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Abstract

Making risky spatial decisions requires the efficient integration of spatial signals, value, and
context (Trommershduser et al., 2003; Neyedli & LeBlanc, 2017). Functional magnetic
resonance imaging has provided evidence for an ideal network of posterior parietal regions that
process spatial signals for motor control (Lindner et al., 2010), orbitofrontal areas that encode
value estimates (Hsu et al, 2005), and dorsolateral prefrontal areas that represent contextual
constraints on behavior (Badre & Frank, 2012). Nonhuman primate research has shown
convergent white matter projections from those cortical regions into the anterior striatum (Haber
& Knutson, 2010; Selemon & Goldman-Rakic, 1988), indicating an ideal point for integrating
information from multiple cortical processes. Recently, the anterior striatum has been proposed
as an “action-value” zone that is involved in evaluating action decisions (Pauli et al., 2016),
which suggests it is critical in optimizing sensorimotor behavior on risky spatial decision tasks.
However, the integrative structure of this corticostriatal action-value network in humans and its
role in risky spatial decision-making is not fully determined. In addressing these open questions,
I present 1) a series of experiments designed to establish the effects of spatial signals, value, and
context during risky spatial decision-making, 2) confirmation of a convergent corticostriatal
network of DLPFC, OFC, and PPC inputs in the human brain, and 3) a final project that
examines action-value representations in the striatum. These projects combine multimodal
neuroimaging studies and novel behavioral experiments to delineate a neural mechanism of
cognitive penetration, wherein the contextual framing of a risky outcome impacts perceptual

estimation and action selection processes involved in value-based spatial sensorimotor decisions.
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Glossary of Terms

Value A scalar amount assigned to one choice option that represents either the expected

numerical gain (positive) or loss (negative) associated with a decision

Subjective value An idiosyncratic measure of utility that indicates an individual’s preference for

one choice option with greater utility than any other option with lower utility

Context A narrative instruction or cue that provides explicit information about the objective of a

behavioral task and/or the stimuli involved in task performance

Risk The known or estimable probability of an expected loss associated with a decision outcome
Risk seeking Preference for a relatively large potential loss rather than sure loss with the
same expected value
Risk averse Preference for a sure loss rather a relatively large potential loss with the

same expected value

Risky spatial decision The mental process of choosing a targeted location within a
visually-presented stimulus that is comprised of adjacent and/or overlapping reward (gain) and
penalty (loss) regions. The term “selection” is used throughout the document to refer to the
endpoint of the movement toward the targeted location. Risk is the probability of expected loss

incurred on a selection that is within, or proximal to, the penalizing region of the stimulus.

12



Spatial priority The location within a visually-presented stimulus that is targeted for selection
based on its position within a reward region of the stimulus and its association with either

maximum expected gain or the greatest relative subjective value compared to other locations.

13



Chapter 1

Introduction

Despite complex spatial constraints and multiple sources of noise, humans are able to smoothly
execute visually guided movements with relatively little apparent effort. A large body of
empirical research is framed by prominent theories of sensorimotor control that assume implicit
computations on spatial stimuli incorporate the structure of both sensory and motor variability in
statistically rational processes that maximize the accuracy and precision of spatial sensorimotor
decisions. However, more recent findings suggest that human sensorimotor behavior may be at
least partially inconsistent with these statistically rational models. For example, in order to meet
the explicit contextual demands of perceptually-based spatial judgments, people exhibit behavior
that more closely reflects action selection strategies that either attempt to minimize the risk of
potential loss or flexibly alter constraints on performance--but neither strategy is necessarily a
statistically optimal approach to maximizing expected gain on a risky spatial decision based
purely on external feedback signals. This suggests that a subjective value signal driven by
contextual factors can also influence action selection in a way that deviates from the predictions
of statistically rational sensorimotor integration models. Psychologically, action selection during
spatial decision-making appears to be minimally comprised of component processes that must
represent estimates of sensory variability, executive action selection signals, and the subjective
value of spatial targets. Neurally, these component processes are reflected in the activity of

several distributed cortical areas that are both structurally interconnected within and between

14



each region and have convergent projections within the striatum. Here, I open this dissertation
with a review of literature on statistically rational models of implicit sensorimotor integration
processes and evidence suggesting that explicit contextual demands also influence subjective
estimates of value during cognitive processes that underlie biases in sensorimotor behavior. I
also describe a network of corticocortical and corticostriatal circuitry that can support the
necessary representations and computations for the component processes of spatial sensorimotor

decisions.

1.1 Psychological components of risky spatial decisions
Imagine an operator operating a weaponized drone in an active warzone. The drone is capable of
fast, high precision missile strikes on targeted locations. It relays the positions of enemies and
allies to a screen at a command station to control each strike. With visual information about the
real time spatial positions of enemies and allies, the operator must rapidly estimate and then
select targeted strike locations. Now consider a situation where enemies and allies are positioned
in close proximity, creating the risk of ally casualties. Toward the overall objective of winning
the war, the operator should target locations that maximize enemy casualties, while avoiding ally
losses. How does the operator quickly select a single location from the spatial distributions of
enemies and allies to execute a strike?

The example above describes a risky spatial decision that combines sensory input and
motor output component processes, that humans appear to perform this sort of spatial decision
making effortlessly. First, the spatial distribution of operator positions is estimated from visual

input. If enemy positions are distributed about a single location (e.g., the centroid of a 2D

15



Gaussian distribution), then the mean and variance, or sensory uncertainty, of the distribution can
be estimated statistically. In this case, the mean represents the optimal spatial location to aim for
and select that guarantees the greatest number of enemy casualties on a strike. However, an
element of risk also exists such that selecting too close to a location with a high cost (i.e., near
allies) increases the probability of a loss (i.e., ally casualties). This risk, or probability associated
with a possible decision outcome, must also be considered in the spatial decision process. Then,
to execute the selection, an internal motor plan must first represent the targeted location based on
estimates of both visual input and risk, and then be gated to perform the corresponding
movement output. Given that noise in sensory input is propagated to motor output (Faisal, Selen,
& Wolpert, 2008; Osborne, Lisberger, & Bialek, 2005), both external (i.e., spatial variance and
risk) and internal (i.e., motor execution) sources of variability must be accounted for during
spatial decision processes that determine action selections.

Based on statistical decision theory (Berger, 1985; Maloney & Zhang, 2010), the
maximum expected gain model of sensorimotor control provides a framework for incorporating
sensory and motor noise during risky spatial decisions (Trommershauser, Maloney, & Landy,
2003a, 2008). Risk is accounted for by weighting the estimates of each distribution in a spatial
stimulus. For instance, when enemies are positioned near a distribution of objects that will not
incur a loss, say trees, only enemy locations will contribute to the selection decision, while trees
may be ignored. However, when allies are nearby instead, then the spatial distribution of ally
locations must also be weighed relative to the distribution of enemy positions. Here, the
maximum expected gain model predicts a shift, or bias, of selections away from ally positions to

mitigate potential losses while ensuring some enemy casualties. It follows that if allies are
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positioned close to the center of enemy positions, then a selection will be biased away from the
optimal strike location, i.e., the center or mean of the enemy distribution, that maximizes enemy
casualties. Thus, rather than selecting the optimal spatial location, individuals adopt a more risk
seeking action selection strategy that is less certain to maximize expected gain.

Framing a risky decision in terms of a high loss probability (i.e., possible ally casualties)
rather than gain (i.e., only enemy casualties), can lead people to prefer a risky prospect to a more
certain outcome with equal or greater expected value (Tversky & Fox, 1995). Though framing
effects have been shown to apply more directly to learning and memory (Pichert & Anderson,
1977), reasoning (Griggs & Cox, 1982; Wason & Shapiro, 1971), and economic choice
(Kahneman & Tversky, 1979) that are cognitive in nature, contextual framing seems to also
influence perceptual sensorimotor processes in spatial decision behavior.

In economic choice, cognitive framing effects on risk evaluation that increase loss
aversion described in prospect theory (Kahneman & Tversky, 1979) parallel context effects on
action selection behavior during spatial decisions. Assume that the distributions of ally operator
positions or trees near enemies on separate strikes have the same mean and variance. The spatial
estimation process for localizing the enemy distribution mean is the same in both cases, as is the
motor process of selecting the distribution mean in order to maximize enemy casualties. Instead
of ignoring the tree distribution on a given drone strike selection, the statistically and spatially
equivalent distribution of allies must be considered as a potential loss to avoid. Critically, the
only difference between the ally and tree distributions in the decision process that drives
avoidance is the contextual framing of risk as a potential loss of allies in the spatial estimates that

must be made.
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Loss averse behavior arising from the contextual framing of a spatial decision suggests
that the cognitive process of risk evaluation can penetrate implicit processes that integrate
estimates of sensory input and motor output variability. Psychologically, the maximum expected
gain model gives a computational account for how risk is incorporated into sensorimotor
processes that result in observable avoidance bias. This raises the question of how this cognitive
penetration can occur mechanistically to link sensory input to motor output. Namely, what is the
neural circuitry that integrates estimates of both sensory variance and motor variability with risks
to influence spatial decision-making behavior? Additionally, how might the activity of a putative
network of brain regions involved in risky spatial decisions represent distinct contexts that frame
gains and losses that lead to biased action selection behavior?

Here, I discuss theoretical and empirical research that attempt to explain how humans
incorporate estimates of perceptual uncertainty into risky spatial decisions. I will highlight a
model of the component processes that are necessary to make these decisions. Then, I will
identify a neurologically plausible substrate for these component processes to argue for
integrative psychological and neural mechanisms that allow for the penetration of contextual
information about risks into implicit sensorimotor estimation processes that bias behavior during

spatial decision-making.
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Figure 1.1 Drone strike example comparing models of sensorimotor decisions about
where to target missiles. This example is similar to a ballistic reach in that minimizing the
error between the landing and the reach endpoint (e.g., missile strike point) is the goal of
the spatial decision, not optimizing the movement trajectory (e.g., missile flight). Each
panel shows an airfield surrounded by desert (dark gray rectangle in light brown
rectangle) with the position of jets represented by white dots as viewed by an operator
operating a drone. A) Optimal control theory posits that when the spatial distribution of a
sensory target is known (e.g., jet locations), motor (aiming) variance should be
constrained in the costliest dimensions of movement to maximize outcome. Since motor
variance is Gaussian (graded green circle), the best location to aim for is the center of the
cluster of jets. B) A normative Bayesian approach combines a prior history of missile
strike success (graded yellow circle) with the likelihood of strike success (graded blue
circle) to generate a posterior distribution (graded green circle) centered over the best
aiming location on the airfield. C) Based on the statistical decision theory framework, an
expected gain function can be estimated by associating relatively high value to spatial
locations likely to result in success (i.e., cluster of jets) and low value locations that
would result in a costly miss (e.g., allied operators positioned near jets). The operator
should then aim for a location inside the airfield that corresponds to the maximum of the
expected gain function while avoiding areas outside of the airfield near allied operators
(red dots). D) Without necessarily computing sensory and motor variance statistics, the
operator may simply decide to aim for some general location. For example, the operator
may mentally divide the airfield (light gray dotted lines) and the upper left quadrant
(green rectangle).

19



1.2 Algorithms of spatial decisions

1.2.1 Statistically rational sensorimotor integration

The first piece of information needed to make a sensorimotor decision on a visual target is a
representation of the spatial distribution of sensory input. Consider a very simple case of a spatial
decision where this is no prior information about where to select or any other competing sensory
distribution. For instance, in Figure 1.1a, an individual executing a drone strike only needs the
spatial positions of enemies in order to determine the optimal target location of the strike. This
kind of spatial decision-making follows one principle of optimal control theory, which is one
approach that describes human sensorimotor planning and execution (Todorov, 2004; Todorov &
Jordan, 2002). Specifically, an individual can use a maximum likelihood estimation process to
estimate the mean and variance of the input distribution so that the spatial decision is optimized
by centering a selected action on the distribution’s mean.

In a scenario where multiple drone strikes are to be made, the complexity of input into
the spatial decision may increase as an operator considers their experience on prior strikes. So,
how might the operator select the best location for a drone strike when they have to consider
their success on previous strikes along with their estimates of sensory input variance? One
strategy is to decide where to aim by estimating a likelihood function of success given the
incoming sensory signals, and incorporating this likelihood with prior information based on
previous successes and failures (Berniker & Kording, 2011; Knill & Pouget, 2004; Kording &
Wolpert, 2006). In the drone strike example (Figure 1.1B), combining the likelihood with prior
information allows the operator to use past experience to optimize his current aiming decision

when sensory signals become noisy, e.g., sudden dust storm blurs video feed. Assuming that its
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variance is stable, the prior becomes increasingly relied upon to optimize the sensorimotor
decision as uncertainty in estimates of the likelihood grows.

Over the last decade, many studies have provided evidence that people rely on these sort
of Bayesian dynamics when making spatially guided sensorimotor decisions (Bejjanki, Knill, &
Aslin, 2016; Berniker & Kording, 2011; Fernandes, Stevenson, Vilares, & Kording, 2014;
Grau-Moya, Ortega, & Braun, 2012, 2016; Hudson, Wolfe, & Maloney, 2012; Kording &
Wolpert, 2006; Kwon & Knill, 2013; Orban & Wolpert, 2011; Wei & Kording, 2010). For
example, Bejjanki, Knill, and Aslin (2016) had participants perform a reaching task where the
location of a hidden target on a touchscreen was indicated by a cloud of dots that could be used
to estimate the target location. The target location was sampled randomly from a mixture of two
Gaussian distributions (i.e., the prior). The dot cloud was comprised of eight dots sampled from a
Gaussian distribution (i.e., the likelihood) and took on one of three different standard deviations
across experimental conditions. Participants received numerical scores based on the accuracy of
each reach endpoint. Modeling of participant behavior showed that they combined feedback with
estimates of the target prior and likelihood in a Bayesian manner. This finding indicated that
participants learned to optimize their estimates (i.e., maximize the posterior estimation) of the
hidden target under multiple degrees of visual uncertainty. Indeed, as the variability of the
likelihood increased, participants more heavily weighted their prior to maximize their posterior
estimates of the target location, which is consistent with the predictions of Bayes theory in
sensorimotor contexts (Franklin & Wolpert, 2011; Kording & Wolpert, 2006; Verstynen &
Sabes, 2011; Wolpert, 2007). While maximum likelihood and Bayesian estimation processes

provide optimal solutions to spatial decisions by respectively using estimates of sensory input or
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a combination of sensory input and prior distribution variance, neither can fully account for how

humans can make spatial decisions under risk.

1.2.2  Spatial decisions in risky contexts

Consider a situation where the operator must execute a strike on enemy targets when allies are
nearby, adding an element of risk to the spatial decision. Within the statistical decision theory
framework (Berger, 1985; Maloney & Zhang, 2010), the maximum expected gain model
(Trommershéuser et al., 2003a; Trommershiuser, Maloney, & Landy, 2003b; Trommershiuser et
al., 2008) provides one explanation for how spatial estimates can be performed under risk, i.e.,
gains and losses. For instance, in accord with the overall goal of striking enemy targets, the
operator may associate a high positive value with the spatial locations of enemies. In contrast, a
very low negative value may be assigned to the locations of allies in close proximity to enemy
targets. Taking these costs into account, the operator can decide where to aim by attempting to
avoid spatial locations with low value and focusing on high value locations to maximize his
expected gain.

Many studies have provided confirmatory evidence for the idea that people estimate a
spatial value function in ballistic reaching contexts. One such popular task involves having
participants point to a briefly presented stimulus comprised of a small target circle that is
visually overlapped by one or more non-target circles (Meyer, Abrams, Kornblum, Wright, &
Smith, 1988; Neyedli & Welsh, 2013, 2014, 2015; Trommershiuser, Gepshtein, Maloney,
Landy, & Banks, 2005; Trommershiuser, Landy, & Maloney, 2006; Trommershduser et al.,

2003a, 2003b; Wu, Trommershduser, Maloney, & Landy, 2006). Participants must reach to the
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target circle, typically within 700-800ms of stimulus onset, to gain a specified number of points
on each trial. On some conditions, a point loss is incurred for reach endpoints that fall within the
boundary of the non-target, or penalty, circle. The distance between the center of the target and
penalty circles is also manipulated across trials or blocks to change the spatial boundaries of the
target region. This distance manipulation thus changes the available space in the stimulus for
gain, or reward. These risky ballistic reaching experiments consistently show that introducing
penalty conditions causes participants to shift, or bias, their selections of the target circle away
from the penalty circle to minimize the probability of losses (Meyer et al., 1988; Neyedli &
Welsh, 2013, 2014, 2015; Trommershduser et al., 2003a, 2003b; Wu et al., 2006).
Trommershduser and colleagues (2003a, 2003b) developed a maximum expected gain
model that incorporated estimates of motor variability for each participant to predict observed
spatial selection bias (Trommershduser et al., 2003a, 2003b). Two primary assumptions of the
maximum expected gain model are that motor variance is approximately Gaussian, and the final
decision relies on a weighting function that evaluates the spatial distributions of the target and
penalty circles, respectively (Trommershduser et al., 2003a, 2003b). The weighted probability
distribution functions over the mean (i.e., center) of the target and penalty circles can be
combined linearly to estimate a cost function, or landscape. Thus, the peak of this cost function
corresponds to the spatial location in the stimulus that a participant should aim for to maximize
expected gain. Across a variety of ballistic reaching experiments, human participants performed
indistinguishably from an “ideal observer” model that accounts for both motor and sensory
variability in a statistically principled manner based on the maximum expected gain model

(Gepshtein, Seydell, & Trommershéuser, 2007; Trommershéuser et al., 2005, 2006, 2003a,
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2003b; Wu et al., 2006). However, even under the same spatial constraints (i.e., target and
penalty circle overlap), rather than minimize their motor variance in a statistically optimal way,
people bias their reach targets further away from the penalty circle as penalty values increase
(Neyedli & Welsh, 2013, 2014; Trommershiuser et al., 2006, 2003a, 2003b). These findings
confirm that humans can spatially estimate risk and incorporate these risk estimates with internal
estimates of motor variability to bias spatial decisions so as to minimize potential losses.

By associating values with different spatial locations, people can develop weights that
correspond to the target and non-target, or penalty, regions of the stimulus input distributions
used in the previously described maximum expected gain function. In particular, in situations
wherein value-based feedback is provided following an action selection, reinforcement learning
theory provides the computational framework for describing how the feedback on an action
decision outcome can be used to adaptively adjust future selection behavior (Sutton & Barto,
1998). A hallmark of reinforcement learning in observable behavior is a trend toward the
selection of an optimal choice over several trials of a given task.

In the ballistic reaching tasks discussed here, a gradual increase in the proximity of reach
endpoints to an optimal location within the spatial target would signify the occurrence of
reinforcement learning. Indeed, Neyedli and Welsh (2013) showed that participants performing
the ballistic reaching task described above (Trommershéuser et al., 2003a), decreased their bias
away from the penalizing region over several blocks of reaching trials. This resulted in a higher
probability of selecting the optimal location within the target region and a greater overall number
of points accumulated across experimental blocks (Neyedli & Welsh, 2013). Though many

earlier ballistic reaching experiments using similar stimuli showed no evidence of such learning
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effects (Trommershiuser et al., 2008), Neyedli and Welsh (2013) argued that those results were
likely due to overtraining individuals before they performed the experimental task (Neyedli &
Welsh, 2013). Thus, these findings suggest that reinforcement learning processes may indeed
occur at the earliest stages (i.e., before extensive training) of spatially-guided movement
decisions despite impoverished prediction error signals. Continuing to explore the impact of the
robust sensory and reward prediction errors on sensorimotor control and learning can provide

insight into how that information is used during spatial decisions.

1.3 Subjective estimates of multiple kinds of variability affect spatial decisions

One consistency among all of these theoretical framings of spatially based sensorimotor
decisions presented thus far is an assumption that implicit sensory signals and motor plans are
integrated in processes to optimize decision outcomes. However, several lines of evidence
conflict with an assumption of strictly implicit information is processed during spatial
estimations. For example, recent studies suggest that humans make suboptimal, or often
irrational, sensorimotor decisions, particularly in explicit contexts of risk (Nagengast, Braun, &
Wolpert, 2010; O’Brien & Ahmed, 2016). In a 2016 study by O’Brien and Ahmed, participants
executed whole body leaning or arm reaching movements to earn points by controlling the
proximity of a cursor to the edge of a virtual cliff presented on a computer screen (O’Brien &
Ahmed, 2016). On some task conditions, penalties were incurred for cursor movements that
traversed the cliff edge. When human performance was compared with a model based on optimal
control theory (Nagengast et al., 2010; Todorov & Jordan, 2002) and another model based on

cumulative prospect theory (Jarvstad, Hahn, Rushton, & Warren, 2013; Tversky & Kahneman,
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1992; Wu, Delgado, & Maloney, 2009), participants exhibited risk-seeking movement
behavior--sometimes letting the cursor fall over the cliff edge. This “irrational” risk-seeking
behavior was significantly greater than either model predicted as the optimal, or rational,
behavior based on both implicit estimates of sensorimotor noise and the weighting of explicit
expected reward and penalty associated with movement decision outcomes. Importantly, O’Brien
and Ahmed (2016) showed that individuals make inaccurate subjective judgments of their own
motor variability during risky spatial decisions, resulting in a deviation from the optimal action

selection that should emerge from a statistically rational process.

1.3.1 Sensory input estimates

A critical assumption of statistically rational models of sensorimotor control is that the brain
reliably and accurately estimates the structure of both sensory and motor noise (Berniker &
Kording, 2011; Kording & Wolpert, 2004, 2006; Maloney & Zhang, 2010; Todorov, 2004;
Todorov & Jordan, 2002; Trommershiuser et al., 2008). However, recent work has shown that
people tend to make inaccurate subjective estimations of input noise related to the statistics of
sensory stimuli (Beck, Ma, Pitkow, Latham, & Pouget, 2012; Juni, Gureckis, & Maloney, 2016).
Juni and colleagues (2016) had participants reach to a hidden target whose location on a
touchscreen could be estimated from a sequentially presented cloud of dots taken one by one
from a Gaussian distribution at each participant’s discretion (Juni et al., 2016). Participants
oversampled sensory information about the stimulus before executing their reaches, deviating
from the optimal sampling behavior estimated for an ideal observer (Juni et al., 2016). Though

more dots yielded more reliable estimates of the target location, oversampling resulted in a

26


https://paperpile.com/c/XKON8R/HYlnE+u6Jdz+xvilG
https://paperpile.com/c/XKON8R/6K8Ce+TXDPC+OgaYL+Ed8tx+MVqiA+dz72t+2asyB
https://paperpile.com/c/XKON8R/6K8Ce+TXDPC+OgaYL+Ed8tx+MVqiA+dz72t+2asyB
https://paperpile.com/c/XKON8R/6K8Ce+TXDPC+OgaYL+Ed8tx+MVqiA+dz72t+2asyB
https://paperpile.com/c/XKON8R/f0wSH+0jkas
https://paperpile.com/c/XKON8R/f0wSH
https://paperpile.com/c/XKON8R/f0wSH

failure to maximize expected gain--due to points lost for each dot requested before executing the
reach on a trial. Along with requesting a supra-optimal number of dots, participants appeared to
stop requesting dots only once the variance of the dot cluster density was significantly lower than
the density predicted by an ideal observer model (Juni et al., 2016). Here, oversampling to
reduce uncertainty is quite consistent with a heuristic bias commonly observed during risky
economic choice decisions (Tversky & Kahneman, 1992; Wu et al., 2009), where participants
prefer a more certain choice with low value over a higher value choice with greater uncertainty,

and thus fail to maximize expected gain across multiple decisions.

1.3.2 Motor output estimates

Imprecise subjective estimates are not restricted to perceptual characteristics of sensory input,
but also to estimates motor output variability. To test whether individuals could accurately
estimate the variance of their own motor output, Zhang and colleagues (2013) had participants
train on ballistic reaches to circular targets, and then indicate their preference for hitting either a
vertical or horizontal rectangle based on each participant’s subjective estimate of their motor
variance (Zhang, Daw, & Maloney, 2013). The experimental stimuli were designed so that the
true distribution of reach endpoints for all participants would be anisotropic--elongated on the
vertical axis; however, participants did not indicate a preference for vertically oriented rectangles
over horizontal rectangles as expected. Rather, the authors found that participants ascribed an
isotropic (i.e., bivariate Gaussian) distribution to their reach endpoints and thus performed

non-optimally on non-motor decisions that required accurate estimates of their motor variance.
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In a follow-up study (Zhang, Daw, & Maloney, 2015), participants first performed
multiple ballistic reaching tasks. On a subsequent non-motor task, participants were then asked
to choose which of two arrangements of rectangular targets they thought was easier to hit. By
modeling reaching and choice behavior, Zhang and colleagues confirmed that actual motor
output variability was best fit by a unimodal Gaussian probability distribution function.
However, participant performance on the choice task, where no actual movements were made,
indicated that their internal estimates of variability were multimodal and better captured by
mixtures of uniform distributions (Zhang et al., 2015). More importantly, the expected position
based on the uniform distributions of estimated motor output variance did not track the expected
position if the decision is assumed to be based on the Gaussian distribution of actual reach
endpoint variability, indicating that participants misrepresented probabilistic information about
their own motor output, as is consistent with previous (Wu et al., 2009) and more recent findings
(O’Brien & Ahmed, 2016). Based on this evidence Zhang and colleagues (2015) argued that
participants may have used a computational shortcut (i.e., heuristic) to approximate the
maximum of actual motor variability rather than statistically optimize their decisions (Zhang et
al., 2015). In other words, if humans do not accurately represent the statistical distributions of
task-relevant noise, then this complicates the assumption of statistically rational models that the
actual structure of sensory input is used to optimize motor output.

Returning to the drone strike example, since the blast radius of the missile explosion is
necessarily larger than the missile itself, the operator has some room for error during his aiming
decision. As such, the operator does not necessarily have to maximize his precision (i.e.,

minimize aiming variability) to damage some number of jets. To determine whether people
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minimized and maintained motor variance across many ballistic reaches, Jarvstad and colleagues
(2014) presented participants with two simultaneously presented circular targets that differed in
size and location on a touchscreen (Jarvstad, Hahn, Warren, & Rushton, 2014). They found that
participants did not opt to constrain their motor variability for reaches to the larger target to the
same degree that they were capable of on reaches to the smaller target. Furthermore, participants
were able to minimize reach endpoint variability equally for small and large target circles when
explicitly instructed to aim for the center of either size target in a control experiment. These
findings directly conflict with the assumption of both optimal control theory and statistical
decision theory that humans maximize motor output variance over task-relevant sensory input
(Todorov, 2004; Todorov & Jordan, 2002; Trommershduser et al., 2003a, 2003b). The results of
Jarvstad and colleagues (2014) clearly show that if a high degree of control is not required,
people can relax constraints on motor variance to execute an action that may not be optimal, but
good enough for a task (i.e., satisfice). If people satisfice on sensorimotor tasks based on explicit
task contexts, then controlling motor output variability may be driven by explicit strategic

necessity, rather than implicit statistically rational optimization processes.

1.3.3 Probability distortions

In addition to inaccurate subjective estimates of sensory and motor variability, people distort
outcome probabilities on risky economic choices (Kahneman & Tversky, 1979; Tversky &
Kahneman, 1992), which also appears to occur during sensorimotor decisions with risky
prospects (O’Brien & Ahmed, 2016; Wu et al., 2009). To illustrate probability distortion

behaviorally, Wu and colleagues (2009) showed that a visuomotor decision making task can be
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mathematically equivalent to an economic choice task, or lottery (Wu et al., 2009). Participants
attempted to maximize point gain across a series of trials by executing ballistic reaches to a
narrow target bar presented vertically between two wider bars worth fewer points. Using the
variance of reach endpoints for each participant, the authors constructed a set of motor lottery
decisions based on the probabilities of hitting the narrow target bar, either of the wider bars, or
missing the stimulus completely. Wu and colleagues found that participants centered their reach
endpoints on the narrow target bar to maximize gain across trials, demonstrating risk seeking
behavior since there is a lower probability of hitting the narrow target. However, participants
chose lotteries with lower overall payouts but greater chances of winning, which corresponded
with the probability of hitting the wider bars on the motor task. This showed that people were
risk averse on the lottery task even though both types of decisions were mathematically
equivalent. The findings of Wu and colleagues were consistent with cumulative prospect theory
(Tversky & Kahneman, 1992) and showed that people distort probabilities on both non-spatial
(e.g., economic) and spatial decisions, although not necessarily in the same way. Critically, the
results provide evidence that people do not make accurate subjective estimates of sensory input
or their own motor output, violating assumptions of statistical decision theory (Trommershéuser
et al., 2008). Despite evidence that heuristic-like strategies are used during sensorimotor
decisions, it is still unclear whether these explicit strategies are a part of implicit computations on

perceptual noise, or if they constitute independent decision processes.
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1.3.4 Explicit cognitive strategies impact implicit sensorimotor decisions

People adapt sensorimotor motor decisions both implicitly and explicitly. Implicit adaptations
rely on the use of sensory signals to minimize error. Alternatively, a person can make an explicit
cognitive decision to aim for a specific spatial target based on task instructions, which can lead
to the same outcome as implicit, sensory-based adjustments. Taylor and Ivry (2011) showed that
when the visual feedback on a reach endpoint to a circular target was rotated by 45 degrees in a
counterclockwise direction, participants shifted reach their endpoints in a clockwise direction to
minimize spatial error on the target (Taylor & Ivry, 2011). In one task condition, participants
only used visual error-based feedback that led to an implicit adaptation process that reduced error
very slowly over many trials. On a second condition, the experimenter gave participants task
instructions to adjust reaches 45 degrees clockwise, which resulted in an immediate reduction in
error on the first trial after visual feedback was rotated counterclockwise. More recently, Bond
and Taylor (2015) used a variety of ballistic reaching tasks to further investigate the role of
explicit strategy in sensorimotor adaptation (Bond & Taylor, 2015). On this task, participants
were asked to verbalize their intended aiming decision, i.e., explicit strategy, to hit a spatial
target within a circular array. The participants adapted rapidly to abrupt rotations in target
location, visual feedback on cursor position, and the presence of landmarks in the array to
execute successful reaches (Bond & Taylor, 2015). These findings show that sensorimotor
control and learning have two dissociable components (Taylor & Ivry, 2011, 2012; Taylor,
Krakauer, & Ivry, 2014), which are either slow, rigid, and driven by sensory error (i.e., implicit)
or fast, flexible, and cognitively-based (i.e., explicit) (Bond & Taylor, 2015; McDougle, Bond, &

Taylor, 2015).
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1.4 Neural mechanisms of spatial decisions

In the preceding sections of this chapter, I have discussed several experiments framed from the
perspective of both normative models of sensorimotor control and more descriptive evaluations
of value-based spatial decision-making behavior. The theories underlying these paradigms and
models assume that the brain must represent several key components to execute spatially guided
movement decisions. First, the brain must represent the spatial distribution of visual input to
identify target stimuli and/or the locations in which they appeared. The second and third
components are a set of possible actions directed to spatial stimuli and the signals that indicate a
selected action from that set. In nearly all of the experiments described, some form of feedback
that corresponded to target hits or misses was given to participants. Thus, the values of spatial
targets and locations relative to non-target stimuli and locations must also be represented. Lastly,
it follows that the decision outcome (e.g., reach endpoint error to the target or number of points
received on a reach trial) will also be reflected by neural responses. Evidence from nonhuman
primate neurophysiology and histology as well as human neuroimaging shows that activity in a
variety of highly distributed and interconnected brain regions is tuned to different aspects of
spatially guided movement decisions. This kind of functional brain network, or circuit of regions,
provides a neurologically plausible mechanism for exploring a potential interaction between
implicit computational and explicit cognitive processes that underlie observable spatially guided

decision behavior.
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1.4.1 Multiple brain regions represent different components of spatial decisions

Neural activity in distributed cortical and subcortical regions contribute to unique aspects of
spatially guided movements. Typically, the studies that report these findings record neuronal
spike rate within single units or populations of neurons of monkeys performing a spatial
delayed-response task where they must saccade (Chafee & Goldman-Rakic, 2000; Colby &
Goldberg, 1999; Curtis, 2006; Funahashi, Bruce, & Goldman-Rakic, 1989; Gottlieb, 2002;
Hoshi & Tanji, 2006; Kakei, Hoffman, & Strick, 2001; McGinty, Rangel, & Newsome, 2016;
Ptak, 2012) or reach to a briefly presented visual stimulus (Buneo & Andersen, 2006; Cisek &
Kalaska, 2005; Colby, 1998; Crammond & Kalaska, 1994; Gottlieb, 2007; Romo, Hernandez, &
Zainos, 2004; Schultz & Romo, 1992; W. Schultz, Tremblay, & Hollerman, 2000; Wise, di
Pellegrino, & Boussaoud, 1996; Yamagata, Nakayama, Tanji, & Hoshi, 2009). Colby and
Duhamel (1996) recorded from neurons in lateral and medial regions of the intraparietal sulcus
(LIP and MIP) that are respectively associated with saccades and arm reaching while monkeys
viewed brief presentations a single visual target stimulus that appeared in different spatial
locations on a screen (Colby & Duhamel, 1996). Both LIP and MIP neurons increased phasic
spiking activity when a visual target was presented within the receptive fields of each neuron
type, as well as when a saccade (LIP neurons) or a reach (MIP neurons) was made to the target
for a fluid reward. Furthermore, both neuron types showed sustained tonic activity between
stimulus presentation and movement execution, even when the stimulus was not visible. These
findings show that spiking activity in parietal neurons can represent and maintain the distribution
of behaviorally relevant visuospatial input that appears within the receptive fields of those

neurons (Colby & Duhamel, 1996; Colby & Goldberg, 1999; Curtis, 2006; Gottlieb, 2002; Ptak,
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2012). This activity can also contribute to the execution of movements toward the location of a
visually presented spatial stimulus (Buneo & Andersen, 2006; Colby, 1998; Gottlieb, 2007).
While parietal activity can represent the spatial location of visual target stimuli, frontal
and prefrontal cortical regions represent a set of actions toward spatial locations and the selection
of a particular action toward target stimuli and locations. For instance, a tonic burst of spiking
activity in dorsal premotor cortex (PMd) neurons is observed when a visual stimulus is presented
in the spatial location of their preferred movement direction (Crammond & Kalaska, 1994;
Yamagata et al., 2009). Crammond and Kalaska (1994) observed this increase in tonic spiking
activity in PMd using a paradigm where monkeys executed reaches to a target stimulus or a cued
target location where no visual stimulus appeared, which indicates that PMd activity corresponds
to movements toward target spatial locations that do not necessarily have to be visible at any
point during or after a movement (Crammond & Kalaska, 1994). Separate populations of PMd
neurons can also represent multiple reaching actions before one is selected for execution. In
cases where more than one visual stimulus is presented, PMd neurons that are directionally tuned
for movements to each potential target location all increase their spiking activity (Bastian,
Riehle, Erlhagen, & Schoner, 1998; Cisek & Kalaska, 2005; Dekleva, Ramkumar, Wanda,
Kording, & Miller, 2016). Cisek and Kalaska (2005) found that the presentation of a non-spatial
cue that signaled the target location resulted in a suppression of spike activity in PMd neurons
that encoded movements toward non-target locations so that only the movement to the target
location was performed (Cisek & Kalaska, 2005). Other research exploring the function of
ventral premotor cortex (PMv), show populations of neurons also encode the spatial location of a

visible target (Hoshi & Tanji, 2006; Kakei et al., 2001), and increase phasic spiking activity
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during the initiation (Yamagata et al., 2009) and successful execution (Rizzolatti et al., 1987) of
a reach to a visible spatial target. Together, these separate lines of work examining the functions
of PMd and PMv provide strong evidence that neural activity in premotor cortex can map a set of
actions to visible spatial stimuli and target locations (Cisek & Kalaska, 2010; Steven P. Wise,
Boussaoud, Johnson, & Caminiti, 1997).

Whether a movement must be made toward a visual stimulus with particular target
features (e.g., shape or color) or spatial location, a single action must be selected from a set of
actions to achieve the particular goal of a spatial task. Dorsolateral prefrontal cortex (DLPFC) is
implicated in the selection of task-relevant spatial decision behaviors (Funahashi et al., 1989;
Hoshi, Shima, & Tanji, 1998; Kubota & Funahashi, 1982; Quintana, Yajeya, & Fuster, 1988;
Rainer, Asaad, & Miller, 1998; Yamagata, Nakayama, Tanji, & Hoshi, 2012) and is theorized to
maintain task-relevant (e.g., rule-based) information as a general mechanism of controlling
goal-directed behavior (Dixon & Christoff, 2014; Hoshi, 2006; Miller & Cohen, 2001;
Ridderinkhof, van den Wildenberg, Segalowitz, & Carter, 2004). Hoshi and colleagues (1998)
monitored multiple populations of neurons in DLPFC for their responses to the shape, location,
or both shape and location of a spatial target visually presented to monkeys on a
delayed-response task (Hoshi et al., 1998). There were two trial types, or experimental contexts,
wherein the monkey had to execute a reach to either a target that had the same shape as a
previously presented cue stimulus, or to a stimulus that appeared in a cued location. Separate
populations of neurons tuned to either target shape or spatial location selectively increased
phasic spiking activity immediately before a reach was executed to the preferred stimulus or

location based on the cue (Hoshi et al., 1998), which is consistent with earlier work showing that
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DLPFC activity gradually increases before the phasic spiking that precedes a goal-directed
movement (Kubota & Funahashi, 1982). By representing the relevant aspects (i.e., visual
features or location) of a spatial target needed to execute a successful context-specific
movement, DLPFC neurons facilitate the selection of a goal-directed action from a set of
possible action choices (Hoshi, 2006; Miller & Cohen, 2001; Ridderinkhof et al., 2004).

One potential feature implicit to a spatial target or location is its value relative to other
visible non-target stimuli or locations. Value information used to identify and guide selection
decisions on visually presented target stimulus is represented by neurons in the orbitofrontal
cortex (OFC) (Kringelbach & Rolls, 2004; Noonan, Kolling, Walton, & Rushworth, 2012;
Rudebeck & Murray, 2011; Wallis, 2007). Recently, neural activity in OFC regions have also
been shown to respond in a spatially-tuned fashion, indicating the distance of gaze positions
away from the cued spatial location of a target (McGinty et al., 2016). McGinty, Rangel, and
Newsome (2016) identified separate populations of neurons in monkey OFC that selectively
responded to a set of one of three visually distinct stimuli that were associated with unique
amounts of juice as a reward. Similar to the previously discussed paradigms, McGinty and
colleagues observed neural responses in the cortical region of interest leading up to the execution
of spatially guided movement. However, they used a novel free viewing paradigm to also
measure eye gaze during a four second viewing period between the presentation of a cue that
remained on screen and the delivery of a reward for fixating on the cue at the end of the viewing
period. A tonic burst of activity was observed in selectively active OFC neurons when a monkey
initially fixated its gaze on a cue and, quite interestingly, the spike rate of responsive neurons

was negatively correlated with gaze proximity to the spatial location of the cue. More
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specifically, OFC neurons decreased spatially-tuned spiking activity proportionally as the
monkey fixated on locations that were further away from the cue, which provides some of the
first evidence that neurons in OFC can encode the spatial location of a visual stimulus. It is also
important to note that discrete subsets of OFC neurons that responded to unique stimuli
associated with different relative values exhibited similar patterns of spiking behavior (McGinty
et al., 2016; Strait et al., 2016), which highlights a potential mechanism for how the brain
represents multiple visual stimuli with distinct values simultaneously.

Along with the cortical regions discussed thus far, a subcortical region, namely the
striatum, has also been shown to exhibit spatially-tuned neural activity on visually guided motor
decisions. In a spatial sequencing study by Kermadi and Joseph (1995), neural activity in the
caudate nucleus of monkeys that sat facing a panel that had three buttons with fixed spatial
positions programmed to light in different sequences of one, two, or three buttons (Kermadi &
Joseph, 1995). After viewing a sequence, monkeys had to press the buttons in the same order to
receive a juice reward. Amidst findings that some neural activity in the caudate was selective for
entire sequences of saccades and reaches to target buttons, the authors also observed neurons
with non-selective spiking activity, that is, some caudate neurons show phasic firing only for a
button in a specific spatial location regardless of its temporal position in the sequence (Kermadi
& Joseph, 1995). The spatially-tuned activation in the caudate reported by Kermadi and Joseph
(1995) is consistent with observations of sustained phasic activity in the caudate in response to a
nonspatial stimulus that cued the spatial target location of a future eye movement (Hikosaka,
Sakamoto, & Usui, 1989). While these studies focused on the caudate nucleus, the putamen is

also involved in generating goal-directed movements in response to visuospatial cues (Schultz &
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Romo, 1992), particularly once movement plans become habitual actions (Balleine &
O’Doherty, 2010; Graybiel, 2008). Another critical, and widely accepted, role of the striatum is
reinforcement learning (Doya, 2008; Houk & Adams, 1995; Lee, Seo, & Jung, 2012; Schultz,
2016), which uses feedback on decision outcomes to adaptively adjust future behaviors (Sutton
& Barto, 1998). Through the association of rewards to spatial locations, the striatum is
implicated generally in spatial cognition (Burgess, 2008) and more specifically in locating and
executing a movement toward a rewarding spatial target (Gottlieb, Hayhoe, Hikosaka, & Rangel,
2014; Retailleau, Etienne, Guthrie, & Boraud, 2012).

Several cortical and subcortical regions of the brain play unique and complementary roles
in representing the major components of spatial decisions. Recordings from parietal (Buneo &
Andersen, 2006; Colby & Goldberg, 1999; Gottlieb, 2002), premotor (Cisek & Kalaska, 2010;
Wise et al., 1997), dorsolateral prefrontal (Hoshi, 2006; Miller & Cohen, 2001; Ridderinkhof et
al., 2004), orbitofrontal (Kringelbach & Rolls, 2004; Noonan et al., 2012; Rudebeck & Murray,
2011; Wallis, 2007), and striatal (Burgess, 2008; Gottlieb et al., 2014; Retailleau et al., 2012)
neurons show patterns of spiking activity that encode the location of spatial targets and
contribute to goal-directed movements toward targeted locations. Overall, these
neurophysiological data provide strong evidence that disparate regions of the neocortex and
striatum show spatially-tuned activity that contribute to visually guided movement decisions to

spatial targets.
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1.4.2 Brain areas involved in spatial decisions are highly interconnected locally and globally
Cortical regions involved in spatial decisions have strong, reciprocal intracortical and
corticocortical connectivity. Locally, short range white matter pathways within parietal,
premotor (Schmahmann & Pandya, 2006), prefrontal, and orbitofrontal (Yeterian, Pandya,
Tomaiuolo, & Petrides, 2012) cortices connect neurons within and across architectonic
boundaries (Schmahmann & Pandya, 2006). Lateral premotor, and prefrontal regions exhibit a
common functional divide between dorsal and ventral aspects of each region, wherein dorsal
neurons encode spatial and directional information, while ventral regions encode information
about the identity or features (e.g., color or shape) of visual stimuli (Hoshi, 2013; Yamagata et
al., 2012). This local topographic organization of visual input to premotor and dorsolateral
prefrontal cortices is consistent with the more global, dual routes of the visual stream through
occipitoparietal pathways dorsally and occipitotemporal pathways ventrally (Goodale & Milner,
1992; Mishkin, Ungerleider, & Macko, 1983). The architectonic parcellations of orbitofrontal
cortex fall along either an anterior to posterior axis where neurons represent abstract (e.g., points
and money) and concrete (e.g., food, odors, sounds) reward information, respectively, or a
medial to lateral axis where medial OFC neurons track the value of reinforcement signals and
lateral OFC neurons track punishment signals that may result in goal-directed adjustments to
behavior (Kringelbach & Rolls, 2004; Noonan et al., 2012). Neurons in anterior, posterior,
medial, and lateral regions of OFC are highly interconnected to neurons in all other regions
(Yeterian et al., 2012). Functionally, the high degree of intracortical connectivity within parietal,
premotor, lateral prefrontal, and orbitofrontal regions comprise local circuitry seem to allow for a

unified (i.e., spatial- and feature-based) representation of visual stimuli.
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Histological tracer (Schmahmann & Pandya, 2006; Yeterian et al., 2012) and human
neuroimaging (Catani & de Schotten, 2012; Fernandez-Miranda et al., 2012; Wakana, Jiang,
Nagae-Poetscher, van Zijl, & Mori, 2004) studies have also shown that long range white matter
fasciculi connect disparate pairs of cortical regions. The previously cited reviews are strongly
recommended for in-depth descriptions of these pathways in human and nonhuman primates.
Reciprocal connectivity is present between parietal cortex and both premotor and lateral
prefrontal regions via the superior longitudinal fasciculus (SLF), which has three
subcomponents: SLF I, SLF II, and SLF III (Martino et al., 2013). SLF I connects caudal regions
of the superior parietal lobule and dorsal premotor cortex, while SLF II consists of fibers
connecting the caudal inferior parietal lobule with dorsal premotor cortex and DLPFC, and SLF
IIT connecting rostral areas of inferior parietal lobule with DLPFC (Cavada & Goldman-Rakic,
1989; Schmahmann & Pandya, 2006). Both ventral premotor cortex and DLPFC are connected
with lateral OFC via SLF I (Barbas, 2000; Cavada, Company, Tejedor, Cruz-Rizzolo, &
Reinoso-Suarez, 2000; Schmahmann & Pandya, 2006). Premotor cortex and DLPFC are also
strongly interconnected (Barbas, 2000; Hoshi, 2006; Lu, Preston, & Strick, 1994). Though the
distribution of connectivity in parietal cortex is somewhat sparse, rostral and caudal regions of
the inferior parietal lobule are connected with OFC (Cavada et al., 2000; Selemon &
Goldman-Rakic, 1988). Along with robust local connectivity within cytoarchitectonic
boundaries, long range white matter fasciculi relates all pairings of presently reviewed cortical
regions, i.e., parietal, premotor, DLPFC, and OFC (Catani & de Schotten, 2012;
Fernandez-Miranda et al., 2012; Schmahmann & Pandya, 2006; Wakana et al., 2004; Yeterian et

al., 2012). Another important feature of this connectivity is that projections from each cortical
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region share common targets with other cortical regions in the circuit (Hoshi, 2006;
Schmahmann & Pandya, 2006; Selemon & Goldman-Rakic, 1988; Yeterian et al., 2012). The
global level of corticocortical interconnectedness of this network further supports its role in
integrating the representations of visual input, action selection, and stimulus values that are

needed for spatially-guided movement decisions.

1.4.3 Structural and functional connectivity converge in the striatum

Though the corticocortical connectivity described thus far provide one way of combining
information about spatial targets and locations as well as specifying goal-directed movements
(Ridderinkhof et al., 2004), the striatum plays a critical part in spatial decisions by releasing
desired actions toward target stimuli or locations (Kermadi & Joseph, 1995; Schultz & Romo,
1992) and using feedback to adjust upcoming decisions via reinforcement learning (Doya, 2008;
Houk & Adams, 1995; Lau & Glimcher, 2007; Lee et al., 2012; Wolfram Schultz, 2016; Sutton
& Barto, 1998). Given that the striatum only receives direct projections from the neocortex
(Alexander, DeLLong, & Strick, 1986; Haber, 2016; Kemp & Powell, 1970), it is ideally situated
in the brain to integrate information about spatial decisions to execute goal-directed actions and
use outcome feedback to update selected movements. While the organization of basal ganglia
circuitry was largely thought to be parallel and segregated (Alexander et al., 1986; Kemp &
Powell, 1970), there is a substantial degree of overlapping and integrated corticostriatal
projection terminations (Averbeck, Lehman, Jacobson, & Haber, 2014; Haber, 2003; Selemon &
Goldman-Rakic, 1985). For example, premotor cortex, DLPFC, and OFC all project to similar

anterior regions of the caudate nucleus and putamen (Averbeck et al., 2014; Haber & Knutson,
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2010), and parietostriatal pathways have separately been found to project to those same striatal
regions (Cavada & Goldman-Rakic, 1989; Selemon & Goldman-Rakic, 1988). This convergent
corticostriatal connectivity identified by histological work in nonhuman primates has also been
observed in a recent human neuroimaging study (Jarbo & Verstynen, 2015). Furthermore,
patterns of resting state functional connectivity confirm the presence of correlated activity across
these structurally connected cortical and striatal regions (Choi, Yeo, & Buckner, 2012; Jarbo &
Verstynen, 2015). Given that resting state functional connectivity analysis prohibits any
inferences task-based functional activation, Pauli and colleagues (2016) conducted a
meta-analysis on 5,809 fMRI studies to identify striatal regions involved in specific categories of
psychological processes (Pauli et al., 2016). The authors parcellated the striatum into five
functionally distinct subregions with one so-called “action value zone” that encompassed
anterior aspects of the caudate and putamen, bilaterally (Pauli et al., 2016). Critically, the action
value zone is situated in regions of the striatum that are the site of convergent cortical inputs
from frontal and parietal regions involved in spatial decision making (Averbeck et al., 2014;
Haber & Knutson, 2010; Jarbo & Verstynen, 2015; Selemon & Goldman-Rakic, 1985, 1988).
Taking together these observations of structural and functional connectivity, tasks that require
value-based, spatially-guided movements should engage anterior regions of the striatum along
with parietal, premotor, DLPFC, and OFC areas that represent each of the key components of a

spatial decision (see Figure 1.2).
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Figure 1.2 Neural circuit model of a spatially guided movement decision. Arrows
indicate the direction of neural signaling through the cortico-basal ganglia-cortical
network. Bidirectional arrows indicate reciprocal connectivity between cortical and
subcortical regions and nuclei. Top: Larger gray boxes indicate cortical areas with
reciprocal connectivity within and between each region (light green boxes) and their
respective functional roles in spatial decisions. For the purposes of this diagram, action
gating in primary motor cortex is depicted separately from PPC, OFC, and DLPFC as its
particular function in this circuit is carried out after the hypothesized integration of
information from the other cortical areas. Bottom: Dark green boxes outline by gray
boxes represent nuclei that comprise the basal ganglia. The striatum is the primary input
to the basal ganglia that facilitates the control of downstream opponent processes (left
small gray box) that mediate the release of a selected action from the thalamus to where
the action itself is gated via primary motor cortex for execution.

1.5 Open questions and specific aims

Behaviorally, it remains unclear how estimates of sensory reliability and subjective value drive
spatial decisions under risk. Additionally, the rostral striatum is ideally situated to integrate
perceptual information, value, and executive action signals during risky spatial decision-making,

however its role in driving value based spatial decisions remains poorly understood. As of yet,
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the structure of this integrative corticostriatal action-value network in humans and its role in
risky spatial decision-making is not fully determined.

To address these open questions this dissertation presents a series of studies wherein I 1)
developed a set of novel behavioral experiments to establish the effects of spatial signals, value,
and context during risky spatial decision-making processes, 2) confirmed the existence of an
integrative corticostriatal network of convergent DLPFC, OFC, and PPC inputs in the human
brain, and 3) examined activity modulation and action-value representations in the striatum. My
dissertation projects combined diffusion weighted imaging (DWI), resting state fMRI (rsfMRI),
task-related fMRI, and psychophysics experiments to delineate a neural mechanism of cognitive
penetration, wherein the contextual framing of a risky outcome impacts perceptual estimation

and action selection processes involved in value-based spatial sensorimotor decisions.

1.8.1 Specific Aims

This dissertation will address three specific aims.

Aim 1: Explore the interplay between sensory uncertainty, value signals, and subjective context
on spatial sensorimotor decisions (Chapters 2 and 3). If the sensory uncertainty of a spatial target
is increased, then selection bias away from a penalizing non-target cue will also increase. Also, if
the subjective evaluation of feedback signals impacts selection behavior, then changes in the

contextual framing of risk should modulate avoidance bias.
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Aim 1.1: A previous value-based spatial decision task (Trommershéuser et al., 2003) will be
adapted to focus on the impact of increased sensory uncertainty on target selection
behavior under risk of point-based scoring penalties (Chapter 2).

Aim 1.2: A follow-up study will establish how changes in the contextual framing of risks, which
impacts the subjective value of feedback signals, modulates avoidance bias during spatial

judgments (Chapter 3).

Aim 2: Identify convergent corticostriatal connectivity that integrates multiple sources of
information necessary for value-based action decisions. If the striatum integrates action-value
information from functionally associated areas of OFC, DLPFC, and PPC, then white matter

pathways from those cortical areas should converge in anterior striatal regions (Chapter 4).

Aim 2.1: Tractography on DWI data will be used to confirm convergent projections from OFC,
DLPFC, and PPC into the “action-value” regions of the human striatum.
Aim 2.2: Analysis of rsfMRI data will then be used to verify the network’s (Aim 2.1) functional

connectivity.

Aim 3: Confirm that a risky spatial decision-making task (Aim 1.2) engages all regions of the
corticostriatal action-value network (Aim 2) (Chapter 5). If the network evaluates action-value,
then changes in BOLD activation should track the level of cost associated with each task

condition. Additionally, if the contextual framing of risks modulates action-value, then patterns
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of BOLD activation representing different task contexts should be reflected in activity patterns in

striatal action-value regions.

These specific aims will be explored over the course of four experimental chapters. In
Chapter 2, I explore the interplay between sensory uncertainty, value signals, and subjective
context on spatial sensorimotor decisions. Specifically, if the sensory uncertainty of a spatial
target is increased, then selection bias away from a penalizing non-target cue will also increase.
Also, if the subjective evaluation of feedback signals impacts selection behavior, then changes in
the contextual framing of risk should modulate avoidance bias. A previous value-based spatial
decision task (Trommershduser et al., 2003) was adapted to focus on the impact of increased
sensory uncertainty on target selection behavior under risk of point-based scoring penalties. A
two-session follow-up study confirmed the reliability of the effects observed in the first study
both within-subjects and between groups. A third study, discussed in Chapter 3, established how
changes in the contextual framing of risks, which impacts the subjective value of feedback
signals, modulates avoidance bias during spatial judgments.

Chapter 4 discusses the findings of a multimodal neuroimaging study that identified
convergent corticostriatal connectivity that integrates multiple sources of information necessary
for value-based action decisions. In that study, I tested the hypothesis that if the striatum
integrates action-value information from functionally associated areas of OFC, DLPFC, and
PPC, then white matter pathways from those cortical areas should converge in anterior striatal

regions. Tractography on DWI data confirmed that convergent projections from OFC, DLPFC,
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and PPC overlapped within "action-value" regions of the human striatum. A subsequent analysis
of rsfMRI data was used to verify the network's functional connectivity.

Finally, Chapter 5 explores whether contextual signals during risky spatial
decision-making modulate corticostriatal action-value network activation. In particular, I
hypothesized that if the network evaluates action-value, then changes in BOLD activation should
track the levels of condition-specific (i.e., no-penalty vs penalty) costs on spatial selections.
Additionally, if the contextual framing of risks modulates action-value, then patterns of BOLD
activation representing different task contexts (i.e., harm vs help) should be reflected by
differences in activity patterns within striatal action-value regions. To address these hypotheses, I
conducted an fMRI study using an adapted version of the behavioral task described in Chapter 3
to examine how the contextual framing of risk influences representational patterns of activity in
the action-value striatum. More generally, I identify a network of cortical regions that encode
differences between context and penalty conditions during risky spatial decision-making.

In the final chapter of this dissertation, I conclude with a critical review of the work
presented and situate the findings within the broader literature in cognitive psychology, decision
neuroscience, and moral psychology that explore contextual framing effects on risky
decision-making behavior. I will discuss the limitations of each experiment as well as plans to
address those limitations with future work examining the neural underpinnings of value-based

action selection behavior during risky decision-making.
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Chapter 2

Sensory uncertainty impacts avoidance during spatial

decisions

The following text has been adapted from Jarbo, Flemming, & Verstynen, 2017

When making risky spatial decisions humans incorporate estimates of sensorimotor variability
and costs on outcomes to bias their spatial selections away from regions that incur feedback
penalties. Since selection variability depends on the reliability of sensory signals, increasing the
spatial variance of targets during visually-guided actions should increase the degree of this
avoidance. Healthy adult participants (N = 20) used a computer mouse to indicate their selection
of the mean of a target, represented as a 2D Gaussian distribution of dots presented on a
computer display. Reward feedback on each trial corresponded to the estimation error of the
selection. Either increasing or decreasing the spatial variance of the dots modulated the spatial
uncertainty of the target. A non-target distractor cue was presented as an adjacent distribution of
dots. On a subset of trials, feedback scores were penalized with increased proximity to the
distractor mean. As expected, increasing the spatial variance of the target distribution increased
selection variability. More importantly, on trials where proximity to the distractor cue incurred a
penalty, increasing variance of the target increased selection bias away from the distractor cue
and prolonged reaction times. These results confirm predictions that increased sensory

uncertainty increases avoidance during risky spatial decisions.
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2.1 Introduction

It is fabled that William Tell was forced to use an arrow to precariously shoot an apple placed
atop his son’s head. Successful completion of his task required Tell to optimally aim his
crossbow for the high reward target, i.e., the apple, while avoiding an area with a very high
penalty, i.e., his son’s head (see also Trommershduser, Maloney, & Landy, 2003). Situations like
this can be complicated by environmental conditions. For instance, a thick fog settling into the
square would increase the difficulty of Tell’s aiming decision. The increased noise in the target
estimation process would, in turn, reduce his accuracy and impact the likelihood of striking the
apple.

In scenarios like these, where people must execute a visually guided movement with a
potentially high cost on feedback outcomes, humans avoid aiming at locations that increase the
likelihood of a penalty (Meyer, Abrams, Kornblum, Wright, & Smith, 1988). This spatial
avoidance relies on the statistics of both sensory (Whiteley & Sahani, 2008) and motor
(Trommershauser et al., 2005) signals in the goal of probabilistically estimating the degree of
risk associated with actions made to different areas of space (Nagengast, Braun, & Wolpert,
2011). Specifically, humans account for both penalty magnitude and response variability such
that an increase in either will increase their penalty-avoidance bias (Gepshtein, Seydell, &
Trommershiuser, 2007; Landy, Goutcher, Trommershauser, & Mamassian, 2007; Landy,
Trommershauser, Daw, 2012; Trommershduser et al., 2005; Trommershiuser, Landy, &
Maloney, 2006; Trommershauser et al., 2003a; Trommershéduser, Maloney, & Landy, 2003b;
Wu, Trommershéduser, Maloney, & Landy, 2006). This process is largely consistent with

statistical decision theory, which describes how probabilistic information is incorporated into
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decision processes (Berger, 1985; Maloney & Zhang, 2010) in order to maximize expected gain
by minimizing penalty on decisions with uncertain costs. Specifically, the expected gain model
of sensorimotor decision-making posits that humans combine probabilistic estimates of spatial
targets with estimates of relative reward and penalty associated with those targets to produce a
gradient of action value (Trommershéuser et al., 2003a; Trommershduser, Maloney, & Landy,
2008). Figure 2.1a depicts the expected gain model in an example trial where the peak of the
expected gain function is shifted away from a penalty inducing stimulus. One cue represents the
target of a spatial action, where selections closer to the mean lead to greater rewards (solid black
distribution, Figure 2.1a), while the other represents the spatial location of a region where
selections will incur a penalty (gray distribution, Figure 2.1a). The expected gain model predicts
that the magnitude of selection bias away from the penalty region is estimated as a cost function
across space (x) (black dashed line, Figure 2.1a), reflecting the difference between these two
distributions (Gepshtein et al., 2007; Landy et al., 2007, 2012; Neyedli & Welsh, 2013;

Trommershauser et al., 2006, 2003a, 2003b; Wu et al., 2006).
MEG, = argmax(aN(x; ur,or) — (1 — a)(N(z; unt, oNT)) Eq. 2.1
X

In Equation 2.1, the optimal location to reach towards, i.e., the location with the maximum

expected gain (MEG,), is the maximum of a linear function that represents the difference of the

target (denoted with subscript 7) and non-target (denoted with subscript N7) distributions, each
with a mean (i.e., centroid) and standard deviation of p, and o, and p,, and c,,,

respectively. Thus, selection behavior is reflected as a distribution of endpoints over a series of
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reaches with a mean centered over the target mean. The value of o ranges from zero to one and
determines the weight of the difference between target and non-target distributions in the
resulting response (MEG,). When a = 1, the penalty-inducing non-target is ignored, and the
selections will focus at the mean of the target. As a decreases, the location of the non-target
induces a greater avoidance bias, pushing the selection away from the mean of the target. Figure
2.1b depicts selection bias away from the non-target (downward on the y-axis) in arbitrary units
as a function of o (x-axis) at different ratios of target to non-target variance based on Equation
2.1. If the target and non-target reflect the spatial location of reward and penalty, respectively,
then at smaller values of o, selection bias manifests as a shift in the selection distribution away
from the penalizing non-target (and towards a location in the target that is still likely to result in
reward).

By design, the expected gain model predicts that changes in stimulus variance should
influence estimates of the M EG, location. This is also illustrated in Figure 2.1b, where the
topmost curve shows the predictions of the expected gain model (Equation 2.1) across all values
of a when the variances of the target and non-target are equal. Here bias is shown as more
negative values that reflect stronger avoidance away from non-target mean. The other curves
show cases where the variance of the target is 175%, 250%, 325%, and 400% larger than the
variance of the non-target. Note that bias increases as the ratio of target to non-target variance

increases, as well as with lower values of a.
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Figure 2.1 Illustration of the expected gain function, predicted selection bias and scoring
functions. (A) The target (solid black line) and penalty-inducing non-target (solid gray
line) stimuli are represented as Gaussian distributions with means separated by a fixed
distance of 50 arbitrary units. The expected gain function (dashed black line) is
approximated as a linear combination of the stimulus distributions, weighted by their
relative outcomes (i.e. a and 1-a). On estimation trials (see Methods: Experimental
task), the mean of the target must be selected to receive the highest points possible.
Selecting the peak of the non-target minimizes points during penalty blocks. The peak of
the expected gain function (MEG) represents the optimal perceptual position to select
based on the statistics of the stimulus distributions. The gray area between the MEG and
target mean demarcates where selections are biased away from the non-target across
trials. (B) Selection bias away from the non-target is plotted as a function of penalty
weighting (o) across different ratios of target to non-target variance from 1:1 (black
curve) to 4:1 (lightest gray curve). More negative y-axis values reflect larger selection
bias. (C) Dashed black and gray lines represent hyperbolic scoring functions (see
Equation 2.4) for the stimulus distributions. Point gain on a selection increases along the
y-axis for the target but is negative for the non-target.

Previous studies on risky spatial decisions used filled-in circles with clear boundaries to

represent the target and non-target regions of the space (Meyer et al., 1988; Trommershiuser et

al., 2008). This design introduces two limitations that we address in the current study. First, these

previous efforts did not systematically manipulate the effects of stimulus variance and, therefore,

sensory uncertainty on spatial decisions, since the target and non-target areas were readily visible

to the participants. Put another way, these previous studies were not designed to study the spatial
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estimation and selection process. Here, we adapted a probabilistic stimulus design wherein the
target and non-target positions must be estimated as the respective means of two sparse Gaussian
distributions of dots (Acuna, Berniker, Fernandes, & Kording, 2015; Bejjanki, Knill, & Aslin,
2016; Juni, Gureckis, & Maloney, 2015; Tassinari, Hudson, & Landy, 2006). The second
limitation involves the feedback payoff structures, in which the reward and penalty values were
uniform throughout target and non-target regions of the stimulus. This structure necessarily
results in an optimal selection location that is always biased away from the target center and the
non-target in penalty conditions (Meyer et al., 1988; Neyedli & Welsh, 2013; Trommershauser et
al., 2003a, 2003b; Wu et al., 2006). Thus, there was not a true optimal location based on both the
sensory and feedback signals as expected by the expected gain model (Equation 2.1), but instead
a range of regions, which could be estimated purely from spatial signals, that produced the same
reward. Here we disambiguated the spatial distribution of the feedback signal from the spatial
distribution of the visual stimulus in order to increase attention at estimating the true mean of the
target. Finally, previous studies have relied on ballistic reaches to represent their spatial
selections, which can increase urgency in the action, thereby increasing selection noise. To
mitigate the influence of motor noise, we allowed participants an unlimited amount of time to
respond. Together, these experimental modifications allowed us to extend past research on risky
spatial decisions by better controlling variability in motor behavior.

Using this paradigm, we sought to address previously untested predictions about the
effects of stimulus variance on selection behavior during risky spatial decisions. First, based on
the expected gain model (Equation 2.1 and Figure 2.1b), we hypothesized that increasing the

ratio of target (6, ) to non-target ( 5, ) spatial variance should increase selection bias away
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from the non-target. In other words, when the target mean is harder to estimate, relative to the
location of the non-target, participants should be more cautious in their spatial estimations and be
more biased away from the non-target stimulus. Second, this effect on spatial variance on
avoidance bias should interact with explicit costs (i.e., target and non-target weights, o and 1-

o) to more strongly bias selections than penalty conditions alone. Finally, as demands of
integrating spatial signals increases (i.e., target variance increases) and estimating relative value
increases (i.e., o gets smaller), then this should increase computational demands on the decision
and slow reaction times to initiate the selection. With our paradigm, we were also able to observe
the influence of sensory variance on reaction times that were largely unexplored in previous

work.

2.2 Methods

2.2.1 Participants

Thirty undergraduate students enrolled in an introductory psychology course at Carnegie Mellon
University were recruited through the university’s Psychology Research Experiment System.
Ten participants failed to perform at or above a criterion of 50% overall accuracy on the catch
trials (see Section 2.2.3 Experimental task), leaving a final sample of 20 participants (9 females,
11 males). Participant ages ranged from 18 and 23 years of age (mean age = 20.4) and were
screened for normal or corrected-to-normal vision and right-handedness. Each eligible
participant reviewed and signed a consent form approved by the Carnegie Mellon University
Institutional Review Board. All participants who completed the study received credit toward

fulfillment of their semester course requirements.
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2.2.2  Experimental setup

The experiment was conducted using Psychophysics Toolbox 3.0.10 (Brainard, 1997; Kleiner et
al., 2007) through MATLAB (Release 2012a, The MathWorks, Inc., Natick, MA, United States)
on a desktop computer running Ubuntu 14.04. Participants completed the task seated in a dimly

lit room in front of a 23” computer monitor with a total screen resolution of 1920 x 1080 pixels.

2.2.3 Experimental task

Using a 2x2 (low vs. high target variance x no-penalty vs. penalty) within-subject design, each
participant completed eight blocks of trials (two blocks per condition). The order of block
conditions was randomized for each participant. A total of 102 trials (82 estimation trials and 20
catch trials) were presented in each block with a total of 816 trials (656 estimation trials and 160
catch trials) across the entire experiment. The experiment took approximately 45 minutes to

complete.
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Figure 2.2 Experimental trial timeline. Participants clicked and held the left mouse
button to initiate all trials. (A) On estimation trials, a fixation (+) was presented
(250-2500 ms jittered). The target (referred to as the Target in the task; white) and
non-target (referred to as the Danger Zone in the task; gray here, presented in red in the
task) stimuli flashed on screen for 300 ms then disappeared. Participants then had
unlimited time to indicate their target selection by dragging the cursor (x) and releasing
the mouse button. Score on a trial, based on selection distance from the target, was
presented for 500 ms. (B) On catch trials, instead of visual cues, an “x” was presented
after a random interval. Participants obtained a flat point total for releasing the mouse

within 500 ms, or lost points for missed catch trials or responses slower than 500 ms.

All trials were self-paced, and participants initiated each trial by clicking and holding the
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left mouse button while the screen was blank. A fixation stimulus (+) appeared at the center of
the screen following the click and hold. On estimation trials (Figure 2.2a), after a uniformly
sampled period of time between 250-2500 ms, the target and non-target stimuli were presented
simultaneously on the screen for 300 ms before disappearing. Both the target and non-target
distributions appeared completely in randomly sampled locations within the rectangular space of
1024 x 768 pixels centered on the screen, with the constraint that both stimuli were completely
visible in the workspace. The target stimulus (Target) was presented as a Gaussian distribution of
100 white dots, each 3 pixels in diameter. The non-target stimulus, referred to as the “Danger
Zone” on penalty trials (described below), was simultaneously presented as a Gaussian
distribution of 100 red dots (gray in Figure 2.2a), also with 3-pixel diameters. This distribution
could appear either to the right or left of the Target with equal probability on each estimation
trial. The horizontal distance between the mean of the target and mean of the non-target was
fixed at 50 pixels. The standard deviation of the Target was 25 pixels in the low variance blocks
and 100 pixels in the high variance blocks. The non-target always had a standard deviation of 25
pixels.

Once the two stimuli were removed from the screen, the mouse cursor was presented as
an “x” at the center of the screen. Participants had an unlimited amount of time to drag the cursor
to a location and then release the left mouse button to indicate their selection of the mean of the
target stimulus. Immediately following the selection, a point total for that trial was presented at
the center of the screen for 500 ms. The screen then went blank until the participant initiated the
next trial.

On half of the blocks, the reward feedback would be penalized based on the proximity of
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the participant’s selection to the non-target (“Danger Zone”), while this penalty was not applied
on the remaining blocks. Participants were cued to the cost condition (i.e., no-penalty or penalty)
of the upcoming block of trials by onscreen instructions. The block commenced after the
participant indicated they were ready to begin by pressing the spacebar on the keyboard.
Regardless of cost condition, selecting the mean of the target stimulus guaranteed the maximum
number of points that could be scored on an estimation trial. Points scored on each estimation
trial were computed based on the distance of a selection from the target and non-target means.
On each trial, the Euclidean distance to the target stimulus (Equation 2.2) and non-target

stimulus (Equation 2.3) were computed based off of the selection location (x,,y,) and the means

of both the target stimulus (x,,y,) and non-target (x,,,y,,) distributions, respectively.

dr = \/Z (s 5) = (wr,y1))”

Eq.2.2

dynT = \/Z ((xsyys) - (xNT7yNT))2

Eq.2.3

The reward feedback score on each trial was computed as the weighted difference between the

target (d;) and non-target (d, ) selection errors, such that

Score = w (100/dr) — (1 — w) (100/dnT) Eq.2.4
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In Equation 2.4, the feedback score based on selection position was computed to have a
hyperbolic 1/d falloff where d equaled the distance between a selection location and mean of the
target. Here the scoring functions are weighted by ®, corresponding to the weight of the spatial
distributions specified by the value of a in Equation 2.1. In no-penalty blocks, the value of ®
was set to 1, so that only selection distance from the target contributed to the score on those
trials. In penalty blocks, @ was set to 0.33 so that participants incurred a heftier loss for
selections that were closer to the center of the non-target.

The dashed lines in Figure 2.1c provides a visual representation of the hyperbolic scoring
functions overlaid with Gaussian target and non-target distributions. The highest possible score
on any estimation trial was constrained to 200 if a perfect distance was estimated (i.e., d.= 0). To
more strongly engage participants in the task, scores were multiplied by 1000 when presented at
the end of each trial. The use of the hyperbolic function meant that any spatial error between the
selection and target resulted in a steep reduction in points, thereby forcing participants to aim as
closely to the mean of the target stimulus as possible. The fixed distance between the target and
non-target locations ensured that target selections yielded the greatest number of points on an
estimation trial across all blocks, regardless of cost condition.

Twenty catch trials (Figure 2.2b) were randomly presented throughout each block as an
experimental control to verify that participants were fixating on the center of the screen at the
start of each trial. Just like the estimation trials, participants initiated catch trials from a blank
screen by clicking and holding the left mouse button. A fixation appeared at the center of the
screen for a jittered period of 250-2500 ms after trial initiation. Then, in lieu of the appearance of

the estimation trial stimulus, the fixation changed from a “+” to an “x” at the center of the screen.
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Participants then had to release the mouse button within 500 ms in order to gain five points, or
otherwise lose five points for either failing to respond or responding too slowly.

Data from 10 participants were excluded from further analyses for failure to reach 50%
accuracy on the catch trials across the entire experiment. One possible explanation is that the
magnitude of points on estimation trials dwarfed that on catch trials, reducing the incentive to
respond. Estimation trials were also far more frequent in the task (80% of all trials) and had no
limit for responses, whereas catch trial responses had to be made within 500 ms. However, we
note that the general pattern of results, including the statistical significance and effect sizes of
our reported results, do not change with inclusion of those data. As such, we do not include any

further discussion of catch trial performance.

2.2.4 Data analysis
Selection variability, bias, and reaction time were the primary dependent measures. The spatial
location of a selection as well as the time between offset of the stimuli and movement onset on
estimation trials (i.e., reaction time) was recorded for every trial across all participants. For all
analyses, only the position along the x-dimension, i.e., the selection, was used since this was the
dimension along which the adjacent non-target location was manipulated. Selection variability,
bias, and reaction time were computed for all 164 estimation trials within the same experimental
condition. Selection variability was computed as the standard deviation of the x-coordinate of
selections across trials within a condition.

Selection bias was computed as the difference between the selection and target on a trial

relative to the position of the non-target stimulus, which could be presented either to the left or
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right of the target stimulus. As illustrated in Figure 2.1b, the selection bias score has more
negative values with a greater selection distance away from the non-target stimulus, relative to
the mean of the target stimulus. Positive values would indicate selections closer to the non-target
stimulus.

A two-way repeated measures ANOVA was conducted to observe the main effects of
variance and penalty (i.e., cost) conditions, as well as the variance x penalty interaction
separately on selection variability, bias, and reaction time (Figure 2.3). Paired sample t-tests
were used as post-hoc measures to determine the directionality of main effects and interactions in

significant omnibus tests. Effect sizes were estimated as partial eta squared, nlzg .

2.3 Results
As predicted, variability of participants’ estimates of the target stimulus mean were higher in the

high variance blocks than the low variance blocks, F(1,19) =7.29, p =0.014, n,, = 0.28 (Figure

2.3a). We averaged the scaling effect of variance across the penalty and no penalty blocks and
computed the ratio of selection variability in high variance blocks to low variance blocks to be
1.59. This scaling effect for variance There was no main effect of penalty condition on selection
variability, F(1,19) = 0.83, p = 0.37, nor was there a variance x penalty interaction, F(1,19) =
1.41, p = 0.25. This indicates that increasing the spatial variance of the target stimulus reduces
the reliability of the spatial estimations. Indeed, we did observe a significant main effect of target
variance on reaction time, F(1,19) = 37.80, p < 0.001, n,, = 0.67 (Figure 2.3b), wherein reaction
times slowed in the high variance conditions. Though penalty did not have a significant main

effect on reaction times, F(1,19) = 2.55, p = 0.13, there was a significant variance x penalty
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interaction, F(1,19) =5.62, p = 0.029, n; = 0.23. The paired t-test confirmed that the high

variance condition with penalty resulted in significantly slower reaction times than the high
variance condition with no penalty, paired #19) =-2.38, p = 0.014, Cohen’s d = -0.53. Reaction
times were not significantly different between low variance blocks, paired #19) =1.68, p =
0.1098, regardless of penalty condition. This effect on reaction times is interesting as past work
motivating the current experiments implemented a time constraint with very short time durations
(e.g., <700 ms), which is often critical for detecting changes in reaction times due to influences
on the decision process itself. However, reliable effects of spatial stimulus variance and penalty
on reaction times were not observed (Neyedli & Welsh, 2013, 2014; Trommersh&user et al.,
2003a, 2003b). We claborate on this difference between studies further in the Discussion. Taken
together, the selection variance and reaction time results confirm that the target spatial variance
manipulation impacted the reliability of the spatial estimation process.

The expected gain model predicts that selection bias away from the non-target stimulus
should increase in these conditions of low sensory certainty, and this effect should interact with
the presence of feedback penalties. Consistent with previous observations (Neyedli & Welsh,
2013, 2014; Trommershauser et al., 2005; Trommershéuser et al., 2003a, 2003b), the
introduction of a penalizing cost on selections resulted in a bias away from the non-target (Figure
2.3c¢). The ratio of bias in penalty blocks compared to no penalty blocks was 2.47 when we
averaged the scaling effect of penalty across low and high variance conditions. Both main effects
of variance, F(1,19)=7.72, p =0.012, nf, =0.29, and penalty condition, F(1,19) = 18.66, p <
0.001, ni = 0.50, as well as the variance x penalty interaction, F(1,19) = 10.63, p = 0.004, nl% =

0.36, were significant. Generally, selection bias was greater in high variance conditions;
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one-sample t-tests, evaluating the bias effect with respect to a null hypothesis of zero, revealed

this nonzero bias was present in penalty blocks across the low, mean = -2.84, (19) = -2.90, p =

0.009, Cohen’s d = -0.65, and high variance, mean = -15.64, t(19) = -3.72, p = 0.002, Cohen’s d

= -0.83, conditions. A paired t-test showed that the magnitude of this penalty-induced bias was

significantly greater in high variance blocks, paired #19) =-3.23, p = 0.005, Cohen’s d = -0.72.

This confirms our prediction that when the sensory reliability of spatial target estimates is low

(i.e., high spatial variance), selection bias away from the non-target increases.
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Figure 2.3 Selection variability, reaction time, and bias across conditions. Bar color is
same in all panels and error bars represent the standard error of the mean. (A) Average
selection variability in pixels, measured as the standard deviation (o) of selections in low
and high variance blocks, were compared across no-penalty (black) and penalty (white)
blocks. There was a significant main effect of target variance that resulted in increased
selection variability in high variance blocks. (B) Average reaction time (RT) in seconds,
measured as the amount of time from stimulus offset and the initiation of movement on
an estimation trial. There was a significant interaction between variance and penalty. RTs
were slower in high variance conditions with the longest RTs in the high variance x
penalty blocks. (C) Average selection bias in pixels, measured as the distance of
selections from the target mean. A significant interaction between variance and penalty
resulted in the greatest bias away from the non-target (Danger Zone) in the high variance
x penalty blocks. Both main effects were significant and showed an increased bias in

penalty blocks. Asterisks and hash lines denote significant main effects and interactions
(* p<0.05, *** p < 0.05).
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2.4  Discussion

Consistent with the predictions of the expected gain model (Trommershéuser et al., 2003a,
2008), we show that sensory reliability of visual targets interacts with spatial cost estimates
during goal directed action. We confirmed that increasing the spatial variance of a visual target
reduces the reliability of spatial estimates of the target mean (Bejjanki et al., 2016; Kording &
Wolpert, 2004; Tassinari et al., 2006). By allowing an unlimited amount of time to make
selections, our task was less sensitive to the effects of motor noise on spatial estimates than
previous studies that used a ballistic reaching paradigm (Neyedli & Welsh, 2013, 2014;
Trommershiuser et al., 2003a, 2003b). Because our paradigm did not pressure response speed
itself, other non-planning processes could contribute to variability in the reaction times (Wong,
Goldsmith, Forrence, Haith, & Krakauer, 2017), tempering the interpretation of context
influences on response speed. We also replicated the observation that participants biased their
selections away from a non-target stimulus that could induce a penalty on feedback scores
(Landy et al., 2007, 2012; Trommershauser et al., 2005; Trommershiduser et al., 2003a, 2003b;
Wu et al., 2006). Critically, we showed for the first time, under conditions of high target variance
and penalty, participants most strongly biased selections away from the non-target stimulus and
also took significantly more time to initiate selection movements.

Though our findings are generally consistent with probabilistic models of human spatial
estimation (Landy et al., 2007; Neyedli & Welsh, 2013; Tassinari et al., 2006; Trommershduser
et al., 2003a, 2003b), we built on past research by providing support for previously unexamined
predictions of the expected gain model (Trommershduser et al., 2003a, 2008) regarding the effect

of stimulus variance on spatial decisions. First, we confirmed the prediction that increasing the
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ratio of target to non-target stimulus variance increases avoidance bias away from the non-target
stimulus (Figure 2.1a and b, and 2.3c). While this prediction comes out of the normative form of
the expected gain model (see Equation 2.1), it was not evaluated in previous studies because the
stimuli used did not allow for the manipulation of spatial certainty. Our novel implementation of
2D Gaussian distributions as target and non-target stimuli, rather than circles, allowed for
systematically manipulating the spatial precision of sensory signals and, consequently, the
variance of the estimation process itself. Second, we found an interaction between stimulus
reliability and penalty-induced avoidance bias, the greatest selection bias was away from the
penalizing non-target in high target variance conditions. Again, this follows from the prediction
of the normative form of the expected gain model (see Figure 2.1b). Finally, by dissociating the
feedback function from perceptual distributions of the target (Figure 2.1c), we were able to show
that the avoidance bias reflects a purely perceptual estimation process, rather than a feedback
learning process. Specifically, had participants been using just the trial-by-trial reward feedback
signals to find the optimal selection location, the mean of their selections would center on the
mean of the target stimulus (i.e., zero spatial bias). The fact that participants still showed a bias
in non-penalty conditions and that this bias scaled with perceptual reliability of the spatial
location of the target, confirms that trial-by-trial reinforcement learning has little impact on the
estimation process itself (Trommershiuser et al., 2003a, 2003b). We should point out, however,
that Neyedli & Welsh (2013) found evidence that reward feedback signals may moderate the
shape of this bias over time. While we failed to see evidence of such learning in our participants
(analysis not shown), this is likely due the fact that our experiment was not designed to explicitly

test for learning effects.
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It is worth noting that the avoidant selection behavior shown here likely reflects a
top-down strategy rather than a simple computation on bottom-up sensory inputs. Past risky
spatial decision-making studies manipulated the degree of target and non-target circle overlap
(Meyer et al., 1988; Neyedli & Welsh, 2013; Trommershduser et al., 2003a, 2003b), thereby
constraining the spatial region that would produce a reward. From a statistical perspective, there
are two ways to compensate behavior when the rewarded spatial region shrinks: improve spatial
precision by reducing selection variability or improve accuracy by shifting the mean of the
selection to being near the center of this constrained reward region. As in the current study, these
previous experiments showed that rather than constraining motor output variability based on
sensory estimates to ensure that selections fell within the available space of the target,
participants shifted the mean of their selections away from the penalizing non-target to a degree
that corresponded to target and non-target overlap in order to avoid losses. In some ways, this is
consistent with the principle of loss aversion in Prospect Theory, which posits that “losses loom
larger than gains” in that individuals are more sensitive to a potential loss than a sure gain of
equal or greater expected value (Tversky & Kahneman, 1992). However, it is worth noting that
our experimental design was able to dissociate the actual optimal feedback position with the
expected optimal position given a weighted combination of the two stimuli (see Figure 2.1c¢). If
participants were simply using a mixture of the incoming sensory signals and previous reward
feedback to learn an optimal location to select, they would always select the mean of the target
stimulus. The fact that we also observed a strong avoidance bias suggests that the maximum
expected gain estimation is a purely perceptually driven spatial estimate and not an optimal

decision given the reward feedback delivered.
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Although selection bias was not significantly different from zero on low target variance
blocks with no penalty, selections still trended away from the non-target, rather than varied
symmetrically about the target (i.e., zero bias). While participants may have been primed to
always avoid the non-target stimulus across the experiment, this nonzero bias on no-penalty
blocks when o was fixed at a value of 1 suggests that participants did not fully discount the
non-target even though it should have had no influence on their spatial estimates. Our
experimental design was limited in determining whether this observation was due to some
carryover of a values when no-penalty blocks followed penalty blocks, or whether there is some
other source of noise in the spatial estimation process that should be considered in the expected
gain model. Indeed, there is evidence that both learning of expected costs on spatial decision
outcomes (Neyedli & Welsh, 2013, 2014) and noisy spatial estimates (Juni et al., 2015) can lead
to biased selection behavior. Future paradigms can use a counterbalanced block structure and
manipulate o parametrically to quantitatively assess any potential effects of carryover (e.g.,
learned value of o) or noisy spatial estimates.

We also found that increased sensory stimulus variance interacts with penalty to further
slow the time it took to initiate the selection decision. Under conditions of high target variance,
participants took significantly longer to initiate their movements with the slowest reaction times
occurring in high variance blocks with penalty. When penalty was added along with high
demands on selection precision, i.e., high sensory variance, participants might have taken longer
to respond as a precaution in order to mitigate larger than expected costs. This cautionary
behavior may reflect some subjective difficulty or uncertainty either in a strategic plan to reduce

known costs or in the implicit spatial estimation process itself. This presents another avenue of
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research wherein expected cost, reflected by trial-by-trial fluctuations in the value of o, and

estimates of stimulus variance can be considered together during spatial decisions. As such, new
models of sensorimotor integration can relate explicit (e.g., costs) and implicit (e.g., sensory
variance) aspects of estimation processes that underlie spatial decision behavior (McDougle,

Ivry, & Taylor, 2016; Summerfield & Tsetsos, 2012; Taylor, Krakauer, & Ivry, 2014).

2.5 Conclusion

Taken together, our findings clearly show that estimates of sensory variance contribute to the
degree to which individuals attempt to avoid penalties during risky spatial decisions by biasing
their action selections away from regions that induce feedback penalties. Based on our results, it
largely appears that estimates of stimulus variance and cost conditions along with expected
feedback are considered together while people make spatial judgments in an attempt to maximize
gain. However, the proposition that “losses loom larger than gains” (Tversky & Kahneman,
1992) implies that there is a subjective component to avoiding penalty during spatial decisions.
This further suggests that subjective differences in the kinds of penalty incurred can influence
how much people bias their selection behavior. If an individual has to make a risky decision
between two different kinds of losses, e.g., points versus real money, then they may show an
increased selection bias to avoid a penalty that they perceive as more costly. In the following
chapter, I present the findings from an experiment that uses a modified version of the Danger
Zone paradigm to explore how the contextual framing of losses impacts risky spatial decision

behavior.
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Chapter 3

Contextual framing of a risky spatial decision outcome

impacts loss avoidance

In Chapter 2, we showed that increased sensory uncertainty and expected penalty drives
increased loss avoidance during risky spatial decisions. Here we present a second novel study,
Drone Strike, that leverages the experimental control of risk and uncertainty in Danger Zone to
examine how contextual framing (i.e., a harmful versus helpful action) influences the extent to
which people avoid loss during risky spatial decisions. The primary difference between Drone
Strike and Danger Zone is the addition of a wartime narrative to manipulate the contextual
framing of loss between penalty and no-penalty conditions, thus inducing top-down engagement
in the decision-making process that was not necessary for Danger Zone. Otherwise, the
visuospatial features and score distributions constituting the target and non-target stimuli were

1dentical between the studies.

3.1 Introduction

Imagine that you are challenged to throw a dart and strike the center, or bullseye, of a dartboard.
How would your aim and throwing behavior change if your challenger replaced the bullseye with
a picture of a close friend, or worst enemy? Now, this task is imbued with a contextual meaning

even though throwing the dart with the goal of striking the bullseye remains the same. Here, we
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ask how contextual framing influences behavior during spatial decision-making. To begin
exploring this question, we introduce an extension of the Danger Zone paradigm (Chapter 2) in
which narrative frames are used to contextualize risky spatial decision-making scenarios to
determine whether or not selection bias is impacted by differences in the kind of loss incurred
when all other aspects of the task are identical.

Interestingly, in the Danger Zone study, despite participants being explicitly informed
that selecting the center of the target distribution maximized expected gain, regardless of task
condition, we still observed significantly greater loss avoidance during the penalty conditions.
Even though participants showed that they were capable of selecting the center of the target in
conditions without penalty, the findings suggest that participants incorporated both information
about risk via point-based feedback on selections and estimates of sensory uncertainty when
making selection decisions. Doing so resulted in a selection bias that mitigated penalty
particularly when the spatial decision was framed in terms of a potential loss. This further
suggests that instead of objectively selecting the center of the target on all trials, people may
have been incorporating a subjective valuation of feedback and sensory uncertainty that was
reflected in a selection bias away from the penalizing non-target. This subjective aversion to

potential loss offers an explanation for why participants failed to select the location that was

guaranteed to maximize expected gain under penalty conditions in spite of demonstrating a clear

ability to do so in no-penalty conditions when all visuospatial aspects of the decision were

equivalent.
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3.1.1 Contextual framing effects on risky decisions

Framing an otherwise equivalent economic decision as two different kinds of losses has been
shown to have distinct effects on choice behavior. For instance, people are more likely to accept
a gamble with a high probability of losing some amount of money rather than spending the same
amount of money to enter a lottery with the same high probability of losing (i.e., winning
nothing) (Kahneman & Tversky, 1979, 1984) (Hershey & Paul J. H. Schoemaker, 1980; Tversky
& Kahneman, 1981; Wang, 1996; Yang, Vosgerau, & Loewenstein, 2013). Given that the
likelihood and monetary value of a losing outcome is the same in both cases, choosing a gamble
over a lottery is based only on a person’s subjective preference for how, but not how much, they
might lose on their decision. In particular, the contextual framing of the decisions impacts
whether or not an individual chooses an option that is more likely to maximize expected gain

because of a subjective preference to avoid one kind of loss over another.

3.1.2 Framing impacts moral judgments of decision outcomes

Experimental philosophy research, motivated by moral psychology, has shown that the
contextual framing of the moral valence (e.g., the goodness or badness) of a decision outcome
impacts an individual’s judgment of the decision. Consider the phenomenon known as the Knobe
effect, or the ‘side-effect’ effect, wherein people show striking differences in judging how
intentional another individual’s decision was based on the framing of its outcome (Feltz, 2007;
Knobe, 2003a, 2003b). Knobe (2003) showed that simply changing the word “harm” to “help” in
vignettes that described the indirect outcome, i.e., side-effect, of an action decision was enough

to change how people judged the intentionality of another individual’s decision (Knobe, 2003a).
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On two separate experiments, when participants read that the side-effect was harmful, or morally
“bad”, 77% and 82% of the participants judged the decision as intentional. For vignettes in
which the side-effect was helpful, or morally “good”, 77% and 70% judged the decision as
unintentional. Importantly, the side-effect of the decisions presented in either set of vignettes
were exactly the same regardless of context, so participants had no reason to judge the decisions
differently other than the description of side-effects as “good” or “bad”. These experiments
suggest that the contextual framing of decision outcome can be a powerful experimental
manipulation that influences how people interpret and characterize information about action
decisions. Furthermore, we can examine whether the perception of decision-related information
as being either potentially harmful or helpful differentially influences a person’s

decision-making processes as reflected by own their decision-making behavior.

3.1.3 Contextual framing and the maximum expected gain model

In the Drone Strike task presented in this chapter, we used a wartime scenario to develop two
kinds of moral dilemmas that provided a contextual frame for the same type of risky spatial
decisions in the Danger Zone experiment (Chapter 2). Namely, the target represented enemies to
be neutralized on a drone strike or allies to whom ammunition needed to be delivered. In penalty
conditions, the non-target represented either nearby allies to be avoided by a drone strike (harm
context) or enemies to be avoided on ammunition deliveries (help context). Here the harm
context contextualizes losses (i.e., ally casualties) as being subjectively more aversive than in the

help context (i.e., ammunition intercepted by enemies). Importantly, the nature of the sensory
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signals is identical between the help and harm conditions. The only thing that changes is the
context in which the spatial decision is made.

Returning to the maximum expected gain model presented in Chapter 2, the terma is
used to weigh the target and non-target distributions, which partly determined the magnitude of
selection bias away from the penalizing non-target (see Equation 2.1). The effect of contextual
framing on risky spatial decisions can be examined within the framework of the maximum
expected gain model by scaling a. Figure 3.1 illustrates selection bias as a function of o during
a risky spatial decision under two contextual frames for loss. In particular, we assume that loss
during the harm condition is subjectively more aversive than the help condition and should result

in a greater selection bias away from the penalizing non-target (i.e., o,,,,, < o Help )> when all

other aspects of the decision (e.g., sensory signals, timing) are the same.

Near o Harm Help

6 /
(@]
S [~~1 T . .
n / iHarm bias > Help bias
£
S
=
©
S
©
(]
@©
8
-50
Far — 0 0.5 1

Max Max

Loss Stimulus Weighting (0)  gain

Figure 3.1 Illustration of selection bias difference prediction based on the maximum
expected gain model. Selection bias is plotted as a function (solid red line) of penalty
weighting (o) and a 1:1 target to non-target variance ratio (6,/c,,,). More negative
values on the y-axis represent selections farther away from the non-target region of the
stimulus. Horizontal black dashed lines reflect the hypothesized difference in selection
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bias in harm and help contexts (solid black lines), where bias is expected to be farther
away from a penalizing non-target in subjectively more aversive harm conditions.

Here we specifically address the hypothesis that if risky spatial decision-making behavior
is impacted by the subjective aversion to potential loss, then selection bias away from the
penalizing non-target in the context of harm (i.e., ally casualties) will be significantly greater
than in the help context (i.e., ammunition interception by enemies). Additionally, we present the
findings from analyses on the effects of context (harm versus help), cost (no-penalty versus
penalty), and target variance (low versus high) on other measures of performance, including
selection precision, reaction time, movement time, maximum movement velocity, and average
movement velocity. Together, these results more fully characterize avoidant selection behavior

during risky spatial decisions.

3.2 Methods

3.2.1 Participants

Based on the Danger Zone study (Chapter 2), which had a 2x2 within-subjects design and a final
sample size of 20 participants, here we recruited a total of 50 participants, which ensured that we
had twice the sample size given that this present study has twice the number of experimental
conditions. Since the added conditions required more time for extra instructions before task
blocks, two sessions were needed in order for participants to a similar number of trials between
studies: Drone Strike = 640 trials (320 trials/session), Danger Zone = 656 “estimation” trials, see
Chapter 2. A total N = 44 healthy adults (mean age = 22.6 years, age range = 18 - 44; 33 female,

11 male) completed two, one-hour behavioral sessions that occurred on consecutive days. One
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participant’s data was excluded from analysis when an error in stimulus presentation was
observed during their second session. Three participants did not return for a second session due
to scheduling conflicts that did not allow them to complete the study on consecutive days. Data
from two participants were excluded from analyses for failure to reach 90% trial completion on
either or both behavioral sessions. Excluding these data did not change the general pattern of
results or my interpretation, so we will not discuss them here.

All participants were screened for normal or corrected-to-normal vision and
right-handedness. The participant pool consisted of undergraduate and graduate students from
Carnegie Mellon University and the University of Pittsburgh. Carnegie Mellon students were
notified of the study either via the university’s Psychology Research Experiment System or
flyers posted on campus. University of Pittsburgh students were recruited via flyers. Participants
were recruited based on their completion of a separate survey study that was administered at
least two weeks prior to being notified of the present behavioral study. All participants in the
behavioral study reviewed with an experimenter and signed a paper consent form approved by
the Institutional Review Boards of Carnegie Mellon University and the University of Pittsburgh.
All behavioral participants were compensated $10 per hour for a total of $10 if only one session

was completed, or $20 upon completion of the both sessions.

3.2.2 Experimental Setup and Design
The behavioral experiment was conducted with Psychophysics Toolbox 3.0.12 (Brainard, 1997;
Kleiner et al., 2007) through MATLAB (Release 2015a, The MathWorks, Inc., Natick, MA,

United States) on a desktop computer running Ubuntu 16.04. Participants completed the task
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seated in a dimly lit room in front of a 23” computer monitor with a total screen resolution of
1920 x 1080 pixels and a 60 Hz screen refresh rate.

Using a 2x2x2 (harm vs. help context x no-penalty vs. penalty x low vs. high target
variance) within-subject design, each participant completed four runs (“tours”) of eight blocks of
trials of a single condition (“missions”). We describe the levels of each task condition below in
more detail. Participants completed 32 total blocks of 10 trials each for a total of 320 trials in a
single experimental session that lasted approximately 50 minutes. The order of blocks was
counterbalanced within runs using a Latin square approach that minimized the correlation
between block orders across runs for each participant, as well as across sessions for individuals

who completed a second behavioral session.

Instruction & Wait Period

Wait for mission...

0 Time 12-20 s

Stimulus Presentation & Score

Mission 1 of 8 Completed

Enemy Casualties = 385
Ally Casualties = 17

Ammo Delivered = 289
Ammo Intercepted = 39

Press SPACEBAR to continue

12-20' s Time
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Figure 3.2 Experimental block timeline. Each block, or “mission”, started with an
instruction and wait period (top) where participants received a reminder of enemy and
ally distribution colors for 3s followed by a 3 s wait period. A condition cue was then
presented for 4 s in a font color the same as the target distribution for that block. A blank
screen was then presented for 2-10 s (mean ITI = 4 s) prior to each trial. Stimulus
presentation (bottom) began with a fixation (+) presented at the center of the screen.
Participants had to click and hold the left button within 0.5 s of fixation onset to initiate
the trial or else an “ABORT” message appeared indicating a failed trial. On a
successfully initiated trial, the target and non-target stimulus distributions appeared
onscreen for 0.25 s and then disappeared. Participants then had 2 s to indicate their target
selection by dragging the cursor (x) and releasing the mouse button. Each block consisted
of 10 trials, and a score report with a running total of enemy and ally casualties as well as
ammunition delivered and intercepted was presented until the participant pressed the
spacebar indicating that they were ready for the next block of trials. Note: Stimuli and
fonts in figure are rescaled here for clarity.

On each block of trials, participants were tasked with using a computer mouse to select a
location within a target stimulus distribution that was visually overlapped by a non-target
stimulus distribution presented simultaneously onscreen (Figure 3.2). A wartime scenario was
used to provide the contextual framing of each spatial selection, wherein participants selected the
location of a missile strike on enemies or ammunition delivery to allies from a drone on a series
of trials within a block. Before each block of trials, participants were presented for 3000 ms with
a visual reminder of the colors that corresponded to the enemy and ally stimuli, which were
either purple or orange. After a wait screen was presented for 3000 ms, the instruction for the
upcoming set of trials was presented for 4000 ms. On “drone strike” missions, participants were
instructed to “Neutralize as many enemies as possible” and to “Deliver ammunition to as many
allies as possible” on “ammunition delivery” missions. In both cases, the color of the instruction
text matched the target stimulus (i.e., enemies on drone strikes and allies on ammunition

deliveries). Following the instruction period, a blank screen was presented before a fixation (+)
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appeared at the center of the screen indicating the onset of a trial. The onset time for each trial
within a block was uniformly sampled from a distribution of intertrial intervals ranging from
2000 ms to 10000 ms (mean ITI = 4000 ms).

To initiate the trial, the participant had to click and hold the left mouse button within 500
ms, otherwise they received an “ABORT!!!” message at the center of the screen indicating a
failed trial. For successfully initiated trials, the target and non-target distributions were presented
together for 250 ms before disappearing. Both the target and non-target distributions appeared
completely on the screen. Each stimulus distribution was presented as a Gaussian distribution of
100 dots that were three pixels in diameter. The non-target distribution could appear either to the
right or left of the target distribution with equal probability across trials. The means of the
distributions were separated by fixed horizontal distance of 50 pixels and were randomly
sampled from a distribution of 2D coordinates to appear a minimum of 350 pixels away from the
center of the screen. On no-penalty blocks, the non-target stimulus distribution represented the
position of trees, which were always green. On penalty blocks, the target and non-target
distributions were the color of enemies and allies, respectively. In the low target variance
conditions, the target standard deviation was set to 25 pixels and to 100 pixels in the high target
variance condition. The standard deviation of the non-target distribution was fixed at 25 pixels
across all trials.

After the stimulus distributions disappeared, the mouse cursor was immediately presented
as an “x” at the center of the screen. Participants then had 2000 ms to drag the cursor to a
location and then release the mouse button to indicate their selection for each drone strike or

ammunition delivery. After a set of 10 trials in a block, a report screen was presented that
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indicate the progress through the experiment along with a running total of enemies killed, allies
killed, ammunition delivered, and ammunition intercepted. This report remained on the screen
until any key on the keyboard was pressed by the participant to initiate the next run or block. A
final score report screen was presented at the end of the session.

Regardless of context (i.e., drone strike or ammunition delivery), cost (i.e., no-penalty or
penalty) or target variance (i.e., low or high) condition, selecting the mean of the target
distribution guaranteed the maximum possible score on a trial. Equations 2-4 in Chapter 2 were
used to calculate scores across trials. First, the Euclidean distance between a selection and the
target distribution mean (Equation 2.2) and the non-target distribution mean (Equation 2.3) were
computed. These distances were used in weighted hyperbolic functions with a 1/d falloff to
compute the score for each trial. Equation 2.3 shows the target function weighted by ® and the
non-target by 1-m. In no-penalty blocks, ® = 1, so that only the selection distance from the target
contributed to the score (i.e., no loss, only enemy kills or ammunition delivered), while ® = 0.33
to additionally reflect losses on penalty blocks as ally kills or ammunition intercepted. Here the
computed scores were multiplied by 1000, rather than 100, and a rounded to yield an integer
value between 0 and 100 for each trial. The total score for each block of 10 trials was added to a

running total across all blocks within each experimental session.

3.2.3 Data Analysis
Selection bias away from the non-target, selection variability, reaction time (RT), movement
time (MT), peak (i.e., maximum) mouse cursor velocity (maxV), and average mouse cursor

velocity (avgV) served as dependent measures. The spatial location of a selection, the time

79



between stimulus offset and movement onset, as well as total movement time were recorded for
every completed trial across all participants. Since the non-target position relative to the target
was only manipulated on the horizontal dimension, only the horizontal selection distance was
used in analyses of selection bias and variability. Selection bias was calculated as the difference
between the target mean and the selection relative to position of the non-target. Specifically,
selection bias takes more negative values at greater distances away from the non-target mean.
Positive values thus indicate selections closer to the non-target mean (Figure 3.3). Selection
variability was computed as the standard deviation of the x-coordinate of all selections within a
condition. The position of the mouse was sampled at the screen refresh rate (60 Hz) and was
used to compute the peak and average mouse velocity on each trial. All dependent measures
were computed for all trials within a condition.

To further quantify any group-level main effects or interaction of cost (i.e., penalty) and
target variance condition on selection bias between contexts (i.e., harm: drone strike vs. help:
ammunition delivery), the mean selection bias in the help conditions was subtracted from the
mean in the harm condition. We then subtracted those values in the no-penalty conditions from
the values in the penalty conditions that matched on target variance to yield a difference score

(e, Aypm-piep = Biasy,,,, — Biasy,,, ). As such, negative A Harm-Help values reflect a larger bias

away from the non-target in harm conditions than help conditions. Conversely, positive

A values would indicate that selections were closer to the non-target in harm conditions.

Harm—Help

This also allowed us to compute a correlation between A values in low and high target

‘Harm—Help
variance conditions to examine whether or not there was a group-level relationship between how

much more (or less) participants biased selections away from the non-target under each level of
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target variance within each cost condition. Next, we more generally examined whether
participants showed harm aversion selection bias in penalty conditions under each combination

of low and high target variance by categorizing A values into four cells, or quadrants

Harm—Help
(Q-I through Q-IV) (see Table 3.4 and Figure 3.4). Moving counterclockwise beginning with the
upper right quadrant, participants in Q-I would be categorized as less harm averse since

A would be positive in both low and high target variance conditions. Participants in Q-II

Harm—Help
and Q-IV are then only harm averse in either the high or low target variance condition,
respectively. If a participant falls in Q-III, then they would be harm averse in both variance
conditions. Also, if more participants generally show less bias away from the non-target in
no-penalty conditions but are harm averse in penalty conditions overall, then we should see a

greatest proportion of A Harm-Help values shift from Q-I to Q-III. Based on these categorizations,
we first calculated the ratios of A Harm—Help values in each quadrant as a preliminary estimate of

the shift magnitude. Shift ratios greater than 1 thus indicate a larger number of participants with

A values in a given quadrant in penalty conditions versus no-penalty conditions. We

Harm—Help
then performed a x? goodness-of-fit test to determine whether or not the observed number of
participants in each quadrant deviated significantly from the expected number. Lastly here, we

computed the A Harm-Help value centroids (i.e., means) with 95% confidence intervals along the x

and y axes within Q-I and Q-III (Figure 3.4, bottom panel).

All dependent variables were subjected to a three-way repeated measures ANOVA to
observe whether there were any significant 3-way and 2-way interactions or main effects of
context, cost, or target variance (Figure 3.3 and Tables 3.1-3.3). Since six dependent variables

were subject to ANOVA, a Bonferroni correction of @ of 0.05/6 = 0.008 was used as a threshold
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for statistical significance. For significant results on omnibus F tests, effect sizes were estimated

as nf,. To account for the possibility of finding no significant differences between context

conditions, a two-way repeated measures ANOVA was planned for data collapsed across (i.e.,
controlling for) context conditions to observe any expected significant main effects or
interactions between cost and variance (Jarbo, Flemming, & Verstynen, 2017). In order to
determine the directionality of significant main effects or interactions from the omnibus F tests,
we report the group means and standard errors for each dependent variable across all conditions,

and the results of 1-sample and paired sample t-tests with effect sizes computed as Cohen’s d.

3.3 Results

Here we describe the interactions or main effects of target variance (Low vs High), cost (No
Penalty vs Penalty), and context (Harm vs Help) on selection bias, with a focus on differences
between harm and help conditions, as well as the five other dependent measures of interests:
selection variability (SV), RT, MT, maxV, and avgV (Figure 3A-F). We refer the reader to
Tables 1-3 for all statistics, including group means and standard errors for each dependent

variable. Corresponding figures and panels for each dependent variable are referenced in the text.
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Table 3.1 ANOVA results of 2-way and 3-way interactions for dependent variables: selection
bias, selection variability (SV), RT, MT, maxV, and avgV.

Context
X
Cost

Context
X
Varianc
e

Cost
X
Varianc
e

Context
X
Cost
X
Varianc
e

DV F(1,43) p Sig 1} |DV F(1,43) p Sig. >
Bias 20286 <0.001  *** 0321 | MT 2.815  0.101 ns -
SV 2410 0.128 ns - | maxv 0.013 0910 ns -
RT 0.184  0.670 ns - | avgr 0.899  0.348 ns -
Bias 1.016 0319 ns - | mr 2427 0.127 ns -
SV 0.006  0.937 ns - | maxv 0.187  0.667 ns -
RT 0.038  0.846 ns - | avgr 0.191  0.665 ns -
Bias 832  0.006  *** 0162 | MT 0459  0.502 ns -
N4 6.604  0.014 *0.133 | maxV 0928  0.341 ns -
RT 1215 0276 ns - | aver 0.007  0.932 ns -
Bias .14 0291 ns - | mr 0.734  0.396 ns -
SV 2659  0.110 ns - | maxv 0457  0.503 ns -
RT 1,531 0.223 ns - | avgr 0.637  0.429 ns -

Bonferroni-corrected ¢ = 0.008 denoted by (***). Significant uncorrected p-value a = 0.05 denoted by (*). Same
significance thresholds in Tables 3.2 and 3.3.

Table 3.2 ANOVA and post hoc t-test results of main effects for dependent variables: selection
bias, SV, RT, MT, maxV, and avgV.

Context

Cost

Varianc
e

2

DV F(1,43) P Sig. n, t(43) p Sig. Cohen’s d
Bias 0.194 0.662 ns - - - - -
N4 2.494 0.122 ns - - - - -
RT 0.193 0.662 ns - - - - -
MT 1.299 0.261 ns - - - - -
maxV 0.843 0.364 ns - - - - -
avgV’ 1.793 0.188 ns - - - - -
Bias 41.878  <0.001 Ak 0.493 6.471 <0.001 HoEE 0.9755
N4 25405 <0.001 Ak 0.371 -5.040 <0.001 HoEE -0.7598
RT 16.585 < 0.001 Ak 0.278 -4.072  <0.001 HoEE -0.6139
MT 30.367 < 0.001 Ak 0414 -5.511  <0.001 HoEE -0.8308
maxV 26.207  <0.001 Ak 0.379 5.119  <0.001 HoEE 0.7717
avgV 29.803  <0.001 Ak 0.409 5459 <0.001 HoEE 0.8230
Bias 112.100  <0.001 oAk 0.723 10.590 < 0.001 HoHk 1.5965
N4 274183  <0.001 oAk 0.864 -16.560 <0.001 HoHk -2.4965
RT 16.529 < 0.001 oAk 0.278 -4.066  <0.001 HoHk -0.6130
MT 89.336 < 0.001 oAk 0.675 9452  <0.001 HoHk 1.4249
maxV 9.725 0.003 oAk 0.184 3.119 0.003 HoHk 0.4702
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avgV 79.549  <0.001 otk 0.649 -8.919  <0.001 otk -1.3446

Post hoc paired t-tests for Cost = no-penalty - penalty and Variance = low - high.
Table 3.3 Condition-wise group (N = 44) means and standard errors (SE) for dependent

variables: selection bias, SV, RT, MT, maxV, and avgV.

. . . maxV avgV
Bias (pixels) SV (pixels) RT (ms) MT (ms) (pixels/s) (pixels/s)
Condition M SE M SE M SE M SE M SE M SE
Harm
No Penalty -3.49 183 ] 2582 255 33.0 21 601.7 28.5 81.78  2.08 | 14.99 0.500
Low
Harm

No Penalty 2427 343 | 5500 350 | 38.1 29| 5077 249 | 79.71 241 | 16.83 0.578
High

Harm
Penalty -27.40 391 | 42.56 4.04 36.0 2.4 646.9 29.7 79.57 229 | 1438 0.518
Low

Harm
Penalty -55.98 429 | 81.27 443 435 4.1 5523 283 77.02 2.36 | 16.10 0.602
High

Help
No Penalty -497 1.69 | 27.80 2.74 | 32.6 1.9 593.8 26.4 82.05 2.08 | 15.10 0.504
Low

Help
No Penalty  -28.42 333 | 60.01 3.85] 385 2.8 515.8 254 80.10 242 | 16.78 0.613
High

Help
Penalty -2531  4.06 | 43.84 4.86 36.2 2.3 6358 27.5 80.37 2.19 | 1451 0.511
Low

Help
Penalty -53.69 3.79 | 79.83 594 | 424 3.6 546.6 27.1 77.03 229 | 16.27 0.603
High

3.3.1 Selection bias
Selection bias was measured as the distance, in pixels, between a selection and the target mean
on a trial (Figure 3.3a). More negative values indicate selections further from the target mean in

the direction away from the non-target. Positive values indicate selections closer to the
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non-target distribution. Though the 3-way interaction between context, cost, and target variance

was not significant, we observed significant cost x target variance, F(1,43) = 8.32, p = 0.006, ni
= 0.162 and context x cost interactions, F(1,43) =20.286, p < 0.001, n;, = 0.321 (Table 3.1). The

main effect of context was not significant, F(1,43) = 0.194, p = 0.662, but both main effects of

cost, F(1,43)=41.878, p <0.001, n,= 0.493, and target variance, F(1,43)=112.100, p <0.001,
nlzj = (0.723 were significant (Table 3.2). In general, selection bias was negative across all

conditions, all t(43)s < -2.944, all ps < 0.006, all Cohen’s ds < -0.444, except in the harm by
no-penalty by low target variance condition (see Table 3.3 and Figure 3.3a). Following the
omnibus F tests, a post hoc paired sample t-test showed that bias had significantly greater
magnitude in penalty than no-penalty conditions, t(43) = 6.471, p <0.001, Cohen’s d = 0.976,
indicating that the context x cost interaction was driven by the penalty condition. Selection bias
was also larger in high target variance than low target variance conditions, t(43) = 10.590, p <
0.001, Cohen’s d = 1.597. Lastly here, a paired t-test revealed that selection bias was
significantly larger in penalty conditions in the harm context than in the help context, t(87) =
-2.090, one-sided p = 0.020, Cohen’s d = -0.223. We note that the significant two-way

interaction between cost and variance replicates the findings presented in Chapter 2 (Table 3.1).
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Figure 3.3 Bar graphs with significant interactions and main effects. In each panel, bars
(red/left= harm, gray/right = help) represent the group means of each dependent variable
across all conditions with error bars reflecting the 95% confidence intervals of the means.
Bonferroni-corrected o= 0.008 denoted by *** and uncorrected p < 0.05 by *. A)
Selection bias measured in pixels and larger negative values indicate selections further
away from the non-target distribution, while less negative and positive values reflect
closer selections. Significant 2-way context X cost interaction is denoted by the long
horizontal line at the top of the panel. A significant 2-way cost x variance interaction as
well as significant main effects of cost and variance are denoted by medium-length and
short horizontal lines in the bottom half of the panel. B) Selection variability is measured
as the standard deviation of selections in pixels. Greater values correspond to greater
selection variability. Horizontal lines represent a significant 2-way cost x variance
interaction as well as significant main effects of cost and variance. There were no
significant interactions for RT, MT, maximum and average velocity, represented in
panels C-F. Though significant main effects of cost and variance were observed for each
as denoted by the long and short horizontal lines. Greater values for RT and MT reflect
slower times, while greater values for both velocity measures indicate faster mouse
movements. All significant interactions, main effects, group means and standard errors
are also reported in Tables 3.1-3.3.

3.3.2 Harm versus help differences

We computed a value, A to quantify and evaluate differences in selection bias between

Harm—Help®

the harm and help contexts. Then, we calculated the Pearson correlation between Ay, 1.1,

values in the low and high variance conditions and found no significant linear relationship
between selection bias in penalty conditions, r = -0.081, p = 0.600, or no-penalty conditions, r =
0.164, p = 0.288. Nor did we find a significant correlation in selection bias after collapsing
across cost conditions, r =-0.190, p = 0.216. Given the null correlation findings, we next

categorized selection bias differences by plotting the A values in four distinct quadrants

Harm—Help
(see Table 3.4 and Figure 3.4). Specifically, we compared the counts of participants whose

Afarm-tielp values fell into each quadrant under no-penalty and penalty conditions as well as low
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and high variance conditions. If participants generally found the harm context more aversive in

penalty conditions, then we should observe the highest count of A Harm-Help values shift from Q-I

in no-penalty conditions, where participants were selecting closer to the non-target, to Q-III in
penalty conditions, where selections were biased away from the non-target regardless of
variance. We report these values in Table 3.4. As expected, in no-penalty conditions, half (n =

22) of the A values were in Q-I while only five were observed in Q-III (Figure 3.4a). In

Harm—Help

penalty conditions, Q-1 had the fewest A values (n = 5) while the remaining (n = 39)

Harm—Help
were dispersed nearly evenly across the other three quadrants indicating that most participants
were harm averse in penalty conditions in at least one level of target variance (Figure 3.4b). This
provides additional confirmation of the significant context x cost interaction, such that the
majority of participants select closer to the non-target in no-penalty conditions.

We further quantified the extent to which participants as a group were more likely to bias
selections away from the non-target in the harm context by computing the ratio of counts in each
quadrant between penalty and no-penalty conditions. The shift ratios for Q-II through Q-IV were
all greater than 1 with the largest shift ratio of 2.400 for Q-II, indicating that participants showed
a greater non-target avoidance driven by penalty in harm contexts, especially under high target
variance conditions. In Q-III, the shift ratio of 1.875 shows that participants were nearly twice as
likely to significantly bias selections in harm conditions with penalty. To more closely evaluate
the shift from Q-I to Q-III (i.e., less selection bias versus more selection bias at both target

variance levels), we computed a composite A score collapsed across no-penalty and

Harm—Help
penalty conditions with 95% confidence intervals. This showed that participants with less harm

aversive selection bias behavior overall fell within Q-I (x-mean,,; = 6.798, 95% CI x,,;: [-1.100,
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14.696]; y-mean,,, = 4.076, 95% Cl y,, : [-0.084, 8.235]), while more harm averse participants
fell within Q-III (x-mean, ;; = -9.928, 95% CI X ;: [-14.547, -5.310]; y-mean, ;;; = -7.998, 95%
Clyq.q: [-10.664, -5.333]) (Figure 3.4C). Lastly here, the ¥? goodness-of-fit test confirmed that
the observed number of participants in this sample were not equally distributed across quadrants,

¥? (3, N =44)=11.455, p < 0.01. Together, the results of A values show that framing

Harm—Help
spatial decisions as potentially harmful can increase aversive selection bias regardless of

uncertainty in the estimates of sensory variance.

Table 3.4 Contingency table of observed A Harm-Help value frequencies in each quadrant and

shift ratios between and collapsed across penalty and no-penalty conditions.

Quadrant Penalty No-Penalty Shift Ratio Collapsed
(Expected)
| 5 22 0.227 5(11)
11 12 5 2.400 11(11)
0| 15 8 1.875 20 (11)
v 12 9 1333 8 (11)
A No Penalty B Penalty C Overall Cost
2 . on | ol o an | o o an | Q-
é 30 I 30 | 30 |
ol . . | . |
3l ks IR - e SR
a-n % -1" . 10 | 10 __}_ I
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Figure 3.4 Scatter plots and quadrant centroids for A shift analysis. All plotting

Harm—Help
conventions are the same across all panels. Each dot reflects the A Harm—Help value for

each individual participant. The x- and y-axis respectively represent A, values

arm—Help
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measured in pixels within high and low variance conditions. Quadrant Q-I (gray) contains

AHarm*H elp
(light red) contains A

values for participants with less harm aversive selection bias, while Q-III

Harm—Help Values for participants with more harm aversive selection

bias regardless of variance conditions. A) A values for no-penalty conditions

Harm—Help

primarily clustered in quadrant I (Q-I). B) In penalty conditions, A,, Help values are

Harm

more broadly distributed throughout Q-II to Q-IV (see Table 3.4). C) A,

were collapsed within variance conditions to generate a composite harm avoidance

arm—Help Values

measure, reflecting overall selection behavior irrespective of target variance or cost
condition. Centroids with 95% ClIs on the x- and y-axis were computed for participants
within Q-I (black) and Q-III (red).

3.3.3 Selection variability

To estimate selection variability, we computed the standard deviation of the error, in pixels,
between a selection and the mean of the target distribution. The cost x variance interaction,
F(1,43) =6.604, p=0.014, n; = 0.133, and both main effects of cost, F(1,43) =25.405, p <
0.001, n;=0.371, and variance, F(1,43) =274.183, p <0.001, n; = 0.864, were all significant
(Figure 3.3b, Table 3.1, and Table 3.2). For context conditions, there were no significant
interactions or main effects, all F(1,43)s <2.66, all ps > 0.110, (Tables 3.1 and 3.2). Post hoc
paired sample t-tests showed that selection variability was greater in penalty than no-penalty
conditions, t(43) = -5.040, p < 0.001, Cohen’s d =-0.760, and in high versus low variance
conditions, t(43) =-16.560, p < 0.001, Cohen’s d =-2.450 (Table 3.2 and Table 3.3), also

replicating the findings presented in Chapter 2.

3.3.4 Reaction and movement time

Reaction time was recorded at the first mouse movement detected after stimulus offset. There

were no significant interactions nor main effect of context on RT or MT, all F(1,43)s <2.815, all
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ps>0.101. For RT, we found very similar significant main effects of both cost, F(1,43) =

16.585, p <0.001, n; = 0.278, and target variance F(1,43) =16.529, p <0.001, nl% =0.278

(Figure 3.3c and Table 3.2). RTs were slower in both penalty, t(43) = -4.072, p < 0.001, Cohen’s
=-0.6139, and high variance conditions, t(43) = -4.066, p < 0.001, Cohen’s d =-0.613 (Tables
3.2 and 3.3). Movement time was computed as the difference between the time recorded when
the selection was made (i.e., mouse button released at selection location) and the RT on a trial.
While there was no significant interaction between the cost and target variance, there were

significant main effects for both cost, F(1,43) = 30.367, p <0.001, n; = 0.414, and variance,
F(1,43) =89.336, p <0.001, n;=0.675 (Figure 3.3d and Table 3.2). In penalty conditions, MTs

were significantly longer than in no-penalty conditions, t(43) =-5.511, p <0.001, Cohen’s d =
-0.831. MTs were also significantly longer in low, rather than high, target variance conditions,
t(43) =9.452, p < 0.001, Cohen’s d = 1.425 (Tables 3.2 and 3.3). Overall, participants took
longer to initiate movement and make a selection on trials in penalty conditions. Under high
variance conditions, RTs were slower but MTs were shorter, indicating that participants spent
more time completing their selections in low variance conditions, i.e., when there was low

sensory uncertainty in target distribution estimates.

3.3.5 Maximum and average movement velocity

By recording mouse cursor positions and button presses along with RT and MT, we computed
the maximum and average velocity of the mouse cursor movements during selections on each
trial. There were no significant interactions or main effect of context on maxV or avgV, all

F(1,43)s <0.928, all ps > 0.341. There was a significant main effect of cost on both maxV,
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F(1,43) =26.207, p < 0.001, n;=0.379, and avgV, F(1,43) = 29.803, p < 0.001, n, = 0.409
(Figure 3.3e and f and Table 3.2). Post hoc t-tests showed greater (faster) maxV, t(43) =5.119, p
<0.001, Cohen’s d =0.772, and avgV, t(43) = 5.459, p < 0.001, Cohen’s d = 0.823, in
no-penalty conditions compared with penalty conditions. Though the main effect of variance was
significant for both velocity measures, maxV was significantly greater (faster) in low target
variance conditions, t(43) = 3.119, p = 0.003, Cohen’s d = 0.470, while avgV was slower, t(43) =
-8.919, p <0.001, Cohen’s d = -1.345 (Tables 3.2 and 3.3). As would be expected, the results for
both velocity metrics parallel the MT findings in that participants moved more slowly in penalty

conditions and low target variance conditions where MTs were also significantly longer.

3.4  Discussion

In this chapter, we present a second novel behavioral experiment to address Specific Aim 1.2
that establishes the effects of contextual framing on loss avoidance during risky spatial decisions,
and additionally replicates and extends the findings presented in Chapter 2. First, this study
shows that under equivalent conditions of value-based risk and sensory uncertainty, the
contextual framing of loss outcomes as subjectively more aversive (i.e., ally casualties) increases
selection bias away from a penalizing non-target to a greater degree than less aversive loss
outcomes (i.e., ammunition interception). Second, the findings here replicate the observed effects
of cost and variance on selection bias, selection variability, and reaction time presented in
Chapter 2. In addition to these replications, analyses of movement time, maximum and average
mouse cursor velocity allowed for a fuller characterization of selection behavior that suggests

individuals made selection decisions more cautiously under the threat of potential loss by taking
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significantly longer to initiate and complete selections, moving more slowly overall throughout
the movement. Critically, the results of this study show that though different contextual frames
did not change how selections were executed motorically, subjectively more aversive framing of
potential loss outcomes uniquely drives avoidant action decision behavior.

By superimposing a wartime scenario on the original Danger Zone paradigm, this
experiment allowed me to explore the effects of contextual framing on risky spatial decisions.
Irrespective of task context, the visuospatial features of the stimuli as well as the scoring function
used to compute gains and losses were equivalent across all experimental conditions. The overall
goal of the task was to maximize expected gain by either neutralizing the most enemies or
delivering the most ammunition to allies as possible. To those ends, the optimal selection on any
trial is always the spatial mean of the target distribution. As such, any bias away from or toward
the non-target distribution mean reflects a suboptimal selection strategy. Based on prior work,
participants were expected to show greater selection bias away from regions of space that induce
penalties in feedback so as to avoid losses i.e., ally casualties or ammunition interceptions (Jarbo
et al., 2017; Neyedli & Welsh, 2013; Trommershéuser et al., 2003a, 2003b; Wu et al., 2006).
However, if participants were only using spatial estimates of the target and non-target means, as
well as the scoring feedback, then there should have been no difference in selection bias between
conditions. Even though both kinds of loss were undesirable, participants biased selections to
avoid the potential collateral losses incurred on a drone strike mission (harm context) to a small
(see Section 3.3.1, Cohen’s d =-0.223) but significantly greater extent than on a delivery mission

(help context). These findings are further supported by our group-level A analyses,

Harm—Help

which showed that participants shifted their behavior to bias selections away from the non-target
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in harm contexts regardless of variance at nearly twice the rate (mean shift ratio Q-II to Q-IV =
1.869) of penalty conditions than in no-penalty conditions. Though the context effect is small,
there is a marked shift in the degree to which participants are generally averse to losses that are
perceived as harmful regardless of the level of sensory uncertainty during risky spatial decisions.
Importantly, the harm and help contexts provided additional information that was incorporated
into the selection decision in a way that made one kind of loss subjectively worse than the other
despite all other features of the task being equal.

In addition to increased selection bias, the analysis of several other dependent variables
indicates that loss averse selection behavior is also reflected in the timing and velocity of
movement initiation and execution. First, selection variability and reaction times increased in
high target variance and penalty conditions, replicating my previous findings (see Section 2.3).
Our observation that selection variability increases with target variance is consistent with prior
research and indicates that a greater spread of target distribution dots results in larger errors in
estimating the target mean (Battaglia & Schrater, 2007; Jarbo et al., 2017; Tassinari, Hudson, &
Landy, 2006). Data on total movement time, maximum and average mouse cursor velocity
showed that participants took longer to complete their selections and moved more slowly overall
in penalty conditions. Regarding target variance effects, even though participants had faster RTs
in low variance conditions, MTs were also longer, when there was less sensory uncertainty.
Together, the timing and velocity data suggest that participants took a more cautious approach to
executing selections when penalty was a factor in the decision. This is in line with a body of
established findings on speed-accuracy tradeoffs wherein people sacrifice speed in order to

improve accuracy on sensorimotor tasks (Fitts, 1954; Harris & Wolpert, 1998; Meyer et al.,
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1988; Trommershéuser et al., 2003b; Wu et al., 2006). Considering the timing and velocity
findings together with lower observed selection bias in low variance conditions suggests that
participants put more effort into executing selections in an attempt to maximize expected gain
when they could be more confident in their sensory estimates. Future work can more closely
examine how motor effort and sensory estimation confidence impact spatial selection behavior
under risk.

Some degree of the selection bias effects we observed here could be based on noisy
estimates of sensory uncertainty. In an experiment by Juni and colleagues (2016), participants
had to select on a touchscreen a hidden target whose location could be estimated from a 2D
Gaussian distribution of dots where each dot appeared one at a time in random order. A
participant could request additional dots to increase their certainty in the sensory estimates of the
target location but lost and increasing amount of points with the number of dots requested. This
resulted in participants selecting locations from a cluster of dots to minimize point loss once they
subjectively determined that there was a sufficiently dense cluster present. The authors found
that participants requested more dots than required by an ideal (optimal) observer to accurately
estimate the target location, suggesting that individuals failed to maximize expected gain by
using a suboptimal decision-making strategy in situations with high sensory uncertainty (Juni et
al., 2016). In the present study, our participants could have also been targeting areas in the
stimulus that they perceived to have the densest cluster of dots in the high target variance
conditions. However, since the stimuli were comprised of 2D Gaussian distributions, the densest
cluster of target dots was still most likely to be centered on the target mean, in accord with the

law of large numbers. Bear in mind that participants were explicitly instructed to select the target
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center in order to maximize gain regardless of condition. Despite those instructions, some
participants could have also adopted a “densest cluster” strategy based on their estimate of the
scoring function if they thought that strategy would improve their score. One reason for this
might be that participants assumed that, in reality, a drone strike would have a blast radius about
the selection location, whereas an ammunition delivery would be received only at the selection
location. To better assess strategic task performance, a future version of this study could directly
manipulate the location of the densest cluster dots within the target distribution relative to the
distribution’s mean to determine whether participants used a “densest cluster” or “spatial center”
strategy, as well as ask participants for explanations of their selection decision strategies across
different conditions.

Despite all other aspects of the task being equal, this study is somewhat limited in
explaining why contextual framing differences resulted in participant behavior that was
indicative of greater loss aversion in harm conditions than help conditions. For example, we did
not explore whether any idiosyncrasies in moral or ethical dispositions mediated selection bias.
Some people who are more consequentialist in their reasoning, i.e., who decide how morally
good or bad an action is based solely the action’s consequences (Kagan, 1988), would likely be
more impartial to both kinds of loss and would have maximized expected gain in an Utilitarian
(Mill, 1863; Moore, 1903) way by neutralizing the most enemies and delivering ammunition to
the most allies possible, regardless of ally casualties or intercepted ammunition, respectively. To
explore this more deeply, we can obtain and analyze measures of Utilitarian ethical dispositions
(Kahane et al., 2017) to determine whether a person characterized as “less Utilitarian” avoids

potentially harmful losses to a greater extent than a person who is “more Utilitarian” and would
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more readily accept losses in order to maximize gain. Additionally, we assumed that the harm
and help contexts we developed ensured that the harm context simply posed a more aversive loss
than the help context. However, this relationship between context and aversion may not be so
straightforward, as judgments about harmful and helpful actions have also been linked to
subjective beliefs about intentionality (Cushman, Knobe, & Sinnott-Armstrong, 2008; Knobe,
2003a) and the probabilities of action outcomes (Nakamura, 2018). As such, some questions that
are beyond the scope of the work here remain about whether participants thought their choices
were causing harm or helping, as well as how likely the harmful or helpful outcome would be if
they attempted to maximize expected gain rather than avoid loss. So, while moral dilemmas
provided a strong contextual framing manipulation for this experiment, carefully designed future
work can begin to address complex open questions about the rationale participants used for
making selection decisions.

Within the broader literature in psychology, contextual framing effects have been shown
to impact mental processes by changing how information is subjectively perceived, which
subsequently influences behavior on cognitive tasks that do not involve sensory or motor
processes used in spatial decision-making tasks. For instance, contextual framing like shifts in
perspective impact information encoding and retrieval (Anderson & Pichert, 1978). When
individuals were primed with a particular perspective to frame their approach to a memory task,
they were able to recall different details about a vignette they read, suggesting that contextual
framing can influence what information is remembered and, thus available to be retrieved. Drone
Strike does involve both visuospatial working memory, and working memory more generally, to

encode and represent the briefly presented location of stimuli on each trial and maintain task
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instructions across a set of trials. Depending on which task instructions frame the stimuli,
participants may show differences in their perceptions of non-target salience and in how
accurately they can recall its position, especially when losses must be avoided. Also, in classic
work on decision-making and reasoning, reframing logic problems to be more socially relevant
to an individual can also increase the likelihood that they arrive at valid conclusions suggesting
that context can influence reasoning processes (Cosmides & Tooby, 1992; Griggs & Cox, 1982;
Wason, 1968; Wason & Shapiro, 1971). Along with the Knobe effect (see Section 3.1.2), other
work in experimental philosophy has used the trolley and footbridge problems to contextualize a
moral dilemma in fictional vignettes where an individual must kill one person in order to save
five others, and has shown that people reason differently about whether the individual
intentionally killed the one person (Greene, Sommerville, Nystrom, Darley, & Cohen, 2001;
Sinnott-Armstrong, Mallon, McCoy, & Hull, 2008; Thomson, 1986). From an economic
standpoint, the outcome of the decision is the same, but people judge the act of killing--and, thus
the decision to kill itself--differently across vignettes. This sort of moral reasoning may have
played a role in Drone Strike where, as we hypothesized, participants judged ally casualties as a
subjectively worse kind of loss than intercepted ammunition, even though the spatial
distributions and scoring functions were equivalent across contexts. The present study provides
evidence that the contextual framing of a risky spatial decision impacts sensorimotor processes
and behavior, and suggests a potential mechanism of cognitive penetration, wherein the

perceptual representation of sensory information biases value-based action decisions.
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3.5 Conclusion

This novel experiment extends the findings and application of my prior work presented in
Chapter 2 and shows that the contextual framing of loss impacts avoidance during risky spatial
decision-making. By analyzing the effects of context, cost, and target variance on additional
dependent variables, we also provide a more complete description of selection behavior. The
adaptation of the Danger Zone experiment as Drone Strike here, illustrates how my novel
paradigm can be used to build a more comprehensive understanding of risky decision-making
behavior by bridging the fields of cognitive psychology, sensorimotor integration, economics,

and moral philosophy.
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Chapter 4

Converging structural and functional connectivity of
orbitofrontal, dorsolateral prefrontal, and posterior parietal

cortex in the human striatum

The following text has been adapted from Jarbo & Verstynen, 2015

Modification of spatial attention via reinforcement learning (Lee and Shomstein, 2013) requires
the integration of reward, attention, and executive processes. Corticostriatal pathways are an
ideal neural substrate for this integration because these projections exhibit a globally parallel
(Alexander et al., 1986), but locally overlapping (Haber, 2003), topographical organization. Here
we explore whether there are unique striatal regions that exhibit convergent anatomical
connections from orbitofrontal cortex, dorsolateral prefrontal cortex, and posterior parietal
cortex. Deterministic fiber tractography on diffusion spectrum imaging data from neurologically
healthy adults (N = 60) was used to map frontostriatal and parietostriatal projections. In general,
projections from cortex were organized according to both a medial-lateral and a rostral- caudal
gradient along the striatal nuclei. Within rostral aspects of the striatum, we identified two
bilateral convergence zones (one in the caudate nucleus and another in the putamen) that
consisted of voxels with unique projections from orbitofrontal cortex, dorsolateral prefrontal

cortex, and parietal regions. The distributed cortical connectivity of these striatal convergence
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zones was confirmed with follow-up functional connectivity analysis from resting state fMRI
data, in which a high percentage of structurally connected voxels also showed significant
functional connectivity. The specificity of this convergent architecture to these regions of the
rostral striatum was validated against control analysis of connectivity within the motor putamen.
These results delineate a neurologically plausible network of converging corticostriatal
projections that may support the integration of reward, executive control, and spatial attention

that occurs during spatial reinforcement learning.

4.1 Introduction

It is well known that contextual factors, such as cue/target proximity within the same bounded
object, can bias bottom-up visuospatial attention (Posner et al., 1980; Egeth and Yantis, 1997).
Recent research has shown that placing a high reward on certain targets can override this
intrinsic spatial attention bias (Della Libera and Chelazzi, 2006; Kristjansson et al., 2010; Lee
and Shomstein, 2013, 2014). The abrogating influence of reward feedback on intrinsic spatial
attention is consistent with the idea that reinforcement learning (Sutton and Barto, 1998) alters
the bottom-up influences of stimulus features on attentional allocation during spatial decision
making.

Functionally, reinforcement learning depends on the striatum (Graybiel, 1995; Knutson et
al., 2000; Dayan and Abbott, 2001; O’Doherty, 2004; Daw and Doya, 2006). Although many
studies focus on the role of the ventral striatum in reinforcement learning (Pagnoni et al., 2002;
O’Doherty et al., 2003; McClure et al., 2004; Rodriguez et al., 2006), evidence of dorsomedial

caudate involvement in reward-based responses suggests a more global involvement of striatal
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systems in behavioral updating (Delgado et al., 2003, 2005; Knutson and Cooper, 2005; Kuhnen
and Knutson, 2005; Lohrenz et al., 2007). This recruitment of distributed striatal systems may
reflect an integration of multiple, disparate signals during learning. Indeed, although the striatum
is generally viewed as a central integration point of cortical information within strictly closed,
but parallel, circuits (Alexander et al., 1986), there is a growing body of evidence for overlap
from spatially disparate cortical areas (Haber, 2003; Averbeck et al., 2014). This diffuse overlap
of corticostriatal projections has been proposed as an explicit substrate for reinforcement
learning that directly integrates reward and executive control signals from the orbitofrontal
cortex (OFC) and dorsolateral prefrontal cortex (DLPFC), respectively (for review, see Haber
and Knutson, 2010).

Introducing signals from regions that support visuospatial processing into this striatal
integration process may be one mechanism by which reinforcement learning can be applied to
spatial attention. Visuospatial attention is generally associated with the posterior parietal cortex
in humans and nonhuman primates (for review, see Critchely, 1953; Colby and Goldberg, 1999;
Silver et al., 2005). Nonhuman primate histology research has shown a topography of
parietostriatal connectivity in which posterior parietal projections terminate in distributed
clusters along the caudate nucleus, proximal to OFC and DLPFC projection termination sites
(Selemon and Goldman-Rakic, 1985, 1988; Cavada and Goldman-Rakic, 1991). This proximity
of DLPFC and parietal connectivity has also recently been confirmed functionally in humans (Di
Martino et al., 2008; Choi et al., 2012); however, the specific pattern of convergent inputs from
parietal, DLPFC, and OFC areas has yet to be confirmed. To this end, we used diffusion

spectrum imaging (DSI) and resting state fMRI to explore a neurologically plausible network
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of converging projections in the striatum that may support the integration of information from
OFC, DLPFC, and posterior parietal areas. The presence of convergent corticostriatal inputs
would provide necessary evidence for a structurally and functionally integrative network that

underlies mechanisms of spatial reinforcement learning.

4.2 Materials & Methods

4.2.1 Participants

Sixty participants (28 male, 32 female) were recruited locally from the Pittsburgh, Pennsylvania
area as well as the Army Research Laboratory in Aberdeen, Maryland. Participants were
neurologically healthy adults with no history of head trauma, neurological or psychological
pathology. Participant ages ranged from 18 to 45 years old (mean age, 26.5 years). Informed
consent, approved by the Institutional Review Board at Carnegie Mellon University and in
compliance with the Declaration of Helsinki, was obtained for all participants. Participants were

all financially compensated for their time.

4.2.2  MRI acquisition

All 60 participants were scanned at the Scientific Imaging and Brain Research Center at
Carnegie Mellon University on a Siemens Verio 3T magnet fitted with a 32-channel head coil.
An MPRAGE sequence was used to acquire a high-resolution (1 mm? isotropic voxels, 176
slices) T1-weighted brain image for all participants. DSI data was acquired following fMRI
sequences using a 50 min, 257-direction, twice-refocused spin-echo EPI sequence with multiple

q values (TR 11,400 ms, TE 128 ms, voxel size 2.4 mm’, field of view 231x231 mm, b-max
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5000 s/mm?, 51 slices). Resting state fMRI (rsfMRI) data consisting of 210 T2*-weighted
volumes were collected for each participant with a BOLD contrast with echo planar imaging
(EPI) sequence (TR 2000 ms, TE 29 ms, voxel size 3.5 mm?, field of view 224x224 mm, flip
angle 79 deg). Head motion was minimized during image acquisition with a custom foam
padding setup designed to minimize the variance of head motion along the pitch and yaw
rotation directions. The setup also included a chin restraint that held the participant’s head to the
receiving coil itself. Preliminary inspection of EPI images at the imaging center showed that the
setup minimized resting head motion to 1 mm maximum deviation for most subjects. Diffusion
MRI reconstruction. DSI Studio (http://dsi-studio.labsolver.org) was used to process all DSI
images using a g-space diffeomorphic reconstruction method (Yeh and Tseng, 2011). A
nonlinear spatial normalization approach (Ashburner and Friston, 1999) was implemented
through 16 iterations to obtain the spatial mapping function of quantitative anisotropy (QA)
values from individual subject diffusion space to the FMRIB 1 mm fractional anisotropy (FA)
atlas template. QA is an orientation distribution function (ODF) based index that is scaled with
spin density information that permits the removal of isotropic diffusion components from the
ODF to filter false peaks, facilitating deterministic fiber tractography resolution. For a detailed
description and comparison of QA with standard FA techniques, see Yeh et al. (2013). The
ODFs were reconstructed to a spatial resolution of 2 mm3 with a diffusion sampling length ratio
of 1.25. Whole-brain ODF maps of all 60 subjects were averaged to generate a template image of

the average tractography space.
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4.2.3 Fiber tractography and analysis.

Fiber tractography was performed using an ODF-streamline version of the FACT algorithm (Yeh
et al., 2013) in DSI Studio (September 23, 2013 and August 29, 2014 builds). All fiber
tractography was initiated from seed positions with random locations within the whole-brain
seed mask with random initial fiber orientations. Using a step size of 1 mm, the directional
estimates of fiber progression within each voxel were weighted by 80% of the incoming fiber
direction and 20% of the previous moving direction. A streamline was terminated when the QA
index fell below 0.05 or had a turning angle 75 degrees. Fiber tractography was performed in
several stages. First, using the group averaged template brain, we tracked 100,000 streamlines
that terminated anywhere within a striatal region of interest mask (ROI). To generate this mask,
caudate nucleus and putamen masks from the SR124 multichannel atlas (Rohlfing et al., 2010)
were merged and then expanded by one voxel (2 mm) in all directions. This tractography
experiment was performed to visualize the gradients of connectivity within the striatum (see
Topography of corticostriatal projections).

After this analysis, we performed ROI-based tractography to isolate streamlines between
pairs of ipsilateral cortical and striatal masks. All cortical masks were selected from the SR124
multichannel atlas. Diffusion-based tractography has been shown to exhibit a strong medial bias
(Croxson et al., 2005) due to partial volume effects and poor resolution of complex fiber
crossings (Jones and Cercignani, 2010). To counter the bias away from more lateral cortical
regions, tractography was generated for each cortical surface mask separately. Twenty-six
cortical surface masks (13 per hemisphere) in the frontal and parietal lobes were selected from

the SRI24 multichannel atlas as targets for corticostriatal tractography, including: gyrus rectus
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(Rectus); ventromedial prefrontal cortex (Frontal Med Orb); opercular, orbital, and triangular
parts of the inferior frontal gyrus (Frontal Inf Oper, Frontal Inf Orb, Frontal Inf Tri); dorsal
and orbital middle and superior frontal gyri (Frontal Mid, Frontal Mid Orb, Frontal Sup,
Frontal Sup Orb); superior and inferior parietal lobules (Parietal Sup, Parietal Inf); angular
gyrus (Angular) and supramarginal gyrus (SupraMarginal). The same striatal ROI mask was
used as in the first tractography run. The QA threshold was set to 0.04 for tracking streamlines
from the dorsal middle frontal gyri (Frontal Mid) due to detection of significantly fewer
corticostriatal

projections than expected (Verstynen et al., 2012). Each cortical surface ROI mask was paired
with an ipsilateral striatum ROI mask, which were both designated as ends in DSI Studio, and
whole-brain seeded tractography continued for 3 108 seeds (3000 samples per voxel in the
whole-brain mask). To be included in the final dataset, streamlines had to (1) have a length 120
mm and (2) terminate in the cortical surface mask at one end and within the ipsilateral striatum
mask at the other. All cortical surface ROI masks were also paired with the contralateral striatum
masks. Streamlines were generated for all datasets using the same tracking parameters previously
described and a maximum length constraint of 180 mm to capture longer interhemispheric
projections.

Then, to facilitate further analyses, streamlines from the ROI pairings in each hemisphere
were combined into three meta-regions. The OFC meta-region was comprised of streamlines
from medial and lateral OFC, including: gyrus rectus (Rectus), the orbital part of the inferior
frontal gyrus (Frontal Inf Orb) and middle (Frontal Mid Orb) and superior frontal

(Frontal Sup Orb) gyri. The DLPFC meta-region consisted of streamlines from opercular
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(Frontal Inf Oper) and triangular (Frontal Inf Tri) parts of the inferior frontal gyrus, as well as
middle (Frontal Mid) and superior frontal (Frontal Sup) gyri. Streamlines from the superior
(Parietal Sup) and inferior parietal lobules (Parietal Inf), angular gyrus (Angular), and
supramarginal gyrus (SupraMarginal) constituted the parietal meta-region. For a more complete
assessment of the cortical and striatal topographic organization of the endpoint distributions of
the OFC, DLPFC and parietal meta-regions were reconstructed.

To confirm the pattern of connectivity observed through the constrained ROI-based
approach, a final tractography (see Figure 4.4) analysis was performed by reseeding from a
whole-brain mask with each convergence zone designated as an end. This was repeated
separately for all four convergence zone masks across all 60 datasets. Tracking proceeded
until a total of 50,000 fibers were detected, rather than 310 8 seeds.

Approximate motor projections into the striatum were used as a control pathway. These
were estimated using the precentral gyrus (Precentral) masks from the SRI24 multichannel atlas.
The precentral gyrus masks were designated as endpoint masks paired with ipsilateral and
contralateral striatum masks for tracking streamlines using the same parameters described above,
across all individual datasets. A single cluster of contiguous voxels was isolated from each

putamen in all datasets to create mean striatal precentral clusters.

4.2.4 Striatal and cortical endpoint distribution analysis.

The primary tractography variable of interest was the distribution of streamline endpoints.
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We looked at these endpoints in two separate ways. First, to capture the major gradients of
corticostriatal pathway organization, we labeled each of the 100,000 streamlines from the first
tractography run based on the position of its endpoint within the striatum mask according

to two gradients: medial-lateral (x position) and rostral-caudal (y position). Each streamline was
then color-coded according to its position in each gradient separately and visualized at the whole
brain level (see Figure 4.1).

Next, we looked at the distribution of densities of endpoints, across datasets, within each
voxel at the subcortical and cortical levels. Custom MATLAB functions were used to generate
four striatal endpoint density maps (i.e., convergence zones; see Figs. 4.3 and 4.4) where all
cortical metaregions yielded overlapping projections within ipsilateral striatum. First,
the 3D coordinates of the streamline projection endpoints from each meta-region in the caudate
nucleus and putamen within each hemisphere were extracted. To obtain matrices of striatal
endpoint coordinates for each meta-region for all datasets, a mask for each caudate nucleus and
putamen were loaded separately into MATLAB with streamlines from each ipsilateral cortical
region. A one-sample t test was used to calculate maps of endpoint densities for each set of
streamlines from the individual density maps. Significance was calculated with an
FDR-corrected threshold (q) 0.05 to identify striatal voxels with projection endpoints from each
meta-region that were consistent across all datasets.

Striatal endpoints were then extracted and saved as a new mask, resulting in a three-way
convergence zone representing the total volume of contiguous voxels (cluster size k = 20) within
each nucleus where termination points of projections from the OFC, DLPFC, and parietal

metaregions were detected. This was done for both caudate nuclei and putamen, resulting in four
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(left caudate, left putamen, right caudate, and right putamen) convergence zone masks.
Convergence zone masks for each nucleus were then used to calculate maps of the mean
convergence zone as well as to assess the consistency and significance of convergence zone
volumes across all 60 datasets. The significance at each convergence zone was calculated using a
one-sample t test with a q 0.05. For comparison, two-way pairwise convergence zones masks
(i.e., OFC + DLPFC, DLPFC + Parietal, and Parietal + OFC) were also created in the same
fashion as the three-way convergence zones masks.

After the convergence zones were isolated, cortical endpoint coordinates were extracted
from the reseeded tracking described in Section 4.2.3. Streamlines between each convergence
zone and the whole-brain seed across all datasets were loaded into MATLAB, and the endpoints
were saved as masks. A one-sample t test was conducted to identify significant voxels
throughout the brain that had consistent structural connectivity with each of the convergence

Zzones.

4.2.5 Resting state fMRI preprocessing and analyses.

SPMS8 (Wellcome Department of Imaging Neuroscience, London) was used to preprocess all
rsfMRI collected from 55 of the 60 participants with DSI data. To estimate the normalization
transformation for each EPI image, the mean EPI image was first selected as a source image and
weighted by its mean across all volumes. Then, an MNI-space EPI template supplied with SPM
was selected as the target image for normalization. The source image smoothing kernel was set

to a FWHM of 4 mm, and all other estimation options were kept at the SPM8 defaults to
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generate a transformation matrix that was applied to each volume of the individual source images
for further analyses.

The convergence zones and striatal precentral clusters obtained from the tractography
analyses were used as seed points for the functional connectivity analysis. A series of custom
MATLAB functions were used to do the following: (1) extract the voxel time series of activity
for each convergence zone, (2) remove estimated noise from the time series by selecting the first
five principal components from the SRI24 tissues white matter and CSF masks, and (3) calculate
t and p values of consistent activity with corresponding significance. rstMRI data were analyzed
using AFNI (Cox, 1996) to calculate functional activity throughout the brain correlated with each
convergence zone and striatal precentral cluster seed in accordance with previously used
methods (Choi et al., 2012). Specifically, functional activity correlations (r) were converted to
Z-scores using Fisher’s r-to-Z transformation for each convergence zone and striatal precentral
cluster across all 55 datasets.

First, a convergence zone or striatal precentral cluster mask was loaded into MATLAB
8.1/R2013a (MathWorks) with an individual participant’s rsfMRI time series data. The time
series of activity corresponding with the volume of the mask was extracted, yielding activity
values for each voxel in the mask across all 210 volumes of the rsfMRI BOLD EPI sequence.
Next, the time series was denoised by regressing the first five principal components of estimated
noise from the white matter and CSF voxels out of the total time series activity. Once denoised,

the data were smoothed with a Gaussian kernel (FWHM 2 mm) and a one-sample t
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test was run to identify consistent, significant functional activity correlated with the time series
across all 55 datasets. Corresponding FDR-corrected values of q 0.05 were also calculated to
create maps of significant functional activity for each convergence zone and striatal precentral

cluster mask (see Figure 4.5).

4.2.6 Structural and functional connectivity overlap analysis

Using a custom MATLAB function, t-maps of consistent structural connectivity from the

DSI data, and Z-transformed correlation (r) maps from the fMRI data were used to calculate the
percentage of structurally significant voxels (i.e., a cortical voxel that had significant structural
connectivity with a striatal convergence zone) that were also functionally significant. For this,
the DSI t-map data were thresholded at q < 0.05 to yield all significant voxels with structural
connections that were consistent across all 60 DSI datasets. Corresponding rsfMRI data were
also thresholded at q < 0.05, resulting in maps of voxels with significant functional connectivity
across all 55 fMRI datasets. For each convergence zone, t-maps and Z-maps of structural and
functional connectivity, respectively, were loaded into MATLAB. A voxel was considered to
have significant structural or functional connectivity if the one-sample t test to find consistent
connections across all DSI or rsfMRI datasets resulted in a significant q value. The maps of
significant structural and functional connectivity for each convergence zone were binarized such
that all voxels with a q < 0.05 were set to 1, and all other voxels were set to 0. After transforming
the binary data into single-column vectors, the dot product of significant structural and functional

voxels was summed and divided by the number of significant structural voxels. This calculation
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yielded the percentage of cortical voxels that had significant structural and functional
connectivity with a striatal convergence zone, aggregated across all voxels within a given zone.

Finally, a permutation test was conducted to determine the chance levels of overlap
between the structural and functional measures of connectivity. For each convergence zone, a
random permutation of the resulting binary data vector of significant functional voxels was
generated, and the percentage overlap with the significant structural voxels was recalculated.
This process was repeated for 1000 iterations for each convergence zone ROI to construct the
95% confidence interval of chance overlap between structural and functional connectivity (i.e.,
to construct the null distribution of structurally connected voxels to the convergence

zone that randomly overlapped with functionally connected voxels).

4.3 Results

4.3.1 Topography of corticostriatal projections

We first set out to characterize the major topographic gradients of the corticostriatal pathways.
Whereas previous animal work using viral tracers (Kemp and Powell, 1970; Selemon and
Goldman-Rakic, 1985; Haber, 2003; Utter and Basso, 2008) shows a primarily medial-lateral
organization of corticostriatal projections, recent human imaging work suggests a second
rostral-to-caudal organization of these pathways (Draganski et al., 2008; Badre and Frank, 2012;
Verstynen et al., 2012; Verstynen, 2014). Here, we evaluate the global structural connectivity of
the left and right striatum, respectively, on the average template brain. The streamlines

are coded according to their position along either a medial-lateral axis (Figure 4.1a-f) or rostral—

caudal axis (Figure 4.1g-1). Along the medial-lateral axis, we find a gross parcellation between
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caudate and putamen fibers, with the former receiving projections from rostral prefrontal and
OFC, medial wall areas, and dorsal parietal regions, and the latter receiving projections primarily
from somatosensory, primary motor, premotor, and caudal prefrontal areas. Within these major
nuclear segmentations, there is a somewhat consistent medial-lateral organization such that more
medial areas of cortex project to more medial regions in the subcortical nuclei (Figure 4.1a-f,
cooler colors), and more lateral areas of cortex project to more lateral striatal regions (Figure
4.1a-f, warmer colors). For example, medial orbitofrontal and ventromedial prefrontal areas
project to more medial caudate regions (dark blue) than lateral orbitofrontal cortical streamlines
(light blue) (see Figure 4.1c and d). This is largely consistent with previously reported
dichotomies of caudate and putamen projections (Alexander et al., 1986) and suggests that, at the
gross macroscopic level of major cortical regions, the primary gradient of organization is in a
medial-to-lateral plane.

The global medial-to-lateral gradient across striatal nuclei is consistent with previous
animal imaging studies; however, there is a strong local rostral— caudal organization within the
nuclei themselves. Qualitative inspection of Figure 4.1g-1 reveals a rostral-caudal gradient that
appears to be isolated within major functionally defined regions. For example, within the lateral
prefrontal cortex, which generally projects to the putamen (Figure 4.1a-d), more rostral regions
of cortex tend to terminate in more rostral ends of the striatum. However, even this gradient
along the sagittal plane segregates some major cortical regions. Motor and somatosensory areas
tend to terminate in more caudal regions of the striatum (Figure 4.1g-1, warmer colors), whereas
prefrontal and orbitofrontal areas terminate in more rostral regions of the striatum (Figure 4.1g-1,

cooler colors). More interestingly, however, parietal projections extend to the more rostral part of
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the striatum near the location of lateral frontal projection. This is largely consistent with previous
animal tracer studies (Selemon and Goldman-Rakic, 1988; Cavada and Goldman-Rakic, 1991)
and inconsistent with a pure, global rostral- caudal organization of corticostriatal systems (for
review, see Utter and Basso, 2008).

These results show that two strong organizational gradients exist in corticostriatal
pathways. First, there is a strong macroscopic gradient in a medial-lateral orientation that
segregates major functional cortical regions and is moderately driven by spatial proximity. For
example, lateral motor areas terminate in the lateral striatal nucleus (i.e., the putamen) and
medial motor areas terminate in the more medial nucleus (i.e., the caudate; see Figure 4.1d).
Second, there is a more local gradient in a rostral-caudal direction that is not driven by pure
spatial proximity but appears to reflect local convergence of inputs from disparate cortical
regions. An interesting break of this pure rostral— caudal gradient, however, is the observation
that parietal streamlines (Figure 4.1g-1, cyan and light green streamlines) project to rostral
portions of the striatum in similar regions as prefrontal and orbitofrontal areas. The location of
these parietal projections within both gradients of organization is consistent with parietal inputs
converging in similar areas of the striatum as frontal cortex.

To determine the gross topographic organization across the three major ROIs for this
study, we examined the common regions of endpoint densities in the striatum for all 60 DSI
datasets. Thirteen cortical ROIs were tracked and then collapsed into three meta-region maps:
OFC, DLPFC, and parietal cortex (for more details, see Fiber tractography and analysis). Figure
2 shows the endpoint fields for each meta-region cluster. As expected, the endpoint clusters of

projections from the three meta-regions exhibit similar topographical distributions as what is
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shown in the gradient analysis in Figure 1. Specifically, OFC (yellow) areas project most heavily
in the most anterior and medial aspects of the striatum, primarily in the caudate nucleus (Figure
4.2a). DLPFC (Figure 4.2b, blue) regions most consistently project just caudal to the OFC
clusters and more laterally, although with some visible overlap between the two clusters. Finally,
parietal regions (Figure 4.2¢, violet) most densely project to areas slightly more caudal than the
DLPFC projections, with a bias toward slightly more lateral striatal regions. This rich,
topographical organization of cortical projection endpoints along the striatum demarcates a
distinct spatial segmentation of cortical inputs while also providing evidence of some local

overlap of corticostriatal projections from adjacent cortical networks.
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Figure 4.1 Tractography analysis of medial-lateral (A—F ) and rostral— caudal (G-L)
striatal topography in the average participant template brain. Streamlines were tracked
from whole-brain seeds to caudate and putamen masks. A—F) Cooler colors represent
streamlines that terminate more medially, whereas warmer colors represent those that
terminate more laterally. Along medial-lateral orientation, spatially proximal cortical
areas project to similar locations within the striatum. G—L) Cooler colors represent
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streamlines that terminate in more rostral areas, whereas warmer colors represent
streamlines that terminate in more caudal striatal areas.

4.3.2 Convergence of corticostriatal projections

Close inspection of Figure 4.2 reveals several common regions with apparent overlapping
projections from OFC, DLPFC, and parietal cortical areas. To quantify these overlapping
projections, we used a conjunction analysis to identify voxels with significant endpoint densities
from OFC, DLPFC, and parietal masks (see Materials and Methods). Clusters of these
conjunction voxels (k> 20) were isolated bilaterally within the caudate nucleus and putamen
separately and were consistent across all 60 datasets (all t(59) values 2.75, q < 0.05). Each
nucleus contains a distinct cluster of these convergent fields that appear to be relatively
symmetric across hemispheres (Figure 4.3a, left column, b). In the caudate, the convergence
zones are isolated along the rostral portion of the body of the caudate. In the putamen, the

convergence zones are found on the dorsal and rostral aspects of the nucleus.
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Figure 4.2 Group statistical maps of common endpoint locations from three cortical
meta-regions: OFC (A, yellow), DLPFC (B, blue), and parietal cortex (C, violet). Voxels
indicate regions with significant endpoint densities from cortex determined using a
one-sample t test and corrected for multiple comparisons.

These three-way convergence zones are smaller than any of pairwise convergence zones
between OFC, DLPFC, and parietal cortex. In general, pairwise overlaps with DLPFC are
widespread and found across large portions the rostral striatum (Figure 4.3a, second and third
columns). The pairwise overlap of OFC and parietal projections is much smaller (Figure 4.3a,
fourth column), suggesting that the three-way convergence zones are restricted by the limited

overlap of parietal and orbitofrontal connections within the striatum.
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It is important to note that the parietal and OFC overlap areas are away from ventral
striatal regions that are typically thought of as the main termini of OFC projections (Haber,
2003). For reference, we also mapped the projections from the precentral gyrus as a proxy for the
motor inputs into the striatum, which typically terminate in the caudal putamen (Figure 4.3a,
right column). In all cases, the striatal areas with convergent projections from OFC, DLPFC, and
parietal areas are much more rostral than areas that receive projections from precentral motor

areas (i.e., the motor striatum).
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Figure 4.3 Coronal slice images and 3D representations of mean convergence and
nonconvergence zone masks within bilateral caudate nucleus and putamen. A) Coronal
slice view of three-way (left column) and two-way (middle three columns) convergence
zone, and striatal motor (right column) nonconvergence zone masks on T1-weighted
MNI-space brain. Three-way and two-way convergence zones (four left columns) were
isolated in both striatal nuclei bilaterally: blue represents left caudate; red represents left
putamen; yellow represents right caudate; cyan represents right putamen.
Nonconvergence zones (right column) are restricted to regions of putamen (left, red,
right, cyan) that received projections from ipsilateral precentral gyrus. All striatal masks
consist of single clusters of significant (all t (59) values > 2.75, FDR-corrected q < 0.05)
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contiguous voxels (cluster size k < 20) with streamline endpoints from the cortical areas
indicated above each column. Three-way convergence zones are smaller in volume than
two-way convergence zones and are located more rostrally in striatal nuclei than
nonconvergence zones. B) 3D surface visualizations of three-way convergence zones.

To get a more complete picture of where the projections into the striatal convergence
zones originate along the cortical surface, we performed a second whole-brain tractography
analysis, isolating only streamlines that ended in each of the three-way convergence clusters
shown in Figure 4.3b. Although the medial bias of the tractography process is somewhat
apparent in this second analysis, we still observed significant structural connectivity from lateral
prefrontal and parietal regions. Generally, both putamen convergence zones show more
distributed projections (Figure 4.4: left, red; right, cyan) than the caudate convergence zones
projections (Figure 4.4b: left, blue; right, yellow). The cortical connectivity parietal regions than
the caudate connectivity. Within OFC, there are two regions with consistent structural
connectivity to the convergence zones. The first is a region along the medial wall that connects
largely to the putamen convergence zone. The second is a region on the far lateral borders of the
OFC, near the border between Brodmann’s areas 11 and 47, that shows consistent connectivity to

both the caudate and putamen convergence zones.
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Figure 4.4 Cortical endpoint density maps of tractography into each convergence zone
mask on template brain. Streamlines were tracked from a whole-brain seed to individual
three-way convergence zone masks. Maps show cortical and subcortical regions with
consistent (all t (59) values > 2.75, uncorrected p < 0.004) endpoint projections into each
convergence zone across all subjects: blue represents left caudate; red represents left
putamen; yellow represents right caudate; cyan represents right putamen. Connections
with the putamen convergence zone originate from a much larger and more distributed
set of cortical areas than those with caudate convergence zone. Overlapping structural
connectivity from ipsilateral caudate and putamen convergence zones in OFC, DLPFC,
and parietal cortex areas between is shown as purple in the left hemisphere and white in
the right hemisphere.

Within the prefrontal cortex, there are two major clusters of connectivity. The first is a
cluster on the rostral middle frontal gyrus, approximately at Brodmann’s areas 46 and 47, that

appears to be contiguous with the lateral OFC clusters and shows a high degree of connectivity
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with both the caudate and putamen convergence zones. The second, prefrontal cluster rests along
the superior frontal gyrus and reflects primarily inputs to the putamen, although a smaller cluster
of voxels sends overlapping projections to the caudate. Finally, most projections to the
convergence zones from the parietal cortex appear to originate from regions along the angular
gyrus and inferior parietal lobule, whereas some connections within the intraparietal sulcus itself
appear to reflect the location of the connections into the caudate convergence zone cluster.

Along with connectivity to our three major ROIs, there is strong connectivity to
sensorimotor regions around the precentral sulcus. This is primarily for projections to the
putamen convergence zone, although some medial cortical areas show consistent projections to
the caudate zone as well. Thus, consistent with the striatal maps in Figure 3A, some sensorimotor
regions may also project into rostral portions of the striatal convergence zones, particularly along
the putamen. Our original tractography identifying the convergence zones is restricted to
ipsilateral corticostriatal projections; however, the reseeded tractography analysis from the left
caudate shows several notable interhemispheric connections, particularly with dorsal and medial
superior frontal gyrus in the right hemisphere.

Contralateral connectivity between left caudate convergence zone and right dorsolateral
prefrontal areas is indeed consistent with nonhuman primate histology (McGuire et al., 1991)
and human diffusion imaging work (Lehéricy et al., 2004). No such interhemispheric
connectivity is observed from the convergence zone in the right caudate nucleus. However, the
lack of strong interhemispheric structural connections may be limited by our initial tractography
approach. To correct for this, we conducted a follow-up tractography analysis between

convergence zones in one hemisphere and cortical areas in the contralateral hemisphere (Section
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4.2.3). After adjusting for multiple comparisons (q < 0.05), we did not observe any significant
convergence zones from contralateral cortical areas. This null result highlights a limitation of
diffusion-weighted imaging approaches for tracking contralateral corticostriatal projections
previously reported using histological approaches (Selemon and Goldman-Rakic, 1985; Cavada

and Goldman-Rakic, 1989a, 1991).

4.3.3 Functional connectivity of convergence zones

So far, our tractography analysis has revealed converging anatomical projections from
orbitofrontal, prefrontal, and posterior parietal areas into the striatum. If these do, indeed, reflect
an integrative functional network, then cortical areas that show a high degree of anatomical
connectivity to the convergence zones should also show significant functional connectivity to
these same striatal regions. To this end, we used rsfMRI data to measure the functional
connectivity between cortical areas and each of the striatal convergence zones. The functional
activity of striatal convergence zones is correlated with a distributed set of bilateral cortical
areas, including the DLPFC, both medial and lateral OFC, sensorimotor areas, and, most
importantly, posterior parietal regions (Figure 4.5). Within the OFC, we again see that medial
regions are more highly connected to the putamen cluster than the caudate cluster, although the
functional connectivity appears to be centered in more caudal regions than the location of
structural endpoints. The lateral OFC regions, on the border of approximately Brodmann’s areas
11 and 47, also show connectivity to both convergence zone clusters. This pattern is highly
similar to what was observed in the structural connectivity analysis, albeit with a much more

distributed cortical representation.
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Figure 4.5 Resting state fMRI maps of functional connectivity of convergence and
nonconvergence zones with the whole brain after adjusting for multiple comparisons.
Correlations from individual resting state datasets (N=55) were normalized using Fisher’s
r-to-Z transformation, and group maps were calculated using a one-sample t test with an
FDR-corrected q value < 0.05. Both caudate convergence zone maps were thresholded at
Z(r) = 0.03— 0.10, and putamen convergence and nonconvergence zone maps were
thresholded at Z(r) = 0.05— 0.10. Overlaid cortical activity patterns show correlated
functional connectivity with the left (left column; blue represents caudate; red represents
putamen) and right (right column; yellow represents caudate; cyan represents putamen)
convergence zones and bilateral nonconvergence zones in striatal motor regions of the
putamen (middle column; green) separately. Significant functional connectivity of
ipsilateral caudate and putamen convergence zones overlap in OFC, DLPFC, and parietal
areas laterally, and in anterior cingulate cortex medially. Nonconvergence zone
functional connectivity is primarily restricted to precentral gyrus and insular cortex
laterally, and some anterior cingulate cortex and caudal superior frontal gyrus medially.

In most frontal areas, convergence zones from both nuclei exhibit a similar pattern of
functional associations throughout the cortex, particularly in the rostral aspects of the DLPFC,
lateral OFC, and anterior cingulate cortex. However, there is also a moderate degree of
specificity between the convergence zones on each striatal nucleus. For example, several
bilateral cortical regions, including the middle frontal gyrus and medial superior frontal gyrus,
show functional connectivity with only the caudate convergence zones. In contrast, aspects of the
precentral gyrus, subgenual cingulate, and caudal aspects of the supplementary motor area show
unique bilateral connectivity with the convergence zones in the putamen. Functional connectivity
with the parietal cortex is restricted along dorsal aspects of the intraparietal sulcus and portions
of the inferior parietal lobule. In this case, connectivity to the caudate convergence zone appears
to reside in more caudal parietal regions, whereas connectivity to the putamen convergence zone
resides in more rostral parietal areas. These regions of unique functional connectivity, along with

the unique cortical regions identified in the structural connectivity analysis in Figure 4, suggest
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that the convergence zones in the caudate nucleus and the putamen may reflect dissociable
networks for integrating information from frontoparietal networks.

Because the striatal nuclei receive some of the most convergent inputs in the brain
(Selemon and Goldman-Rakic, 1985), it is possible that the distributed patterns of functional
connectivity that we found to the striatal convergence zones are not unique, but that any striatal
area will show a broad and distributed connectivity to many neocortical areas. To address this,
we included an additional control analysis looking at the functional connectivity to the motor
putamen clusters shown in Figure 4.3a (right column). The group-level functional connectivity to
the motor putamen is shown in the middle column of Figure 5. As would be expected (Choi et
al., 2012), functional connectivity from the cortex to the motor putamen is quite different from
that in the convergence zones. There is a much larger representation along the precentral gyrus
and central sulcus. Although there is a large cluster of connectivity along the medial wall, this
cluster is centered much more caudally than the clusters connected to the convergence zones.
Some areas do show overlap with the areas that also project to the striatal convergence zones,
particularly along the inferior frontal gyrus, which is thought to contain the ventral premotor
cortex (Rizzolatti et al., 1996), as well as some ventral medial wall and ventral parietal areas.
However, despite these regions of overlap, the connectivity patterns of the motor putamen
demonstrate that the frontoparietal connectivity found in the convergence zones is not a

ubiquitous feature of corticostriatal connections.
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4.3.4 Structure—function overlap

Comparing the maps in Figures 4.4 and 4.5 reveals qualitative similarities in the patterns of
structural and functional connectivity to the striatal convergence zones. To better understand the
similarity between these two connectivity estimates, these maps are plotted together on an
inflated brain surface (Figures 4.6 and 4.7). Given the relative symmetry of the connectivity
patterns between hemispheres, here we will focus on descriptions of ipsilateral connections in the
left hemisphere.

On the ventral surface, functional and structural connectivity to the caudate convergence
zone overlaps in the same rostral areas of lateral orbital gyrus and ventrolateral inferior frontal
gyrus (Figure 4.6, left panels). However, positive functional connectivity is adjacent to clusters
of structural connections in the inferior frontal gyrus and extends caudally to regions that
correspond approximately with ventral aspects of Brodmann’s area 44 and 45. Functional
connectivity to the caudate convergence zone also overlaps with clusters of structural
connectivity in caudal regions of the orbital gyrus that extend from inferior frontal gyrus to the
medial wall. This functional connectivity appears to be restricted to the same lateral orbital gyrus
regions where clusters of structural connections are also present.

Ventral connectivity to the putamen convergence zone shows clusters of structural and
functional connections in rostrolateral OFC that extend caudally along the ventral inferior frontal
gyrus (Figure 4.6, top right). Unlike connections to the caudate convergence zone, structural and
functional connections overlap in more central OFC regions as well as throughout ventral aspects
of the insula (Figure 4.6, bottom right). Furthermore, large clusters of structural and functional

connections to the putamen convergence zone are present along the gyrus rectus. Although a
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much larger swatch of functional connectivity is observed throughout much of the orbital gyrus
until the approximate border between medial orbital gyrus and gyrus rectus (Figure 4.6, bottom
right), these functional clusters appear to subsume the clusters of structural connections to the

putamen convergence zone.
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Figure 4.6 Ventral surface maps of structural and functional convergence zone
connectivity in OFC on an inflated brain. Clusters of significant (all t values > 2.75,
uncorrected p < 0.05) structural and functional connectivity are observed to overlap
throughout OFC. Warmer colors represent t < 2.75; cooler colors represent t < -2.75. Left
panels, Connectivity to the caudate convergence zone. Right panels, Connectivity to the
putamen convergence zone.

At the lateral surface, there is a high degree of overlap between structural and functional
connections to the caudate convergence zone (Figure 4.7). In DLPFC regions, clusters of

structural connections extend caudally from the frontal pole to encompass the rostral two-thirds
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of the inferior frontal gyrus. Clusters of structural connections are also present along the full
extent of the middle frontal gyrus (Figure 4.7a, top left). This spattering of structural connections
to the caudate convergence zone overlap with clusters of strong positive functional connectivity
in the DLPFC as well (Figure 4.7a, bottom left). In particular, functional connections extend
caudally from the frontal pole along the entire inferior frontal gyrus and the rostral third and
caudal half of the middle frontal gyrus, overlapping with many of the regions that also show

strong structural connections.
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Figure 4.7 Lateral surface maps of structural and functional convergence zone
connectivity in DLPFC and parietal cortex on an inflated brain. A) Connectivity to the
caudate convergence zone. B) Connectivity to the putamen convergence zone. Same
plotting conventions as in Figure 4.6.




Connectivity to the putamen convergence zone appears to be located in similar areas of
anterior prefrontal cortex and along the inferior and middle frontal gyri. The main difference
between caudate and putamen convergence zone patterns is in the lateral frontal cortex where
clusters of structural connections to the putamen are somewhat larger than structural connections
to the caudate. Also, the putamen structural connectivity extends more ventrally in the inferior
frontal gyrus (Figure 4.7b, top left). In Figure 4.7b (lower left panel), positive functional
connectivity to the putamen convergence zone overlaps with structural connections throughout
the inferior frontal gyrus. Small clusters of structural connections appear to overlap with sparse
functional connections located in the rostral region of the middle frontal gyrus, contiguous with
functional connectivity in rostral superior frontal gyrus; however, the structural connections in
this region extend much further back along the middle frontal gyrus than the spread of functional
connections.

In parietal areas, an interesting pattern emerges with regards to the specificity
connections to the striatal convergence zones. Functionally, the connections to the striatal
convergence zones are separated along a dorsal—ventral plane, with patches of negative
connectivity present along the superior parietal lobule and dorsal aspects of the intraparietal
sulcus and patches of positive connectivity in ventral parietal regions (Figure 4.7a, b, top right).
The dorsal negative connectivity region appears to be more distributed for connections to the
caudate than to the putamen convergence zone. More importantly, the negative functional
connectivity clusters overlap or are physically adjacent to regions of structural connections to

both striatal convergence zones (Figure 4.7a, b, bottom right).
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For connections to the caudate convergence zone, the positive functional connectivity
area in the ventral parietal cortex resides on the border of the supramarginal gyrus and the
angular gyrus (Figure 4.7a, bottom right). In contrast, for connections to the putamen
convergence zone, this positive connectivity region is shifted in a rostral direction and isolated
primarily within the supramarginal gyrus, near the temporal—parietal junction (Figure 4.7b,
bottom right). However, here the structural connections do not overlap well with the pattern of
functional connections for either convergence zone. We failed to find any structural connections
near the positive functional connectivity cluster for the caudate convergence zone. Although
there is distributed structural connectivity to the putamen convergence zone along the
supramarginal and angular gyri, only the most rostral clusters of structural connections appear
proximal to the positive functional connectivity region on the supramarginal gyrus. Thus, the
only region with consistent structure—function overlaps in the parietal cortex extended along the
superior parietal lobule.

Given the incomplete qualitative overlap of structural and functional connectivity, we
sought to determine the likelihood that this overlap is due to chance. To quantify the degree of
overlapping connections, we calculated the probability that structurally connected voxels were
also functionally connected (i.e., P(connection fMRI | connection DSI)) (Section 4.3.4) and used
randomization statistics to estimate the probability of observing this overlap by chance. These
results are summarized in Table 4.1. The highest degree of overlap was found for the caudate
convergence zones. These have the highest degree of specificity of all striatal clusters (i.e.,
strongest overlap within pairwise maps and weakest connectivity with non-pairwise maps). The

functional connectivity of the caudate convergence zones significantly overlaps with the
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structural connectivity of the two putamen clusters, but the degree of this overlap is much
smaller than the overlap with the structural connectivity estimated from the caudate convergence
zone. Similarly, functional connectivity to the putamen convergence zone overlapped
significantly with the structural connectivity to all three striatal clusters; however, unlike the
caudate results, the overall degree of overlap was generally smaller and fairly equally distributed
across all three striatal clusters. Thus, in both the convergence zone clusters and in both
hemispheres, we see a greater degree of overlap in the patterns of functional and structural
connectivity than would be expected by chance. In contrast, the control clusters in the motor
putamen do not show this pattern. The functional connectivity to the left motor putamen does not
significantly overlap with the structural connectivity from any of the striatal clusters in the
ipsilateral hemisphere, although the highest degree of overlap was with the structural
connectivity patterns to the same set of voxels. The functional connectivity to the right motor
putamen only significantly overlapped with the structural connectivity to the same cluster of
voxels, but not to the structural connectivity maps to either of the convergence zones. This
overlap of functional and structural connectivity patterns in the cortex provides confirmation that
voxels showing direct anatomical connections to the striatal convergence zones have a high
likelihood (well above chance) of being associated in their functional dynamics. Furthermore, the
cortical distribution of inputs to the convergence zones reflects a unique set of frontoparietal

networks and not a general pattern of corticostriatal connectivity.
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4.4  Discussion

Our results identify a novel set of regions in the rostral and dorsal striatum that concurrently
exhibit structural and functional connectivity to orbitofrontal, lateral prefrontal, and posterior
parietal regions of cortex. The location of these convergence zones is anatomically consistent
with previous reports of parietal (Selemon and Goldman-Rakic, 1985, 1988; Cavada and

Goldman-Rakic, 1991) and frontal (Haber et al., 1995; Averbeck et al., 2014) white matter

projections, based on ex vivo nonhuman primate histology. Although the distribution of cortical

regions associated with the striatal convergence zones differed to some degree between structural

and functional connectivity measures, reflecting methodological limitations of each approach,
majority of cortical areas structurally connected to the convergence zones also showed strong
functional connectivity. This supports the notion that these corticostriatal projections form an
integrative functional circuit.

The current findings support a growing body of evidence that basal ganglia circuits are

a

more complex and interactive than the classic independent, parallel pathways model (Alexander

et al., 1986). We confirmed the presence of two previously described gradients of connectivity
within the corticostriatal pathways: a global medial-lateral gradient (Selemon and
Goldman-Rakic, 1985; Haber, 2003) and a more local rostral- caudal gradient (Nauta and
Whitlock, 1956; Kemp and Powell, 1970; see also Draganski et al., 2008; Verstynen et al.,
2012). The complexity of these gradients highlights the fact that demarcating independent
corticostriatal circuits remains a challenge (Choi et al., 2012).

Histological work has also shown that corticostriatal pathways from disparate cortical

areas have some overlapping termination fields within the striatum (Selemon and
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Goldman-Rakic, 1985; Haber, 2003; Haber et al., 2006; Averbeck et al., 2014). Accordingly, we
observed clusters of voxels (i.e., convergence zones) bilaterally within striatal nuclei where
projections from several cortical areas, including OFC, DLPFC, and posterior parietal cortex,
terminate. This is in line with recent work in humans showing that distinct striatal regions are
functionally connected with networks of distributed cortical areas, including the frontoparietal
association, default mode, and limbic networks (Choi et al., 2012). Although previous work has
separately shown projections from OFC (Selemon and Goldman-Rakic, 1985; Haber et al., 2006)
and posterior parietal cortex (Selemon and Goldman-Rakic, 1988; Cavada and Goldman-Rakic,
1989b, 1991) overlap with DLPFC projections, to the best of our knowledge, the present findings
show the first evidence of a convergence of projections from all three cortical areas to common
striatal targets.

We propose that this pattern of convergent connectivity may reflect a potential
mechanism for integrating reward processing, executive control, and spatial attention during
spatial reinforcement learning (Colby and Goldberg, 1999; Behrmann et al., 2004; Gottlieb,
2007). This type of learning is thought to arise from feedback signals refining behavioral action
selections and strategies, to improve efficiency during visual search for highly rewarded spatial
targets versus targets that are less rewarded (Della Libera and Chelazzi, 2006; Kristjansson et al.,
2010; Navalpakkam et al., 2010; Lee and Shomstein, 2014). At the neural level, performance on
spatial reinforcement tasks has been shown to be associated with concurrent activity of posterior
parietal and DLPFC areas (Lee and Shomstein, 2013); however, in order for feedback to bias
spatial attention, signals from cortical areas linked to attention must be integrated with

reinforcement learning processes (i.e., evaluating previous outcomes and using them to shape
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response selection). Functionally, the OFC has been implicated in providing reinforcement
signals that influence behavior (O’Doherty, 2004; Hare et al., 2008; Schoenbaum et al., 2010).
Thus, convergence of orbitofrontal signals into regions of the striatum that also receive
projections from cortical areas linked to spatial attention and executive control could provide a
substrate for adapting spatial decisions.

The dual location of the projections from the OFC into the striatal convergence zones
may also help to elucidate the role of feedback control in spatial learning. Orbitofrontal areas
have a well-described dual topography of representation: one for sensory modality and feedback
type (i.e., reward and punishment) and another for complexity of feedback information (for
complete review, see Kringelbach and Rolls, 2004). We observed two distinct clusters of
orbitofrontal projections into the convergence zones that illustrate this dual topography (see
Figure 4.4, bottom row middle). The larger cluster of projections to both striatal nuclei was
found in posterior lateral orbitofrontal areas that are linked with processing low complexity
visual signals. This supports the idea that these projections are linked to processing signals
necessary for visuospatial attention. The second, smaller, cluster of projections originated in
anterior medial regions and terminated only within the putamen convergence zones. These may
reflect subsets of projections to pure ventral striatal pathways linked directly to reward
processing (e.g., the ventral parts of the putamen clusters illustrated in Figure 4.3, left column),
suggesting that these striatal convergence zones may reflect multiple forms of feedback
processing during spatial learning.

Within the striatal nuclei, the location of the convergence zones also provides some clues

as to the possible functional roles of these integrative networks. For example, we observed
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convergence zones that extended into the dorsomedial caudate nucleus. This area has been
strongly implicated in reinforcement learning in human functional neuroimaging studies
(O’Doherty et al., 2004; Delgado et al., 2005; Schonberg et al., 2007; Badre and Frank, 2012).
When these previous studies are considered together with our coincidental observation of
structural and functional connectivity between OFC, DLPFC, and posterior parietal cortex in the
striatum, the convergence of these three corticostriatal pathways, particularly within the
dorsomedial caudate, may underlie context-dependent, spatial reinforcement learning suggested
in previous research (Nieuwenhuis et al., 2005a; b; Lee and Shomstein, 2013).

Of course, it is possible that at least part of the interaction between parietal, OFC, and
DLPFC functions is mediated by direct intracortical structural connections (Ridderinkhof et al.,
2004); however, our current findings are consistent with a model in which part of this integration
may happen at the corticostriatal level (Haber et al., 2006). Similarly, histological work supports
potential models of spatial attention and executive control integration via direct cortical
connections between posterior parietal cortex and DLPFC (Cavada and Goldman-Rakic, 1989b),
as well as overlapping corticostriatal projections (Cavada and Goldman-Rakic, 1991). Although
we cannot rule out a direct corticocortical connectivity hypothesis, our findings afford some
confirmation for the integration of spatial attention and executive control signals in striatal areas
that also receive inputs from the OFC, which is consistent with a corticostriatal mechanism for
spatial reinforcement learning.

Our conclusions about this pathway are tempered, however, by inherent methodological
limitations with the neuroimaging techniques that we used. The low spatial resolution of current

MRI techniques (2-3 mm® voxels), relative to histological approaches, means that it is not
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possible to directly infer whether the pathways we visualized are converging on the same striatal
cells or merely terminating in adjacent regions of the nucleus. Even considering that it is possible
to get subvoxel resolution with tractography on diffusion imaging data (Verstynen et al., 2011,
2012), this resolution is simply not fine enough to detect true converging collaterals on the same
neuron. This coarse resolution of current MRI-based approaches limits our inference to
interactions that occur at the voxel level.

Another concern relates generally to rstfMRI functional connectivity analyses, which is an
indirect measure of connectivity based on correlated activity throughout the brain. At the
timescale of the BOLD response, it is impossible to differentiate direct functional connections to
a seed region from indirect connections (Cole et al., 2010). Thus, our inferences based on rsfMRI
data can only imply that connected regions represent a functional circuit, but they cannot confirm
that correlated areas are directly connected to each other. Although fiber tractography provides a
more direct estimate of underlying white matter connections, this approach is still highly
sensitive to various sources of noise (Jones, 2008) and suffers from several spatial biases that
preclude complete identification of all underlying connectivity (Thomas et al., 2014). This bias
may explain some of the discrepancies between the structural (Figure 4.4) and functional (Figure
4.5) connectivity patterns in the present study, particularly in DLPFC regions. Finally, neither
DSI nor rsfMRI can confirm the task relevance of the cortical areas that we examined. To
directly address our hypothesis that this network reflects a neural substrate for spatial
reinforcement learning, future work should look at functions of this network during tasks that

require the integration of reward, executive control, and spatial attention.
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4.5  Conclusion

Despite these limitations, the present findings provide clear evidence that projections from OFC,
DLPFC, and posterior parietal cortex terminate in common striatal regions. Although our results
are consistent with several independent findings in primate neuroanatomical literature, no
previous study has shown the specific convergence of these three corticostriatal pathways in the
human brain. This highlights a plausible structural mechanism that could allow for parietally
mediated spatial attention processes to contribute to the integration of reward and response
selection. Future work should explore the particular dynamics of the neural circuit that we have
described here for their potential role in the integration of spatial attention information with

reward and executive control processes during reinforcement learning.
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Chapter 5

Left putamen encodes task context during risky spatial

decisions

Chapters 2 and 3 chart the development of a novel behavioral paradigm that allowed us to
provide strong empirical evidence for previously untested theoretical predictions about
sensorimotor action selection behavior within the context of risky spatial decision-making
research. Namely, we showed that avoidant selection behavior during risky spatial decisions is
strongly influenced by significant interactions between cost and sensory variance as well as an
interaction between cost and the contextual framing of the decision-making task. In Chapter 4,
we identified a network of corticostriatal connectivity in humans that may support the integration
of information about cost, sensory uncertainty, and context distributed across frontal and parietal
cortices within regions of the anterior striatum that are associated with representations of
action-value. For the final project of this dissertation, we examine whether or not this network
indeed represents different levels of cost and contextual information to reflect a subjective value

signal that impacts sensorimotor selection behavior via convergent corticostriatal circuitry.
5.1 Introduction

Risky spatial decision-making involves multiple cognitive and sensorimotor processes wherein

information about task contexts, costs, and sensory uncertainty must be represented. Chapter 1
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details both the processes and their associated brain regions in humans and nonhuman primates.
Specifically, differential levels of activation in prefrontal cortex (PFC) can be used to distinguish
between multiple task contexts that guide action selection (Badre & Frank, 2012), orbitofrontal
cortex (OFC) activity tracks reward and penalty associated with sensory stimuli (Kringelbach &
Rolls, 2004), and activity in posterior parietal cortex (PPC) represents the spatial targets of
movement (Gottlieb, 2002, 2007). Together, information from these disparate cortical areas can
contribute to spatial decision-making in risky contexts through integrative cortico-basal ganglia
circuitry (Haber, 2016) that loops back to cortical areas involved in motor execution (Alexander
et al., 1986; Haber & Calzavara, 2009; Parent & Hazrati, 1995). In Chapter 4 (Jarbo &
Verstynen, 2015), our multimodal neuroimaging work has shown that the structural (Averbeck et
al., 2014; Selemon & Goldman-Rakic, 1985, 1988) and functional (Choi et al., 2012) PFC, OFC,
and PPC connectivity converge within distinct regions of the anterior striatum, which are widely
implicated in value-based action decisions (Pauli et al., 2016). This convergent corticostriatal
circuitry delineates a potential mechanism by which the contextual framing, costs, and sensory
estimates that guide value-based action selections are represented and integrated during risky
spatial decision-making.

Our findings presented in Chapter 3 provide evidence that selection behavior changes
significantly under varying levels of contextual framing, costs, and sensory uncertainty, which
led us to question whether differences in selection behavior were due to distinct mental
representations at certain levels of the Drone Strike task conditions. To address this question, we
used fMRI with a multivariate pattern analysis method, representational similarity analysis

(RSA) (Kriegeskorte, Mur, & Bandettini, 2008), that can be used to examine the differences
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between patterns of BOLD activation occurring within and between brain regions. A pattern of
activation refers to the levels of BOLD activation for a given task condition of each voxel in a set
of voxels that comprise an ROI. Greater differences, or distances, quantify the dissimilarity
between patterns of activation and indicate more distinct representations of a condition within or
between ROIs, whereas distances closer to zero indicate similar representations. Since univariate
fMRI analysis approaches average over these patterns of activity, they are limited to identifying
brain regions that are generally involved in a task and may only be sensitive to distinct task
conditions when there is significant change in the condition-specific magnitude of BOLD
activation in those regions. By quantifying pattern differences using multivariate methods like
RSA, both the engagement of a brain region in a task, as well as any potentially distinct
representations of different task condition levels within and between regions can be assessed
(e.g., individual finger movements in primary motor and sensory cortex (Diedrichsen, Wiestler,
& Krakauer, 2013; Walther et al., 2016), face and house exemplars in inferotemporal cortex
(Kriegeskorte et al., 2008), and object-specificity in perirhinal cortex (Clarke & Tyler, 2014).
RSA provides a powerful method for distinguishing between patterns of neural responses that
correspond to condition-specific mental representations of a behavioral task.

In this final dissertation experiment, we address Aim 3 where we hypothesized that
patterns of BOLD activity in the anterior striatum encode different levels of task conditions
during risky spatial decisions. Based on our identification of convergent corticostriatal
connectivity (Chapter 4) (Jarbo & Verstynen, 2015), we used a set of a priori,
structurally-defined striatal and cortical ROIs from that study with a version of the Drone Strike

paradigm (Chapter 3) adapted for fMRI in a group of healthy adult participants. To determine
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whether or not the network differentially represents levels of context (i.e., harm vs help) and cost
(i.e., no-penalty vs penalty), we use RSA to assess the degree of similarity between patterns of
BOLD activity within regions of PFC, OFC, PPC, and the anterior striatum. In particular, if any
of the striatal convergence zones reliably distinguishes between task contexts and costs, then that
region may serve as an integrative hub that represents a subjective value signal that can impact

action selections during risky spatial decisions.

5.2 Methods

5.2.1 Participants

We recruited a total of 20 participants (mean age = 23.6, age range = 18-35; 17 female, 3 male)
who all performed a revised version of the Drone Strike task (see Section 5.2.2) while we
collected whole brain fMRI data of BOLD activity. Prior to the MRI session, 19 participants
completed two consecutive 1-hour sessions of the behavioral task described in Chapter 3. The
20th participant completed two full behavioral sessions, but the participant pressed a key that
caused the experiment code to terminate immediately before the final run of the task during the
second session. The participant completed the final run, but the behavioral data from the first
three runs of the task could not be recovered. Their data were excluded from the behavioral
analysis, and that individual still participated in the MRI session described below. Fieldmap
images for two participants (one female; one male) could not be reconstructed and then used to
correct magnetic field inhomogeneities in the echo planar images (EPI) we acquired while the
participants performed the task. Imaging data for those participants were excluded from all MRI

analyses.
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All participants were neurologically healthy adults with not history of head trauma,
neurological or psychological pathology. Additionally, all participants were screened for normal
or corrected-to-normal vision, colorblindness, right-handedness and unobstructed use of the right
arm and hand to use an MRI-safe mouse during scanning, as well as any other standard
contraindications to safely participating in an MRI scan. An experimenter reviewed a paper
consent form with each participant and obtained informed consent approved by the Institutional
Review Board at Carnegie Mellon University and the University of Pittsburgh from all
participants in the study. All participants were compensated $30 per hour for a total of $45 upon

completion of the 90-minute MRI scanning session.

5.2.2  Behavioral Experimental Design
Psychophysics Toolbox 3.0.12 (Brainard, 1997; Kleiner et al., 2007) with MATLAB (Release
2016a, The MathWorks, Inc., Natick, MA, United States) was used to conduct the experiment on
a desktop computer running Ubuntu 16.04. All experimental task instructions and stimuli were
presented on a 24” LCD screen with a total resolution of 1920 x 1200 pixels and a 60 Hz screen
refresh rate that was positioned at the rear end of the magnet bore. All participants reported
having full view of the screen via a mirror positioned atop the head coil. In the scanner,
participants used an MR-safe optical computer mouse (MagDesign) and mouse pad fitted onto a
plastic lapboard to perform the behavioral task.

In this revised version of the Drone Strike paradigm, we used a 2x2 (harm vs. help
context x no-penalty vs. penalty) within-subject design. Based on our findings in Chapter 3, the

significant interaction between context and cost is of interest in this study and it is directly
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relevant to our prediction that the contextual framing of a spatial decision influences action-value
representations within the striatum. Also, given that the significant effect of target variance on
selection behavior has been well-established via replication across both experiments in Chapters
2 and 3, we eliminated the low variance condition, so that the target stimuli across all conditions
and trials had high variance, i.e., standard deviation = 100 pixels. We provide additional details
below about how stimulus presentation here differs from the version of Drone Strike described in
Chapter 3. All participants completed a total of eight fMRI scan runs that lasted 7:10 minutes.
We used a block design with 20 s of task followed by a rest period of 12-20 s (uniformly
sampled, mean rest period = 16 s) to allow for relaxation of the BOLD signal after the final trial
of a block. Participants attempted to complete as many trials as possible within each of eight task
blocks. The order of blocks was counterbalanced within runs using a Latin square approach that

minimized the correlation between block orders across runs for each participant.
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Figure 5.1 Experimental run, block, and trial timelines. A) In each run, participants
completed eight blocks of trials that lasted 20-22 s that were each followed by 12-20 s of
rest. A run lasted 7:10 minutes. B) At the beginning of each block, text reading “Wait for
instructions” appeared for 4 s and cued participants to the upcoming set of block
instructions. Then, participants received a reminder of the enemy, ally, and tree
distribution colors for 4 s followed by a 4 s presentation of text instructions in the font
color the same color as the target distribution for that block. The offset of block
instructions onscreen signaled the beginning of each block. A blank screen was then
presented for 2 s prior to the first trial within each block. C) A fixed ITI = 2 s was used
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prior to each trial. Each trial began with a fixation (+) presented at the center of the
screen. Participants had to click and hold the left button within 500 ms of fixation onset
to initiate the trial or else an “ABORT” message appeared for 500 ms indicating a failed
trial. On a successfully initiated trial, the target and non-target stimulus distributions
appeared onscreen for 250 ms and then disappeared. Participants then had 2 s to indicate
their target selection by dragging the cursor (x) and releasing the mouse button. An
“ABORT” message was displayed for 500 ms on trials where participants failed to
execute a selection within 2 s. The next trial began 2 s after a selection was made or after
the “ABORT” message disappeared. At the end of each block, a blank screen was
presented during the 12-20 s rest period until the next set of stimulus reminders and block
instructions were presented. Note: Stimuli and fonts in figure are rescaled here for clarity.

On each block of trials, participants were tasked with using a computer mouse to select a
location within a target stimulus distribution that was visually overlapped by a non-target
stimulus distribution presented simultaneously onscreen (Figure 5.1). Participants were also
instructed to attempt to complete as many trials as possible within each block and across the
entire experiment. We continued to use the same wartime scenario used in the original version of
Drone Strike to provide contextual framing for each task condition, wherein participants selected
either the location of a missile strike on enemies or an ammunition delivery to allies from a
drone on a series of trials within a block. Prior to the experimental task runs, participants
completed four practice blocks to familiarize themselves with using the optical mouse and
lapboard during the acquisition of a T1-weighted structural image. An experimenter
simultaneously verified practice performance of each participant via a monitor in the scanner
control room. All participants verbally confirmed that they were comfortable performing the task
and understood the new task timing structure.

Before each block of trials, participants were presented for 4 s with a visual reminder of

the colors that corresponded to the enemy and ally stimuli. To control for the effect of stimulus
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color on selection behavior, two sets of three colors (set 1: purple, red, white; set 2: magenta,
blue, yellow) were alternated between participants with the colors of enemies, allies, and trees
being counterbalanced within participants. Each participant only saw one set of colors, and the
colors that corresponded to each of the three stimulus types remained the same for the entire
experiment. We selected sets of colors such that any stimulus color in a pair was readily
discriminable.

After a wait screen was presented for 4 s, the instruction for the upcoming set of trials
was presented for 4 s. On “drone strike” missions, participants were instructed to “Neutralize as
many enemies as possible” and to “Deliver ammunition to as many allies as possible” on
“ammunition delivery” missions. In both cases, the color of the instruction text matched the
target stimulus (i.e., enemies on drone strikes and allies on ammunition deliveries). Following
the instruction period, a blank screen was presented before a fixation (+) appeared at the center
of the screen indicating the onset of a trial. A fixed ITI = 2 s was used as the onset time for each
trial within a block.

To initiate a trial, the participant had to click and hold the left mouse button within 500
ms, otherwise they received an “ABORT!!!” message at the center of the screen indicating a
failed trial. For successfully initiated trials, the target and non-target distributions were presented
together for 250 ms before disappearing. Both the target and non-target distributions appeared
completely on the screen. Each stimulus distribution was presented as a Gaussian distribution of
100 dots that were three pixels in diameter. The non-target distribution could appear either to the
right or left of the target distribution with equal probability across trials. The means of the

distributions were separated by fixed horizontal distance of 50 pixels and were randomly
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sampled from a distribution of 2D coordinates to appear a minimum of 350 pixels away from the
center of the screen. On no-penalty blocks, the non-target stimulus distribution represented the
position of trees. On penalty blocks, the target and non-target distributions represented the
positions of enemies and allies, respectively. The standard deviation of both the target and
non-target distributions were held constant at 100 and 25 pixels, respectively, across the entire
experiment for all participants.

After the stimulus distributions disappeared, the mouse cursor was immediately presented
as an “x” at the center of the screen. Participants then had 2 s to drag the cursor to a location and
then release the mouse button to indicate their selection for each drone strike or ammunition
delivery. Upon completion of a successful or failed trial, a subsequent trial was immediately
initiated after the 2 s ITI until the end of the 20 s block. An additional 2 s padded the end of each
block in the event that an initiated trial was in progress after 20 s from block onset to allow for
the participant to complete the trial. All participants completed at least 319 total trials across the
entire experimental session. At the end of each block and run, a report screen was presented that
indicate the progress through the experiment along with a running total of enemies killed, allies
killed, ammunition delivered, and ammunition intercepted. This report remained on the screen
for 4 s followed by a blank screen until the cue for the next block appeared on the screen at the
end of the 12-20 s rest period. A final score report screen was presented at the end of the
scanning session before the participant was removed from the scanner.

The same scoring structure used in Chapters 2 and 3 were used in this experiment.
Regardless of context (i.e., drone strike or ammunition delivery) or cost (i.e., no-penalty or

penalty) condition, selecting the mean of the target distribution guaranteed the maximum
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possible score on a trial. Equations 2.2-2.4 were used to calculate scores across trials. First, the
Euclidean distance between a selection and the target distribution mean (Equation 2.2) and the
non-target distribution mean (Equation 2.3) were computed. These distances were used in
weighted hyperbolic functions with a 1/d falloff to compute the score for each trial. Equation 2.3
shows the target function weighted by ® and the non-target by 1-o. In no-penalty blocks, ® =1,
so that only the selection distance from the target contributed to the score (i.e., no loss, only
enemy kills or ammunition delivered), while @ = 0.33 to additionally reflect losses on penalty
blocks as ally kills or ammunition intercepted. As in Chapter 3, the computed scores were
multiplied by 1000, rather than 100, and a rounded to yield an integer value between 0 and 100
for each trial. The total score for each block of trials was added to a running total across all

blocks within each experimental session.

5.2.3 Behavioral Data Analysis
For the present study, we performed analyses on the same behavioral dependent measures as
Chapter 3 with the exception of selection variability: selection bias away from the target,
selection variability (SV), reaction time (RT), movement time (MT), maximum mouse cursor
velocity (maxV), and average mouse cursor velocity (avgV). All calculations used to compute
each dependent variable from selection, timing, and movement data were the same as previously
described. We refer the reader to Section 3.2.3, for full details of these calculations.

All dependent variables were subjected to a two-way repeated measures ANOVA to
observe whether there were any significant 2-way interactions or main effects of context and

cost. Since five dependent variables were subject to ANOVA, a Bonferroni correction of o =

151



0.05/6 = 0.008 was used as a threshold for statistical significance. For significant results on

omnibus F tests, effect sizes were estimated as ni. In order to determine the directionality of

significant main effects or interactions from the omnibus F tests, we report the group means and
standard errors for each dependent variable across all conditions, and the results of 1-sample and

paired sample t-tests with effect sizes computed as Cohen’s d.

5.2.4 MRI Acquisition

All MRI data were acquired at the Scientific Brain Imaging Research Center at Carnegie Mellon
University on Siemens Verio 3T magnet fitted with a 32-channel head coil. Full details of our
scanning protocol and acquisition parameters used for all participants are presented in Table 5.1.
Whole brain images were acquired for all scan sequences. After the two localizer scans, a
T1-weighted structural image was then acquired while participants practiced the task. The
structural scan was followed by the first four runs of the task, field maps, and final four runs of
the task. The entire MRI session took no longer than 90 minutes with approximately 70 minutes

of scanning time per participant.
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Table 5.1 MRI scanning protocol and acquisition parameters

Scan Type | Parameters T1 (structural) BOLD-EPI (functional) Field Map
No. of scans 1 8 1
No. of volumes 1 210 1
Pulse sequence type T1 echo-planar gradient echo
Parallel imaging GRAPPA =2 Multiband = 3 N/A
Field of view 256 x 256 x 176 mm’? 212x 212 x 138 mm? 212 x 212 x 138 mm’®
Matrix size 256 x 256 106 x 106 106 x 106
Slice thickness I mm 2 mm 2 mm
Interslice skip 0.5 mm 0 mm 0 mm
Acquisition orientation sagittal -38a()1(ei321ti1t 3 ;;;thﬂt
Acquisition order s;gfgizl;(;t interleaved ZZE:EEEE
Echo time (TE) 1.97 ms 30.0 ms ‘7‘:82 22
Repetition time (TR) 2300 ms 2000 ms 8.8 ms
Flip angle 9 deg 79 deg 72 deg

5.2.5 MRI Preprocessing

All MRI preprocessing was conducted using a combination of functions from SPM12 (version
7219; http://www.fil.ion.ucl.ac.uk/spm) and FSL (version 5.0.9; https://fsl.fmrib.ox.ac.uk/fsl).
DICOM images for the T1, EPI, and field map images were converted into NIfTT volumes using
spm_dicom_convert and spm_file merge to combine all 3D EPI images into a single 4D volume.
The same preprocessing steps were applied for all participant imaging data. First, the

T1-weighted structural image dimensions were reoriented to RPI (right-left, posterior-anterior,
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inferior-superior) using the fslswapdim function to match the MNI space convention of the
MNI152 T1 Imm.nii T1-weighted 1 x 1 x 1 mm template image provided with FSL. To align
the structural and functional scans within participants, we estimated the rigid body coregistration
parameters for aligning the native space T1 to MNI space. We similarly estimated the
coregistration parameters for aligning all EPI volumes of all scan runs to the EPLnii
T2*-weighted 2 x 2 x 2 mm template provided with SPM. For both coregistration steps, we used
the same estimation options (cost function = ‘nmi’, normalized mutual information; separation =
[4 2]; tolerances = [0.02 0.02 0.02 0.001 0.001 0.001 0.01 0.01 0.01 0.001 0.001 0.001]; FWHM
= [7 7]; interpolation = 4th degree spline; no wrapping; no masking) Next, to correct for any
head movements that may have occurred during each scan run, we estimated six motion
correction parameters for X, y, and z translation and rotation roll, pitch, and yaw axes (realign
options: quality = 1; FWHM = 5 mm; separation = 2; realign to first image; wrap along y-axis =
[0 1 0]; interpolation = 4th degree spline). These motion correction parameters were then
included as regressors in our general linear model analysis. To apply the estimated coregistration
and realignment parameters, we resliced (reslice options: masking = 1; interpolation = 4th degree
spline; reslice all images and mean, which = [2 1]; wrap = [0 1 0]) resulting in the alignment of
all EPI image volumes to the first volume of the first EPI run. We used a threshold of 2 mm of
translation movement in any direction or 2 degrees of rotation on any axis as an exclusion
criterion for motion. All participants had fewer than x mm and x degrees of movement. To
correct for magnetic field inhomogeneities (B0 distortions), we created a voxel displacement
map aligned to the first volume of the first EPI run using the FieldMap Toolbox provided with

SPM12. The field map phase image and short TE magnitude image were used to estimate a voxel
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displacement map using the FieldMap Toolbox default parameters, total readout time = 7.6318
ms. For two participants, field map reconstruction failed for reasons that we still have to
investigate. Since correcting for B0 distortions can improve BOLD signal in regions of particular
interest for this study (i.e., orbitofrontal cortex), we seek to address, and hopefully rectify, this
issue to reanalyze the fully preprocessed EPI data. For successful voxel displacement map
reconstructions, the map can be applied to EPI data to counter signal dropout that commonly
occurs in ventral prefrontal brain regions during fMRI (Weiskopf, Hutton, Josephs, &
Deichmann, 2006). Subsequent preprocessing and analyses were conducted on data without field
map correction for all participants. To prepare the EPI data for group-level GLM analyses, we
spatially normalized the motion corrected images using SPM12’s batch normalization functions
to estimate (normalization estimate options: bias regularization = 0.0001, bias kernel FWHM =
60; affine registration template = ‘mni’; regularization = [0 0.001 0.5 0.05 0.2]; smoothing kernel
FWHM = 0; sampling distance = 2) the nonlinear transformation from native to MNI space using
a set of tissue probability maps for gray matter, white matter, and CSF supplied by SPM12, and
then apply (normalization write options: bounding box = [-78 -112 -70; 78 76 85]; resampled
voxel resolution = [2 2 2]; interpolation = 4th degree spline) the transformation to all participant
images. Lastly here, we smoothed the normalized data with a FWHM = [6 6 6] smoothing

kernel.

5.2.6  Modeling BOLD Responses for General Linear Model (GLM) Analysis

Using a general linear model (GLM) approach, we estimated the BOLD response across the

whole brain using a robust weighted least squares approach. From our block design, we used the
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onset times (starting with the cue presentation) for both blocks of a given condition within a run
to specify the first four regressor values within our design matrix for each condition: 1) harm x
no-penalty, 2) harm x penalty, 3) help x no-penalty, 4) harm x penalty. As task regressors, we
specified a fixed block duration of 26 s to include the cue presentation duration (4 s) and block
duration with padding (22 s). We also included the six regressors that were estimated from the
motion correction step described in Section 5.2.5. All regressors were orthogonalized with
respect to the first regressor of a given scan run. We assumed the canonical hemodynamic
response function (HRF) in SPM12 to model the BOLD response and high-pass filtered the time
series using a discrete cosine transform with a cutoff of 96 s. To account for serial correlations in
the data, we used an autoregressive AR(1) model globally across the whole brain. We
constructed four separate contrasts on the task regressors to evaluate whether there were
significant differences in the BOLD response for 1) task - rest: [1 1 1 1], 2) harm - help: [1 1 -1
-1], 3) penalty - no-penalty: [-1 1 -1 1], and 4) context x cost interaction: [-1 1 1 -1]. After fitting
the GLM, we generated contrasts images for all participants and then performed group-level
inference by computing group t stat and p-value maps to determine which areas, if any, across
the whole brain showed significantly different levels of BOLD activation for each contrast. To

correct for multiple comparisons, we used and FDR threshold q < 0.05.

5.2.7 Defining Regions-of-Interest (ROIs)
To define the ROIs for analysis of our fMRI data, we used an a priori set of structurally
connected striatal and cortical ROIs using diffusion spectrum imaging and fiber tractography that

were validated by resting state functional connectivity described in Chapter 4 (Jarbo &
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Verstynen, 2015). All four striatal ROIs contained endpoints from streamlines tracked separately
from regions in dorsal prefrontal, orbitofrontal, and posterior parietal cortex to ipsilateral caudate
and putamen for both hemispheres. Only contiguous voxels in each striatal nucleus that
contained streamline endpoints from all three cortical regions comprised the striatal convergence
zone ROIs. Those convergence zone ROIs were then used as seeds for tractography to create
maps of ipsilateral cortical regions that were structural connected to each of the striatal
convergence zones. As a control, we also tracked streamlines between the precentral gyrus (i.e.,
primary motor cortex) into ipsilateral putamen to identify motor putamen regions. Generally, the
striatal ROIs were localized just caudal to nucleus accumbens and, in the putamen, rostral to
motor-specific striatal regions. Clusters of endpoint terminations in the cortex were distributed
broadly across all three cortical regions bilaterally. All 14 ROIs are listed in Table 5.2 and

depicted in Figure 5.2.

Table 5.2 Structurally-defined a priori striatal and cortical regions-of-interest

Striatal Cortical Motor (Control)
Caudate (163, 34) Dorsolateral prefrontal (1440, 1437) Precentral gyrus (879, 355)
Putamen (213, 109) Orbitofrontal (215, 295) Motor putamen (176, 153)

Posterior parietal (407, 1201)

All ROIs are bilateral and the number of voxels for the left and right ROI, respectively, are listed in parentheses

5.2.8 Transforming ROIs from MNI to native space
All cortical and striatal ROIs were generated in MNI template space and had to be transformed

into the native space of each participant’s EPI data to conduct the representational similarity
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analysis. SPM12’s spatial normalization function outputs a deformation field file in NIfTI
format. The deformation field consists of a set of vector fields that describe the nonlinear
transformation from native T1 space to MNI space. Using the pullback procedure in SPM12’s
deformation utility, we estimated the inverse deformation field and used a 4th-degree spline
interpolation with no smoothing (i.e., Gaussian blurring) in order to warp the ROIs from MNI
space into the native T1 space for each participant’s dataset. Masking was enabled to ensure that
no voxels outside of the images were sampled to estimate the transformation. Each of the ROIs
was then resliced, using the spm_reslice function with a 4th-degree spline interpolation, masking
enabled, and no wrapping, to the realigned and fieldmap corrected mean EPI volume from the

first functional run.

A Striatal Convergence Zone ROls
Left Caudate Left Putamen B Right Caudate =~ M Right Putamen

r - p AN
Motor Putamen (control regions)
Left Putamen B Right Putamen
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Figure 5.2 Structurally-defined striatal and cortical ROIs. ROI-based analyses used a set
of a priori ROIs located bilaterally within each nucleus of the striatum as well as
prefrontal, orbitofrontal, and posterior parietal regions (Chapter 4). Each ROI was
transformed from MNI space into the native EPI space for each participant’s dataset and
the timeseries of BOLD activity across all scan sessions were extracted for all voxels in
each ROI for subsequent analyses. A) Striatal convergence zones (top row) are located in
the anterior striatum, just caudal to the nucleus accumbens and rostral to motor regions
within the putamen with some overlap on the rostral-caudal axis. The images show
coronal slices of a template brain in MNI space (larger positive numbers are more rostral)
with the left caudate (blue), left putamen (red), right caudate (yellow), and right putamen
(cyan) ROIs overlaid. Control regions in the motor putamen (bottom row; left = red, right
= cyan) overlap with the convergence zones but are largely situated more caudally in the
putamen. B) Cortical ROIs shown on a 3D brain, defined by endpoints of diffusion
tractography seeded from ipsilateral striatal convergence zones, are located in lateral
regions of dorsal prefrontal, orbitofrontal, and posterior parietal cortices. Views from left
to right: left sagittal (OFC = yellow, DLPFC = cyan, PPC = orange), bottom-up axial
(Right OFC = blue, Left OFC = yellow), top-down axial (Left Precentral = yellow, Right
Precentral = cyan), right sagittal (OFC = blue, DLPFC = red, PPC = green). For
orientation, a small capital letter A denotes the anterior/rostral direction.

5.2.9 ROI-based GLM contrast analysis

To investigate whether or not each ROI showed differences in the magnitude of BOLD

activation across conditions, we compared the mean contrast values for each ROI estimated from

the GLM. We constructed four contrasts for each condition: 1) Harm x No-Penalty: [3 -1 -1 -1],

2) Harm x Penalty: [-1 3 -1 -1], 3) Help x No-Penalty: [-1 -1 3 -1], 4) Help x Penalty: [-1 -1 -1

3]. For the group level analysis, we extracted contrasts values for each ROI from each

participants spatially normalized and smoothed EPI data. We used custom MATLAB functions

to index the voxel locations for each ROI for all participants and then took the corresponding

values from the contrast image for each condition . We then conducted a two-way repeated

measures ANOVA on the group means and computed the effect size for significant main effects
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and interactions as nl%. Post-hoc t-tests were then performed to examine the magnitude and

direction of significant main effects on contrast values.

5.2.10 Modeling BOLD responses for representational similarity analysis

To prepare data for ROI-based representational similarity analysis (RSA), we used a set of
custom MATLAB scripts. First, the raw time series data for all voxels in each ROI were
extracted from the motion corrected EPI data. We used the pca function with singular value
decomposition in MATLAB to orthogonalize the time series data that were then high-pass
filtered with a 96 s cutoff. A custom MATLAB function was used to estimate prewhitened beta
parameters from the time series data. This prewhitening step accounts for the structure of noise
variance and covariance between voxels in order to yield an unbiased estimate of distances
between multivoxel patterns of activity (i.e., Mahalanobis distance) (Kriegeskorte, Goebel, &

Bandettini, 2006).

5.2.11 Representational similarity analysis

To evaluate patterns of BOLD activity, we assume that each voxel in an ROI, for instance,
responds similarly to repeated presentations of the same condition or trial type and a different
response to. Correspondingly, we that same voxel is expected to show a different response to a
different condition. This assumption extends to the multivoxel level in that every voxel in an
ROI, constituting a pattern, is assumed to show a set of unique single-voxel responses to one
condition and a distinguishable set of responses to another condition. The difference between

two patterns can be computed as a distance, e.g., Euclidean, such that greater distances indicate
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greater dissimilarity between information encoded by the voxel activity patterns within or
between ROIs. We computed the Mahalanobis distance because its calculation accounts for the
variance in voxel responses based on their spatial proximity to blood vessels as well as the
covariance in responses of groups of nearby voxels. We used Equation 5.1 to estimate the
cross-validated Mahalanobis distance ( d ) between patterns () for each pair of conditions (i, /)

and averaged across every pair of runs (m, /; total runs M = 8) for a total of (8 choose 2) 28 folds.

M
d:i= Y @—u""W—u)/ MM-1)
1, m; m#l ! / ! /

Eq. 5.1

Computing the Mahalanobis distance, downweighs noisy and highly correlated voxels by
estimating the variance and covariance of pattern responses (Kriegeskorte et al., 2006). Another
advantage of computing the Mahalanobis distance is that the expectation for patterns that are the
same or similar is 0 (Walther et al., 2016). This aspect makes the distance metric straightforward
to interpret: When two patterns are the same or similar, then their true distance is 0, and positive
distance values are indicative of uniquely represented information for each pattern. We then used
a leave-one-run-out cross-validation to obtain the final Mahalanobis distance estimate d for all
six pairwise condition comparisons: 1) harm x no-penalty vs. harm x penalty, 2) harm x
no-penalty vs. help x no-penalty, 3) harm x no-penalty vs. help x penalty, 4) harm x penalty vs.
help x no-penalty, 5) harm x penalty vs. help x penalty, and 6) help x no-penalty vs. help x

penalty. This 8-fold cross-validation yielded 28 unique d values that we averaged together for
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each pairwise condition comparison in all 14 ROIs to generate representational dissimilarity
matrices (RDMs) (Kriegeskorte et al., 2008) (Figure 5.5). To get the average d value for each
RDM, we computed a statistic H that controlled for all the pairwise comparisons within the

RDM (Beukema, Diedrichsen, & Verstynen, 2018). In Equation 2, di ; represents the

Mahalanobis distance between the two patterns compared in each fold and £ = 4 task conditions.

k
H=Y d  /kk—1)
#o

Eq.5.2

Lastly, to determine whether any ROI showed H values that were significantly greater than 0
across all participants, we conducted a right-tailed one-sample t-test against 0 on the group H
values for all ROIs using a Bonferroni-corrected a = 0.005 to control for multiple comparison
across all 10 cortical and striatal ROIs, excluding the four control regions in motor putamen and

precentral gyri.

5.3 Behavioral results

We report our two-way repeated measures ANOVA results along with post hoc t-tests examining
any interactions or main effects of context (harm vs help) and cost (no-penalty vs penalty) on
selection behavior characterized by six dependent measures: selection bias, SV, RT, MT, maxV,
and avgV (Figure 5.3 A-F). We also refer the reader to Tables 5.1 and 5.2 for all statistics,

including group means and standard errors for each dependent variable. Overall, neither the
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2-way interaction between context and cost nor the main effect of context were significant for
any of the six dependent variables, all F(1,19)s < 3.841, all ps > 0.065. We will further address

these findings in light of our results in Chapter 3 in the Discussion (Section 5.4) of this chapter.

Table 5.2 2-way repeated measures ANOVA interaction and main effect results for dependent
variables: selection bias, RT, MT, maxV, and avgV.

DV F(1,19) p Sig. n, t(19) p Sig. Cohen’s d

Bias 3.757 0.068 ns - - - - -

Context N4 <0.001 0.998 ns - - - - -
X RT 1.494 0.237 ns - - - - -
Cost MT 0.298 0.592 ns - - - - -
maxV 0.357 0.557 ns - - - - -

avgV’ 0.084 0.775 ns - - - - -

Bias 0.070 0.794 ns - - - - -

N4 0.339 0.567 ns - - - - -

Context RT 0.332 0.571 ns - - - - -
MT 3.841 0.065 ns - - - - -

maxV 0.017 0.896 ns - - - - -

avgV’ 0.439 0.515 ns - - - - -

Bias 31.888  <0.001 oAk 0.627 5.647 <0.001 HoHk 1.809

N4 34.255  <0.001 oAk 0.643 -5.853  <0.001 HoHk -1.613

Cost RT 6.810 0.017 * 0.264 -2.610 0.017 * -0.150
MT 17.795  <0.001 oAk 0.484 -4218  <0.001 HoHk -0.289

maxV 5.075 0.036 * 0.211 2.253 0.036 * 0.145

avgV 17.678 < 0.001 oAk 0.482 4201 <0.001 HoHk 0.296

Bonferroni-corrected o = 0.008 denoted by (**%*). Significant uncorrected p-value a = 0.05 denoted by (*). Post hoc

paired t-tests for Context = harm - help and Cost = no-penalty - penalty.
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Table 5.3 Condition-wise group (N = 20) means and standard errors (SE) for dependent
variables: selection bias, RT, MT, maxV, and avgV.

Condition

Harm
No Penalty

Harm
Penalty

Help
No Penalty

Help
Penalty

Bias (pixels) SV (pixels) RT (ms) MT (ms) (p‘;;‘z’;:;s) (p‘i‘;ﬁ:;s)

M SE M SE M SE M SE M SE M SE
2715 5775973 527 | 323 3.1 (5211 418 | 8503 416 | 1678  0.94
61.83 443 |89.52 3.00| 338  3.1(580.1 43.6|81.87 4.05|1561 0.79
2334 5.00 | 60.68 540 | 319 29 (5327 440 | 8464 403 | 1670 095
64.68 4.17 |90.45 336 | 348  3.7|585.6 44.1 | 8243 441 |1557 081
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Figure 5.3 Bar graphs with significant main effects of cost. In each panel, bars (red/left=
harm, gray/right = help) represent the group means of each dependent variable across all
conditions with error bars reflecting the 95% confidence intervals of the means.
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Bonferroni-corrected o= 0.008 denoted by *** and uncorrected p < 0.05 by *. A)
Selection bias measured in pixels and larger negative values indicate selections further
away from the non-target distribution, while less negative and positive values reflect
closer selections. The main effect of cost is denoted by a horizontal line in the bottom
half of the panel. B) Selection variability is measured as the standard deviation of
selections in pixels. Greater values correspond to greater selection variability. Horizontal
line represents a significant main effect of cost. There were no significant interactions for
RT, MT, maximum and average velocity, represented in panels C-F. Though a significant
main effect of cost was observed for each as denoted by the horizontal lines. Greater
values for RT and MT reflect slower times, while greater values for both velocity
measures indicate faster mouse movements. All significant main effects, group means,
and standard errors are also reported in Tables 5.2-5.3.

5.3.1 Selection bias and variability

We measured selection bias as the distance, in pixels, between a selection and the target mean on
a trial as we did in Chapters 2 and 3. More negative values indicate selections further from the
target mean in the direction away from the non-target. Less negative and positive values indicate
selections closer to the non-target (Figure 5.3a). We found no significant interaction between
context and cost, F(1,19) =3.757, p = 0.068, nor significant main effect of context, F(1,19) =
0.070, p = 0.794, on selection bias. (However, we note that the context x cost interaction did
trend toward significance, as expected based on our findings in Chapter 3. Using Grubb’s test
(Grubbs, 1969) on the selection bias data, we identified one participant whose bias scores across
context conditions fell further than three standard deviations away from the group mean. When
that participant’s data were removed from the behavioral analysis, the context x cost interaction

became significant, F(1,18) = 12.916, p = 0.002, n;; = 0.418, suggesting that the current sample

size is underpowered for detecting effects driven by the interaction.) The ANOVA revealed a

significant main effect of cost on selection bias, F(1,19) =31.888, p < 0.001, n;=0.627. A post
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hoc t-test confirmed that selection bias was less negative, i.e., closer to the non-target, in
no-penalty conditions than penalty conditions, t(19) = 5.647, p <0.001, Cohen’s d = 1.809
(Tables 5.2 and 5.3).

Though we did not manipulate target variance here as we did in Chapters 2 and 3, we still
measured and analyzed the effects of context and cost on selection variability. We computed
selection variability as the standard deviation of selection endpoints across trials within each
condition. Greater values indicate larger variance, or spread, of selection endpoints about the
target mean (Figure 5.3B). We found no significant context x cost interaction or main effect of
cost. We did observe a significant main effect of penalty on selection variability, F(1,19) =
34.255,p < 0.001, n;, = 0.643. Selection variability was greater in penalty conditions than
no-penalty conditions, t(19) =-5.853, p < 0.001, Cohen’s d =-1.613 (Tables 5.2 and 5.3). Our
findings for the main effect of cost on selection bias and variability closely match those of

Chapters 2 and 3.

5.3.2 Reaction and movement time

Reaction time was recorded at the first mouse movement detected after stimulus offset (Figure
5.3¢). We found no significant context x cost interaction nor main effect of context on RT,
F(1,19)s < 1.494, all ps > 0.237. Though above the Bonferroni-corrected threshold (o= 0.008),
we saw a small main effect of cost on RT that was significant at an uncorrected p < 0.05, F(1,19)

=6.810, p <0.017, n; = 0.264. RTs were slightly slower in penalty conditions than no-penalty

conditions, t(19) =-2.610, p <0.017, Cohen’s d = -0.150 (Tables 5.2 and 5.3). Movement time

was computed as the difference between the time recorded when the selection was made (i.e.,
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mouse button released at selection location) and the RT on a trial (Figure 5.3d). While there was
no significant interaction between context and cost, there was a significant main effect of cost on

MT, F(1,19) = 17.794, p < 0.001, n; = 0.484. In penalty conditions, MTs were significantly

longer than in no-penalty conditions, t(19) =-4.218, p < 0.001, Cohen’s d =-0.289 (Tables 5.2
and 5.3). Replicating our findings in Chapter 3, the analysis of RTs and MTs showed the

participants took longer to initiate movements and make selections in penalty conditions.

5.3.3 Maximum and average velocity

By recording mouse cursor positions and button press and release times, we computed the
maximum and average velocity of the mouse cursor movements during selections on each trial.
There were no significant context x cost interaction or main effect of context on maxV or avgV,
all F(1,19)s <0.439, all ps > 0.515. We did see a significant main effect of cost on maxV at an

uncorrected p < 0.05, F(1,19) =5.075, p < 0.036, n,= 0.211, and at the corrected threshold for
avgV, F(1,19) = 17.678, p < 0.001, n; = 0.482 (Figure 5.3¢ and f). Post hoc t-tests showed

greater (faster) maxV, t(19) = 2.253, p < 0.036, Cohen’s d = 0.145, and avgV, t(19) =4.201, p <
0.001, Cohen’s d = 0.296, in no-penalty conditions compared with penalty conditions (Tables 5.2
and 5.3). As expected, the faster velocities we observed parallel our MT findings, wherein longer

MTs corresponded to slower movement during penalty conditions.
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5.4 fMRI results

5.4.1 Whole-brain GLM results

As a first pass, we conducted a univariate GLM and group-level analysis on the contrasts to
determine the extent to which regions across the entire brain were engaged by the task
consistently across participants. The task-rest contrast showed significant (FDR-corrected q <
0.05, p <0.004) levels of activity above baseline globally throughout the brain. As expected, we
saw clusters of activation in left primary motor regions (participants did task with right hand),
throughout the cerebellum, as well as the and visual cortex. We also observed contiguous
clusters of activation in the putamen bilaterally, but not within either of the caudate nuclei. Small
clusters of activation were observed in posterior and lateral regions of the left OFC, with
multiple larger clusters distributed throughout the left DLPFC. Posterior parietal activity was left
lateralized and primarily in regions of the inferior parietal lobule, including the angular and
supramarginal gyri and intraparietal sulcus. Very little activation was present in the lateral
regions of right parietal cortex. In addition to the areas where our a priori ROIs were located, we
observed task-related activation in the brainstem, insula and amygdala bilaterally, as well as in
large patches along the medial wall in anterior prefrontal cortex, and anterior and posterior
cingulate cortex. Figure 5.5 shows a multislice axial view of the FDR-corrected map for the
task-rest contrast. Overall, the task broadly engages a substantial number of regions across the
brain at the cortical and subcortical levels, including the brainstem and cerebellum. Since none of
the other contrasts yielded voxels that survived FDR correction, we will only report the location
of the small number of voxels that were present using a threshold of p < 0.001. For the harm -

help contrast, we found two very small clusters in the right caudate and right insula. Sparse

169



clusters throughout the cerebellum, along with very small clusters in the pulvinar of the right
thalamus and in right insula, and a medial area of the right middle frontal gyrus were found in
the penalty - no-penalty contrast. Lastly, the interaction contrast showed a small cluster of

activation present in the right caudate as well as in the optic radiations bilaterally.

0.001 ‘NN 0.003
FDR q < 0.05, p < 0.004
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Figure 5.5 GLM results: Map of significant task-related activation for the task - rest
contrasts. A map of voxel activations that survived the FDR-corrected threshold q < 0.05,
p <0.004 is overlaid on an MNI template brain. In this map, darker orange colors
correspond to lower p values, while lighter yellow and white colors indicate higher p
values. All voxels shown here have p < 0.001. A large number of cortical, subcortical,
cerebellar, and brainstem regions were significantly active during the task above baseline.
We observed clusters of activation in left and right putamen and DLPFC, left OFC, and
left PPC, confirming that several of our a priori ROIs were engaged by the task.

5.4.2 ROI-based GLM contrast results

We report the group mean contrast values with standard errors for each ROI in Table 5.4 and the
two-way repeated measures ANOVA results in Table 5.5. We observed a significant main effect
of context in the left motor putamen, F(1,19) =4.402, p = 0.050, n[% = (0.188, wherein the
magnitude of BOLD activation in harm conditions was positive and significantly greater than in
help conditions where contrast values were negative, paired t(39) = 2.226, p = 0.032, Cohen’s d
= 0.809. There was no significant main effect of cost, nor a significant context x cost interaction
in the left motor putamen ROI. We also found a significant interaction between context and cost
in the right precentral gyrus (i.e., primary motor cortex), F(1,19) =7.612, p=0.013, n; = 0.286.
However, neither main effect of context or cost was significant in the right precentral gyrus ROL.
In the harm context, contrast values are positive in no-penalty conditions, but negative in penalty
conditions. This relationship is reversed in the help context: contrast values are negative in

no-penalty conditions and positive in penalty conditions.
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Table 5.4 Contrast value means and standard errors by condition for all regions of interest

Harm Harm

No-Penalty Penalty No-Penalty Penalty
Region-of-Interest M SE M SE M SE M SE
Caudate 0.05 0.51 0.60 0.48 -0.52 0.36 -0.13 0.36
Putamen 0.01 0.41 1.01 0.45 -0.62 0.54 -0.40 0.44
Motor Putamen 0.16 0.38 0.97 0.44 -0.72 0.54 -0.41 0.36
Left OFC -0.49 0.67 0.43 0.62 0.41 0.89 -0.34 0.75
PFC -0.28 0.74 0.02 0.65 0.17 0.88 0.09 0.93
PPC -0.20 0.65 -0.96 0.76 0.18 0.90 0.99 0.98
Precentral 0.82 0.64 -0.82 0.45 0.15 0.77 -0.16 0.80
Caudate 0.66 0.56 0.23 0.64 -0.68 0.62 -0.21 0.50
Putamen -0.12 0.44 0.07 0.41 -0.47 0.56 0.52 0.60
Motor Putamen -0.09 0.46 0.96 0.48 -0.66 0.43 -0.21 0.39
Right OFC -0.39 0.67 1.07 0.68 -0.62 0.70 -0.06 0.69
PFC -0.45 0.55 0.43 0.49 -0.41 0.80 0.43 0.77
PPC -0.93 0.79 -0.83 0.71 -0.43 0.88 2.18 1.10
Precentral 0.51 0.78 -1.06 0.87 -1.21 0.89 1.75 0.89
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Table 5.5 Two-way repeated measures ANOVA results on mean contrast values by condition

Context Cost Context x Cost
Region-of-Interest (159 ) )24 1112, (159 ) )4 1112, (1’1;9 ) )4 1112,
Caudate 1.903 0.184 - 0.684 0.418 - 0.031 0.863 -
Putamen 3.676 0.070 - 1.210 0.285 - 0.590 0.452 -
Motor Putamen 4.402 *0.050 0.188 1.345 0.261 - 0.267 0.611 -
Left OFC 0.011 0.918 - 0.009 0.924 - 0.744 0.399 -
PFC 0.134 0.719 - 0.011 0.917 - 0.036 0.851 -
PPC 1.492 0.237 - <<1 0.980 - 0.601 0.448 -
Precentral <<1 0.993 - 1.028 0.323 - 1.238 0.280 -
Caudate 1.427 0.247 - <<1 0.975 - 0.558 0.464 -
Putamen 0.007 0.933 - 0.825 0.375 - 0.568 0.460 -
Motor Putamen 2.431 0.136 - 2.106 0.163 - 0.431 0.520 -
Right OFC 0.678 0.420 - 1.305 0.268 - 0.463 0.504 -
PFC <<1 0.976 - 0.876 0.361 - <<1 0.978 -
PPC 1.979 0.176 - 1.920 0.182 - 2.670 0.119 -
Precentral 0.220 0.644 - 0.523 0.478 - 7.612 *0.013 0.286

* denotes significance at p < 0.05;

5.4.3 RSA Results

value for Left Motor Putamen is rounded up from p = 0.0495 for table uniformity

To determine whether any ROIs showed reliable differences in encoding unique levels of task

conditions, we computed a summary statistic H over the d values in the RDM for each ROI

across all participants. The group mean H values and 95% confidence intervals are shown in

Figure 5.5. We visualized the pattern distances for each pairwise condition comparison by

constructing RDMs for each ROI. Since the RDMs are symmetric square matrices, the same

pairwise distance comparisons are represented in the upper and lower triangles. The matrix
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diagonal represents the distances between patterns of the same condition, which equal 0. Figure
5.5 shows the group mean RDMs for all of the striatal (Figure 5.5a) and cortical ROIs (Figure
5.5b). In each panel, the top row shows left hemisphere ROIs and right hemisphere ROIs in the
bottom rows. The scales on the right of each panel show the colors that correspond to pattern
distances reflected in each RDM. Darker (blue) colors represent smaller distances, indicating that
patterns of activity within that ROI are very similar for the conditions being compared in a given
cell in the RDM. Lighter (yellow) colors represent greater distances, indicating more dissimilar
activity patterns for the conditions in a cell. Only the left putamen striatal ROI showed a
significant nonzero H at the Bonferroni-corrected threshold a = 0.005, right-tailed t(19) = 3.146,
p =0.003, Cohen’s d = 0.704. The left OFC ROI also showed a significant H at an uncorrected p
value, right-tailed t(19) = 2.053, p = 0.027, Cohen’s d = 0.459. However, this did not survive the
threshold of multiple comparisons correction. Neither were any of the other cortical or striatal

ROIs significant at the p < 0.05 level, all t(19)s < 1.399, all ps > 0.089 (Table 5.6).
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