surprisingly,

the all-mode clusters from this level set tree capture only coarse continent groups,

not individual populations (Figure 3.6b). The map does show that there are no errors

in the clusters; all of the individuals in each cluster belong to only one continent

group. The tree also also indicates that the Europe/Middle East/Central Asian and

East Asian groups are more similar to each other than either is to the African group

or the American group (note these are indigenous American populations).

Reducing the smoothing parameter to k = 6 yields a more informative hierarchy

that successfully captures both continent groups at low values of α and individual

populations at the leaves of the tree. With the all-mode clustering from this tree,

there are very few individuals incorrectly clustered, and many of the individual

populations are identified. Several of the European populations are notably absent,

however, from the list of clusters. The ability of the tree to encode clusters at multiple

“resolutions” can be seen in the maps in Figure 3.8, which were produced by cutting
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the tree at α levels illustrated in Figure 3.7. When α = 0.13, there are large clusters

for Europe/Middle East, East Asia, Africa, and a handful of individual populations

in American and Oceania. When the tree is cut at α = 0.47, on the other hand, many

more populations are identified by individual clusters. The absence of multi-colored

pie charts on the map in Figure 3.8a indicates few classification errors. Furthermore,

nodes of the tree that are closer together tend to correspond to populations that are

nearby physically as well, a sign that the method works well.

Because of its multi-scale nature, the level set tree provides a much greater deal

of interpretability for this type of problem than popular methods like spectral clus-

tering. There is an important caveat, however: the intentionally extreme sampling

bias in these data erodes some of the most useful aspects of the level set tree. In

particular, the heights of the branches are meaningless, and the order in which the

branches occur is heavily biased. Nevertheless, this density-based method is able to

recover populations with a high degree of accuracy and power in a space with over

11,500 dimensions.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Clustering accuracy of several methods in simulated data. (a), (c), (e)
Example draws from each of the three simulation scenarios (Gaussians, Gaussians
and quarter circles, and resampled striatal fiber streamline endpoints), with obser-
vations colored according to true group membership. (b), (d), (f) The error rate for
each type of simulation. For each simulation scenario the difficulty was increased
by shrinking the group means toward the grand mean by a factor ρ. The mean and
standard error of misclassification error are reported for 20 samples of 5,000 points
for each the eight clustering methods: DBSCAN (dbscan), level set tree clustering
(density), diffusion maps (diffuse), Gaussian mixture models (gmm), k-means++
(kmeans), hierarchical clustering with single linkage (s.linkage), spectral clustering
(spectral), and hierarchical clustering with linkage by the Ward criterion (ward).
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(a) (b)

Figure 3.6: Oversmoothed level set tree result for population genetics. (a) When
the smoothing parameter k is set to 40, the estimated level set tree for the HGDP
population genetic data has only four all-mode clusters. (b) The map shows these
clusters describe continent groups well, but do not capture more detailed population
affiliations. Each pie chart on the map represents a true population, and the slices
of each pie represent the contribution from each cluster (matched by color to the
dendrogram). The clusters in this result are very well matched to populations.

(a) (b)

Figure 3.7: Exploring high-density population genetics clusters. The level set tree
is constructed with k = 6, yielding a more detailed and multi-scale set of high-
density clusters. (a) Cutting the tree at a low α level yields continent groups and
highly dissimilar populations (Figure 3.8a). (b) Cutting at a higher α level produces
high-density clusters that better capture individual populations (Figure 3.8b).
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(a)

(b)

Figure 3.8: Maps indicating clusters for the dendrograms in Figure 3.7. Each pie
chart on the map represents a true population, and the slices of each pie represent
the contribution from each cluster (matched by color to the respective dendrogram
in Figure 3.7). (a) High-density clusters for a low α cut of the tree (Figure 3.7a). Pop-
ulations in Papua New Guinea and the Americas are identified, but only continent
groups are recovered in Africa, Eurasia, and East Asia. (b) High-density clusters for
the high α cut (Figure 3.7b) correspond better to individual populations.





Chapter 4

Pseudo-densities

4.1 Pseudo-densities

The fiber endpoint dataset used to illustrate level set tree EDA and clustering is a

very impoverished distillation of the original set of complete fiber streamlines. Recall

from Section 3.1 that we think of a fiber streamline as a set of points X sampled

irregularly along a random curve in R3 (Hagmann et al., 2006). Describing the

topography of fiber streamline datasets would yield great insight into the anatomical

connections in human white matter, but the high degree of complexity of fiber

streamlines makes this a difficult challenge (Wedeen et al., 2008, 2012; Hagmann

et al., 2008; Yeh et al., 2013). The overwhelming majority of efforts to date have

simplified the problem to a clustering task, but most approaches are statistically

unmotivated, too complex to replicate reliably, or fail to scale to datasets densely

sampled across whole brains (Garyfallidis et al., 2012). For a review, see O’Donnell

et al. (O’Donnell et al., 2013). Some of the most recently proposed methods do

overcome some of these challenges. QuickBundles, for example, is a memory-efficient,

linear time algorithm proposed by Garyfallidis et al. for preliminary data reduction

of extremely large fiber streamline sets (Garyfallidis et al., 2012). The authors report

clustering 100,000 fiber streamlines in under 20 seconds, but the method lacks a

47
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statistical foundation and is not invariant to permutations of the data. Guevara

et al. also tackle the challenge of scale, segmenting up to 1.6 million fibers in a

single analysis (Guevara et al., 2011). Although their protocol contains elements of

density-based and hierarchical clustering, it is a hodgepodge of various techniques

that seems unlikely to generalize well to all streamline datasets.

We take a different tack and adapt the level set tree to work with functional

data like fiber streamlines, leveraging the ability of level set trees to emphasize data

structure over clustering at a single density level and to scale efficiently to large

data sets. The primary obstacle is that while probability distributions for these

random functions are well-defined, they cannot be represented with pdfs (Billingsley,

2012). To get around this problem, we use a pseudo-density function instead of a

pdf to measure the similarity between non-Euclidean data points and the overall

connectivity of the space (Ferraty and Vieu, 2006). Specifically, we use the kNN

density estimate as in Equation 2.5 but expunge the term vd and set d arbitrarily

to 1:

f̂pseudo(X) =
k

n · rk(X)
, (4.1)

where rk() is based on a distance relevant to the functional space. In general this

does not yield a bona fide density function, but it is sufficient to induce an ordering

on the data points based on each point’s proximity to its neighbors. The similarity

graph G is constructed from the chosen distance function, and f̂pseudo is then used to

filter the graph to find connected components at successively higher pseudo-density

levels, as described in Section 2.4.

4.2 Phonemes

Because fiber streamlines are difficult to visualize, we first illustrate pseudo-densities

and functional level set trees with two simpler datasets. The phoneme dataset,
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from Ferraty and Vieu (2006) (originally from the TIMIT Acoustic-Phonetic Con-

tinuous Speech Corpus, NTIS, U.S. Department of Commerce via Hastie et al.

(1995)), contains log-periodograms of 2000 instances of digitized human speech,

divided evenly between five phonemes: “sh”, “dcl” (as in “dark”), “iy” (as in the

vowel of “she”), “aa”, and “ao”. Each recording is treated as a single functional

observation, which we smoothed using a cubic spline. The smoothed data are shown

in Figure 4.1.

Each phoneme observation is recorded at the same 150 frequencies, so we use

Euclidean distance to measure the distance between each pair of functional observa-

tions. We could use d = 150 to compute a valid density estimate, but for illustration

purposes we compute f̂pseudo instead. Figure 4.2 shows each observation colored ac-

cording to its pseudo-density estimate; those that are very similar to their neighbors

(k = 20) clearly have high pseudo-density (shown by more intense shades of purple).

The level set tree and the all-mode clusters are shown in Figure 4.3, along with

the mean function for each high-density cluster. The clustering results are highly

accurate: although the second cluster captures both the “aa” and “ao” phonemes,

these are seen in Figure 4.1 to be extremely similar groups. There are no other

errors, although a substantial fraction of the data is left unlabeled (Table 4.1). More

importantly, the hierarchy of the level set tree provides additional information about

these data, namely that the “sh” and “iy” phonemes are very similar to each other

while the “dcl” phoneme is dissimilar from the other four (with respect to Euclidean

distance).

4.3 Hurricane tracks

The functional observations in the phoneme data are sampled at the same identical

150 frequencies, allowing us to use simple Euclidean distance and making it some-
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Spoken phoneme data, separated into the 5 true classes. Each phoneme is
represented by the log-periodogram at 150 fixed frequencies (see Hastie et al. (1995)
for details), which we smoothed with a cubic spline. The phonemes are (a) ‘sh’, (b)
‘iy’, (c) ‘dcl’, (d) ‘aa’, and (e) ‘ao’. (f) The mean function for each phoneme; color
indicates correspondence between phoneme class and mean function.

what contrived to use to a pseudo-density estimate instead of a bona fide density.

Furthermore, the phoneme dataset has been curated carefully by Hastie et al. (1995)

and Ferraty and Vieu (2006) for the purpose of illustrating statistical methods.

Hurricane trajectories are also easily visualized functional data, but they are
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Figure 4.2: Pseudo-density values for the phoneme data. More intense shades indi-
cate higher pseudo-density values, implying greater proximity to neighbors.

(a) (b)

Figure 4.3: (a) Phoneme level set tree. (b) All-mode clusters. The modal observation
in each all-mode cluster is shown with a black outline.

sampled irregularly (in space), have variable lengths, and lie in an ambient dimension

larger than d = 1, making them much more like white matter fiber streamlines. We

show that level set trees can be used effectively to describe the topography of a

hurricane track dataset and to gather tracks into coherent clusters, opening a new
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Table 4.1: Confusion matrix for level set tree all-mode clustering of phonemes.
Phoneme data, by true group. Observations in the “background” column do not
belong to any of the high-density clusters.

Cluster
phoneme 1 2 3 4 background

‘sh’ 0 0 391 0 9
‘iy’ 0 0 0 85 315
‘dcl’ 343 0 0 0 57
‘aa’ 0 183 0 0 217
‘ao’ 0 230 0 0 170

avenue for improvements in track prediction.

The U.S. National Hurricane Center’s HURDAT2 dataset contains positional

and atmospheric measurements of North Atlantic tropical cyclones from 1851 to

2012 (Landsea et al., 2013). The coordinates (in degrees latitude and longitude) for

each storm are recorded at least every six hours. The quality of tropical cyclone has

improved over time (Landsea et al., 2013), so we selected storms that occurred rela-

tively recently (between 1950 and 2012) to maintain a high degree of data integrity.

We removed storms with fewer than 10 observations and those that never achieved

hurricane status of sustained 65 knot winds. The processed dataset contained 398

hurricane tracks, chosen independently of the difficulty of clustering them.

Pairwise distances between hurricane trajectories were measured with the max-

average-min distance Dmam, which is a fiber streamline distance described in detail

in Section 4.4. It is not a metric, but it does not require tracks to have the same

number of samples and it has produced good results in fiber streamline datasets.

A complication with hurricane trajectories is that the distance between a pair of

points on two tracks was measured by a distance that takes into account the oblate

spheroid shape of the Earth. Because true storm tracks have infinite dimension, and

are recorded on varying numbers of observations, we used the k-nearest neighbor
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pseudo-density estimate, with k = 6 and γ = 2. These parameters were chosen by

trial-and-error with a qualitative evaluation of the information content of the result;

higher values of k result in overly simple level set trees while lower values lead to

fragmented results with many very small clusters and little hierarchical structure.

The data are shown in Figure 4.4, colored by pseudo-density (darker hues correspond

to high pseudo-density values). Just by looking at this map, we expected at least

one major mode centered near the Yucatán peninsula and one just offshore of the

U.S east coast.

Figure 4.4: Hurricane track data, shaded by pseudo-density value. Curves with more
intense color have higher pseudo-density, indicating greater proximity to neighbors.

Figure 4.5 shows the estimated level set tree and corresponding all-mode clusters.

By visual inspection, the tree is very successful at separating clusters with either

different shape trajectories or spatial separation. The former case, the cyan, brown,

and purple clusters are all very near each other in the Gulf of Mexico, but are

distinct clusters because they follow different tracks. On the other hand, the pink and

orange pseudo-density clusters follow similar trajectories but are distinct because

they are separated in space. The level set tree also correctly captures the hierarchy
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of similarity; that is, the Gulf of Mexico storms are more similar to each other than

to any other cluster. The only cluster that seems possibly out of place is the plain

green, which is closer to the mid-Atlantic pink and orange than to the Gulf of Mexico

storms, despite substantial overlap with the latter.

(a) (b)

Figure 4.5: (a) Hurricane track level set tree. (b) All-mode clusters. Color indicates
correspondence between dendrogram branches and clusters on the map; low-density,
unclustered background tracks are shown faintly in gray.

4.4 Fiber streamlines

4.4.1 Fiber streamline distances

Returning now to the original challenge of building level set trees for fiber stream-

lines, a major decision in analyzing this type of data (or any functional data) is

the choice of a distance function between two observations. One of the most pop-

ular choices in fiber tractography analysis is Dmam (also known as chamfer) dis-

tance (Moberts et al., 2005; O’Donnell et al., 2013), which first matches each point

on a streamline to the closest point on the opposite streamline, then takes the av-

erage of those matched pair distances. Let X and Y be fiber tracks with mX and
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mY points respectively. The MAM distance is

Dmam(X,Y ) = max

 1

mX

mX∑
i=1

min
j
‖Xi − Yj‖,

1

mY

mY∑
j=1

min
i
‖Xi − Yj‖

 (4.2)

where ‖Xi − Yj‖ is the Euclidean distance between two points in R3. Although

it works well in practice, Dmam does not satisfy the triangle inequality, as shown

with a counterexample in Figure 4.6. This complicates its use in pseudo-density

level set trees in two ways: from a theoretical perspective, it is problematic to use

a “similarity radius” for the computation of the pseudo-density estimate, rather

than a true distance; and on the computational side, the violation of the triangle

inequality prevents the use of ball trees to quickly find the k-nearest neighbors of

each streamline.

Figure 4.6: A counterexample to the triangle inequality for the max-average-min
fiber distance. Assume the points of fibers X and Z at x1 = 1 and x1 = 2 are co-
located with the points of Y , although for illustration they are shown with a gap. The
non-symmetric distance from X to Y is d(X,Y ) = 1

m

∑m
i=1 minj ‖Xi − Yj‖. In this

case d(X,Y ) = (1/3)(0+0+1) = 1/3 and d(Y,X) = (1/4)(0+0+1+1) = 1/2. The
MAM distance is the larger of these two, or D(X,Y ) = 1/2. By symmetry D(Y,Z) =
1/2 as well. The distance between the outside fibers is D(X,Z) = (1/3)(1+1+2) =
4/3. In sum, D(X,Y ) +D(Y,Z) = 1/2 + 1/2 = 1 < 4/3 = D(X,Z), so the triangle
inequality is violated.
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The minimum average direct-flip distance Dmdf is also intuitive, fast to compute,

and satisfies the triangle inequality (Garyfallidis et al., 2012). Assuming fibers X

and Y are both sampled at m points, the MDF distance is

Dmdf (X,Y ) = min

{
1

m

m∑
i=1

‖Xi − Yi‖,
1

m

m∑
i=1

‖Xi − Ym−i‖

}
. (4.3)

The Python DiPy package contains code for this function as well as the necessary

preprocessing step of equalizing the number of points in each fiber through linear

interpolation. For robustness, we typically set m to be the 95th percentile of the

points in all original streamlines (Garyfallidis et al., 2011).

4.4.2 Single ROI streamline results

Our first analysis focuses on relatively small sets of fiber streamlines that project

from two specific regions-of-interest (ROIs) into the striatum. The lateral frontal

cortex set consists of 51,126 total streamlines (Figure 4.7a), while the orbitofrontal

cortex set includes 3,038 streamlines (Figure 4.8a). Unlike the fiber endpoint dataset,

which were simulated from DWI data of a single subject, the streamlines in this

section are simulated from CMU-30 template DWI data, which averages the precur-

sor data across scans of 30 participants. Further detail about the DWI parameters

and construction of the CMU-30 template can be found in Kent et al.(2013) and

at http://www.psy.cmu.edu/~coaxlab/?page_id=305. We focus on these datasets

first because the corticostriatal fibers that terminate on the striatal nuclei are known

to be topographically organized based on cortical origin of the fibers (Verstynen

et al., 2012a; Draganski et al., 2008), with regions of high-density projections (also

known as “focal” projection fields (Haber et al., 2006)), making them ideal for ex-

ploring local density structure in white matter pathways.

To estimate level set tree for each ROI-based streamline set, we computed Dmam

between all pairs of observed curves. As discussed in Section 5.3, the max-average-

http://www.psy.cmu.edu/~coaxlab/?page_id=305
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min distance is popular in the fiber tractography community and was shown to

work well in a comparison of fiber streamline segmentation methods (Moberts et al.,

2005; O’Donnell et al., 2013). Dmam is not a metric, but for samples with fewer than

roughly 50,000 observations it was not a computational burden to compute all pairs

of distances and the ball tree shortcut (which relies on the triangle inequality) was

not needed.

In the lateral frontal cortex we detected seven clusters of streamlines (containing

34,982 foreground fibers) that were organized in a consistent, evenly spaced rostral-

caudal direction along the middle frontal gyrus (Figure 4.7c), an organization that is

consistent with previous reports in both the animal and human literatures (Dragan-

ski et al., 2008; Haber and Knutson, 2010; Verstynen et al., 2012a). Each identified

cluster reflects regions of high pseudo-density along the middle frontal gyrus. It is

important to note that this whole-fiber clustering was able to capture divergent pat-

terns in the white matter pathways. The blue and orange streamlines start in the

same region of the middle frontal gyrus, but diverge to different sub-cortical targets

(namely, the caudate and putamen). This split is easy to identify in the level set

tree by the emergence of an early branching in the tree into two major divisions that

reflect caudate versus putamen fibers (Figure 4.7b). This provides a clean anatomi-

cal segmentation of the fibers despite the fact that these two fiber sets start in the

same region of the middle frontal gyrus.

In the projections from the orbitofrontal cortex we identified five mode clus-

ters (Figure 4.8c). Close inspection of the striatal endpoints of these streamlines

reveals that each cluster forms a striated-like pattern in the caudate that is simi-

lar to patterns previously reported in corticostriatal projections (Verstynen et al.,

2012a). These striated formations are thought to reflect the modularized biochem-

ical makeup of the striatum (Graybiel and Ragsdale, 1978; Ragsdale and Graybiel,

1990). This complex arrangement is difficult to capture with clustering methods
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(a)

(b) (c)

Figure 4.7: (a) 51,126 fiber streamlines projecting from the lateral frontal cortex
to striatum mapped from the CMU-30 template DWI imagery. (b) Dendrogram for
the α level set tree constructed from the pseudo-densities of lateral frontal cortex
streamlines. (c) All-mode clusters from the lateral frontal cortex level set tree, col-
ored to match the nodes of the dendrogram. There are 34,982 streamlines in the set
of all-mode clusters.

that assume convex cluster shapes, but the pseudo-density/level set tree approach

successfully extracts the patterns with minimal assumptions.
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(a)

(b) (c)

Figure 4.8: (a) 3,038 fiber streamlines projecting from the orbitofrontal cortex to
the striatum were mapped from CMU-30 template DWI imagery. (b) Dendrogram
from the α level set tree constructed from the pseudo-densities of orbitofrontal cortex
streamlines. (c) All-mode clusters from the orbitofrontal cortex level set tree, colored
to match the nodes of the dendrogram.

4.4.3 Whole brain fiber streamlines

Although the level set tree results are good for ROI-specific fiber streamlines, it

is common practice in deterministic fiber tractography is to simulate streamlines

that cover the whole brain, usually with several hundred thousand fibers (Hagmann
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et al., 2006). The ability of pseudo-densities and level set trees to represent clustering

behavior over multiple data “resolutions” suggests our method should transfer well

from the smaller single ROI data to large whole brain problems.

For this section we use the CMU-60 dataset, publicly available (along with

subject and acquisition details) at http://www.psy.cmu.edu/~coaxlab/?page_id=

423. This set contains DWI imagery for 60 neurologically healthy volunteers (a su-

perset of the CMU-30 group), including 24 lean (BMI < 25), 24 overweight (BMI

∈ [25, 30)) and 10 obese (BMI ≥ 30) subjects (the BMI category of 2 subjects is

unknown), as well as the CMU-60 template that is the average imagery over all 60

participants. Our whole-brain dataset consists of 100,000 fiber streamlines simulated

from the CMU-60 template.

Whole brain datasets pose several challenges on top of those discussed already

in this section and in previous chapters. With the ROI-specific streamline sets, we

could compute all pairwise distances in a reasonable about of time (on the order of

several hours) and keep the results (about 20 GB) in memory on a modern desktop

computer, but with 100,000 streamlines this is no longer possible. To overcome this

we use the ball tree method for finding k-nearest neighbors, but this technique

requires a distance that is a true metric. Because Dmam does not satisfy the triangle

inequality it is disqualified and we resort to Dmdf instead (discussed earlier in this

section).

For whole brain data, validation of the level set tree topography and clustering is

especially difficult. Not only is there a lot of noise in the imagery and the streamline

simulation process, but the in vivo nature of the data means it is impossible to

assign a true group to each streamline. To evaluate the quality of level set trees

for modeling whole brain fiber streamlines we enlisted a neuroanatomical expert

with three years of clinical tractography experience to construct a validation set of

streamlines. Like the whole-brain data, this set was simulated from the CMU-60

http://www.psy.cmu.edu/~coaxlab/?page_id=423
http://www.psy.cmu.edu/~coaxlab/?page_id=423


4.4. FIBER STREAMLINES 61

template imagery, but under the constraint that each streamline belongs to one of

30 known white matter tracts. The 82,934 curves in this dataset are shown in 4.9,

and the tracts are listed in Figure 4.13.

(a) (b)

(c) (d)

Figure 4.9: Fiber streamlines in the whole-brain validation set, constructed from the
CMU-60 template DWI data by a neuroanatomical and fiber tractography expert to
include only streamlines that belong to anatomically valid white matter fiber tracts.
Tracts are indicated by color. The views are (a) axial, (b) coronal, (c) left, and (d)
right.

Through qualitative comparisons of the level set trees and all-mode clustering on

the we established the optimal tree parameters for the validation set to be k = 300

and γ = 150. To save computation time we use a regular grid of 4,000 α values, rather

than estimating connectivity for the entire set
{

1
n ,

2
n , . . . ,

n−1
n , 1

}
. The dendrogram
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for the α tree is shown in Figure 4.10 and the all-mode clusters are shown in brain

space in Figure 4.11, although overplotting effects make it difficult to evaluate the

quality of the result.

Figure 4.10: Dendrogram for the α tree constructed from pseudo-densities for the
fiber streamlines in the whole-brain validation set, estimated with k = 300 and
γ = 150. The subtree highlighted in red is explored further in Figure 4.12.

The GUI tool described in Section 3.1 helps us to evaluate the level set tree

result visually and intuitively, by identifying the cluster tree node associated with

a given branch of the dendrogram. Figure 4.12 illustrates a traversal through the

subtree associated with the left arcuate fasciculus (AF L) and superior longitudinal

fasciculus (SLF L).

In addition to qualitative evaluation with the GUI tool, several quantitative mea-

sures suggest the level set tree successfully captures the topography of the validation

dataset. The all-mode labeling has 47 high-density clusters that contain 56.3% of

the data and these clusters match the true groups well as measured by either ad-

justed rand index (ARI) (Hubert and Arabie, 1985), adjusted mutual information

index (AMI) (Vinh et al., 2010), or classification accuracy. The latter metric is the
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Figure 4.11: All-mode clusters for the validation fiber streamline set. These clusters
contain 56.3% of the 82,934 streamlines in the whole validation set.

fraction of points with the same cluster and group label, under the optimal permu-

tation of cluster labels, which is computed with the Hungarian algorithm (Kuhn,

1955; Munkres, 1957).

As a quick and straightforward comparison, the QuickBundles algorithm yields

lower accuracy on all three measures, although it must be noted that it leaves far

fewer streamlines unlabeled and runs faster (Table 4.2). The classification accuracy

of two methods is shown in heatmap form in Figure 4.13; after alignment of cluster

and group labels with the Hungarian algorithm, the diagonal of the heatmap shows

the fraction of points with matching cluster and group labels, ignoring unclustered

background points. The QuickBundles result has a greater fraction of off-diagonal

observations than level set tree clustering, indicating tracts that are split across

multiple clusters or clusters that capture multiple true tracts. At the same time

there is clearly a higher fraction of data assigned to clusters (note that both methods

have 47 clusters by coincidence; the neighborhood parameter for QuickBundles was
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Figure 4.12: The subtree highlighted in red in Figure 4.10 is explored further. The top
row shows the dendrogram of the subtree, with branches highlighted at successively
higher α levels for further investigation. The streamlines associated with the selected
branches are shown immediately below; this subtree corresponds to the left arcuate
fasciculus and superior longitudinal fasciculus.

chosen independently to match typical usage in Garyfallidis et al. (Garyfallidis et al.,

2012)).

Table 4.2: Classification accuracy for level set tree all-mode clustering and Quick-
Bundles, in the validation set of fiber streamlines with known anatomical tract
labels. ARI is the adjusted Rand index, AMI is the adjusted mutual information in-
dex, and accuracy is classification accuracy after optimal alignment of cluster labels
with the Hungarian algorithm. The fraction of streamlines not assigned to a cluster
is reported in the final column.

Metric
Method ARI AMI Accuracy Unclassified

LST all-mode .823 .863 .775 .437
QuickBundles .664 .804 .704 .003

The whole-brain streamline set contains 100,000 whole-brain streamlines simu-

lated from the template ODF map without exogenous information about member-
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(a) (b)

Figure 4.13: (a) Confusion matrix for level set tree all-mode clusters vs. true fiber
tracts in the validation streamline set, represented as a heatmap. The cluster labels
were permuted to be optimally aligned with the tracts using the Hungarian algo-
rithm after discarding low-density unclustered points. More intense shades indicate
larger entries in the matrix. (b) Confusion matrix for the QuickBundles result with
the validation set of streamlines, using the same process and normalization as in
panel a.

ship in “true” white matter tracts. The level set tree for this dataset was constructed

with proportionally the same smoothing and pruning parameters as the validation

results (k = 361, γ = 180). The dendrogram for the α tree is shown in Figure 4.14

and the all-mode clusters in Figure 4.15.

The level set tree results with this dataset are considerably noisier; according

to a neuroanatomy expert, most clusters do not correspond to true white matter

fiber tracts. On the other hand, the clusters do appear to be coherent and reasonable

collections of fiber streamlines, and there are some notable matches between clusters

and true fiber tracts. One of these—involving the left arcuate fasciculus (AF L) and

left inferior longitudinal fasciculus (ILF L) is illustrated with the branch selection

GUI tool in Figure 4.16. Note that although the subtrees for these tracts are slightly

different in the whole-brain and validation dendrograms, the location of the subtree

is roughly similar in each tree. In general, the clusters of the whole-brain tree show
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Figure 4.14: Dendrogram for the α tree constructed from pseudo-densities for fiber
streamlines in the whole-brain set, estimated with k = 381 and γ = 180. The subtree
highlighted in red is explored further in Figure 4.16.

Figure 4.15: All-mode foreground clusters for the whole-brain fiber streamline set.
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Figure 4.16: The subtree highlighted in Figure 4.14 is explored further. The top
row shows the dendrogram of the selected subtree, with branches highlighted at
successively higher α levels for further investigation. The streamlines associated
with each branch are shown immediately below; this subtree includes fibers from
both the left arcuate fasciculus and left inferior longitudinal fasciculus, which are
separated at the leaf nodes.

substantially less persistence than those in the validation tree, most likely due to the

larger amount of global noise in the whole-brain data. This idea of comparing two

(or more) level set trees, and level set tree consistency more generally, is considered

in Chapter 5.





Chapter 5

Inference

A critical statistical task for any of the analyses in previous chapters is the descrip-

tion of how accurately a sample level set tree estimates the true tree. Because level

set trees are complicated objects, a direct numerical result remains elusive, but we

propose several qualitative methods to assess the tree stability. Our ultimate goal is

to treat level set trees as statistics in their own right, and to use them for inference

about underlying distributions.

The fundamental tool for assessing the stability of estimated level set trees is

a bootstrap-type procedure. From the original data Xn, we draw υ samples—with

or without replacement—and compute the estimated level set tree for each sample.

From this orchard1 Υ of bootstrapped trees we can compute a large number of

qualitative and numerical measures of stability or conduct rudimentary statistical

inference and prediction.

5.1 Descriptive plots

The simplest thing to do with an orchard is to plot all dendrograms on the same

canvas. For a small υ, this gives a surprisingly clear picture of level set tree stability,

1Larry Wasserman deserves credit for this name.

69
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which intuitively guides our degree of confidence in the accuracy of the original tree

estimate. Figure 5.1 shows orchard plots for the level set trees on the single ROI fiber

streamline datasets. For the lateral frontal cortex data we drew υ = 27 subsamples

(without replacement) from the data, each containing 15,000 streamlines (from the

total 51,126), and for the orbitofrontal data we drew υ = 23 subsamples (without

replacement) of size 1,500 (from the total 3,038). These values of υ were chosen

to match the number of participants whose scans contributed to the final template

imagery for each ROI.

It is immediately clear that there is far less variation in the topography of the

lateral frontal cortex trees, especially in the α levels at which tree branches split or

vanish. While the trees of the orbitofrontal orchard clearly tend to have the same

structure, the levels of the interesting features vary substantially.

For orchards with a large number of trees or large tree variation, the usefulness

of the orchard plot is limited by overplotting problems. The orchard intensity plots

of Figures 5.1a and 5.1b are a way to smooth out a noisy orchard plot into a more

readable form. A 100×100 mesh is superimposed on the canvas of the orchard plot,

and we count the number of line segments (vertical and horizontal) that intersect

each cell of this mesh. A Gaussian filter is applied to smooth the counts across cells,

and the counts are then visualized as an image. For the single ROI fiber streamline

trees, the intensity plots do not add much information to the orchard plots, but they

do emphasize that there are several regions of the orbitofrontal tree that actually

are consistent across the bootstrap trees. In particular, the initial split occurs at

almost exactly the same level in each bootstrap tree and yields two clusters of

almost identical mass each time (one of which is the red cluster in Figure 4.8).

Based on the supposition that variation in the birth and death levels (λ′ and λ′′

or α′ and α′′) of tree branches is of primary interest, we also draw mode functions and

split histograms for the orchards. The mode function simply counts the number of
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(a) (b)

Figure 5.1: Orchard and intensity plots for subsamples from (a) lateral frontal cortex
streamlines and (b) orbitofrontal cortex. The lateral frontal cortex orchard includes
trees from υ = 27 subsamples of 15,000 streamlines, and the orbitofrontal cortex
orchard has υ = 23 trees estimated for subsamples of 1,500 streamlines. The orchard
plot simply plots all dendrograms in an orchard on the same canvas, while the
intensity plot discretizes this canvas into a 100 × 100 grid, counts the number of
trees that intersect each cell of the grid, and smooths the counts with a Gaussian
filter.

high-density clusters as α varies from 0 to 1 (or as λ varies from 0 to maxx f̂)(Azzalini

and Torelli, 2007). The split histogram imposes a grid on the α scale and counts the

number of splits that occur across the whole orchard in each interval of the grid.

This mode functions and split histograms for the single ROI streamline orchards
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(a) (b)

Figure 5.2: Mode functions and split histograms for subsamples from (a) lateral
frontal cortex streamlines and (b) orbitofrontal cortex streamlines. The mode func-
tion indicates the number of clusters at each level of the α level set tree, while the
split histogram indicates the location of α levels where branching occurs in all of
the level set trees in an orchard.

(Figure 5.2) lead to the same conclusions as the orchard and intensity plots do:

there is much more variation in the orbitofrontal cortex orchard than the lateral

frontal cortex orchard, so we are more confident in the accuracy of the estimated

level set tree for the lateral frontal cortex streamlines.

5.2 Test-retest comparisons

The plots in Figures 5.1 and 5.2 illustrate that randomness in a sample leads to

uncertainty in the level set tree estimator. It is important to put this uncertainty
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into context by comparing it to the uncertainty caused by measurement error, i.e.

the uncertainty inherent in image acquisition and fiber streamline simulation. For

the single ROI streamline data discussed in the previous section, we show that the

measurement error in fact dwarfs the noise of the level set tree estimator, supporting

the idea that level set trees are in fact a robust method.

For a subset of participants in the CMU-30 group, fiber streamlines were re-

constructed for two separate scans separated by approximately six months. Figure

5.3 shows the level set trees constructed for the lateral frontal projections from each

scan in several subjects of this subset, as well as the all-mode clusters. These clusters

exhibit a high-degree of similarity between test and retest trials, with the consistent

exception of one or two clusters that only appear in one of the two scans (highlighted

in gray in Figure 5.3).

The level set trees likewise reflect similar structure across scans, but the non-

overlapping tree nodes appear to exaggerate the differences between trees. For ex-

ample, panels E and F in Figure 5.3 show the foreground fiber streamlines and level

set trees for two scans of a single subject. The blue, green, cyan, violet, and yellow

clusters match well across scans and appear to share very similar topography. How-

ever, panel E contains a cluster on the right side of the plot (in gray) that is not

present in panel F, while panel F contains its own unmatched cluster on the left side

of the plot (also in gray). Note that each branch’s (or cluster’s) color was manu-

ally defined to match in the test and retest within each subject, but not necessarily

across subjects.

While some level set tree features reflect the overall similarity between test and

retest streamlines—in panels E and F for example, the number of leaves is the same

and the yellow, cyan, and violet clusters are more similar to each other while the blue

cluster is much different—the overall shape of the trees tends to be quite different.

These variations reflect actual differences between the test and retest data, not just
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Figure 5.3: α level set tree dendrograms and all-mode clusters for the test-retest
fiber streamline experiment. Each row shows the results for a single participant,
with columns 1 and 2 showing the all-mode clusters and dendrogram from the first
scan and columns 3 and 4 showing the same for the follow-up scan. Clusters that
are matched across scans are colored the same; those that do not have a match are
colored gray.

variability of the level set tree procedure. Not only are some clusters present in only

one of the two data sets, but differing tree shapes and branching locations indicate
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that the probability content and relative hierarchy of even similar-looking clusters

is not the same across scans. Nevertheless, the all-mode clusters are actually quite

consistent across scan sessions, demonstrating the robustness of the level set tree

methodology for clustering and segmentation purposes.

5.3 Tree distances

Moving from qualitative descriptions of the uncertainty about individual level set

trees to numerical descriptions and tree-based inference requires the definition of

a distance between a pair of trees. We propose several ways to do this, which can

be roughly broken down into those that use only data topography (i.e. the tree

structure) and those that take into account the location of the data as well. The

former category allows comparisons between very different distributions that may

even lie in spaces of different dimension, which may be a benefit or a disadvantage

depending on a practitioner’s goal. To the best of our knowledge, all of these methods

are novel and a great deal of work remains to determine the properties of each one.

For our preferred method (paint mover distance), we present preliminary results

suggesting how tree-based inference could work.

5.3.1 Paint mover distance

The paint mover distance Dpmd takes as input two cluster trees R1 and R2, which

we assume are each binary with a single root. For each tree construct a dendrogram

signature S = {((z0, y0), κ′′0 − κ′0), ..., ((z|R|, y|R|), κ′′|R| − κ
′
|R|)}, where (zi, yi) is the

position of dendrogram branch i on a plot canvas, κ′′i − κ′i is the littoral mass as-

sociated with node i of the cluster tree, and |R| is the number of nodes in R. The

vertical coordinate yi is simply the midpoint of the birth and death density or mass

levels that define the tree branch; for the λ-tree this is (1/2)(λ′i +λ′′i ), for the α-tree

it is (1/2)(α′i + α′′i ), and for the κ-tree it is(1/2)(κ′i + κ′′i ).
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The horizontal coordinate for branch i is set according to mass-based silos with

boundary-positioned branches. The procedure for constructing these silos is de-

scribed in detail in Section 2.5, although the binary tree assumption here eliminates

the possibility that |kidi| > 2. Once the signatures S1 and S2 are constructed, Dpmd

is the earth mover distance (Demd) between them (Rubner et al., 1998)2:

Dpmd(R1,R2) = Demd(S1,S2) (5.1)

The name paint mover distance is based on the fact that for κ-trees, the distance is

the “work” required to erase and re-draw one dendrogram to match another.

Given a metric ground distance, Dpmd is also a metric. Suppose three cluster

trees R1, R2, and R3 with signatures S1, S2, and S3. Most of the metric properties

of the paint mover distance follow immediately from the metric properties of the

ground distance and the earth mover distance (Rubner et al., 1998):

1. non-negativity

Dpmd(R1,R2) = Demd(S1,S2) ≥ 0; (5.2)

2. symmetry

Dpmd(R1,R2) = Demd(S1,S2) = Demd(S2,S1) = Dpmd(R2,R1); (5.3)

3. triangle inequality

Dpmd(R1,R3) +Dpmd(R3,R2) = Demd(S1,S3) +Demd(S3,S2)

≥ Demd(S1,S2)

= Dpmd(R1,R2).

(5.4)

2for two distributions with equal mass, earth mover distance is also known as Mallow’s or
Wasserstein distance (Levina and Bickel, 2001)



5.3. TREE DISTANCES 77

(a) (b)

(c) (d)

Figure 5.4: Paint mover signatures for Gaussian mixtures. (a) A sample of 1,000
points from a mixture of three Gaussians. (b) The κ dendrogram for the 3-Gaussians
sample, with the signature represented by red discs. Each disc consists of coordinates
in the unit square and a weight, represented by the disc’s size. (c) A sample of 1,000
points drawn from a mixture of four Gaussians. (d) The paint mover signature
overlaid on the κ dendrogram for the 4-Gaussian sample.

Proving the identity of indiscernibles relies on the dendrogram construction rule as

well as the metric properties of the ground and earth mover distances. By construc-

tion, there are no vertical inversions in the dendrogram: if node j is a child of node

i, then yj > yi. Also by construction, the whitespace silos form hard horizontal

boundaries for tree families: for branch i with silo [ai, bi], all nodes with yj > yi and

zj ∈ [ai, bi] must be descendants of node i.

Based on these observations, the following procedure reconstructs a unique den-
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drogram (and by extension, a cluster tree) from a given signature S. Consider the

elements of S in order of increasing vertical position. For each signature element

(zi, yi),Mi), do the following three steps.

• Draw a vertical line segment from (zi, yparenti) to (zi, yparenti +2(yi−yparenti)).

• Identify the silo [ai, bi]. The root silo is fixed at [0, 1]. Since we traverse

the points from the bottom-up, we know the silo of node i’s parent to be

[aparenti , bparenti ]. Because the dendrogram is constructed so that each branch

is positioned horizontally on the boundary of its child silos, if zi < zparenti

then node i’s silo is [aparenti , zi], otherwise its silo is [zi, bparenti ].

• Identify the child nodes of i, kidi. Find the set of signature points j such that

zj ∈ [ai, bi] and yj > yi. From this set, label the lowest point on each side of

node i as a member of kidi. If the set is empty, node i is a leaf of the tree. For

each node j ∈ kidi, draw a horizontal line segment from (zi, yparenti + 2(yi −

yparenti)) to (zj , yparenti + 2(yi − yparenti)).

The existence of this procedure proves that S1 = S2 =⇒ R1 = R2. This fact

allows us to finish the proof that paint mover distance is a metric.

Dpmd(R1,R2) = 0 =⇒ Demd(S1,S2) = 0

=⇒ S1 = S2

=⇒ R1 = R2.

(5.5)

The first statement is true by definition of paint mover distance, the second holds

because earth mover distance is a metric, and the final one holds because of the

existence of the tree reconstruction procedure. We typically use Manhattan distance

as the ground distance to emphasize the idea that mass can only travel horizontally

and vertically on a dendrogram canvas, but limited empirical experience suggests
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other ground distances work equally well. The choice of dendrogram scale may be

more important, and is the subject of ongoing research.

To illustrate the effectiveness of level set trees and paint mover distance as tools

for inference, we show that the method can be used to distinguish samples drawn

from four different Gaussian mixture distributions. For each distribution we drew

30 samples and constructed the α level set tree for each one. An example sample

and the orchard plot for all samples from each distribution are shown in Figure 5.5.

(a) (b) (c) (d)

Figure 5.5: Gaussian mixture samples and level set tree orchards for paint mover
distance. The top row shows an example simulation from a mixture of 1, 2, 3, or
4 Gaussian distributions. The level set trees for 30 simulated samples drawn from
each mixture distribution are shown in the orchard plots in the bottom row.

The 120 total α trees were then treated as individual observations in a meta-

clustering task. We computed the paint mover distance between each pair of trees

and estimated the kNN pseudo-density and kNN connectivity graph with k = 10.

Finally, we estimated the α level set tree, pruned it at γ = 10, and retrieved the

all-mode clusters. These clusters perfectly assign the samples to their correct dis-

tributions (Figure 5.6 and Table 5.1), demonstrating the effectiveness of the level

set tree-paint mover distance combination in discriminating between at least very

simple distributions. Note also that the simpler the underlying distribution, the
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less variation there is in the orchard, and the more persistent is the branch of the

meta-tree.

Figure 5.6: Dendrogram for the meta-tree constructed on level set trees for Gaussian
mixtures. The branch colors indicate the all-mode clustering, and match the orchard
colors in Figure 5.5.

Table 5.1: Confusion matrix for PMD all-mode clustering of Gaussian mixtures

Cluster
Distribution 0 1 2 3

1 30 0 0 0
2 0 30 0 0
3 0 0 30 0
4 0 0 0 30

We also used the paint mover distance to better quantify the variation in the

level set trees for whole-brain fiber streamlines. 50,000 streamlines were simulated

for each of 10 obese participants and 12 lean participants in the CMU-60 group.

Based on results suggesting an association between obesity and reduced white matter

integrity (Verstynen et al., 2012b, 2013), we hypothesized that each group would
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have different fiber streamline organization (Bolzenius et al., 2013) and that this

difference would be reflected in smaller paint mover distances between the trees in

each group than between groups. For comparison, we also constructed 10 bootstrap

samples of 50,000 streamlines from the whole-brain streamline data set (note: this

set was simulated from template imagery that averaged the scans of all CMU-60

participants, including the 22 individuals considered here).

The orchard and intensity plots for the obese, lean, and bootstrap trees are

shown in Figure 5.7. There appears to be as much tree variation within the obese

and lean groups as there is between them, especially in comparison to the relatively

small amount of variation in bootstrap trees. The bootstrap plots in fact show

a surprisingly degree of consistency, particularly in the branches on the far left

(corresponding to the right corticospinal tract and the right corona radiata) and

upper right (corresponding to the right and left cerebellum).

(a) (b) (c)

Figure 5.7: Orchard and intensity plots for (a) 10 obese, (b) 12 lean, and (c) 10
bootstrapped whole-brain fiber streamline datasets, each containing 50,000 stream-
lines.
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The bar chart in Figure 5.8 confirms our qualitative interpretation of the orchard

and intensity plots. The pairwise paint mover distances within the obese and lean

groups are just as large as the paint mover distances between pairs of one obese

and one lean tree. As a check, we compute the paint mover distance between each

lean, obese, and bootstrap tree and the level set tree from the whole-brain fiber

streamline set, and these do match the within- and between-group distances very

closely. By contrast, the distance between pairs of level set trees from the Gaussian

discrimination experiment when one the two trees are from different mixtures is

three times as large as the obese vs. lean distances.

Figure 5.8: Mean and standard error of paint mover distances between and within
various groups of level set trees. gaussians refers to the distances between level
set trees constructed from the same Gaussian mixture distribution in Figure 5.5.
gaussian, between refers to distances between level set trees from different Gaussian
distributions in Figure 5.5. bootstrap, obese, and lean show the mean and standard
error of pairwise distances between trees within the bootstrapped, obese, and lean
orchards of Figure 5.7, and obese vs. lean indicates the average paint mover distance
between all pairs of trees in the Cartesian product of the lean and obese orchards.
For comparison, lean vs. whole-brain, obese vs. whole-brain, and bootstrap vs. whole-
brain show the mean distances between the lean, obese, and bootstrapped trees and
the level set tree from the whole-brain streamline set.
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In sum, it appears that the paint mover distance accurately quantifies our in-

tuitive description of the orchard and intensity plots, but that the differences be-

tween the obese and lean groups are too small—if they exist at all—to be de-

tected by the paint mover distance or the descriptive plots. We surmise that this

is due either to noise in the fiber streamline simulation process or an incorrect

hypothesis—differences in white matter integrity may not affect the location of sim-

ulated streamlines—or both.

5.3.2 Other topographical distances

Paint mover distance is only one of many possible topography-based distances be-

tween level set trees. Another simple option is to compute any functional distance

(e.g. `2 distance) between the mode functions for two trees, although for λ and α

trees this is not a metric. Because there is not a 1-1 relationship between mode

functions and level set trees, the identity of indiscernibles is violated:

D(T1, T2) = 0 6⇒ T1 = T2. (5.6)

Like paint mover distance, the canvas distance treats the dendrogram plot canvas

as the fundamental space. In this case, we compute the Euclidean distance between

the intensity plots created separately for each of two trees. The properties of this

distance are still unexplored and left for future research.

5.3.3 Alpha-earth mover distance

Another entire category of distances treats level set trees as simple containers for

high-density clusters computed over a succession of α or λ density levels. The α-

earth mover distance (αEMD) measures the distance between two level set trees

as the distance between underlying clusters, defined by cutting the level set tree

on a grid of α levels. Let α vary over a finite set of J values in [0, 1]. For each
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value αj , retrieve the level αj high-density clusters and define the signature to be

Sj = {(x(1), M̂ (1)), . . . , (x(Kj), M̂ (Kj))}, where x(i) is the modal observation of high-

density cluster i and M̂ (i) is the mass of the same cluster. Note that the number

of clusters Kj varies for each value of αj , but because the clusters are retrieved on

α-upper level sets, the total mass is the same between each tree for each value of

αj . The signatures at three α levels for two example Gaussian mixture samples are

shown in Figure 5.9.

(a) (b) (c)

Figure 5.9: α earth mover distance signatures for 3- and 4-component Gaussian
mixtures, at three example α levels. Each red disc is an element of the signature,
and consists of coordinates in the feature space and a weight. The coordinates are
the mode of the corresponding cluster and the weight is the mass of the cluster.

αEMD is the mean of earth mover distance over all values of α:

Dα(T1, T2) =
1

J

J∑
j=1

Demd

(
Sj1 ,S

j
2

)
. (5.7)

Figure 5.10 and Table 5.2 show the results of the Gaussian discrimination experiment

using αEMD instead of paint mover distance. The meta-tree is clearly noisier for

αEMD, and the all-mode clustering fails to distinguish the 3- and 4-component
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distributions.

Figure 5.10: Dendrogram for the Gaussian demo α earth mover distance meta-tree,
estimated with k = 10 and γ = 5. Color indicates branches selected as all-mode
clusters.

Table 5.2: Confusion matrix for αEMD all-mode clustering of Gaussian mixtures

Cluster
Distribution 0 1 2 3 4 5 background

1 30 0 0 0 0 0 0
2 0 13 17 0 0 0 0
3 0 0 0 9 12 8 1
4 0 0 0 1 9 11 9





Chapter 6

The Chaudhuri-Dasgupta

algorithm

The DeBaCl package also includes the first implementation (that we are aware of) of

the Chaudhuri-Dasgupta level set tree algorithm (Chaudhuri and Dasgupta, 2010).

As described in Chapter 1, this algorithm is particularly notable because the authors

prove finite-sample convergence rates (where consistency is in the sense of Hartigan

(1981)). The algorithm is a generalization of single linkage hierarchical agglomerative

clustering (and Wishart (1969)), reproduced here for convenience in Algorithm 1.

Algorithm 1: Chaudhuri and Dasgupta (2010) level set tree estimation pro-
cedure.

Input: {x1, . . . , xn}, k, β

Output: T̂ , a hierarchy of subsets of {x1, . . . , xn}

rk(xi)← distance to the k’th neighbor of xi;

for r ← 0 to ∞ do
Gr ← graph with vertices {xi : rk(xi) ≤ r} and edges
{(xi, xj) : ‖xi − xj‖ ≤ βr};
Find the connected components of Gr;

T̂ ← dendrogram of connected components of graphs Gr, ordered by
inclusions;

87
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To translate this program exactly into a practical implementation, we must find

a finite set of values for r such that the graph Gr can only change at these values.

When β = 1, the only values of r where the graph can change are the edge lengths in

the graph eij = ‖xi−xj‖ for all i and j. Let r take on each value of eij in descending

order; in each iteration remove vertices and edges with larger k-neighbor radius and

edge length, respectively.

When β 6= 1, the situation is trickier. First, note that including r values where

the graph does not change is not a problem, since the original formulation of the

method includes all values of r ∈ R+0. Clearly, the vertex set can still change at

any edge length eij . The edge set can only change at values where r = eij/β for

some i, j. Suppose eu,v and er,s are consecutive values in a descending ordered list of

edge lengths. Let r = e/β, where eu,v < e < er,s. Then the edge set E = {(xi, xj) :

‖xi − xj‖ ≤ βr = e} does not change as r decreases until r = eu,v/β, where the

threshold of βr now excludes edge (xu, xv). Thus, by letting r iterate over the values

in
⋃
i,j{eij ,

eij
β }, we capture all possible changes in Gr.

In practice, starting with a complete graph and removing one edge at a time

is extremely slow because this requires 2 ∗
(
n
2

)
iterations of the connected compo-

nent search. The DeBaCl implementation includes an option to initialize the al-

gorithm at the kNN graph instead, which is a substantially faster approximation

to the Chaudhuri-Dasgupta method. This shortcut is still dramatically slower than

DeBaCl’s geometric tree algorithm, which is one reason why we prefer the latter.

Illustrations of the exact and approximate Chaudhuri-Dasgupta trees, along with

the DeBaCl geometric tree (the algorithm used in this thesis) are shown in Figure

6.1.

Note the long tree trunk that contains no information and hides the interest-

ing features at the top of the tree. The kNN approximation shortens the trunk,

which allows the leaves to seen more easily. Note also that the radius scale on the
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(a) (b)

(c) (d)

Figure 6.1: (a) A sample of 300 points in R2 from a mixture of 3 Gaussians, colored
according to group membership. (b) The α level set tree, estimated with our standard
algorithm (k = 15). (c) The exact Chaudhuri-Dasgupta level set tree (β = 1). (d)
The kNN approximation to the Chaudhuri-Dasgupta level set tree, which removes
successively shorter edges starting from the kNN similarity graph, rather than the
complete graph.

Chaudhuri-Dasgupta trees is very difficult to interpret, especially in comparison to

the α and κ scales of the geometric tree. Lastly, even though this demonstration

sample has only n = 300 points, the Chaudhuri-Dasgupta tree takes over three

minutes to compute (on a standard desktop PC, using just one thread). The kNN

approximation reduces this to 70 seconds, but our preferred geometric tree algorithm

takes only 0.05 seconds.

The generalized single linkage method proposed by Stuetzle and Nugent (2010)
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is also an edge-removal method that requires O(n2) connectivity estimates, but the

authors show that finding the connected components of the minimal spanning tree of

the connectivity graph is an equivalent and much faster shortcut. It is worth noting

that this shortcut does not work for the Chaudhuri-Dasgupta algorithm.

Let T be the minimal spanning tree of similarity graph G. For generalized single

linkage, the edges of G have weights that are based on estimated densities, so Gλ and

Tλ are the subgraphs of G such that all vertices and edges have density level greater

than λ. Stuetzle and Nugent show that for generalized single linkage any two nodes

vi and vj are are in the same component of Gλ if and only if they are in the same

component of Tλ. Implicit in the proof is the (correct) assumption that the vertex

sets of Gλ and Tλ are identical, but for the Chaudhuri-Dasgupta algorithm this is

not the case. Consequently, vi and vj can be in different components in Tλ, but in

the same component in Gλ. Figure 6.2 shows an example where this situation occurs,

but it remains to be seen how much this type of problem degrades the accuracy of

the algorithm. It may be the case that minimal spanning tree’s substantially better

speed justifies the loss in accuracy.
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(a) (b)

(c) (d)

Figure 6.2: Minimal spanning tree counterexample for Chaudhuri-Dasgupta tree. (a)
The Chaudhuri-Dasgupta tree for a mixture of 3 Gaussians in R2, with n = 40 and
β = 1. (b) The data, colored by component membership, with the minimal spanning
tree overlaid. (c) The complete subgraph Gr at radius threshold r = 0.7, showing
two connected components. (d) The minimal spanning tree subgraph T0.7, showing
three connected components.





Chapter 7

Conclusion

The level set tree idea is nearly four decades old, but is only now coming into

its own as a statistical tool. Many results have been published in the intervening

years about clustering at fixed density levels, but the first strong theoretical results

about the accuracy of estimators for the entire level set tree appeared only in the

last few years, in Chaudhuri and Dasgupta (2010), Kpotufe and Luxburg (2011),

and Rinaldo et al. (2012). We have extended the theoretical literature to make the

level set tree approach more useful as a tool for applied statistics, by summarizing

existing estimation techniques, proposing several methodological extensions to the

Kpotufe-von Luxburg algorithm, describing ideas for inference with level set trees,

and providing high-quality open source level set tree software.

Many of the practical innovations in this thesis remain unsupported by statistical

theory, leaving a great number of open questions for future research. We separate

these into three (overlapping) categories: computational efficiency, statistical per-

formance of level set tree estimators, and tree-based inference.

93
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7.1 Computational efficiency

A critical factor in the usefulness of a data analysis method is computational speed

and memory efficiency, so it is important to find the fastest possible algorithm

for level set tree estimation. Because our standard algorithm is a point iteration

method, it is considerably faster than several existing edge iteration and histogram-

based implementations, and is able to estimate trees with several tens of thousands

of data points in seconds or minutes.

As described in Section 2.4.2, Najman and Couprie propose a tree estimation

procedure based on the union-find algorithm that is considerably faster than using

a depth- or breadth- first search to estimated connected components (Najman and

Couprie, 2006). It remains to transform this procedure from an image processing

routine into a more general statistical tool. While the Najman-Couprie method is

extremely fast at O(nα(n)), there are shortcuts that may speed up tree estimation

even further with an acceptable loss of accuracy. For example, even when estimating

connectivity with a depth-first search, the procedure can be very fast if several graph

vertices are removed in each iteration (rather than one). Combining this shortcut

with the Najman-Couprie method would create an extremely fast but approximate

tree estimator; this could be useful, for example, in choosing the smoothing param-

eter k by estimating the tree for many different values of k.

Another way that some tree estimators improve speed is to reduce the similar-

ity graph G to its minimal spanning tree before iterating through subgraphs (see

Stuetzle and Nugent (2010), for example). We showed in Chapter 6 that this short-

cut does not produce the correct tree for the Chaudhuri-Dasgupta edge iteration

algorithm, but Figure 6.1 also suggests that the minimal spanning tree-based level

set tree is a good approximation to the Chaudhuri-Dasgupta tree. An interesting

challenge is to quantify how close the approximation is and to devise a algorithm

that approximates the Chaudhuri-Dasgupta level set tree to an arbitrary degree.
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Another computational improvement would be to translate our DeBaCl software

suite into a compiled language like C or C++. It is currently written in Python,

which maximizes readability and logical clarity, but is not optimized for speed and

memory efficiency.

7.2 Statistical performance

In this thesis we introduced several extensions to the Kpotufe-von Luxburg level set

tree estimator, and we illustrated the value of these extensions primarily by applying

them to simulations and real clustering challenges. A great deal of work remains to

quantify the statistical properties of these methods. For example, the consistency

results of Chaudhuri and Dasgupta (2010) and Kpotufe and Luxburg (2011) are

based on the λ tree. Because the map α 7→ λα is one-to-one and monotonic, it

seems highly likely that the α tree is also consistent (although the details may prove

tricky). The κ tree, on the other hand, admits inversions: given two nodes i and

j in the cluster tree, it is possible for κ′i > κ′j even though λ′i < λ′j . As a result, a

pressing and challenging question is whether we can find a consistency result and

rates of convergence for the κ tree.

In the same vein, the existing theory is based on the existence of a density func-

tion. Using a pseudo-density estimator to build level set trees for non-Euclidean data

works well because accurate tree estimation requires only the correct order relation-

ships between observations. But without a bona fide pdf, it is far from obvious how

to extend level set tree theory to the functional setting. It is not even clear how to

define the population level set tree or a meaningful concept of consistency, because

these are based on the assumption of a dominating measure for the volume of sets.

The fact that level set trees require only the correct order of data points also sug-

gests trees can work well even with high-dimensional data where density estimation

is problematic. Several existing theoretical results also suggest that level set trees
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might work in the high-dimensional setting, and we demonstrated that this is indeed

the case by applying the level set tree to a population genetics dataset where each

individual’s genetic information was measured at over 11,500 covariates. A better

quantification of the relationship between the accuracy of density estimation and

estimation of the order statistics of f̂ ∩ Xn is required to understand when exactly

level set trees will work with high-dimensional data and how accurate they can be

in that setting.

Finally, it may be possible to find answers to these questions by leveraging the

close connection between level set trees and other density-based clustering methods.

New developments in the mean shift algorithm in particular may yield insight into

the statistical performance of level set trees and provide ideas for faster computation.

7.3 Tree inference

The idea of using level set trees for statistical inference is particularly new, and the

scope for future work is enormous. In Section 5.3.1 we showed that the paint mover

distance is a metric and illustrated in a very simple simulation that it can be used to

discriminate between different distributions. A substantial amount of work remains

to understand the statistical properties of the paint mover distance, both in theory

and in practice, and the relationships between paint mover distance, canvas distance,

and α-earth mover distance. One particularly thorny problem is the description of

an “average” level set tree based on these distances alone.

A very promising idea in this direction borrows the concept of a persistence

landscape from the field of persistent homology (Bubenik, 2012). The persistence

landscape is a continuous piecewise linear function constructed by turning each

point of a persistence diagram into a triangle whose base is on the real line, then

calculating the point-wise maximum of the triangles along the real line.

We can construct a very similar function for the level set tree. Working through
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nodes of the cluster tree from lowest to highest birth level (with any index), draw

a line segment connecting the top of each dendrogram branch to the top of the

branches on either side which have higher birth levels. If the branch already has

two segments connecting it to lower branches, it is a leaf and is left alone. Draw

segments connecting the top of the outermost leaves to the horizontal axis.1

The tree landscape defines a map from a d-dimensional density to an unnormal-

ized 1-dimensional density that preserves the critical values of the original function.

With an appropriate bootstrapping procedure we can construct an average land-

scape and a landscape confidence band, which can then be used both to understand

the uncertainty in a single level set tree and for statistical inference (Chazal et al.,

2013). we note that Oesterling et al. (2011) and Oesterling et al. (2013) propose

a slightly different construction of the density landscape for data visualization and

interactive exploration, but their scheme for landscape construction is somewhat

convoluted and they do not pursue the idea of using the landscape for inference

about underlying populations.

7.4 Final thoughts

• Choosing the connectivity and bandwidth parameter k and pruning parameter

γ in level set tree estimation remains an open area of research. In practice,

however, it is often surprisingly easy to find a small range for each parameter

where the tree reveals interesting data structure. γ is generally chosen to fit

a relevant scientific idea about the minimum plausible or useful cluster size.

k is usually chosen first to be relatively large, yielding a very smooth density

and a very simple level set tree. k is then reduced until the resulting tree

fragments into many very small disconnected clusters. The population genetics

application of Section 3.4 shows a somewhat simplified example of this. Level

1This idea came out of a conversation with Fabrizio Lecci, Alessandro Rinaldo, and Larry Wasser-
man.
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set trees tend to be very similar for values of k between these two extremes.

• It is not really appropriate to ask when the level set tree method works or

fails. The level set tree simply describes the structure of a density function; if

the assumption of a pdf is reasonable, then the level set tree is applicable. We

have shown in this thesis and in other work (not described here) that level set

trees can be used even when the density assumption is not reasonable, as is

the case with infinite-dimensional functional data and lattice-based arbitrary

functions.

Our view is that the level set tree should be estimated and used for exploratory

data analysis in every statistical application, just as practitioners use his-

tograms and scatterplot matrices to get an intuitive sense for the data. The

ability of the level set tree dendrogram to act as a platform for interactive

data exploration makes the method especially useful for this purpose.

• Despite the fact that the level set tree is an elemental statistical object, it

is a difficult concept to describe. We suspect this is due in part because the

notion of the population tree is often mixed up with the enumeration of tree

estimation procedures, and we have tried in this thesis to separate the two. In

fact, the idea of a true level set tree is what makes the method a statistical

one in the first place.

To make matters worse, various flavors of the level set tree and estimation

algorithms have been reinvented by several different fields. The different ter-

minology used by each field leads to a great deal of duplicated effort, and as

the method gains popularity it will benefit from standardization of nomencla-

ture. The literature review in Chapter 1 is intended to facilitate this process

by providing an overview of some of the most popular methods, with an em-

phasis on organizing techniques based on their relationship to the underlying
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density or pseudo-density function (or lack thereof).
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