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Abstract 

While the same decision to act can occur in multiple contexts, how these contexts differentially 

influence behavior is not well understood. In this paper, we investigate whether contextual 

framing affects individuals’ behavior in spatial decision-making. While previous research 

suggests that individuals’ judgments are sensitive to contextual (and particularly moral) factors 

of a scenario, no work has addressed whether this effect extends to spatial decisions. To 

investigate contextual framing effects on perceptual sensorimotor behavior, we superimposed a 

moral dilemma (help or harm) on a spatial decision-making paradigm (Jarbo et al., 2017). The 

basic task required participants select a target area while avoiding an overlapping non-target 

area. While the task was constant, the moral context was changed when participants had to 

execute either a drone missile strike on enemies in the harm context or deliver ammunition to 

allies in the help context. Participants more strongly avoided losses in the harm context, reflected 

by a greater selection bias away from the non-target (i.e., allies) and lower selection variability 

on drone strike trials. Selections were also initiated later and were slower overall in penalty 

conditions compared to no-penalty conditions. Together, these findings suggest that the 

contextual framing of a subjective perceived loss on a spatial decision can drive avoidant motor 

execution behavior. 
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Introduction 

Imagine you are challenged to throw a dart and hit the center of a dartboard. Now, imagine that 

your (mean-spirited) challenger puts a photograph of your child over the bullseye and tells you to 

aim for them. Suddenly, throwing the dart is imbued with contextual meaning, even if how to 

perform the challenge did not change: after all, hitting the center remains the goal. Such a case 

raises the question: when spatial decisions are contextually framed, how does this affect the 

spatial decisions we make? To answer this question, we introduce a paradigm in which we 

contextually frame risky spatial decision-making scenarios, to determine whether participants’ 

decisions are affected by the context, though the task is otherwise identical.   

Recent research (Jarbo et al., 2017) suggests that, in spatial decision-making tasks in 

which there is high variance, distraction, and both penalty and reward parameters, individuals 

make decisions that are not well captured by existing accounts of decision-making, such as 

prospect theory (Tversky & Kahneman, 1978, 1992) or decision theoretic models 

(Trommershäuser et al., 2003a; Trommershäuser, Maloney, & Landy, 2008). Specifically, 

participants biased their selections, which resulted in a scoring penalty on selections, but they 

showed no selection bias (i.e., selections were not significantly different from the target center) 

in no-penalty conditions. Importantly, since the target was experimentally determined to be the 

optimal selection location across all conditions, participants should have selected the target 

center in order to maximize expected gain on the task. Given that the task stimuli were the same 

across conditions, selection bias away from the penalizing non-target indicated that participants 

may have subjectively judged the penalty, or loss, associated with the non-target to be aversive. 

In particular, the trend of participants’ decisions indicates that the presence of variance and 

penalty factors influences participants’ judgments of visuospatial stimuli, resulting in spatial 



4 

selection behavior that is biased away from regions of a target that maximize gain (i.e., optimize 

task performance) in order to minimize loss. In this paper, we investigate whether individuals’ 

selection bias, and therefore their subjective aversion to this loss, can be manipulated by imbuing 

this task with contextual meaning, akin to the dart throwing example above. 

Our project is also informed by two trends in research on human reasoning. First, a body 

of literature suggests that the way in which a decision is presented influences a participant’s 

response. Framing an otherwise equivalent decision as two different kinds of losses has been 

shown to elicit distinct choice behavior (Kahneman & Tversky, 1979, 1984). Thus, the 

contextual framing of the decisions impacts whether an individual chooses an option that is more 

likely to maximize expected gain, suggesting that individuals may have a subjective preference 

to avoid one kind of loss over another. Second, previous research suggests that the manipulation 

of moral factors of a case influences participants’ judgment. Notably in one experiment (Knobe, 

2003a), only the word “harm” was changed to “help” in the narrative; despite what might 

initially seem to be a minor change of wording related to moral consequences, the change of 

“harm” to “help” resulted in reported effects of changes in judgment of intentionality, causal 

responsibility (Knobe 2007), and knowledge (Beebe & Buckwalter 2010). Importantly in this 

studies, the “harm” or “help” cases were otherwise identical. For both of these trends in research, 

vignettes were used, but no paradigm involved spatial decision-making. 

Our study seeks to determine whether the contextual framing of a spatial decision-making 

task affects the judgments participants make in the task, even though the context does not change 

which decision is most optimal in the task. The contextual framing of a decision-making task 

amounts to the inclusion of a scenario that specifies that the components of the task and the 

actions of the participant should be taken to represent some entity or action in the scenario. For 
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example, a task where participants must click on dots can be contextually framed by a scenario 

where the dots are taken to represent people, and the act of clicking is taken to represent 

attacking them. These contextual frames include moral factors, requiring the participant to make 

a decision where the ‘reward’ and ‘penalty’ relate to moral outcome, and differ from one another 

in terms of the valence (i.e., “goodness” or “badness”) of the moral factors.  

In our experimental task, which we call “Drone Strike,” we used a wartime scenario to 

develop two moral dilemmas that provided contextual frames for the same risky spatial decision. 

Namely, the target represented enemies to be neutralized by a drone strike or allies to whom 

ammunition needed to be delivered. In penalty conditions, the non-target represented either 

nearby allies to be avoided by a drone strike (harm context) or enemies to be avoided on 

ammunition deliveries (help context). The harm context contextualizes loss (i.e., ally casualties) 

in a morally different way when compared to the help context (i.e., ammunition intercepted by 

enemies). Importantly, the sensory signals are identical between the help and harm conditions; 

only the contextualization of the spatial decision changes. 

 We specifically address the hypothesis that if risky spatial decision-making behavior is 

impacted by the subjective aversion to potential loss, then selection bias away from the 

penalizing non-target in the context of harm (i.e., ally casualties) will be significantly greater 

than in the help context (i.e., ammunition interception by enemies). In other words, we expect 

there to be a difference in selection bias between help-context and harm-context versions of our 

task, where the task’s parameters, are equal in terms of riskiness (i.e., there is high variance) and 

loss (i.e., there is a numerically-represented penalty). What changes, we suggest, is not the metric 

of riskiness or loss, but rather what meaning they are imbued with by the context.  
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In addition to our main set of hypotheses, we also analyze the effects of context (harm 

versus help), cost (no-penalty versus penalty), and target variance (low versus high) on other 

measures of performance, including selection variability, reaction time, movement time, 

maximum movement velocity, and average movement velocity. Together, these results more 

fully characterize avoidant selection behavior during risky spatial decisions.  

 

Methods 

Participants 

All participants were screened for normal or corrected-to-normal vision and right-handedness. 

We used ColorBrewer (https://colorbrewer2.org) to select colorblind-safe stimulus colors, and 

verbally confirmed with participants during the instructional period that they were able to 

discriminate between the stimulus colors used in the task. The participant pool consisted of 

undergraduate and graduate students from Carnegie Mellon University and the University of 

Pittsburgh. Carnegie Mellon students were notified of the study either via the university’s 

Psychology Research Experiment System or flyers posted on campus. University of Pittsburgh 

students were recruited via flyers. All participants in the behavioral study reviewed with an 

experimenter and signed a paper consent form approved by the Institutional Review Boards of 

Carnegie Mellon University and the University of Pittsburgh. All behavioral participants were 

compensated $10 per hour for a total of $20 upon completion of the second session.  

We recruited a total of 50 healthy adult participants (mean age = 22.6 years, age range = 

18 - 44; 33 female, 11 male) who completed two, one-hour behavioral sessions that occurred on 

consecutive days. One participant’s data was excluded from analysis when an error in stimulus 

presentation was observed during their second session. Three participants did not return for a 
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second session due to scheduling conflicts that did not allow them to complete the study on 

consecutive days. Data from two participants were excluded from analyses for failure to reach 

90% trial completion on either or both behavioral sessions leaving us with a final N = 44. 

Excluding data from six participants did not change the general pattern of results. 

 

Existing Behavioral Models 

The maximum expected gain model predicts the extent to which an individual will bias 

their selections of a visually presented stimulus away from regions associated with penalty, when 

this individual attempts to maximize gain by selecting a location associated with high reward in a  

risky spatial decision-making task (Trommershäuser et al., 2003a). In Equation 1, MEGx 

represents the optimal location, i.e., the location with maximum expected gain, within the 

stimulus, and is the maximum of a linear function that represents the difference between the 

target (subscript T) and non-target (subscript NT) stimulus distributions. The mean (i.e., centroid) 

and standard deviation of the target and non-target distributions are respectively represented by 

�� and ��, and ��� and ���. The value of 𝛼 ranges from 0 to 1 and is used to weigh the 

target and non-target distributions, which partly determined the magnitude of selection bias away 

from the penalizing non-target.  

 

   Eq. 

1 

 

The effect of contextual framing on risky spatial decisions can be examined within the 

framework of the maximum expected gain model by scaling𝛼. Figure 1 illustrates selection bias 
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as a function of 𝛼 during a risky spatial decision under two contextual frames for loss. We test 

whether the valence of the moral factors in each contextual frame predicts different decision-

making behaviors in each framed task: that loss in a “harm” context is subjectively more 

aversive than loss in a “help” context, and participants will thus exhibit greater selection bias 

away from the penalizing non-target (i.e., 𝛼���� < �����) when all other aspects of the 

decision (e.g., sensory signals, timing) are the same.  

 

 

 
 

Figure 1 Illustration of selection bias difference prediction based on the maximum 
expected gain model. Selection bias is plotted as a function (solid red line) of penalty 
weighting (�) and a 1:1 target to non-target variance ratio (��/���). More negative 
values on the y-axis represent selections farther away from the non-target region of the 
stimulus. Horizontal black dashed lines reflect the hypothesized difference in selection 
bias in harm and help contexts (solid black lines), where bias is expected to be farther 
away from a penalizing non-target in subjectively more aversive harm conditions.  

 

Experimental Setup and Design 

The behavioral experiment was conducted with Psychophysics Toolbox 3.0.12 (Brainard, 1997; 

Kleiner et al., 2007) through MATLAB (Release 2015a, The MathWorks, Inc., Natick, MA, 
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United States) on a desktop computer running Ubuntu 16.04. Participants completed the task 

seated in a dimly lit room in front of a 23” computer monitor with a total screen resolution of 

1920 x 1080 pixels and a 60 Hz screen refresh rate. 

 Using a 2x2x2 (harm vs. help context x no-penalty vs. penalty x low vs. high target 

variance) within-subject design, each participant completed four runs (“tours”) consisting of 

eight blocks of trials of a single condition (“missions”). We describe the levels of each task 

condition below in more detail. Participants completed 32 total blocks of 10 trials each for a total 

of 320 trials in a single experimental session that lasted approximately 50 minutes. Participants 

completed 640 trials across two sessions. The order of blocks was counterbalanced within runs 

using a Latin square approach that minimized the correlation between block orders across runs 

for each participant, as well as across both sessions.  

 

 



10 

Figure 2 Experimental timeline. Each block, or “mission”, started with a instruction and 
wait period (top) where participants received a reminder of enemy and ally distribution 
colors for 3s followed by a 3 s wait period. A condition cue was then presented for 4 s in 
a font color the same as the target distribution for that block. A blank screen was then 
presented for 2-10 s (mean ITI = 4 s) prior to each trial. Stimulus presentation (bottom) 
began with a fixation (+) presented at the center of the screen. Participants had to click 
and hold the left button within 0.5 s of fixation onset to initiate the trial or else an 
“ABORT” message appeared indicating a failed trial. On a successfully initiated trial, the 
target and non-target stimulus distributions appeared onscreen for 0.25 s and then 
disappeared. Participants then had 2 s to indicate their target selection by dragging the 
cursor (x) and releasing the mouse button. Each block consisted of 10 trials, and a score 
report with a running total of enemy and ally casualties as well as ammunition delivered 
and intercepted was presented until the participant pressed the spacebar indicating that 
they were ready for the next block of trials. Note: Stimuli and fonts rescaled for clarity. 
 

 On each block of trials, participants were tasked with using a computer mouse to select a 

location within a target stimulus distribution that was visually overlapped by a non-target 

stimulus distribution presented simultaneously onscreen (Figure 2). A wartime scenario was used 

to provide the contextual framing of each spatial selection, wherein participants selected the 

location of a precision missile strike on enemies or ammunition delivery to allies from a drone on 

a series of trials within a block. Before each block of trials, participants were presented for 3000 

ms with a visual reminder of the colors that corresponded to the enemy and ally stimuli, which 

were either purple or orange. After a wait screen was presented for 3000 ms, the instruction for 

the upcoming set of trials was presented for 4000 ms. On “drone strike” missions, participants 

were instructed to “Neutralize as many enemies as possible”, whereas in the “ammunition 

delivery” missions participants were instructed to “Deliver ammunition to as many allies as 

possible”. In both cases, the color of the instruction text matched the target stimulus (i.e., 

enemies on drone strikes and allies on ammunition deliveries). Following the instruction period, 

a blank screen was presented before a fixation (+) appeared at the center of the screen indicating 
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the onset of a trial. The onset time for each trial within a block was uniformly sampled from a 

distribution of intertrial intervals ranging from 2000 ms to 10000 ms (mean ITI = 4000 ms).  

To initiate the trial, the participant had to click and hold the left mouse button within 500 

ms, otherwise they received an “ABORT!!!” message at the center of the screen indicating a 

failed trial. For successfully initiated trials, the target and non-target distributions were presented 

together for 250 ms before disappearing. Both the target and non-target distributions appeared 

completely on the screen. Each stimulus distribution was presented as a 2D Gaussian distribution 

of 100 dots that were each three pixels in diameter. The non-target distribution could appear 

either to the right or left of the target distribution with equal probability across trials. The means 

of the distributions were separated by fixed horizontal distance of 50 pixels. The mean of the 

target distribution was randomly sampled from a distribution of 2D coordinates that had a 

minimum distance of 350 pixels away from the center of the screen. On no-penalty blocks, the 

non-target stimulus distribution represented the position of trees, which were always green. On 

penalty blocks, the target and non-target distributions were the color of enemies and allies, 

respectively. In the low target variance conditions, the target standard deviation was set to 25 

pixels and to 100 pixels in the high target variance condition. The standard deviation of the non-

target distribution was fixed at 25 pixels across all trials. 

After the stimulus distributions disappeared, the mouse cursor was immediately presented 

as an “x” at the center of the screen. Participants then had 2000 ms to drag the cursor to a 

location and then release the mouse button to indicate their selection for each drone strike or 

ammunition delivery. After a full set of 10 trials in a block, a report screen was presented to 

indicate progress through the experiment along with a running total of enemies killed, allies 

killed, ammunition delivered, and ammunition intercepted. This report remained on the screen 
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until any key on the keyboard was pressed by the participant to initiate the next run or block. A 

final score report screen was presented at the end of the session. Selection bias was measured as 

the distance, in pixels, between a selection and the target mean on a trial (Figure 3A). Selections 

further from the target mean in the direction away from the non-target are represented as 

negative values. Selections closer to the non-target distribution are represented as positive 

values. Reaction time was recorded at the first mouse movement detected after stimulus offset. 

By recording mouse cursor positions, which were sampled at the screen refresh rate of 60 Hz 

across the duration of a trial, and button presses along with RT and MT, we computed the 

maximum and average velocity of the mouse cursor movements during selections on each trial.  

Regardless of context (i.e., drone strike or ammunition delivery), cost (i.e., no-penalty or 

penalty) or target variance (i.e., low or high) condition, selecting the mean (i.e., center) of the 

target distribution guaranteed the maximum possible score on a trial. Equations 2-4 were used to 

calculate scores across trials. First, the Euclidean distance between a selection and the target 

distribution mean (Equation 2) and the non-target distribution mean (Equation 3) were computed 

based respectively on the selection location (��,��) and the means of both the target stimulus 

(��,��) and non-target (���,���) distributions.  

 

�� = � ��,�� − ��,��
2
    Eq. 2 

 

��� = � ��,�� − ���,���
2
    Eq. 3 
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These distances were used in weighted hyperbolic functions with a 1/d falloff to compute the 

score for each trial. Equation 4 shows the target function weighted by ω and the non-target by 1-

ω. In no-penalty blocks, ω = 1, so that only the selection distance from the target contributed to 

the score (i.e., no loss, only enemy kills or ammunition delivered), while ω = 0.33 to additionally 

reflect losses on penalty blocks as ally kills or ammunition intercepted.  

 

����� = ��� − 1−� ��� ×1000   Eq. 4 

 

Here the computed scores were multiplied by 1000 and a rounded to yield an integer value 

between 0 and 100 for each trial. The total score for each block of 10 trials was added to a 

running total across all blocks within each experimental session. 

 

Behavioral Data Analysis 

Selection bias away from the non-target, selection variability, reaction time (RT), movement 

time (MT), peak (i.e., maximum) mouse cursor velocity (maxV), and average mouse cursor 

velocity (avgV) served as dependent measures. The spatial location of a selection, the time 

between stimulus offset and movement onset, as well as total movement time were recorded for 

every completed trial across all participants. Since the non-target position relative to the target 

was only manipulated on the horizontal dimension, only the horizontal selection distance was 

used in analyses of selection bias and variability. Selection bias was calculated as the difference 

between the target mean and the selection relative to position of the non-target. Specifically, 

selection bias takes more negative values at greater distances away from the non-target mean. 

Positive values thus indicate selections closer to the non-target mean (Figure 3A). Selection 
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variability was computed as the standard deviation of the x-coordinate of all selections within a 

condition. The position of the mouse was sampled at the screen refresh rate (60 Hz) and was 

used to compute the peak and average mouse velocity on each trial. All dependent measures 

were computed for all trials within a condition. 

 To further quantify any group-level main effects or interaction of cost (i.e., penalty) and 

target variance condition on selection bias between contexts (i.e., harm: drone strike vs. help: 

ammunition delivery), the mean selection bias in the help conditions was subtracted from the 

mean in the harm condition. We then subtracted those values in the no-penalty conditions from 

the values in the penalty conditions that matched on target variance to yield a difference score 

(i.e., 𝛥����!���� = �������� −��������). As such, negative 𝛥����!���� values 

reflect a larger bias away from the non-target in harm conditions than help conditions. 

Conversely, positive 𝛥����!���� values would indicate that selections were closer to the non-

target in harm conditions. This also allowed us to compute a correlation between 

𝛥����!���� values in low and high target variance conditions to examine whether or not there 

was a group-level relationship between how much more (or less) participants biased selections 

away from the non-target under each level of target variance within each cost condition. Based 

on prior work (Jarbo et al., 2017), we expect an interaction between cost and target variance 

resulting in the greatest selection bias under conditions of penalty and high target variance. Thus, 

we should find that greater (i.e., more negative) 𝛥����!���� values are negatively correlated 

with increased target variance. 

Since we hypothesized that avoidant selection bias would result from participants 

incorporating a greater subjective perceived loss into their decision-making process, we may not 

see a group-level correlation where high target variance conditions with penalty result in greater 
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selection bias and 𝛥����!���� values for all participants. For instance, some participants may 

perceive the non-target as more aversive in penalty conditions only in high target variance 

conditions, while others may perceive the non-target as equally aversive regardless of target 

variance. If so, then we should observe some subsets of participants with greater 

𝛥����!���� values only under certain levels cost and target variance conditions. Hence, we 

performed an individual difference analysis of selection behavior to examine whether or not 

some participants show different degrees of selection bias under different combinations of cost 

and target variance, by categorizing 𝛥����!���� values into four cells, or quadrants (Q-I 

through Q-IV) (see Figure 4). Moving counterclockwise beginning with the upper right quadrant, 

participants in Q-I would be categorized as less harm averse, since 𝛥����!���� would be 

positive in both low and high target variance conditions. Participants in Q-II and Q-IV are then 

only harm averse in either the high or low target variance condition, respectively. If a participant 

falls in Q-III, then they would be harm averse in both variance conditions. Also, if more 

participants generally show less bias away from the non-target in no-penalty conditions but are 

harm averse in penalty conditions overall, then we should see a greatest proportion of  

𝛥����!���� values shift from Q-I to Q-III. Based on these categorizations, we first calculated 

the ratios of 𝛥����!���� values in each quadrant as a preliminary estimate of this shift 

magnitude. Shift ratios greater than 1 thus indicate a larger number of participants with 

𝛥����!���� values in a given quadrant in penalty conditions versus no-penalty conditions. We 

then performed a 𝜒2goodness-of-fit test to determine whether or not the observed number of 

participants in each quadrant deviated significantly from the expected number. Lastly here, we 

computed the 𝛥����!���� value centroids (i.e., means) with 95% confidence intervals along 

the x and y axes within Q-I and Q-III (Figure 4, bottom panel). 
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All dependent variables were subjected to a three-way repeated measures ANOVA to 

observe whether there were any significant 3-way and 2-way interactions or main effects of 

context, cost, or target variance. Since six dependent variables were subject to ANOVA, a 

Bonferroni correction of � of 0.05/6 = 0.008 was used as a threshold for statistical significance. 

For significant results on omnibus F tests, effect sizes were estimated as 𝜂�2 . To account for the 

possibility of finding no significant differences between context conditions, a two-way repeated 

measures ANOVA was planned for data collapsed across (i.e., controlling for) context conditions 

to observe any expected significant main effects or interactions between cost and variance (Jarbo 

et al., 2017). In order to determine the directionality of significant main effects or interactions 

from the omnibus F tests, we report the group means and standard errors for each dependent 

variable across all conditions, and the results of 1-sample and paired sample t-tests with effect 

sizes computed as Cohen’s d.  

 

Results 

To portray differences in participants’ decision-making behavior in relation to changes in 

contextual framing of our task, we describe the interactions or main effects of target variance 

(low vs high), cost (no-penalty vs penalty), and context (harm vs help) on selection bias, with a 

focus on differences between harm and help conditions. In addition, we report the five other 

dependent measures of interests: selection variability (SV), RT, MT, maxV, and avgV (Figure 

3A-F). We refer the reader to Tables 1-3 for all statistics, including group means and standard 

errors for each dependent variable. Corresponding figures and panels for each dependent variable 

are referenced in the text. 
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Table 1 ANOVA results of 2-way and 3-way interactions for dependent variables: selection bias, 
selection variability (SV), RT, MT, maxV, and avgV. 

 

DV F(1,43)  p Sig. 𝜼𝒑𝟐 DV F(1,43)  p Sig. 𝜼𝒑𝟐 

Context x 
Cost 

Bias 
SV 
RT 

20.286 
2.410 
0.184 

< 0.001 
0.128 
0.670 

*** 
ns 
ns 

0.321 
- 
- 

MT 
maxV 
avgV 

2.815 
0.013 
0.899 

0.101 
0.910 
0.348 

ns 
ns 
ns 

- 
- 
- 

Context 
x Variance 

Bias 
SV 
RT 

1.016 
0.006 
0.038 

0.319 
0.937 
0.846 

ns 
ns 
ns 

- 
- 
- 

MT 
maxV 
avgV 

2.427 
0.187 
0.191 

0.127 
0.667 
0.665 

ns 
ns 
ns 

- 
- 
- 

Cost x  
Variance 

Bias 
SV 
RT 

8.32 
6.604 
1.215 

0.006 
0.014 
0.276 

*** 
* 

ns 

0.162 
0.133 

- 

MT 
maxV 
avgV 

0.459 
0.928 
0.007 

0.502 
0.341 
0.932 

ns 
ns 
ns 

- 
- 
- 

Context x  
Cost x  

Variance 

Bias 
SV 
RT 

1.14 
2.659 
1.531 

0.291 
0.110 
0.223 

ns 
ns 
ns 

- 
- 
- 

MT 
maxV 
avgV 

0.734 
0.457 
0.637 

0.396 
0.503 
0.429 

ns 
ns 
ns 

- 
- 
- 

Bonferroni-corrected 𝛼 = 0.008 denoted by (***). Significant uncorrected p-value 𝛼 = 0.05 denoted by (*). Same 
significance thresholds in Tables 2 and 3. 
 

Table 2 ANOVA and post hoc t-test results of main effects for dependent variables: selection 
bias, SV, RT, MT, maxV, and avgV. 

 

DV F(1,43)  p Sig. 𝜼𝒑𝟐 t(43) p Sig. Cohen’s d 

Context 

Bias 
SV 
RT 
MT 
maxV 
avgV 

0.194 
2.494 
0.193 
1.299 
0.843 
1.793 

0.662 
0.122 
0.662 
0.261 
0.364 
0.188 

ns 
ns 
ns 
ns 
ns 
ns 

- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 

Cost 

Bias 
SV 
RT 
MT 
maxV 
avgV 

41.878 
25.405 
16.585 
30.367 
26.207 
29.803 

< 0.001 
< 0.001 
< 0.001 
< 0.001 
< 0.001 
< 0.001 

*** 
*** 
*** 
*** 
*** 
*** 

0.493 
0.371 
0.278 
0.414 
0.379 
0.409 

6.471 
-5.040 
-4.072 
-5.511 
5.119 
5.459 

< 0.001 
< 0.001 
< 0.001 
< 0.001 
< 0.001 
< 0.001 

*** 
*** 
*** 
*** 
*** 
*** 

    0.9755 
   -0.7598 
   -0.6139 
   -0.8308 
    0.7717 
    0.8230 

Variance 

Bias 
SV 
RT 
MT 
maxV 
avgV 

112.100 
274.183 

16.529 
89.336 

9.725 
79.549 

< 0.001 
< 0.001 
< 0.001 
< 0.001 

0.003 
< 0.001 

*** 
*** 
*** 
*** 
*** 
*** 

0.723 
0.864 
0.278 
0.675 
0.184 
0.649 

10.590 
-16.560 

-4.066 
9.452 
3.119 

-8.919 

< 0.001 
< 0.001 
< 0.001 
< 0.001 

0.003 
< 0.001 

*** 
*** 
*** 
*** 
*** 
*** 

    1.5965 
   -2.4965 
   -0.6130 
    1.4249 
    0.4702 
   -1.3446 

Post hoc paired t-tests for Cost = no-penalty - penalty and Variance = low - high. 
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Table 3 Condition-wise group (N = 44) means and standard errors (SE) for dependent variables: 
selection bias, SV, RT, MT, maxV, and avgV. 

 Bias (pixels) SV (pixels) RT (ms) MT (ms) maxV (pixels/s) avgV (pixels/s) 

Condition M SE M SE M SE M SE M SE M SE 

Harm 
No Penalty 

Low 
-3.49 1.83 25.82 2.55 33.0 2.1 601.7 28.5 81.78 2.08 14.99 0.500 

Harm 
No Penalty 

High 
-24.27 3.43 55.00 3.50 38.1 2.9 507.7 24.9 79.71 2.41 16.83 0.578 

Harm  
Penalty 

Low 
-27.40 3.91 42.56 4.04 36.0 2.4 646.9 29.7 79.57 2.29 14.38 0.518 

Harm  
Penalty 

High 
-55.98 4.29 81.27 4.43 43.5 4.1 552.3 28.3 77.02 2.36 16.10 0.602 

Help 
No Penalty 

Low 
-4.97 1.69 27.80 2.74 32.6 1.9 593.8 26.4 82.05 2.08 15.10 0.504 

Help 
No Penalty 

High 
-28.42 3.33 60.01 3.85 38.5 2.8 515.8 25.4 80.10 2.42 16.78 0.613 

Help 
Penalty 

Low 
-25.31 4.06 43.84 4.86 36.2 2.3 635.8 27.5 80.37 2.19 14.51 0.511 

Help 
Penalty 

High 
-53.69 3.79 79.83 5.94 42.4 3.6 546.6 27.1 77.03 2.29 16.27 0.603 

 

Selection Bias 

In investigating the interactions between context, cost, and target variance, we began by 

analyzing the relation between changes in these parameters and selection bias. Though the 3-way 

interaction between context, cost, and target variance was not significant, we observed 

significant cost x target variance, F(1,43) = 8.32, p = 0.006, 𝜂!!= 0.162 and context x cost 

interactions, F(1,43) = 20.286, p < 0.001, 𝜂!!= 0.321 (Table 1). The main effect of context was 
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not significant, F(1,43) = 0.194, p = 0.662, but both main effects of cost, F(1,43) = 41.878, p < 

0.001, 𝜂!!= 0.493, and target variance, F(1,43) = 112.100, p < 0.001, 𝜂!!= 0.723 were significant 

(Table 2). In general, selection bias was negative across all conditions, all t(43)s < -2.944, all ps 

< 0.006, all Cohen’s ds < -0.444, except in the harm by no-penalty by low target variance 

condition (see Table 3 and Figure 3A). Following the omnibus F tests, a post hoc paired sample 

t-test showed that bias had significantly greater magnitude in penalty than no-penalty conditions, 

t(43) = 6.471, p < 0.001, Cohen’s d = 0.976, indicating that the context x cost interaction was 

driven by the penalty condition. Selection bias was also larger in high target variance than low 

target variance conditions, t(43) = 10.590, p < 0.001, Cohen’s d = 1.597. Lastly here, a paired t-

test revealed that selection bias was significantly larger in penalty conditions in the harm context 

than in the help context, t(87) = -2.090, one-sided p = 0.020, Cohen’s d = -0.223. 
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Figure 3 Boxplots with distributions of participant mean values for each dependent 
variable. In each panel, boxes with lines (red/top in A/left= harm, gray/bottom in A/right 
= help) represent the group medians for each dependent variable across all conditions 
with whiskers corresponding to the 95% confidence intervals of the means. Panel A 
shows selection bias measured in pixels and larger negative values (to the left) indicate 
selections further away from the non-target distribution, while less negative along with 
positive values reflect selections closer to the non-target. The vertical dashed line 
represents a selection bias of 0. There was a significant 2-way context x cost interaction 
and 2-way cost x variance interaction, as well as significant main effects of cost and 
variance. In panel B, selection variability is measured as the standard deviation of 
selections in pixels. Greater values correspond to greater selection variability. There was 
a significant 2-way cost x variance interaction as well as significant main effects of cost 
and variance. There were no significant interactions for RT, MT, maximum and average 
velocity, represented in panels C-F. Though significant main effects of cost and variance 
were observed for. Greater values for RT and MT reflect slower times, while greater 
values for both velocity measures indicate faster mouse movements. Any and all 
significant 2-way and 3-way interactions, main effects (Tables 1 and 2), group means and 
standard errors (Table 3) are also reported in Tables 1-3.  

 

Harm versus Help Differences 

We computed a value, 𝛥����!����, to quantify and evaluate differences in selection bias 

between the harm and help contexts. Then, we calculated the Pearson correlation between 

𝛥����!���� values in the low and high variance conditions and found no significant linear 

relationship between selection bias in penalty conditions, r = -0.081, p = 0.600, or no-penalty 

conditions, r = 0.164, p = 0.288. Nor did we find a significant correlation in selection bias after 

collapsing across cost conditions, r = -0.190, p = 0.216.  

With indication of main and interaction effects, but null correlation findings, we 

approached the data with an alternative analysis to investigate the relation between the contexts 

more systematically. We categorized selection bias differences by plotting the 𝛥����!���� 

values in four distinct quadrants (Figure 4). This was performed so that we could compare the 

counts of participants whose 𝛥����!���� values fell into each quadrant under no-penalty and 
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penalty conditions as well as low and high variance conditions, and thus further investigate the 

relation between selection bias, context, and loss. If participants generally found the harm 

context more aversive in penalty conditions, then we should observe the highest count of 

𝛥����!���� values shift from Q-I in no-penalty conditions, where participants were selecting 

closer to the non-target, to Q-III in penalty conditions, where selections were biased away from 

the non-target regardless of variance. We report these values in Table 1. As expected, in no-

penalty conditions, half (n = 22) of the 𝛥����!���� values were in Q-I while only n = 5 were 

observed in Q-III (Figure 4A). In penalty conditions, Q-I had the fewest 𝛥����!���� values (n 

= 5) while the remaining (n = 39) were dispersed nearly evenly across the other three quadrants 

indicating that most participants were harm averse in penalty conditions in at least one level of 

target variance (Figure 3B). This provides additional confirmation of the significant context x 

cost interaction, wherein the majority of participants selecting closer to the non-target in no-

penalty conditions.  

We further quantified the extent to which participants as a group were more likely to bias 

selections away from the non-target in the harm context by computing the ratio of counts in each 

quadrant between penalty and no-penalty conditions. The shift ratios for Q-II through Q-IV were 

all greater than 1 with the largest shift ratio of 2.400 for Q-II, indicating that participants showed 

a greater non-target avoidance driven by penalty in harm contexts, especially under high target 

variance conditions. In Q-III, the shift ratio of 1.875 shows that participants were nearly twice as 

likely to significantly bias selections in harm conditions with penalty. To more closely evaluate 

the shift from Q-I to Q-III (i.e., less selection bias versus more selection bias at both target 

variance levels), we computed a composite 𝛥����!���� score collapsed across no-penalty and 

penalty conditions with 95% confidence intervals. This showed that participants with less harm 
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aversive selection bias behavior overall fell within Q-I (x-meanQ-I = 6.798, 95% CI xQ-I: [-1.100, 

14.696]; y-meanQ-I = 4.076, 95% CI yQ-I: [-0.084, 8.235]), while more harm averse participants 

fell within Q-III (x-meanQ-III = -9.928, 95% CI xQ-III: [-14.547, -5.310]; y-meanQ-III = -7.998, 95% 

CI yQ-III: [-10.664, -5.333]) (Figure 3C). Lastly, the 𝜒2goodness-of-fit test confirmed that the 

observed number of participants in this sample were not equally distributed across quadrants, 

𝜒2(3, N = 44) = 11.455, p < 0.01. Together, the results of 𝛥����!���� values show that 

framing spatial decisions as potentially harmful can increase aversive selection bias regardless of 

uncertainty in the estimates of sensory variance. 

 

Table 4 Contingency table of observed 𝛥����!���� value frequencies in each quadrant and 
shift ratios between and collapsed across penalty and no-penalty conditions. 

Quadrant Penalty No-Penalty Shift Ratio Collapsed 
(Expected) 

I 5 22 0.227 5 (11) 

II 12 5 2.400 11 (11) 

III 15 8 1.875 20 (11) 

IV 12 9 1.333 8 (11) 

 
 

 
Figure 4 Scatter plots and quadrant centroids for 𝛥����!���� shift analysis. All 
plotting conventions are the same across all panels. Each dot reflects the 𝛥����!���� 
value for each individual participant. The x- and y-axis respectively represent 
𝛥����!���� values measured in pixels within high and low variance conditions. 
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Quadrants Q-I (gray) contains 𝛥����!���� values for participants with less harm 
aversive selection bias, while Q-III (light red) contains 𝛥����!���� values for 
participants with more harm aversive selection bias regardless of variance conditions. A) 
𝛥����!���� values for no-penalty conditions primarily clustered in quadrant I (Q-I). B) 
In penalty conditions, 𝛥����!���� values are more broadly distributed throughout Q-II 
to Q-IV (see Table 4). C) 𝛥����!���� values were collapsed within variance conditions 
to generate a composite harm avoidance measure, reflecting overall selection behavior 
irrespective of target variance or cost condition. Centroids with 95% CIs on the x- and y-
axis were computed for participants within Q-I (black) and Q-III (red). 

 

Selection Variability 

To estimate selection variability, we computed the standard deviation of the error, in pixels, 

between a selection and the mean of the target distribution. The cost x variance interaction, 

F(1,43) = 6.604, p = 0.014, 𝜂!!= 0.133, and both main effects of cost, F(1,43) = 25.405, p < 

0.001, 𝜂!!= 0.371, and variance, F(1,43) = 274.183, p < 0.001, p2= 0.864, were all significant 

(Figure 3B, Tables 1 and 2). For context conditions, there were no significant interactions or 

main effects, all F(1,43)s < 2.66, all ps > 0.110, (Tables 1 and 2). Post hoc paired sample t-tests 

showed that selection variability was greater in penalty than no-penalty conditions, t(43) = -

5.040, p < 0.001, Cohen’s d = -0.760, and in high versus low variance conditions, t(43) = -

16.560, p < 0.001, Cohen’s d = -2.450 (Tables 2 and 3).  

 

Reaction and Movement Time 

Reaction time was recorded at the first mouse movement detected after stimulus offset. There 

were no significant interactions nor main effect of context on RT or MT, all F(1,43)s < 2.815, all 

ps > 0.101. For RT, we found very similar significant main effects of both cost, F(1,43) = 

16.585, p < 0.001, 𝜂!!= 0.278, and target variance F(1,43) = 16.529, p < 0.001, 𝜂!!= 0.278 (Figure 

3C and Table 2). RTs were slower in both penalty, t(43) = -4.072, p < 0.001, Cohen’s d = -
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0.6139, and high variance conditions, t(43) = -4.066, p < 0.001, Cohen’s d = -0.613 (Tables 2 

and 3). Movement time was computed as the difference between the time recorded when the 

selection was made (i.e., mouse button released at selection location) and the RT on a trial. 

While there was no significant interaction between the cost and target variance, there were 

significant main effects for both cost, F(1,43) = 30.367, p < 0.001, 𝜂!!= 0.414, and variance, 

F(1,43) = 89.336, p < 0.001, 𝜂!!= 0.675 (Figure 3D and Table 2). In penalty conditions, MTs 

were significantly longer than in no-penalty conditions, t(43) = -5.511, p < 0.001, Cohen’s d = -

0.831. MTs were also significantly longer in low, rather than high, target variance conditions, 

t(43) = 9.452, p < 0.001, Cohen’s d = 1.425 (Tables 2 and 3). Overall, participants took longer to 

initiate movement and make a selection on trials in penalty conditions. Under high variance 

conditions, RTs were slower but MTs were shorter, indicating that participants spent more time 

completing their selections in low variance conditions, i.e., when there was low sensory 

uncertainty in target distribution estimates. 

 

Maximum and Average Movement Velocity 

The results for both velocity metrics parallel the MT findings in that participants moved more 

slowly in penalty conditions and low target variance conditions where MTs were also 

significantly longer. By recording mouse cursor positions and button presses along with RT and 

MT, we computed the maximum and average velocity of the mouse cursor movements during 

selections on each trial. There were no significant interactions or main effect of context on maxV 

or avgV, all F(1,43)s < 0.928, all ps > 0.341. There was a significant main effect of cost on both 

maxV, F(1,43) = 26.207, p < 0.001, 𝜂!!= 0.379, and avgV, F(1,43) = 29.803, p < 0.001, 𝜂!!= 

0.409 (Figure 3E and F and Table 2). Post hoc t-tests showed greater (faster) maxV, t(43) = 
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5.119, p < 0.001, Cohen’s d = 0.772, and avgV, t(43) = 5.459, p < 0.001, Cohen’s d = 0.823, in 

no-penalty conditions compared with penalty conditions. Though the main effect of variance was 

significant for both velocity measures, maxV was significantly greater (faster) in low target 

variance conditions, t(43) = 3.119, p = 0.003, Cohen’s d = 0.470, while avgV was slower, t(43) = 

-8.919, p < 0.001, Cohen’s d = -1.345 (Tables 2 and 3). As would be expected, the results for 

both velocity metrics parallel the MT findings in that participants moved more slowly in penalty 

conditions and low target variance conditions where MTs were also significantly longer.  

 

Discussion 

Our analyses suggest that the moral valence of a risky spatial decision-making task correlates 

with subjective aversion. To the best of our knowledge, the moral impact of a distinction 

between a decision outcome best described as “harmful” versus “helpful” on a risky spatial 

decision has not been previously studied. We found that under equivalent conditions of value-

based risk and sensory uncertainty, the contextual framing of loss outcomes as what we have 

characterized as “harmful” (i.e., ally casualties) increases selection bias away from a penalizing 

non-target to a greater degree than the framing of loss outcomes as “helpful” (i.e., ammunition 

interception) during spatial decisions. In addition, analyses of reaction and movement time, and 

maximum and average mouse cursor velocity allowed for a fuller characterization of selection 

behavior. This characterization suggests that individuals made selection decisions more 

cautiously under the threat of potential loss, by taking significantly longer to initiate and 

complete selections, and moving more slowly overall throughout the movement. Critically, the 

results of this study show that though different contextual frames did not change how selections 
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were executed motorically, framing potential loss outcomes as subjectively more aversive 

uniquely drives avoidant action decision behavior. 

 By employing our “Drone Strike” narrative, we expand on previous work by examining 

the effects of contextual framing spatial decision-making. Irrespective of task context, the 

visuospatial features of the stimuli as well as the scoring function used to compute gains and 

losses were equivalent across all experimental conditions. The overall goal of the task was to 

maximize expected gain by either neutralizing the most enemies or delivering the most 

ammunition to allies as possible. To those ends, the optimal selection on any trial is always the 

spatial mean of the target distribution, with any bias away from the target a suboptimal selection 

strategy. Based on prior work, participants were expected to show greater selection bias away 

from regions of space that induce penalties in feedback so as to avoid losses (i.e., ally casualties 

or ammunition interceptions) (Gepshtein, Seydell, & Trommershäuser, 2007; Jarbo et al., 2017; 

Neyedli & Welsh, 2013; Trommershäuser et al., 2003a; Trommershäuser, Maloney, & Landy, 

2003b; Wu, Trommershäuser, Maloney, & Landy, 2006). However, if participants were only 

using spatial estimates of the target and non-target means, as well as the scoring feedback, then 

there should have been no difference in selection bias between the conditions that involved 

different contextual frames. Even though both kinds of loss were undesirable, participants biased 

selections to avoid the potential collateral losses incurred on a drone strike mission (harm 

context) to a small (see Results: Selection Bias, Cohen’s d = -0.223) but significantly greater 

extent than delivery missions (help context). These findings are further supported by our group-

level shift ratio analyses, which showed that participants biased selections away from the non-

target in harm contexts regardless of variance at nearly twice the rate (mean shift ratio of Q-II, 

Q-III, and Q-IV = 1.869) of penalty conditions than in no-penalty conditions. Though the context 
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effect measured as 𝛥����!���� is small, the shift analysis results indicate that participants 

showed a selection bias to avoid a harmful loss that is not entirely dependent on either the level 

of penalty or sensory uncertainty during risky spatial decisions. Importantly, our results suggest 

that the harm and help contexts provided information that was incorporated into the selection 

decision in a way that made loss in the harm context more aversive than in the help context. 

 In addition to increased selection bias, the analysis of several other dependent variables 

indicates that loss averse selection behavior is also reflected in the timing and velocity of 

movement initiation and execution. First, selection variability and reaction times increased in 

high target variance and penalty conditions. Our observation that selection variability increases 

with target variance is consistent with prior research and indicates that a greater spread of target 

distribution dots results in larger errors in estimating the target mean (Battaglia & Schrater, 

2007; Jarbo et al., 2017; Tassinari, Hudson, & Landy, 2006). Data on total movement time, 

maximum and average mouse cursor velocity showed that participants took longer to complete 

their selections and moved more slowly overall in penalty conditions. Regarding target variance 

effects, even though participants had faster RTs in low variance conditions, MTs were also 

longer when there was less sensory uncertainty. Together, the timing and velocity data suggest 

that participants took a more cautious approach to executing selections when penalty was a factor 

in the decision, and are in line with a body of established findings on speed-accuracy tradeoffs 

wherein people sacrifice speed in order to improve accuracy on sensorimotor tasks (Fitts, 1954; 

Harris & Wolpert, 1998; Meyer, Abrams, Kornblum, Wright, & Smith, 1988; Trommershäuser et 

al., 2003b; Wu et al., 2006). Considering the timing and velocity findings together with lower 

observed selection bias in low variance conditions suggests that participants put more effort into 

executing selections in an attempt to maximize expected gain when they could be more confident 
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in their sensory estimates. Future work can more closely examine how motor effort and sensory 

estimation confidence impact spatial selection behavior under risk. 

Some degree of the selection bias effects we observed here may be based on noisy 

estimates of sensory uncertainty. In an experiment by Juni and colleagues (2016), participants 

had to select on a touchscreen a hidden target whose location could be estimated from a 2D 

Gaussian distribution of dots where each dot appeared one at a time in random order. A 

participant could request additional dots to increase their certainty in the sensory estimates of the 

target location, however, they lost an increasing amount of points with the number of dots 

requested. This resulted in participants selecting locations from a cluster of dots to minimize 

point loss once they subjectively determined that there was a sufficiently dense cluster present. 

The authors found that participants requested more dots than required by an ideal (optimal) 

observer to accurately estimate the target location, suggesting that individuals failed to maximize 

expected gain by using a suboptimal decision-making strategy in situations with high sensory 

uncertainty (Juni, Gureckis, & Maloney, 2016). In the present study, our participants could have 

also been targeting areas in the stimulus that they perceived to have the densest cluster of dots in 

the high target variance conditions. However, since the stimuli were comprised of 2D Gaussian 

distributions, the densest cluster of target dots was still most likely to be centered on the target 

mean, in accord with the law of large numbers. Bear in mind that participants were explicitly 

instructed to select the target center in order to maximize gain regardless of condition. Despite 

those instructions, some participants could have also adopted a “densest cluster” strategy based 

on their estimate of the scoring function if they thought that strategy would improve their score. 

One reason for this might be that participants assumed that, in reality, a drone strike would have 

a blast radius about the selection location, whereas an ammunition delivery would be received 
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only at the selection location. To better assess strategic task performance, a future version of this 

study could directly manipulate the location of the densest cluster dots within the target 

distribution relative to the distribution’s mean to determine whether participants used a “densest 

cluster” or “spatial center” strategy, as well as ask participants for explanations of their selection 

decision strategies across different conditions. 

Our results do not explain why contextual framing differences resulted in participant 

behavior that was suggestive of greater loss aversion in harm conditions than help conditions. 

We did not explore the ethical dispositions of participants, which may have mediated (and 

therefore provide a psychological explanation of) selection bias. Individuals who are more 

consequentialist in their reasoning, i.e., who judge the rightness or wrongness of an action solely 

in terms of its consequences (Kagan, 1988), may be more willing to tolerate or even cause loss if 

it results in a net increase of good. Simplifying somewhat, some participants may accept that the 

ends justify the means in our study. While what counts as the utilitarian judgment in our 

scenarios is a topic for further discussion, if the right outcome amounts to neutralizing the most 

enemies or delivering ammunition to the most allies respectively, these outcomes can be right 

even if ally casualties or intercepted ammunition are incurred in the process. To explore this 

more deeply, we can obtain measures of moral and ethical dispositions (e.g., Oxford 

Utilitarianism Scale) to determine whether or not a person’s degree of impartiality to harm that 

leads to a greater net benefit correlates with the extent to which they avoid harmful decisions 

(Kahane et al., 2017).  

Additionally, we aimed to test whether the harm context posed a more aversive loss than 

the help context, but it is important to acknowledge that things might not be so straightforward. 

Judgments about harmful and helpful actions have also been linked to subjective beliefs about 



31 

intentionality (Knobe, 2003b) and the probabilities of action outcomes (Nakamura, 2018). As 

such, some questions that are beyond the scope of the present work remain about whether 

participants thought their choices were causing harm or helping, as well as how likely the 

harmful or helpful outcome would be if they attempted to maximize expected gain rather than 

avoid loss. So while moral dilemmas provided a strong contextual framing manipulation for this 

experiment, carefully designed future work is needed to address complex open questions about 

the rationale participants used for making selection decisions. 

Within the broader literature in psychology, the influence of contextual framing effects 

has been shown to impact mental processes by changing how information is subjectively 

perceived, which subsequently influences behavior on cognitive tasks that do not involve sensory 

or motor processes used in spatial decision-making tasks. For instance, contextual framing like 

shifts in perspective (e.g., burglar versus homebuyer) impact information encoding and retrieval 

(Anderson & Pichert, 1978). When individuals were primed with a particular perspective to 

frame their approach to a memory task, they were able to recall different details about a vignette 

they read, suggesting that contextual framing can influence what information is remembered and, 

thus available to be retrieved. Drone Strike does involve both visuospatial working memory, and 

working memory more generally, in order to encode and represent the briefly presented location 

of stimuli on each trial and maintain task instructions across a set of trials. Depending on which 

task instructions frame the stimuli, participants may show differences in their perceptions of non-

target salience and in how accurately they can recall its position, especially when losses must be 

avoided. Also, in classic work on decision-making and reasoning, reframing logic problems to be 

more socially relevant to an individual can also increase the likelihood that they arrive at valid 

conclusions suggesting that context can influence reasoning processes (e.g., variants of the 
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Wason card selection task) (Cosmides & Tooby, 1992; Cox & Griggs, 1982; Wason, 1968; 

Wason & Shapiro, 1971).  

Our findings are consistent with research in related fields. Work in moral psychology and 

experimental philosophy—including most famously the studies that employ what are called 

trolley case—have shown that how one contextualizes a situation affects how individuals 

morally judge the actor as well as the act. Importantly, this research suggests that the effect of 

contextualization appears to be present even if the outcome—in trolley case, the number of 

individuals who live or die—is equivalent (Greene, Sommerville, Nystrom, Darley, & Cohen, 

2001; Mikhail, 2007; Sinnott-Armstrong, 2008). Research on the moral reasoning that underlies 

these judgments may help to illuminate our findings for Drone Strike where, as we hypothesized, 

participants judged ally casualties as a worse kind of loss than intercepted ammunition, even 

though the spatial distributions and scoring functions were equivalent.  

The present study provides evidence that contextual framing impacts the outcome of 

sensorimotor processes suggesting a potential mechanism of cognitive penetration that may 

influence representations of perceptual stimuli during value-based action decisions. More 

generally, our results suggest that spatial decision-making behaviors are sensitive to moral 

factors, which, if the case, supports the idea that the processes underlying moral decision-making 

may not be equivalent to non-moral decision-making processes, and the differences between 

moral and non-moral decision-making should be reflected in our models of them (Bartels, 

Bauman, Cushman, Pizarro, & Peter McGraw, 2015).  
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