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Abstract
When making risky spatial decisions, humans incorporate estimates of sensorimotor variability and costs on outcomes 
to bias their spatial selections away from regions that incur feedback penalties. Since selection variability depends on the 
reliability of sensory signals, increasing the spatial variance of targets during visually guided actions should increase the 
degree of this avoidance. Healthy adult participants (N = 20) used a computer mouse to indicate their selection of the mean 
of a target, represented as a 2D Gaussian distribution of dots presented on a computer display. Reward feedback on each 
trial corresponded to the estimation error of the selection. Either increasing or decreasing the spatial variance of the dots 
modulated the spatial uncertainty of the target. A non-target distractor cue was presented as an adjacent distribution of dots. 
On a subset of trials, feedback scores were penalized with increased proximity to the distractor mean. As expected, increas-
ing the spatial variance of the target distribution increased selection variability. More importantly, on trials where proximity 
to the distractor cue incurred a penalty, increasing variance of the target increased selection bias away from the distractor 
cue and prolonged reaction times. These results confirm predictions that increased sensory uncertainty increases avoidance 
during risky spatial decisions.
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Introduction

It is fabled that William Tell was forced to use an arrow to 
precariously shoot an apple placed atop his son’s head. Suc-
cessful completion of his task required Tell to optimally aim 
his crossbow for the high reward target, i.e., the apple, while 
avoiding an area with a very high penalty, i.e., his son’s 
head (see also Trommershäuser et al. 2003a). Situations like 
this can be complicated by environmental conditions. For 
instance, a thick fog settling into the square would increase 
the difficulty of Tell’s aiming decision. The increased noise 

in the target estimation process would, in turn, reduce his 
accuracy and impact the likelihood of striking the apple.

In scenarios like these, where people must execute a 
visually guided movement with a potentially high cost on 
feedback outcomes, humans avoid aiming at locations that 
increase the likelihood of a penalty (Meyer et al. 1988). This 
spatial avoidance relies on the statistics of both sensory 
(Whiteley and Sahani 2008) and motor (Trommershauser 
et al. 2005) signals in the goal of probabilistically estimat-
ing the degree of risk associated with actions made to dif-
ferent areas of space (Nagengast et al. 2011). Specifically, 
humans account for both penalty magnitude and response 
variability, such that an increase in either will increase their 
penalty-avoidance bias (Gepshtein et al. 2007; Landy et al. 
2007, 2012; Trommershauser et al. 2005; Trommershäuser 
et al. 2003a, b, 2006; Wu et al. 2006). This process is largely 
consistent with statistical decision theory, which describes 
how probabilistic information is incorporated into decision 
processes (Berger 1985; Maloney and Zhang 2010) to maxi-
mize expected gain by minimizing penalty on decisions with 
uncertain costs. Specifically, the expected gain model of 
sensorimotor decision-making posits that humans combine 
probabilistic estimates of spatial targets with estimates of 
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relative reward and penalty associated with those targets to 
produce a gradient of action value (Trommershäuser et al. 
2003a, 2008). Figure 1a depicts the expected gain model in 
an example trial, where the peak of the expected gain func-
tion is shifted away from a penalty-inducing stimulus. One 
cue represents the target of a spatial action, where selections 
closer to the mean lead to greater rewards (solid black distri-
bution, Fig. 1a), while the other represents the spatial loca-
tion of a region, where selections will incur a penalty (gray 
distribution, Fig. 1a). The expected gain model predicts that 
the magnitude of selection bias away from the penalty region 
is estimated as a cost function across space (x) (black dashed 
line, Fig. 1a), reflecting the difference between these two 
distributions (Gepshtein et al. 2007; Landy et al. 2007, 2012; 
Neyedli and Welsh 2013; Trommershäuser et al. 2003a, b, 
2006; Wu et al. 2006).

In Eq. 1, the optimal location to reach towards, i.e., the 
location with the maximum expected gain (MEGx) , is the 
maximum of a linear function that represents the differ-
ence of the target (denoted with subscript T) and non-target 
(denoted with subscript NT) distributions, each with a mean 
(i.e., centroid) and standard deviation of �T and �T, and �NT 
and �NT, respectively. Thus, selection behavior is reflected 
as a distribution of endpoints over a series of reaches with a 
mean centered over the target mean. The value of � ranges 
from zero to one and determines the weight of the difference 

(1)
MEGx = argmax

(

�N(x;�T , �T ) − (1 − �)(N(x;�NT, �NT))
)

.

between target and non-target distributions in the resulting 
response (MEGx) . When � = 1, the penalty-inducing non-
target is ignored and the selections will focus at the mean 
of the target. As � decreases, the location of the non-target 
induces a greater avoidance bias, pushing the selection away 
from the mean of the target. Figure 1b depicts selection bias 
away from the non-target (downward on the y-axis) in arbi-
trary units as a function of � (x-axis) at different ratios of 
target to non-target variance based on Eq. 1. If the target and 
non-target reflect the spatial location of reward and penalty, 
respectively, then at smaller values of � , selection bias mani-
fests as a shift in the selection distribution away from the 
penalizing non-target (and towards a location in the target 
that is still likely to result in reward).

By design, the expected gain model predicts that changes 
in stimulus variance should influence estimates of the MEGx 
location. This is also illustrated in Fig. 1b, where the top-
most curve shows the predictions of the expected gain model 
(Eq. 1) across all values of � when the variances of the tar-
get and non-target are equal. Here, bias is shown as more 
negative values that reflect stronger avoidance away from 
non-target mean. The other curves show cases, where the 
variance of the target is 175, 250, 325, and 400% larger than 
the variance of the non-target. Note that bias increases as 
the ratio of target to non-target variance increases, as well 
as with lower values of �.

The previous studies on risky spatial decisions used 
filled-in circles with clear boundaries to represent the tar-
get and non-target regions of the space (Meyer et al. 1988; 

Fig. 1  Illustration of the expected gain function, predicted selec-
tion bias, and scoring functions. a Target (solid black line) and pen-
alty-inducing non-target (solid gray line) stimuli are represented as 
Gaussian distributions with means separated by a fixed distance of 
50 arbitrary units. The expected gain function (dashed black line) is 
approximated as a linear combination of the stimulus distributions, 
weighted by their relative outcomes (i.e., � and 1  − � ). On estima-
tion trials (see “Experimental task”), the mean of the target must be 
selected to receive the highest points possible. Selecting the peak of 
the non-target minimizes points during penalty blocks. The peak of 
the expected gain function (MEG) represents the optimal perceptual 

position to select based on the statistics of the stimulus distributions. 
The gray area between the MEG and target mean demarcates where 
selections are biased away from the non-target across trials. b Selec-
tion bias away from the non-target is plotted as a function of penalty 
weighting ( � ) across different ratios of target to non-target variance 
from 1:1 (black curve) to 4:1 (lightest gray curve). More negative 
y-axis values reflect larger selection bias. c Dashed black and gray 
lines represent hyperbolic scoring functions (see Eq. 4) for the stimu-
lus distributions. Point gain on a selection increases along the y-axis 
for the target, but is negative for the non-target.
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Trommershäuser et al. 2008). This design introduces two 
limitations that we address in the current study. First, these 
previous efforts did not systematically manipulate the effects 
of stimulus variance and, therefore, sensory uncertainty on 
spatial decisions, since the target and non-target areas were 
readily visible to the participants. Put another way, these 
previous studies were not designed to study the spatial esti-
mation and selection process. Here, we adapted a proba-
bilistic stimulus design, wherein the target and non-target 
positions must be estimated as the respective means of two 
sparse Gaussian distributions of dots (Acuna et al. 2015; 
Bejjanki et al. 2016; Juni et al. 2015; Tassinari et al. 2006). 
The second limitation involves the feedback payoff struc-
tures, in which the reward and penalty values were uniform 
throughout target and non-target regions of the stimulus. 
This structure necessarily results in an optimal selection 
location that is always biased away from the target center 
and the non-target in penalty conditions (Meyer et al. 1988; 
Neyedli and Welsh 2013; Trommershäuser et al. 2003a, b; 
Wu et al. 2006). Thus, there was not a true optimal location 
based on both the sensory and feedback signals as expected 
by the expected gain model (Eq. 1), but instead a range of 
regions, which could be estimated purely from spatial sig-
nals, that produced the same reward. Here, we disambigu-
ated the spatial distribution of the feedback signal from the 
spatial distribution of the visual stimulus to increase atten-
tion at estimating the true mean of the target. Finally, the 
previous studies have relied on ballistic reaches to represent 
their spatial selections, which can increase urgency in the 
action, thereby increasing selection noise. To mitigate the 
influence of motor noise, we allowed participants an unlim-
ited amount of time to respond. Together, these experimental 
modifications allowed us to extend the past research on risky 
spatial decisions by better controlling variability in motor 
behavior.

Using this paradigm, we sought to address previously 
untested predictions about the effects of stimulus variance on 
selection behavior during risky spatial decisions. First, based 
on the expected gain model (Eq. 1 and Fig. 1b), we hypoth-
esized that increasing the ratio of target ( �T ) to non-target 
( �NT ) spatial variance should increase selection bias away 
from the non-target. In other words, when the target mean is 
harder to estimate, relative to the location of the non-target, 
participants should be more cautious in their spatial estima-
tions and be more biased away from the non-target stimulus. 
Second, this effect on spatial variance on avoidance bias 
should interact with explicit costs (i.e., target and non-target 
weights, � and 1 − � ) to more strongly bias selections than 
penalty conditions alone. Finally, as demands of integrating 
spatial signals increases (i.e., target variance increases) and 
estimating relative value increases (i.e., � gets smaller), then 
this should increase computational demands on the decision 
and slow reaction times to initiate the selection. With our 

paradigm, we were also able to observe the influence of sen-
sory variance on reaction times that were largely unexplored 
in the previous work.

Methods

Participants

Thirty undergraduate students enrolled in an introductory 
psychology course at Carnegie Mellon University were 
recruited through the university’s Psychology Research 
Experiment System. Ten participants failed to perform at or 
above a criterion of 50% overall accuracy on the catch trials 
(see “Experimental task”), leaving a final sample of 20 par-
ticipants (9 females, 11 males). Participant ages ranged from 
18 to 23 years of age (mean age = 20.4) and were screened 
for normal or corrected-to-normal vision and right-handed-
ness. Each eligible participant reviewed and signed a consent 
form approved by the Carnegie Mellon University Institu-
tional Review Board. All participants who completed the 
study received credit towards fulfillment of their semester 
course requirements.

Experimental setup

The experiment was conducted using Psychophysics Tool-
box 3.0.10 (Brainard 1997; Kleiner et al. 2007) through 
MATLAB (Release 2012a, The MathWorks, Inc., Natick, 
MA, USA) on a desktop computer running Ubuntu 14.04. 
Participants completed the task seated in a dimly lit room in 
front of a 23″ computer monitor with a total screen resolu-
tion of 1920 × 1080 pixels.

Experimental task

Using a 2 × 2 (low vs. high target variance × no penalty vs. 
penalty) within-subject design, each participant completed 
eight blocks of trials (two blocks per condition). The order 
of block conditions was randomized for each participant. 
A total of 102 trials (82 estimation trials and 20 catch tri-
als) were presented in each block with a total of 816 trials 
(656 estimation trials and 160 catch trials) across the entire 
experiment. The experiment took approximately 45 min to 
complete.

All trials were self-paced and participants initiated each 
trial by clicking and holding the left mouse button, while 
the screen was blank. A fixation stimulus (+) appeared at 
the center of the screen following the click and hold. On 
estimation trials (Fig. 2a), after a uniformly sampled period 
of time between 250 and 2500 ms, the target and non-target 
stimuli were presented simultaneously on the screen for 
300 ms before disappearing. Both the target and non-target 
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distributions appeared completely in randomly sampled 
locations within the rectangular space of 1024 × 768 pixels 
centered on the screen, with the constraint that both stimuli 
were completely visible in the workspace. The target stim-
ulus (Target) was presented as a Gaussian distribution of 
100 white dots, each 3 pixels in diameter. The non-target 
stimulus, referred to as the “Danger Zone” on penalty trials 
(described below), was simultaneously presented as a Gauss-
ian distribution of 100 red dots (gray in Fig. 2a), also with 
3-pixel diameters. This distribution could appear either to 
the right or to the left of the target with equal probability on 
each estimation trial. The horizontal distance between the 
mean of the target and mean of the non-target was fixed at 
50 pixels. The standard deviation of the target was 25 pixels 
in the low variance blocks and 100 pixels in the high vari-
ance blocks. The non-target always had a standard deviation 
of 25 pixels.

Once the two stimuli were removed from the screen the 
mouse cursor was presented as an “×” at the center of the 
screen. Participants had an unlimited amount of time to 
drag the cursor to a location and then release the left mouse 
button to indicate their selection of the mean of the target 
stimulus. Immediately following the selection, a point total 
for that trial was presented at the center of the screen for 
500 ms. The screen then went blank until the participant 
initiated the next trial.

On half of the blocks, the reward feedback would be 
penalized based on the proximity of the participant’s selec-
tion to the non-target (“Danger Zone”), while this penalty 
was not applied on the remaining blocks. Participants were 
cued to the cost condition (i.e., no penalty or penalty) of 
the upcoming block of trials by onscreen instructions. The 
block commenced after the participant indicated they were 
ready to begin by pressing the spacebar on the keyboard. 

Fig. 2  Experimental trial timeline. Participants clicked and held the 
left mouse button to initiate all trials. a On estimation trials, a fixa-
tion (+) was presented (250–2500  ms jittered). The target (referred 
to as the Target in the task; white) and non-target (referred to as the 
Danger Zone in the task; gray here, presented in red in the task) 
stimuli flashed on screen for 300  ms then disappeared. Participants 
then had unlimited time to indicate their target selection by drag-

ging the cursor (×) and releasing the mouse button. Score on a trial, 
based on selection distance from the target, was presented for 500 ms. 
b On catch trials, instead of visual cues, an “×” was presented after 
a random interval. Participants obtained a flat point total for releas-
ing the mouse within 500 ms, or lost points for missed catch trials or 
responses slower than 500 ms
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Regardless of cost condition, selecting the mean of the tar-
get stimulus guaranteed the maximum number of points 
that could be scored on an estimation trial. Points scored on 
each estimation trial were computed based on the distance 
of a selection from the target and non-target means. On each 
trial, the Euclidean distance to the target stimulus (Eq. 2) 
and non-target stimulus (Eq. 3) were computed based off 
of the selection location (xs, ys) and the means of both the 
target stimulus (xT, yT) and non-target 

(

xNT, yNT
)

 distribu-
tions, respectively:

The reward feedback score on each trial was computed 
as the weighted difference between the target (dT) and non-
target (dNT) selection errors, such that

In Eq. 4, the feedback score based on selection position 
was computed to have a hyperbolic 1/d falloff, where d 
equaled the distance between a selection location and mean 
of the target. Here, the scoring functions are weighted by 
�, corresponding to the weight of the spatial distributions 
specified by the value of � in Eq. 1. In no-penalty blocks, the 
value of ω was set to 1, so that only selection distance from 
the target contributed to the score on those trials. In penalty 
blocks, � was set to 0.33, so that participants incurred a 
heftier loss for selections that were closer to the center of 
the non-target.

The dashed lines in Fig. 1c provide a visual representa-
tion of the hyperbolic scoring functions overlaid with Gauss-
ian target and non-target distributions. The highest possible 
score on any estimation trial was constrained to 200 if a per-
fect distance was estimated (i.e., dT = 0). To more strongly 
engage participants in the task, scores were multiplied by 
1000 when presented at the end of each trial. The use of the 
hyperbolic function meant that any spatial error between the 
selection and target resulted in a steep reduction in points, 
thereby forcing participants to aim as closely to the mean of 
the target stimulus as possible. The fixed distance between 
the target and non-target locations ensured that target selec-
tions yielded the greatest number of points on an estimation 
trial across all blocks, regardless of cost condition.

Twenty catch trials (Fig. 2b) were randomly presented 
throughout each block as an experimental control to verify 
that participants were fixating on the center of the screen 
at the start of each trial. Just like the estimation trials, 
participants initiated catch trials from a blank screen by 
clicking and holding the left mouse button. A fixation 
appeared at the center of the screen for a jittered period 

(2)dT =

√

∑

((xs, ys) − (xT, yT))
2,

(3)dNT =

√

∑

((xs, ys) − (xNT, yNT))
2.

(4)Score = �(100∕dT) − (1 − �)(100∕dNT).

of 250–2500 ms after trial initiation. Then, in lieu of the 
appearance of the estimation trial stimulus, the fixation 
changed from a “+” to an “×” at the center of the screen. 
Participants then had to release the mouse button within 
500 ms to gain five points, or otherwise lose five points for 
either failing to respond or responding too slowly.

Data from ten participants were excluded from further 
analyses for failure to reach 50% accuracy on the catch tri-
als across the entire experiment. One possible explanation 
is that the magnitude of points on estimation trials dwarfed 
that on catch trials, reducing the incentive to respond. Esti-
mation trials were also far more frequent in the task (80% 
of all trials) and had no limit for responses, whereas catch 
trial responses had to be made within 500 ms. However, 
we note that the general pattern of results, including the 
statistical significance and effect sizes of our reported 
results, does not change with inclusion of those data. As 
such, we do not include any further discussion of catch 
trial performance.

Data analysis

Selection variability, bias, and reaction time were the pri-
mary dependent measures. The spatial location of a selec-
tion as well as the time between offset of the stimuli and 
movement onset on estimation trials (i.e., reaction time) was 
recorded for every trial across all participants. For all analy-
ses, only the position along the x-dimension, i.e., the selec-
tion, was used, since this was the dimension along which 
the adjacent non-target location was manipulated. Selection 
variability, bias, and reaction time were computed for all 164 
estimation trials within the same experimental condition. 
Selection variability was computed as the standard devia-
tion of the x-coordinate of selections across trials within a 
condition.

Selection bias was computed as the difference between 
the selection and target on a trial relative to the position of 
the non-target stimulus, which could be presented either to 
the left or to the right of the target stimulus. As illustrated 
in Fig. 1b, the selection bias score has more negative values 
with a greater selection distance away from the non-target 
stimulus, relative to the mean of the target stimulus. Posi-
tive values would indicate selections closer to the non-target 
stimulus.

A two-way repeated measures ANOVA was conducted to 
observe the main effects of variance and penalty (i.e., cost) 
conditions, as well as the variance × penalty interaction 
separately on selection variability, bias, and reaction time 
(Fig. 3). Paired sample t tests were used as post-hoc meas-
ures to determine the directionality of main effects and inter-
actions in significant omnibus tests. Effect sizes were esti-
mated as partial eta squared, �2

p
.
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Results

As predicted, variability of participants’ estimates of the 
target stimulus mean was higher in the high variance 
blocks than the low variance blocks, F(1,19) = 7.29, 
p = 0.014, �2

p
 = 0.28 (Fig. 3a). We averaged the scaling 

effect of variance across the penalty and no-penalty blocks 
and computed the ratio of selection variability in high 
variance blocks to low variance blocks to be 1.59. There 
was no main effect of penalty condition on selection vari-
ability, F(1,19) = 0.83, p = 0.37, nor was there a vari-
ance × penalty interaction, F(1,19) = 1.41, p = 0.25. This 
indicates that increasing the spatial variance of the target 
stimulus reduces the reliability of the spatial estimations. 
Indeed, we did observe a significant main effect of target 
variance on reaction time, F(1,19) = 37.80, p < 0.001, �2

p
 = 

0.67 (Fig. 3b), wherein reaction times slowed in the high 
variance conditions. Though penalty did not have a signifi-
cant main effect on reaction times, F(1,19) = 2.55, 
p = 0.13, there was a significant variance × penalty interac-
tion, F(1,19) = 5.62, p = 0.029, �2

p
 = 0.23. The paired t test 

confirmed that the high variance condition with penalty 
resulted in significantly slower reaction times than the high 
variance condition with no penalty, paired t(19) = − 2.38, 
p = 0.014, Cohen’s d = − 0.53. Reaction times were not 
significantly different between low variance blocks, paired 
t(19) = 1.68, p = 0.1098, regardless of penalty condition. 
This effect on reaction times is interesting as the past work 
motivating the current experiments implemented a time 

constraint with very short time durations (e.g., < 700 ms), 
which is often critical for detecting changes in reaction 
times due to influences on the decision process itself. 
However, reliable effects of spatial stimulus variance and 
penalty on reaction times were not observed (Neyedli and 
Welsh 2013, 2014; Trommershäuser et al. 2003a, b). We 
elaborate on this difference between studies further in the 
“Discussion”. Taken together, the selection variance and 
reaction time results confirm that the target spatial vari-
ance manipulation impacted the reliability of the spatial 
estimation process.

The expected gain model predicts that selection bias 
away from the non-target stimulus should increase in these 
conditions of low sensory certainty, and this effect should 
interact with the presence of feedback penalties. Consist-
ent with the previous observations (Neyedli and Welsh 
2013, 2014; Trommershauser et al. 2005; Trommershäuser 
et al. 2003a, b), the introduction of a penalizing cost on 
selections resulted in a bias away from the non-target 
(Fig. 3c). The ratio of bias in penalty blocks compared to 
no-penalty blocks was 2.47 when we averaged the scaling 
effect of penalty across low and high variance conditions. 
Both main effects of variance, F(1,19) = 7.72, p = 0.012, 
�
2
p
 = 0.29, and penalty condition, F(1,19) = 18.66, 

p < 0.001, �2
p
 = 0.50, as well as the variance × penalty 

interaction, F(1,19) = 10.63, p = 0.004, �2
p
 = 0.36, were 

significant. In general, selection bias was greater in high 
variance conditions; one-sample t tests, evaluating the bias 
effect with respect to a null hypothesis of zero, revealed 

Fig. 3  Selection variability, reaction time, and bias across condi-
tions. Bar color is the same in all panels and error bars represent the 
standard error of the mean. a Average selection variability in pixels, 
measured as the standard deviation (�) of selections in low and high 
variance blocks, was compared across no-penalty (black) and penalty 
(white) blocks. There was a significant main effect of target variance 
that resulted in increased selection variability in high variance blocks. 
b Average reaction time (RT) in seconds, measured as the amount of 
time from stimulus offset and the initiation of movement on an esti-
mation trial. There was a significant interaction between variance 

and penalty driven by a significant main effect of variance. RTs were 
slower in high variance conditions with the longest RTs in the high 
variance × penalty blocks. c Average selection bias in pixels, meas-
ured as the distance of selections from the target mean. A significant 
interaction between variance and penalty resulted in the greatest bias 
away from the non-target (Danger Zone) in the high variance × pen-
alty blocks. Both main effects were significant and showed an 
increased bias in penalty blocks. Asterisks and hash lines denote sig-
nificant main effects and interactions (*p < 0.05, ***p < 0.05)
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that this nonzero bias was present in penalty blocks across 
the low, mean = − 2.84, t(19) = − 2.90, p = 0.009, Cohen’s 
d = − 0.65, and high variance, mean = − 15.64, t(19) = 
− 3.72, p = 0.002, Cohen’s d = − 0.83, conditions. A 
paired t test showed that the magnitude of this penalty-
induced bias was significantly greater in high variance 
blocks, paired t(19) = − 3.23, p = 0.005, Cohen’s d = 
− 0.72. This confirms our prediction that when the sensory 
reliability of spatial target estimates is low (i.e., high spa-
tial variance), selection bias away from the non-target 
increases.

Discussion

Consistent with the predictions of the expected gain model 
(Trommershäuser et al. 2003a, 2008), we show that sen-
sory reliability of visual targets interacts with spatial cost 
estimates during goal-directed action. We confirmed that 
increasing the spatial variance of a visual target reduces 
the reliability of spatial estimates of the target mean (Bej-
janki et al. 2016; Körding and Wolpert 2004; Tassinari et al. 
2006). By allowing an unlimited amount of time to make 
selections, our task was less sensitive to the effects of motor 
noise on spatial estimates than the previous studies that used 
a ballistic reaching paradigm (Neyedli and Welsh 2013, 
2014; Trommershäuser et al. 2003a, b). Although because 
our paradigm did not pressure response speed itself, other 
non-planning processes could contribute to variability in the 
reaction times (Wong et al. 2017), tempering the interpreta-
tion of context influences on response speed. We also rep-
licated the observation that participants biased their selec-
tions away from a non-target stimulus that could induce a 
penalty on feedback scores (Landy et al. 2007, 2012; Trom-
mershauser et al. 2005; Trommershäuser et al. 2003a, b; Wu 
et al. 2006). Critically, we showed for the first time, under 
conditions of high target variance and penalty, participants 
most strongly biased selections away from the non-target 
stimulus and also took significantly more time to initiate 
selection movements.

Though our findings are generally consistent with proba-
bilistic models of human spatial estimation (Landy et al. 
2007; Neyedli and Welsh 2013; Tassinari et al. 2006; Trom-
mershäuser et al. 2003a, b), we built on past research by 
providing support for previously unexamined predictions 
of the expected gain model (Trommershäuser et al. 2003a, 
2008) regarding the effect of stimulus variance on spatial 
decisions. First, we confirmed the prediction that increasing 
the ratio of target to non-target stimulus variance increases 
avoidance bias away from the non-target stimulus (Figs. 1a, 
b, 3c). While this prediction comes out of the normative 
form of the expected gain model (see Eq. 1), it was not eval-
uated in the previous studies, because the stimuli used did 

not allow for the manipulation of spatial certainty. Our novel 
implementation of 2D Gaussian distributions as target and 
non-target stimuli, rather than circles, allowed for systemati-
cally manipulating the spatial precision of sensory signals 
and, consequently, the variance of the estimation process 
itself. Second, we found an interaction between stimulus 
reliability and penalty-induced avoidance bias, the greatest 
selection bias was away from the penalizing non-target in 
high target variance conditions. Again, this follows from the 
prediction of the normative form of the expected gain model 
(see Fig. 1b). Finally, by dissociating the feedback func-
tion from perceptual distributions of the target (Fig. 1c), we 
were able to show that the avoidance bias reflects a purely 
perceptual estimation process, rather than a feedback learn-
ing process. Specifically, had participants only been using 
trial-by-trial reward feedback signals to find the optimal 
selection location, then the mean of their selections would 
have centered on the mean of the target stimulus (i.e., zero 
spatial bias). The fact that participants still showed a bias in 
non-penalty conditions and that this bias scaled with percep-
tual reliability of the spatial location of the target, confirms 
that trial-by-trial reinforcement learning has little impact on 
the estimation process itself (Trommershäuser et al. 2003a, 
b). We should point out, however, that Neyedli and Welsh 
(2013) found evidence that reward feedback signals may 
moderate the shape of this bias over time. While we failed 
to see evidence of such learning in our participants (analysis 
not shown), this is likely due the fact that our experiment 
was not designed to explicitly test for learning effects.

It is worth noting that the avoidant selection behavior 
shown here likely reflects a top–down strategy rather than a 
simple computation on bottom–up sensory inputs. The past 
risky spatial decision-making studies manipulated the degree 
of target and non-target circle overlap (Meyer et al. 1988; 
Neyedli and Welsh 2013; Trommershäuser et al. 2003a, b), 
thereby constraining the spatial region that would produce 
a reward. From a statistical perspective, there are two ways 
to compensate behavior when the rewarded spatial region 
shrinks: improve spatial precision by reducing selection 
variability or improve accuracy by shifting the mean of the 
selection to being near the center of this constrained reward 
region. As in the current study, these previous experiments 
showed that rather than constraining motor output variabil-
ity based on sensory estimates to ensure that selections fell 
within the available space of the target, participants shifted 
the mean of their selections away from the penalizing non-
target to a degree that corresponded to target and non-target 
overlap to avoid losses. In some ways, this is consistent with 
the principle of loss aversion in Prospect Theory, which pos-
its that “losses loom larger than gains” in that individuals are 
more sensitive to a potential loss than a sure gain of equal 
or greater expected value (Tversky and Kahneman 1992). 
However, it is worth noting that our experimental design was 
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able to dissociate the actual optimal feedback position with 
the expected optimal position given a weighted combination 
of the two stimuli (see Fig. 1c). If participants were simply 
using a mixture of the incoming sensory signals and previ-
ous reward feedback to learn an optimal location to select, 
they would always select the mean of the target stimulus. 
The fact that we also observed a strong avoidance bias sug-
gests that the maximum expected gain estimation is a purely 
perceptually driven spatial estimate and not an optimal deci-
sion given the reward feedback delivered.

Although selection bias was not significantly different 
from zero on low target variance blocks with no penalty, 
selections still trended away from the non-target, rather than 
varied symmetrically about the target (i.e., zero bias). While 
participants may have been primed to always avoid the non-
target stimulus across the experiment, this nonzero bias on 
no-penalty blocks when � was fixed at a value of 1 suggests 
that participants did not fully discount the non-target, even 
though it should have had no influence on their spatial esti-
mates. Our experimental design was limited in determining 
whether this observation was due to some carryover of � 
values when no-penalty blocks followed penalty blocks, or 
whether there is some other source of noise in the spatial 
estimation process that should be considered in the expected 
gain model. Indeed, there is evidence that both learning of 
expected costs on spatial decision outcomes (Neyedli and 
Welsh 2013, 2014) and noisy spatial estimates (Juni et al. 
2015) can lead to biased selection behavior. Future para-
digms can use a counterbalanced block structure and manip-
ulate � parametrically to quantitatively assess any potential 
effects of carryover (e.g., learned value of � ) or noisy spatial 
estimates.

We also found that increased sensory stimulus variance 
interacts with penalty to further slow the time it took to initi-
ate the selection decision. Under conditions of high target 
variance, participants took significantly longer to initiate 
their movements with the slowest reaction times occurring 
in high variance blocks with penalty. When penalty was 
added along with high demands on selection precision, i.e., 
high sensory variance, participants might have taken longer 
to respond as a precaution to mitigate larger than expected 
costs. This cautionary behavior may reflect some subjective 
difficulty or uncertainty either in a strategic plan to reduce 
known costs or in the implicit spatial estimation process 
itself. This presents another avenue of research wherein 
expected costs, reflected by trial-by-trial fluctuations in the 
value of �, and estimates of stimulus variance can be consid-
ered together during spatial decisions. As such, new models 
of sensorimotor integration can relate explicit (e.g., costs) 
and implicit (e.g., sensory variance) aspects of estimation 
processes that underlie spatial decision behavior (McDou-
gle et al. 2016; Summerfield and Tsetsos 2012; Taylor et al. 
2014).

Taken together, our findings clearly show that estimates 
of sensory variance contribute to the degree to which indi-
viduals attempt to avoid penalties during risky spatial deci-
sions by biasing their action selections away from regions 
that induce feedback penalties. Based on our results, it 
largely appears that estimates of stimulus variance and cost 
conditions along with expected feedback are considered 
together while people make spatial judgments in an attempt 
to maximize gain. However, we note that some limitations 
in our experimental design prohibited us from quantitatively 
determining how much increased selection bias and slower 
reaction times can be attributed to noisy, or less reliable, 
estimates of costs or stimulus variability. To address remain-
ing questions in future work, modifications to the present 
paradigm and the development of quantitative models can 
more deeply explore the interaction of explicit and implicit 
processes that support spatial decision-making behavior in 
the context of risk.
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