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Cognitive process models, such as reinforcement learning (RL) and accumulator models of 

decision-making, have proven to be highly insightful tools for studying adaptive behaviors as 

well as their underlying neural substrates. Currently, however, two major barriers exist 

preventing these models from being applied in more complex settings: 1) the assumptions of 

most accumulator models break down for decisions involving more than two alternatives; 2) RL 

and accumulator models currently exist as separate frameworks, with no clear mapping between 

trial-to-trial learning and the dynamics of the decision process. Recently I showed how a 

modified accumulator model, premised off of the architecture of cortico-basal ganglia pathways, 

both predicts human decisions under uncertainty and evoked activity in cortical and subcortical 

control circuits. Here I present a synthesis of RL and accumulator models that is motivated by 

recent evidence that the basal ganglia acts as a site for integrating trial-wise feedback from 

midbrain dopaminergic neurons with accumulating evidence from sensory and associative 

cortices. I show how this hybrid model can explain both adaptive go/no-go decisions and multi-

alternative decisions in a computationally efficient manner. More importantly, by parameterizing 

the model to conform to various underlying assumptions about the architecture and physiology 

of basal ganglia pathways, model predictions can be rigorously tested against observed patterns 

in behavior as well as neural recordings. The result is a biologically-constrained and behaviorally 
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tractable description of trial-to-trial learning effects on decision-making among multiple 

alternatives. 
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1.0  INTRODUCTION 

The flexibility of behavioral control is a testament to the brain's capacity for dynamically 

resolving uncertainty in the interest of goal-directed action. At the intersection of biology and 

psychology, the field of cognitive neuroscience is tasked with the challenge of describing the 

link between complex, adaptive behaviors and the neural processes from which they arise. 

Recognizing the need for different levels of analysis, David Marr (1982)  famously proposed a 

three-tier system for characterizing neurocognitive phenomena including higher level, 

computational models of behavior, algorithmic models of the underlying cognitive mechanisms, 

and lower-level models of neural implementation (Figure 1). Since Marr first proposed the need 

for different levels of analysis, significant progress has been made in understanding the 

computational, cognitive, and neural mechanisms underlying both basic decision-making 

(Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Mulder, van Maanen, & Forstmann, 2014; 

Park, Meister, Huk, & Pillow, 2014; Ratcliff & McKoon, 2008) and reinforcement learning 

(Cockburn, Collins, & Frank, 2014; Frank, Seeberger, & O’reilly, 2004; Lee, Seo, & Jung, 2012; 

Schultz, Dayan, & Montague, 1997; Schultz & Dickinson, 2000).   

At the highest and most abstract of Marr’s three levels, Computational theories seek to 

identify and characterize the fundamental problem being solved – what are the goals of the 

system? At the middle, Cognitive models seek to explain the psychological process used to 

achieve these computational goals – what is the algorithm that converts some input into 
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behaviorally meaningful output? Finally, the lowest and most concrete level seeks to describe 

how cognition is physically realized by the brain – how are cognitive algorithms implemented in 

a physical substrate? The studies conducted in this dissertation are expressly intended to address 

questions at the cognitive level, but are motivated by what is known about the underlying neural 

systems responsible for adaptive decision-making. Cognitive models of decision-making 

predominantly fall within the broader class of accumulation-to-bound models Figure 2A, in 

which a decision is computed by accumulating the evidence until a threshold is met and a choice 

can be made (Brown & Heathcote, 2008; Ratcliff & Smith, 2004; Ratcliff, Smith, Brown, & 

McKoon, 2016; Trueblood, Brown, & Heathcote, 2014; Wagenmakers, van der Maas, & 

Grasman, 2007). Accumulator models are somewhat unique in that they have been used to 

simultaneously describe behavior as well as the dynamics of choice-related neural activity 

(Churchland, Kiani, & Shadlen, 2008; Marshall et al., 2009; Murakami, Vicente, Costa, & 

Mainen, 2014; Polanía, Krajbich, Grueschow, & Ruff, 2014; Shadlen & Shohamy, 2016; M. N. 

Shadlen & Newsome, 1996). There are, however, several limitations of accumulator models that 

vastly limit the scale at which they can be used to make inferences about decision-making in the 

real world. For instance, most accumulator models are restricted to describing decisions between 

two alternatives and assume that parameters are fixed across time. Thus, these models provide a 

useful resource for describing the basic building blocks of the decision process, but fall short of 

describing how the decision process changes as a function of experience or in response to 

feedback from the environment. 

Critically, these particular limitations are addressed by a different cognitive framework, 

called reinforcement learning (RL; Figure 2B). Basic RL theory prescribes an algorithm for 

learning to distinguish between actions that are “good” (e.g., actions that propel you closer to 
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some goal state) from those that are “bad” (e.g., actions and propel you in the opposite direction 

or, at best, fail to return the expected results). The major limitations of RL are complementary to 

those of accumulator models.  RL offers insight into why we consider some actions better than 

others without offering any detailed insights into how we actually choose to execute good actions 

and avoid bad ones; whereas the tradeoff is flipped for accumulator models. 

Figure 1. Marr’s levels of analysis. 

Models at the computational level (top) are intended to capture the computational goals of a system, 
visualized here as a statistical model of Bayesian inference which posits that internal prior beliefs P(θ) are 
updated by computing the posterior probability P(θ|x) of over alternative hypotheses θ ∈{θi, …θn} given 
their respective likelihoods P(x|θ). The cognitive level (middle), also referred to as the representational or 
algorithmic level, aims to describe the psychological process responsible for generating behavioral 
phenomena. The middle schematic depicts the drift-diffusion model (DDM; Ratcliff (1978); see Ratcliff 
et al. (2016) for a recent review), a popular model of binary choice based on Wald’s Sequential 
Probability Ratio Test, the Bayes optimal solution for choosing between two hypotheses in the shortest 
amount of time given an accepted level of error. Models at the implementation level (bottom) intend to 
describe how computational principles and cognitive algorithms arise from a physical (neural) substrate. 
Such models range widely in scope, from compartmentalized models of individual neurons to local circuit 
interactions between populations of neurons to the functional dynamics across entire networks. It is 
convenient to discuss and represent these levels as being separated by discrete boundaries, however the 
modern view has shifted towards thinking of these levels as existing on a gradient that ranges from 
abstract descriptions to lower level biological models.  
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Traditionally, neurocognitive theories of decision-making and RL have proceeded in 

parallel and have mostly focused on non-overlapping areas of the brain. However, recent efforts 

to integrate cognitive modeling with experimental neuroscience have uncovered promising links 

between these theoretical models and a subcortical network called the basal ganglia (BG; see 

Figure 3). Over the past decade it has become increasingly clear that, in addition to its well-

known role in guiding feedback-dependent learning, the BG is also a critical node in the larger 

decision-making network (Balleine, Delgado, & Hikosaka, 2007; Dunovan & Verstynen, 2016; 

Lo & Wang, 2006), acting as a critical way-station for integrating decision-related inputs from 

cortex and the midbrain dopaminergic signals that drive RL (Bogacz & Gurney, 2007; Cockburn 

et al., 2014; Forstmann, Anwander, et al., 2010; Frank et al., 2015; Gurney, Humphries, & 

Redgrave, 2015; Ratcliff & Frank, 2012). Thus, there exists a clear, well defined biological 

substrate for regulating adaptive goal-directed behavior; however, how RL and decision-making 

algorithms at the cognitive level emerge from the pathway-level organization of cortico-BG 

networks remains to be explicated.  

Here, I present a series of theoretical and empirical experiments designed to evaluate the 

utility of encoding action uncertainty as a dynamic competition between opposing control 

pathways in this network that facilitate (i.e., a Believer) or suppress (i.e., a Skeptic) a decision. 

When combined with principles of feedback-dependent learning prescribed by RL (Sutton, 

Barto, & Book, 1998), I show that this Believer-Skeptic framework offers a biologically 

motivated and behaviorally tractable account of the neural and cognitive mechanisms underlying 

adaptive, goal-directed behavior. Based on the outcomes of simulations in section 2.0 , I test the 

assumptions of this framework against empirical observations in two behavioral experiments. 
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The first experiment (section 3.0 ) tests the assumption that control is learned via feedback-

dependent adaptation of the drift-rate of evidence accumulation – representing dopaminergic 

modulation of the balance of direct- and indirect-pathways – showing that this mechanism 

effectively tunes proactive control to statistical demands of the environment across contexts. In a 

second experiment (section 4.0 ), I explore how feedback-dependent changes in the drift-rate 

accounts for choice behavior in the context of multiple alternatives, using a reaching paradigm 

inspired by the classic Iowa Gambling Task (IGT), to investigate the interplay between indices 

of economic strategy and sensorimotor adaptation.  

Figure 2. Accumulator and Reinforcement Learning Models. 

(A) Parameterization of generic accumulation-to-bound decision model, adapted from Dunovan et al.
(2015). (B) Schematic of basic Reinforcement Learning framework, showing the effect of positive (green
arrows) and negative (red arrows) reinforcement (rt) on the estimated value x(.)t of choosing a “left” (L)
or “right” (R) action for five sequential trials. Due to negative reinforcement of leftward movement and
repeated positive reinforcement of rightward movement, the agent learns to associate moving to the right
with a greater value, x(R)t > x(L)t.
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2.0  OVERVIEW OF CORTICO-BASAL GANGLIA CIRCUITRY 

2.1 MAJOR PATHWAYS THROUGH THE BASAL-GANGLIA 

The BG are thought to be organized as a system of parallel channels, each representing specific 

task-relevant actions. The canonical model (Albin, Young, & Penney, 1989; Alexander, DeLong, 

& Strick, 1986) of the BG assumes that the input to each action channel follows two separate 

pathways to the main output nucleus of the BG, the internal globus pallidus (GPi): a direct 

pathway which facilitates action execution (Figure 3; green) and an indirect pathway which 

suppresses action execution (Figure 3; blue). Cortical projections to distinct subpopulations of 

medium spiny neurons (MSNs) in the striatum form the inputs to the direct (dMSNs) and indirect 

(iMSNs) pathways. Activation of the direct pathway suppresses tonic firing in the GPi, thereby 

facilitating action execution by disinhibiting thalamic activation of primary motor cortex (M1). 

Conversely activation of the indirect pathway strengthens GPi output via inhibitory connections 

with the external globus pallidus (GPe) and subthalamic nucleus (STN), thereby suppressing 

action execution. In contrast to the channel-focused regulation of BG output by the direct and 

indirect pathways (Albin et al., 1989), activation of the STN through the hyper-direct pathway 

(Figure 3; red) leads to strong, diffuse activation of the GPi, acting as a general “braking” signal 

on all action channels (Aron & Poldrack, 2006; Aron, Robbins, & Poldrack, 2014).  
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Central to the canonical model is the assumption that, for a given action channel, the 

direct and indirect pathways are parallel and independent until converging in the GPi. In recent 

years, combined optogenetic and behavioral experiments (Cazorla et al., 2014; Cui et al., 2013; 

Friedman et al., 2015; Oldenburg & Sabatini, 2015) have strongly challenged this assumption, 

suggesting that competition between these pathways is fundamental to many BG-mediated 

behaviors. These experimental techniques have also led to the discovery of novel architectural 

and physiological properties within the BG that hold promise for resolving disagreements about 

its role in generating adaptive rather than habitual behavior. For instance, lateral connections 

have been identified connecting direct and indirect MSNs in the striatum (Taverna, Ilijic, & 

Surmeier, 2008). Moreover, a significant proportion of direct pathway MSNs send projections to 

the GPe of the indirect pathway, referred to as bridging collaterals (Cazorla et al., 2014) (Figure 

3; green dotted-line). This interaction is compounded by a recently identified feedback loops 

from GPe back to the striatum (Mallet et al., 2012), delivering widespread inhibition (Silberberg 

& Bolam, 2015) to both major MSN subtypes and fast-spiking interneurons (FSIs). Along with 

these more recently discovered structural pathways, the well-known convergence of the direct 

and indirect pathways at the GPi (Smith et al., 1998b) also implies that these opposing control 

pathways directly compete for control over BG output.   
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Figure 3. Cortico-basal ganglia pathways and control models 

(A) Cortico-BG pathways including three major inputs to the striatal direct (green), indirect (blue)
pathways, and the subthalamic hyper-direct (red) pathway. Bridging collaterals (green, dotted) connect
the direct pathway to the indirect pathway via projections to the GPe. The arkypallidal pathway (orange)
sends inhibitory feedback projections from the GPe to the striatum. Both the direct pathway (cortex-
striatum-GPi) and “short” indirect pathway (cortex-striatum-GPe-GPi) form focused projections
throughout the network corresponding to individual action channels. The “long” indirect pathway (cortex-
striatum-GPe-STN-GPi) and hyper-direct pathway (cortex-STN-GPi) deliver diffuse excitatory inputs to
the output nucleus. (B) Independent Levers Model (i.e., the canonical model) assumes that the direct (left,
green), indirect (middle, blue), and hyper-direct (right, red) pathways are structurally and functionally
segregated. Each pathway is operated in isolation for facilitating, suppressing, or braking motor output in
the BG. (C) Pulley Competition Model (i.e., Believer-Skeptic) assumes that the direct and indirect
pathways compete throughout the BG, with the strength of each pathway acting as weights on opposing
sides of a pulley. As activation in the direct pathway overpowers that of the indirect pathway, this
imbalance accelerates the network toward “facilitation,” resulting in an executed action when the
difference reaches a critical threshold (dotted line). In the event of a stop cue, the action can be reactively
canceled if the pulley brake (red brake pad) is activated before the direct-indirect difference reaches a
critical threshold. The accelerating (e.g., nonlinear) dynamics of an imbalanced pulley lead to less
efficacious braking when the network is pulled further toward action execution (e.g., longer brake streaks
on pulley wheel). This dependency illustrates how proactive modulation of the direct-indirect balance
may influence reactive stopping via activation of the hyper-direct pathway. Adapted from Dunovan and
Verstynen (2016).
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At a conceptual level, the canonical model (Albin et al., 1989) proposes that the cortico-

BG pathways act as independent levers (Figure 3B), operating in a mutually exclusive manner 

for individual actions. This depiction conflicts with the growing body of structural and functional 

evidence (Cazorla et al., 2014; Cui et al., 2013; Dunovan et al., 2015; Mallet et al., 2016) that 

these pathways dynamically compete for control over BG output (i.e., whether an action is gated 

or remains suppressed). For instance, motor output is preceded by co-activation of direct and 

indirect MSNs in the striatum (Cui et al., 2013). This finding has been interpreted as evidence of 

a center-surround mechanism (Mink, 1996), where the direct pathway is activated for a target 

action (e.g., center) and the indirect pathway is activated for competing actions (e.g., surround) 

(Friend & Kravitz, 2014). This theoretical insight is an important one and a likely candidate 

mechanism for action-selection in the BG. However, I will argue that this is an incomplete 

description of indirect pathway contributions to behavior. In contrast with this view, a recent 

study found that learning to execute goal-directed behavior was associated with opposing 

plasticity of cortico-striatal synapses, increasing the excitability of direct MSNs while 

suppressing the excitability of indirect MSNs (Shan, Ge, Christie, & Balleine, 2014). This 

outcome suggests, rather than behaving as independent levers, the direct and indirect pathways 

act as weights on opposing sides of a pulley that bias the network toward a more facilitating or 

suppressing state for a given action (Figure 3B). Over the course of learning, more weight is 

added to the direct pathway of sensorimotor mappings that yield positive results or facilitate goal 

acquisition whereas weight is added to the indirect pathway of aversive mappings (Frank, 2005). 

Indeed, recent theoretical studies have found that effective action selection requires simultaneous 

activation within the direct and indirect pathways of all action channels, whereas independent 
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pathway activation leads to simultaneous activation of competing actions or a failure to execute 

any action at all (Gurney et al., 2015).  

The pulley model rests on the assumption that, in addition to supplying general surround 

inhibition, the indirect pathway is also capable of selectively opposing action-specific signals in 

the direct pathway. Several lines of evidence support this duality.. First, projections from the 

GPe (short indirect) form proximal synapses on the soma of target cells in the GPi whereas 

inputs from the STN (long indirect/hyperdirect) form distal dendritic synapses with broder 

patches of cells (Bolam, Hanley, Booth, & Bevan, 2000; Parent & Hazrati, 1995; Smith, Bevan, 

Shink, & Bolam, 1998b). These more focal projections to the BG output via the short indirect 

pathway are mirrored by projections originating from striatal direct pathway cells (Smith, Bevan, 

Shink, & Bolam, 1998a). Thus, it is plausible that at least one of the functions of the short 

indirect pathway is to selectively oppose the facilitating influence of the direct pathway on single 

actions. Recent investigation into the functional topology of striatal MSNs has revealed 

substantial spatial clustering of functionally correlated MSNs, each cluster comprising 

simultaneously active direct and indirect pathway neurons (Barbera et al., 2016). Predictive 

modeling showed that the combined activity of both dMSN and iMSN-contributors to cluster 

dynamics tracked locomotive behavior in mice more reliably and that these predictions declined 

in models that failed to account for spatial clustering or when focusing on a single pathway. 

Finally, dopaminergic feedback to the striatum has opposing effects on recently active cells in 

the direct and indirect pathways, reinforcing dMSNs while suppressing iMSNs. Given that both 

pathways are active prior to movement and that the combined activation of these pathways better 

accounts for active locomotion than activity in the direct pathway alone (see also Yttri & 



11 

Dudman (2016)), the phasic bursts and dips in striatal dopamine should lead to action-specific 

plasticity in both pathways.  

The pulley model is also consistent with the putative role of BG circuitry in RL, storing 

and updating the relative value of alternative actions via feedback-dependent weighting of 

cortico-striatal synapses (Bogacz & Larsen, 2011; Frank et al., 2004). This feedback-dependent 

plasticity provides a critical bridge between prior experience and the moment-to-moment 

accumulation of evidence for choosing between alternative actions.  

2.2 BASAL-GANGLIA CONTRIBUTIONS TO DECISION-MAKING 

Based on this evidence that action uncertainty modulates the competitive accumulation of two 

opposing signals, we recently proposed a novel recapitulation of the role of BG pathways in 

decision making (Dunovan & Verstynen, 2016). Rather than viewing BG pathways as 

independent, cortically operated control levers for gating motor output, we propose that the BG 

encodes action uncertainty through a dynamic competition between populations of action 

facilitating (i.e., Believer) and suppressing (i.e., Skeptic) units. In this way, uncertainty is 

resolved on a moment-by-moment basis depending on the instantaneous state of direct and 

indirect pathways. Because the default state of the BG is heavily motor-suppressing (i.e., the null 

hypothesis of BG decisions is to suppress actions), the burden of proof falls on the Believer to 

present sufficient evidence for selecting and executing a particular action. This competition can 

be viewed as one way that for the BG to implement a dynamic threshold on gradually 

accumulating decision evidence. The Believer-Skeptic framework presented here assumes that 

cortico-BG pathways implement a decision threshold as a dynamic competition of action 
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facilitating and suppressing network states. While I propose this to be a more neurally plausible 

mechanism of threshold implementation than that presented in the DDM, this is not to say that 

model abstraction in the DDM is not useful. In fact, it is necessary for developing quantitative 

theories that can be meaningfully parameterized at cognitive and behavioral levels of description. 

In order for these models to be applied to neural data there must be an appreciation for the 

mapping between cognitive parameters and the more complex neural processes that they 

represent.  

Within the standard DDM, ‘competition’ is inherently captured by the accumulating 

decision process, where each step up or down represents the instantaneous evaluation of two 

competing hypotheses: an action decision and its null alternative. In the context of basic 

perceptual decisions, stimuli with high signal-to-noise ratio (SNR) produce faster rates of 

evidence accumulation toward a decision boundary, and are thus recognized faster and more 

reliably than noisy stimuli. This is an important point to emphasize, as the unidirectional change 

in the speed and accuracy of decisions is what fundamentally distinguishes a change in drift-rate 

from a change in the decision threshold in the standard DDM. As hinted at earlier the decision 

process can instead be reparameterized to reflect different hypotheses regarding the neural 

processes responsible for integrating contextual information with sensory evidence (Standage, 

Blohm, & Dorris, 2014). In the Believer-Skeptic framework, contextual information and sensory 

evidence converge as weighted cortico-striatal inputs to the direct and indirect pathways of a 

single action channel (Figure 4A). The strong recurrent dynamics within each pathway lead to 

bistability in the network output (Figure 4B), an important property for implementing a switch 

between two states (Simen, 2012). Even when the weighted input to each pathway is 

comparable, small amounts of noise can disrupt the balance enough to cause a state transition 
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given sufficient self-excitation. As a result, both pathways initially increase their firing rate then 

diverge as activation in one pathway supersedes and inhibits the other, switching the network 

toward a ‘Go’ or ‘NoGo’ attractor state (Figure 4B). Thus, rather than the sensory driven drift-

rate of the DDM, the moment-to-moment competition between alternative hypotheses in the 

Believer-Skeptic framework is driven by a weighted combination of contextual and sensory 

information. This form of competition can be seen in Figure 4C, in which Go/NoGo decisions 

are made by accumulating the output (right panel) of the direct-indirect competition (left panel) 

under different levels of contextual uncertainty. When action uncertainty is low, the network is 

accelerated toward a “Go” state (Figure 4B) by stronger activation of the direct pathway, causing 

a faster accumulation of decision evidence towards a fixed execution threshold. 

Neurophysiologically, the fixed upper threshold of decision evidence in Figure 4C (right plot) 

can be conceptualized as the level of pallidal suppression necessary to disinhibit the thalamus so 

that an action is executed.  

We recently proposed a modified accumulator framework motivated by the general 

control dynamics of the Believer-Skeptic network in Figure 4, where action decisions are 

executed by accumulating evidence toward a fixed threshold in the presence of dynamic gain 

(Dunovan et al., 2015). In our so-called dependent process model (DPM; Figure 5B), I found that 

contextual information (i.e. cued probability of reward) modulates the drift-rate of the execution 

process. As action uncertainty increases the drift-rate is suppressed, producing a ‘no-go’ decision 

when this suppression prevents the decision process from reaching the execution threshold by the 

trial deadline (Dunovan et al., 2015).  
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Figure 4. Believer-Skeptic framework as Go-NoGo attractor network 

(A) The direct (D) and indirect (I) pathways are modeled as two competing (i.e., mutual inhibition)
accumulators with recurrent self-excitation reflecting population attractor dynamics. Selective input to the
direct (Id) and indirect (Ii) pathways is weighted and summed with input from a modulatory (non-
selective) population (Im) which controls the baseline excitability of the network. (B) Network state
plotted as a function of different ratios of direct and indirect pathway activation. Greater activation of the
indirect pathway leads to fast attraction toward a NoGo state (more blue, motor suppressing), whereas
greater activation of the direct pathway attracts the network toward a Go state (more green, motor
facilitating). (C) Left panel: firing rates of direct (solid lines) and indirect pathways (dotted lines) plotted
across time for different ratios of input (Id:Ii). Right panel: accumulation of decision evidence toward an
execution threshold, reflecting the normalized difference of the direct and indirect pathways in the left
panel. High Id:Ii ratio accelerates the rate of evidence accumulation, leading to a fast “go” decision
(green). As this ratio is reduced (bluish-green), weaker attraction by the direct pathway manifests as a
slower rate of accumulation, producing a “no-go” decision when evidence fails to reach threshold by a
deadline (blue). Adapted from Dunovan and Verstynen (2016).
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Based on the apparent structural overlap of BG pathways in the output nucleus (shown as 

overlapping red, blue, and green fields in the GPi of Figure 3A), I hypothesized that contextual 

modulation of competition between direct (i.e., Go) and indirect (i.e., NoGo) pathways should 

also influence the efficacy of the hyper-direct (i.e., Stop) pathway during reactive action 

cancellation (Jahfari et al., 2011, 2012; Jahfari, Stinear, Claffey, Verbruggen, & Aron, 2010). 

Indeed, behavioral fits to RT and choice data in a reactive stop-signal task favored a model in 

which contextual suppression of the execution drift-rate improves the efficacy of a nested but 

separate action cancellation process. Collectively, these findings show how the contextual 

uncertainty associated with a future action is not only critical for making a goal-directed decision 

about executing that action, but also complements the ability to reactively cancel it based on 

environmental feedback. 

This DPM also captures physiological responses of BG pathways. By integrating the 

execution process across the trial window, I was able to capture the duration and magnitude of 

accumulating activity leading up to a decision. Integrating the execution process in this way 

effectively collapses the decision process into a single measure, similar to how the blood 

oxygen-level-dependent (BOLD) signal would filter the neural activity generated by attractor 

network in Figure 4. Consistent with the behavioral fits, I found that contextual modulation of 

the drift-rate was able to capture the pattern of BOLD activity in the thalamus (the primary 

output target of the BG pathways) during ‘go’ and ‘no-go’ decisions across varying degrees of 

uncertainty. This finding is consistent with single-unit recordings of neurons in the macaque 

motor thalamus which show a similar RT-dependent ramp in firing rate prior to action execution 

(M. Tanaka, 2007; Masaki Tanaka & Kunimatsu, 2011).  
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One interpretation of this finding is that pre-action ramping in the thalamus is driven by 

the differential activation of upstream direct and indirect pathways and thus contextual 

modulation of this signal occurs by changing the weights of specific cortico-striatal connections 

or by altering background excitability in the striatum.  

 

 
Figure 5. Accumulator Models of Inhibitory Control. 

(A) Independent Race Model (IRM), assumes decision to execute an action is represented independently 
of the decision to “brake” or cancel that action. (B) An alternative to the IRM, Dunovan et al. (2015) 
proposed a Dependent Process Model (DPM) in which the state of the execution decision at the time a 
stop cue is registered determines initial state of the braking process, making it more difficult to cancel 
actions closer to the execution boundary. 

 

The hypothesis that the striatum is where contextual information comes to bear on decision 

evidence is often contrasted with the hypothesis that this is accomplished by the thresholding 

function of the STN (Bogacz, Wagenmakers, Forstmann, & Nieuwenhuis, 2010). That is, a 

change in the slope of thalamic firing rates could be due to decay in the hyper-direct activation of 

the STN, allowing pallidal suppression by the direct pathway to disinhibit the thalamus at a 

proportional rate. The distinction between striatal and STN control over decision threshold is a 

critical one (Bogacz et al., 2010), as these structures have very different input-output motifs that 

hint at disparate functional roles. The input-output organization of the striatum is thought to be 
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channel-specific, propagating individual action-commands from cortex to corresponding units in 

the GPe (indirect) and GPi (direct) segments. The STN, on the other hand, receives converging 

afferents from cortex and the GPe and delivers more diffuse excitatory drive to the GPi, 

suggesting this structure modulates the decision threshold in a non-specific manner for all 

actions under consideration.  

In fact, another hypothesis has been proposed for the role of the STN in decision-making 

that both complements the role of the striatum in the Believer-Skeptic framework and 

distinguishes the functional relevance of indirect and hyper-direct activation of the STN. Bogacz 

& Gurney, (2007) presented a neural network model in which the STN normalizes activity in the 

GPi to accommodate different set sizes of alternative choices. In their model, sensory evidence 

for each alternative is fed into a corresponding action channel in the striatum in parallel with 

projections that activate the STN. As a result, the cortico-striatal activation within each 

individual channel of the GPi (i.e., representing candidate actions ‘A’, ‘B’, and ‘C’, for instance) 

is represented as a proportion of the evidence for each action relative to the total evidence for all 

actions under consideration. This model describes the general increase in RT associated with 

increasing the number of choices to be considered, indicative of a global increase in the threshold 

for all possible outcomes (Keuken et al., 2015). Another group found that removal of the STN 

from the network had similar effects on choice RTs as STN deep brain stimulation in treated 

Parkinson’s patients - selectively eliminating the delay in RT for low-probability stimuli 

(Antoniades et al., 2014).  

The proposed thresholding and normalization functions of the STN are complementary 

with the Believer-Skeptic framework and can be dissociated from the hitherto-proposed role of 

the direct and indirect competition as a mechanism for encoding action uncertainty. The 
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normalizing effect of STN output on pallidal inhibition emerges naturally under the assumption 

that all actions simultaneously engage both the direct and indirect pathways. That is, individual 

action uncertainty is encoded by the “short” indirect pathway from striatum to GPe and then to 

channel-specific populations in the GPi (see Figure 3; Schroll & Hamker, 2013) where the 

indirect pathway converges with action facilitating signals of the direct pathway (Smith et al., 

1998b). On the contrary, activation of the “long” indirect pathway, splitting off from GPe to the 

STN, leads to widespread excitatory increase in GPi firing. Under the assumption that both direct 

and indirect pathways are active for each action being considered, the net activation through the 

“long” indirect pathway has a normalizing effect on the basal GPi state, accommodating varied 

set sizes of alternative actions (Herz, Zavala, Bogacz, & Brown, 2016).  

While the long-indirect and hyper-direct pathways likely play an important role in action 

selection, the within-channel competition of the direct and (short) indirect pathways is ultimately 

what determines which action is selected. For instance, in the context of a forced-choice 

perceptual decision, the transition between accumulation and execution is determined by the 

relative activation of two alternative action channels, each driven by a separate set of competing 

direct and indirect populations. This process is shown in Figure 6, where an observer must 

decide whether a noisy field of moving dots contains greater coherent leftward or rightward 

motion. Critically, a cue is displayed prior to each choice informing the observer which outcome 

is more likely to be correct on the upcoming trial. Previous work has shown that this predictive 

information is encoded by a concurrent increase in the baseline activity in the striatum 

(Forstmann, Brown, Dutilh, Neumann, & Wagenmakers, 2010), contralateral to the expected 

action, and modulatory regions of cortex, such as orbitofrontal cortex (OFC) and pre-

supplementary motor area (preSMA). When the cued probability is valid (i.e., correctly predicts 
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the subsequent stimulus; Figure 6A) the increase in baseline activity of the corresponding action 

channel causes the network to become increasingly unstable, leading to faster gating upon 

descending input from cortical accumulators. However, when the cue is misleading, or invalid 

(Figure 6B), this destabilization in the cued action channel can lead to an incorrect response 

despite weak sensory evidence in favor of that choice. This speed-accuracy tradeoff is a 

widespread phenomenon that pervades many forms of decision-making (Bertucco, Bhanpuri, & 

Sanger, 2015; Dean, Wu, & Maloney, 2007; Drugowitsch, Deangelis, Angelaki, & Pouget, 2015; 

Lo, Wang, & Wang, 2015). While numerous studies have found that functional and structural 

connectivity between preSMA and the striatum predicts individual differences in the speed-

accuracy tradeoff (Forstmann, Brown, et al., 2010; Keuken, Langner, Eickhoff, Forstmann, & 

Neumann, 2014; van Maanen et al., 2011), the underlying mechanism by which modulatory 

cortical inputs influence action selection in the BG has remained unclear. The example here 

proposes one such mechanism and highlights an important prediction of the Believer-Skeptic 

framework: uncertainty associated with individual actions is encoded by the competition 

between corresponding direct and indirect pathways. Of course, this prediction will need to be 

more rigorously tested, both experimentally and through the use of more sophisticated 

computational models of BG circuitry. 

The Believer-Skeptic framework provides a novel account for the role of the BG in 

decision-making, demonstrating the computational utility for encoding action uncertainty in the 

competition between the direct and indirect pathways. This framework also provides a 

straightforward interpretation of the different roles of striatal and STN modulation of the 

decision process. Non-specific background inputs to the striatum can adjust the speed-accuracy 

tradeoff in favor of faster decision-making by promoting stronger state attraction in response to 
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descending sensory inputs from cortex. Cortico-striatal mechanisms may also modulate the 

decision in outcome-specific ways (Majid, Cai, Corey-Bloom, & Aron, 2013) by altering the 

balance of channel-specific activity in the direct and indirect pathways. This interpretation is 

consistent with human neuroimaging studies linking cortico-striatal activity to the facilitation of 

one choice at the expense of choosing another; for instance, by selectively increasing of the drift-

rate or baseline evidence for an expected outcome (Dunovan et al., 2015; Forstmann et al., 

2010). On the other hand, indirect pathway activation of the STN provides a normalizing 

constant to BG output by aggregating the activation of multiple action channels into diffuse 

projections to the GPi (Smith et al., 1998b), whereas hyper-direct activation of the STN 

modulates the decision indiscriminately, buying time in the interest of accuracy (Forstmann et 

al., 2012; Frank et al., 2015). In the following, I elaborate on how Believer-Skeptic dynamics of 

decision-making are complemented by the well-established role of the cortico-striatal circuits in 

mediating RL. 

The Believer-Skeptic framework provides a novel account for the role of the BG in 

decision-making, demonstrating the computational utility for encoding action uncertainty in the 

competition between the direct and indirect pathways. This framework also provides a 

straightforward interpretation of the different roles of striatal and STN modulation of the 

decision process. Non-specific background inputs to the striatum can adjust the speed-accuracy 

tradeoff in favor of faster decision-making by promoting stronger state attraction in response to 

descending sensory inputs from cortex. Cortico-striatal mechanisms may also modulate the 

decision in outcome-specific ways (Majid et al., 2013) by altering the balance of channel-

specific activity in the direct and indirect pathways.  
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Figure 6. Contextual Modulation of Believer-Skeptic Competition 

A) Schematic of cue and stimulus epochs of random dot motion task on trial with valid predictive cue-
stimulus combination (Top). Schematic of decision network (Middle): “Left” (L, red) and “Right” (R, 
purple) motion-selective sensory populations gradually increase activity at a rate proportional to the 
strength of coherent motion in their preferred direction. Each sensory population sends excitatory input to 
a corresponding pair of direct and indirect populations representing left- and right-hand actions for 
reporting leftward and rightward motion decisions, respectively. Sensory inputs activate both pathways 
but with a bias favoring the direct pathway, reflecting the tendency for sensory inputs to the striatum to 
form more connections with dMSNs than iMSNs (Wall, De La Parra, Callaway, & Kreitzer, 2013). A 
modulatory population (M, gray) delivers non-selective excitatory input to the pair of direct and indirect 
pathways encoding the anticipated action (i.e., action corresponding to the cue-predicted motion 
direction). Below the network, firing rates are plotted for the direct (solid line) and indirect (dotted lines) 
populations for each choice-hand mapping (bottom-upper). In the bottom-lower panel, plots show the 
accumulating difference between direct and indirect firing-rates toward an execution threshold. The effect 
of cued expectations can be seen as an upwards shift in the baseline firing rates of the right-hand direct-
indirect network, reflecting anticipatory background inputs from the modulatory population such as 
preSMA (Forstmann, Anwander, et al., 2010). This increases the excitability of the network, causing a 
faster separation in the direct-indirect competition and a faster rise-to-threshold in the “Right” decision 
variable (correct). (B) Same task as in the left panel but on a trial with an invalid predictive cue-stimulus 
combination (top). The invalid expectation signal destabilizes the direct-indirect competition, leading to a 
faster rise-to-threshold of the “Left” decision variable despite receiving less sensory evidence for that 
option (bottom). Adapted from Dunovan and Verstynen (2016). 
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This interpretation is consistent with human neuroimaging studies linking cortico-striatal activity 

to the facilitation of one choice at the expense of choosing another; for instance, by selectively 

increasing of the drift-rate or baseline evidence for an expected outcome (Dunovan et al., 2015; 

Forstmann et al., 2010).  On the other hand, indirect pathway activation of the STN provides a 

normalizing constant to BG output by aggregating the activation of multiple action channels into 

diffuse projections to the GPi (Smith et al., 1998b), whereas hyper-direct activation of the STN 

modulates the decision indiscriminately, buying time in the interest of accuracy (Forstmann et 

al., 2012; Frank et al., 2015). In the following, I elaborate on how Believer-Skeptic dynamics of 

decision-making are complemented by the well-established role of the cortico-striatal circuits in 

mediating RL. 

2.3 BASAL-GANGLIA CONTRIBUTIONS TO LEARNING 

In the early stages of learning a new skill the brain makes use of past mistakes to improve future 

performance, incrementally advancing towards a goal-state by trial-and-error. RL models have 

been highly successful in describing trial-to-trial adaptation in behavior as well as experience-

dependent plasticity in putative learning networks in the brain. Basic RL models posit that an 

agent learns to value more advantages actions by successively comparing the predicted and 

observed outcome of the last action. This difference, referred to as the prediction error, is scaled 

by a learning rate which determines the extent to which each observation influences the 

perceived value of a given stimulus-response mapping. Relatively simple extensions of this 

algorithm have proven surprisingly adept at accounting for trial-wise choice dynamics across a 
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wide range of behavioral tasks. More importantly, model-estimated prediction errors have 

consistently been shown to track with the bursting and pausing of midbrain dopaminergic 

neurons as well as resulting activity changes in recipient neurons in the striatum, providing a 

critical link between behavioral and neural signatures of learning (Apicella, Ljungberg, Scarnati, 

& Schultz, 1991; Schultz & Dickinson, 2000; Surmeier, Ding, Day, Wang, & Shen, 2007).  

Electrophysiological studies have consistently found a relationship between the phasic 

activation of midbrain dopaminergic neurons and the trialwise magnitude of RPEs that mediate 

RL. For this dopaminergic RPE to be a viable learning signal it must be capable of selectively 

encouraging rewarded actions and discouraging unrewarded or punished actions. The phasic 

increase in dopamine following a surprising reward both sensitizes dMSNs and desensitizes 

iMSNs, making it easier for cortical inputs to quickly execute that action in the future 

(Hollerman, Tremblay, & Schultz, 1998; Schultz, 2016; Tremblay, Hollerman, & Schultz, 1998) 

(Hart, Rutledge, Glimcher, & Phillips, 2014; Wiecki & Frank, 2013). By the same token, phasic 

dips in dopamine following the omission of an expected reward offset the balance in the other 

direction, requiring stronger or prolonged cortical input to gate the same action in the future 

(Bahuguna, Aertsen, & Kumar, 2015; Gurney et al., 2015; Marcott, Mamaligas, & Ford, 2014). 

The bidirectional effect of positive and negative feedback on pathway-specific neural subtypes 

sheds light on the utility of selecting actions with two opposing pathways instead of a single 

facilitation pathway (Hart et al., 2014). Indeed, several lines of evidence suggest that 

dopaminergic modulation of the direct pathway is primarily driven by positive RPEs that 

facilitate approach-learning, whereas the modulation of the indirect pathway is primarily driven 

by negative RPEs, facilitating avoidance learning (Cox et al., 2015; Frank, Doll, Oas-terpstra, & 

Moreno, 2009; Hikida et al., 2013).   
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In a series of computational experiments, Gurney et al. (2015) recently provided a 

comprehensive description of the interactions between tonic and phasic fluctuations in striatal 

dopamine that guide goal-directed action selection. In their neural network model, cortical input 

from competing sensory populations is sent in parallel to all three cortico-BG pathways 

representing the sensory-paired actions. Thus, when sensory information is equivocal and 

cortical input leads to comparable activation in different action channels, the history dependent 

cortico-striatal weights are what critically determine which of the two actions wins out in the 

selection process.  

The synaptic tuning of these weights by positive and negative RPEs can be naturally 

incorporated into the Believer-Skeptic decision network shown in Figure 4A – by increasing the 

sensitivity of the direct and indirect populations following rewarded and punished actions, 

respectively. Over the course of several trials, the feedback-dependent tuning of synaptic weights 

leads to faster gating in the network and thus faster rates of evidence accumulation in decision 

space for higher valued actions. This is captured in Figure 7A where the model gradually learns 

the relative value of alternative actions based on probabilistic stimulus-reward contingencies 

from trial-and-error feedback. Similar to the behavioral paradigm used by Frank et al. (2004) the 

model is presented with a pair of stimuli and must learn to select the stimulus with a higher 

probability of yielding a reward. Each stimulus is converted into an action by a corresponding 

pair of direct and indirect nodes that are tuned by corrective feedback signals, simulating the 

effects of dopaminergic RPE signals on dMSNs and iMSNs. Thus, feedback sensitizes the direct 

pathway and suppresses the indirect pathway for the optimal choice while shifting the balance in 

the opposite direction for the alternative, converging on weights that reflect the expected 

difference in their learned values. In the accumulator model, this manifests as a drift-rate for 
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each stimulus proportional to its perceived value, leading to a stronger choice bias when deciding 

between alternatives that are less evenly matched in terms of their expected payout (Figure 7A).  

Because in this example the stimulus-action-value associations are probabilistic, a certain 

amount of exploration is needed in order to optimize the estimated value for each of the two 

stimuli. In standard RL models, exploratory dynamics are usually facilitated by a single 

parameter that determines the probability of going with the currently highest-valued option. 

Here, however, exploration is naturally handled by the stochastic nature of the direct-indirect 

competition during the decision process. A recent study found that the RT distributions of value-

based choices in a perceptual learning experiment were well described by a DDM in which the 

learned value difference between alternative stimuli determined the drift-rate of accumulation 

(Frank et al., 2015). This finding adds support to the future hybridization of RL and decision 

models, suggesting that the behavioral dynamics of value-based choices can be systematically 

characterized by corrective modulation of a stochastic rise-to-threshold process. 

In addition to the phasic dopamine modulations responsible for learning action-value 

associations, the level of tonic dopamine availability in the striatum has recently been proposed 

to regulate the tradeoff between exploratory and exploitative learning policies (Humphries, 

Khamassi, & Gurney, 2012; Kayser, Mitchell, Weinstein, & Frank, 2015). That is, in order to 

maximize rewards in dynamic environments (with changing response-outcome contingencies), 

one must balance the time spent exploring the value of novel, potentially high-payoff actions and 

exploiting historically rewarding actions (Humphries et al., 2012; Keeler, Pretsell, & Robbins, 

2014). Put into the context of the Believer-Skeptic framework, explorative states can be thought 

of as conditions in which the balance is tipped towards the Skeptic such that all action 

possibilities are uncertain and thus no single decision dominates. In contrast, exploitative states 
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are those in which the Believer dominates for a single decision, resulting in faster and more 

precise decisions that preclude alternative actions from being engaged.  

Much of the current understanding of the interplay between value-based learning 

mechanisms and exploitation-exploration tradeoff policies has come from research on song-bird 

learning (Brainard & Doupe, 2002; Kao, Doupe, & Brainard, 2005). While research on song-bird 

learning has progressed largely in parallel with the studies of decision-making in the BG, it has 

been speculated that the two fields are currently moving towards a mutually beneficial junction 

(Ding & Perkel, 2014). Juvenile song-birds initially learn to sing by mirroring the song of an 

experienced tutor but over time compose an individualized version of the song by sampling 

alternate spectral and temporal components of vocalization (Tumer & Brainard, 2007). This is 

done to improve reproductive success, as females tend to select males with unique songs that can 

be performed repeatedly with high precision. 

Recently, Woolley et al. (2014) found that when practicing in isolation, males express 

substantially more variability in the spectral and temporal dimensions of song vocalization than 

when in the presence of a mate. This contextual alternation between exploring alternate song 

renditions during practice and exploiting a favorite rendition led to systematic differences in the 

variability of firing in the output of a region called Area X, a homologue of the mammalian BG. 

The authors proposed that social context led to changes in the tonic level of dopamine available 

to neurons in the input structure of Area X, similar to the striatum of the BG in mammals, which 

impacted the amount of exploration or exploitation of the system. Their hypothesis was 

supported by the observation that striatal connections exhibit a many-to-one convergence onto 

target cells in the BG output nucleus. Previous work suggests that given this many-to-one motif, 

enhanced dopaminergic tone would establish a more consistent average level of activation within 
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a group of striatal units, thus increasing reliability of temporally-locked bursts and pauses of 

recipient neurons in the output nucleus (Tumer & Brainard, 2007). 

Consistent with a dopaminergic regulation between exploitative-explorative policies, 

several recent computational modeling studies have found that the simulated effects of tonic 

dopamine level have a marked impact on action variability (Klanker, Feenstra, & Denys, 2013; 

Morita & Kato, 2014; Yawata, Yamaguchi, Danjo, Hikida, & Nakanishi, 2012). Increasing 

dopaminergic availability in the striatum leads to a general “Go” bias in the network, due to the 

inverse effects of dopamine on MSN subpopulations. Furthermore, higher tonic dopamine levels 

also increases D1 and D2 receptor occupancy so that RPE signals communicated by phasic 

bursts and pauses in SNc fail to have the same impact on cortico-striatal plasticity (Keeler et al., 

2014). Thus, behavior is stabilized to promote exploitation of previously learned associations by 

facilitating BG throughput that reflects the present weighting scheme at cortico-striatal synapses. 

In Figure 7B, the population firing rates are shown for different decision policies, all reflecting 

the same ratio of input to the direct and indirect pathways, but with a change in background 

levels of tonic dopamine (e.g., background excitation). Increasing dopamine reduces the time 

constant of evidence accumulation such that learned cortico-striatal weights can be exploited to 

rapidly accelerate the network toward a “Go” state, with little variability in the RT and outcome 

of the decision process (Figure 7B). Alternatively, the same levels of cortical input leads to 

substantially greater trial-to-trial variability in decision behavior when dopamine is scarce, 

demonstrated by the widening of the RT distribution for decisions made under lower levels of 

background dopamine. 
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Figure 7. Dopaminergic modulation of value-based decisions 

(A) Simulation of probabilistic value-based decision task (upper-left; see Frank et al. (2004)) in which the
agent must learn the relative value of two arbitrary stimuli based on trial-and-error feedback. On each trial
the agent makes a decision by choosing between a pair of Japanese symbols, one with a higher probability
of yielding a reward (left column; chosen with action aopt) than the other (right column; chosen with
action asub). Value-based decisions are simulated as a race-to-threshold between stochastic accumulators, 
one for each alternative under consideration. Each accumulator reflects the direct-indirect competition 
within a single action channel (see Figure 4). Both actions start out with equal associated values x(aopt) = 
x(asub) and thus, equal drift-rates. On each trial the corrective effects of phasic changes in dopamine are 
simulated by enhancing (depressing) the sensitivity of the direct (indirect) pathway following positive 
outcomes (+δ) and vice-versa following negative outcomes (−δ). In the accumulator model, this learning 
results in an increase in the drift-rate for aopt (solid arrow) and a decrease in the drift-rate for asub 
(dotted arrow), proportional to the difference in their associated value. The bottom panel shows the 
change in the estimated value difference for alternative actions x(aopt) − x(asub) across 90 simulated 
trials for the three different probabilistic reward schedules shown in the upper-left. For stimulus pairs with 
a greater discrepancy in reward probability (i.e., red > green > blue), this leads to earlier separation 
between drift-rates associated with optimal and suboptimal actions, and thus faster associative value 
learning. (B) Simulated effects of tonic dopamine levels on exploration-exploitation tradeoff. Tonic 
dopamine levels were simulated by varying the strength of non-specific background inputs (Iλ) in a 
network with stronger weighting of cortical input to direct than indirect pathway. Bottom panel: the same 
ratio of cortical input to the direct (green) and indirect (blue) pathways leads to faster gating in the 
presence higher Iλ (darker colors, increased baseline) compare to when Iλ is low (lighter colors, decreased 



 29 

baseline). Top panel: Increasing tonic levels of Iλ facilitates exploitation of the current cortico-striatal 
weights by accelerating evidence accumulation, resulting in faster decisions and reduced trial-to-trial 
variability in RT. In contrast, behavior is substantially more variable with lower levels of Iλ, promoting 
an exploration policy. Adapted from Dunovan and Verstynen (2016). 
 
 

When considered in the context of selecting from multiple actions, the increase in action 

variability (i.e., wider RT distribution) with reduced levels of tonic dopamine would allow the 

agent to explore novel, potentially more rewarding, stimulus-action associations. When a 

sufficiently rewarding association is found or when there is a change in context that demands 

precision, increasing background dopamine levels would temporarily halt feedback-dependent 

plasticity to ensure lower variability in performance. 

 

2.4 SUMMARY OF BELIEVER-SKEPTIC FRAMEWORK 

An emerging body of evidence points to the BG as a critical site for integrating cortically 

distributed computations with dopaminergic learning signals in the service of flexible and 

adaptive behavioral control (Dunovan et al., 2015; Dunovan & Verstynen, 2016; Forstmann et 

al., 2008; Forstmann, Anwander, et al., 2010; Kayser, Mitchell, Weinstein, & Frank, 2015; 

Turner & Desmurget, 2010; van Maanen, Fontanesi, Hawkins, & Forstmann, 2016; Wang, 

Miura, & Uchida, 2013). The Believer-Skeptic framework presented above provides a 

biologically motivated account of the neural mechanisms underlying the transition from evidence 

accumulation to action execution. More importantly it lays the foundation for a rich behavioral 

repertoire when combined with its well-established role of dopamine in reinforcement learning. 

The simulations presented above touch on a small subset of the behavioral phenomena associated 
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with BG circuitry and even then, the biological simplicity of the Believer-Skeptic attractor model 

paints a relatively coarse picture of actual neural implementation. Although this model makes 

significant compromises in the way of neurobiological detail, the ability to formally simulate 

behavioral predictions based on abstracted neural dynamics provides a useful tool for exploring 

the hypothesis space. Obviously the hope is that, by carving out useful connections between 

brain and behavior, this approach will foster more rapid progress on both ends of the spectrum. 

In the remaining sections, I test the predictive utility of the Believer-Skeptic framework in two 

empirical studies that address different components of adaptive behavior. 
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3.0  ADAPTIVE CONTROL OVER A SINGLE ACTION 

3.1 INTRODUCTION 

In previous sections (sections 2.2 and 2.3), I introduced a framework for integrating feedback-

dependent learning with the stochastic accumulation-to-bound process believed to underlie 

decision-making. This model is specifically constrained by the known structural and functional 

properties of cortico-BG circuitry. In contrast with the dominant characterizations of the BG as 

playing a value-centric or motor-centric role in behavior, the Believer-Skeptic framework 

proposes that the BG is most critical for integrating and resolving action uncertainty  

While previous theories have entertained the notion that the BG is an important structure 

for guiding behavior in the context of uncertainty, the vast majority have focused on the 

uncertainty between alternate actions (Bogacz & Gurney, 2007)  - i.e., which action is best? This 

assumption follows from the notion that the BG is composed of action channels, each channel 

containing a direct and indirect pathway from the striatum to the output nucleus reflecting a 

single action decision. Mink (1996) proposed a center-surround mechanism that would ensure 

cortical decision outcomes activated the appropriate action without any interference. More 

recently, however, multiple lines of evidence have suggested that the BG not only influences 

which action is selected but also how that action is expressed. For instance, model-based 

neuroimaging studies have found evidence that the striatum acts as a gain dial for adjusting the 
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urgency in decision formation, thereby speeding action execution. A recent study by (Yttri & 

Dudman, 2016), in which mice were rewarded for pushing a lever, found that the velocity of the 

animal’s movement could be gradually increased from trial-to-trial by optogenetically 

stimulating D1-expressing cells in the direct pathway in a closed-loop so that faster movements 

returned higher levels of stimulation. This velocity-yoked stimulation of neurons in the direct 

pathway can be seen as an artificial reward signal – producing the same sustained activation in 

recently fired D1 as the burst of synaptic dopamine triggered by an external reward. Conversely, 

when velocity-yoked stimulation was directed at D2-expressing cells of the indirect pathway, 

future movements were gradually slowed, artificially inducing the same penalizing effect on the 

action as a phasic dip in dopamine. This competitive modulation of movement speed is in line 

with the feedback-dependent learning and control mechanisms assumed within the Believer-

Skeptic framework - specifically, that dopaminergic modulation of the competition between 

direct and indirect pathways is employed for dialing in goal-relevant dimensions of motor 

control.  Here, I evaluate the predictive utility of this framework in relation to observed patterns 

of adaptive control behavior in a modified version of the reactive stop-signal task presented in 

Dunovan et al. (2015).  
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3.2 METHODS 

3.2.1 Participants 

Neurologically healthy adult participants (N=75, Mean age 22 years) were recruited from local 

student population at Carnegie Mellon University. All procedures were approved by the local 

Institutional Review Board. All subjects were compensated for their participation. 

3.2.2 Adaptive Stop-Signal Task 

All subjects completed a stop-signal task (Ntrials=880) in which a vertically moving bar 

approached a white horizontal target line at the top of the screen (Figure 8A). On ‘Go’ trials 

(NGO=600) the subject was instructed to make a key press as soon as the bar crossed the target. 

The bar always intersected the target line at 520ms after trial onset. On each trial, the bar 

continued filling upward until a keypress was registered or until reaching the top of the screen, 

allowing a 680ms window for the subject to make a response. If no response was registered the 

subject received a penalty of (-100pts). On ‘Go’ trials where a response was recorded before the 

680ms trial response deadline, the subject received a score reflecting the precision of their 

response time relative to the target intersection, resulting in maximal points when RT=520ms. 

On ‘Stop’ trials, the bar would stop and turn red prior intersecting the target line, prompting the 

subject to withhold their response. Successful and unsuccessful stop trials yielded a reward of 

+200 points and penalty of -100 points, respectively. On the majority of Stop trials, the stop-

signal delay (SSD) - the delay between trial onset and when the bar stopped – was sampled from 
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a specific probability distribution, as shown in Figure 8B. I refer to these trials as Context trials 

(NContext=200). The type of distribution for Context SSDs was held constant for each group. 

Context SSD’s in the Early and Late groups were sampled from Gaussian distributions with 

equal variance (σ=35ms), centered at µE=250ms and µL=350ms, respectively. Context SSDs in 

the Uniform group were sampled from a uniform distribution spanning a 10-520ms window. In 

Figure 8B, the sampled SSD times are plotted for a single subject in each of the groups – shown 

as dashes on a timeline ranging from 0-520ms. Finally, an additional 80 “Probe” Stop trials were 

included where the bar stopped either at 200, 250, 300, 350, or 400ms (N=16 each) after trial 

onset. These trials are shown at the bottom of the Figure 8B timeline as red dashes.   
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Figure 8. Adaptive Stop-Signal Task and Contextual SSD Statistics 

(A) Behavioral stop-signal experiment. On Go trials (upper) subjects are instructed to press a key when
the moving bar crosses a target line, which always occurs on 520ms after trial onset. Feedback is given
informing the subject if their response was earlier or later than the Go Target (max +100 points). On Stop
trials (lower), the bar stops and turns red prior to reaching the Target line. If no response is made
(correct), the subject receives a bonus of +200 points. Failure to inhibit the keypress results in a -100
point penalty. (B) Stop-Signal statistics across Contexts. Distributions show the sampling distributions for
SSDs on Context trials in the Early (blue), Uniform (gray), and Late (purple) groups. Early and Late
SSDs were Normally distributed (parameters stated as in-figure text N~(µ, σ)). Below the distributions,
each row of tick-marks shows the Context SSDs for a single example subject each group. Bottom row of
red tick-marks shows the five Probe SSDs included for all subjects regardless of Context.
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3.2.3 Static Dependent Process Model (DPM) 

The dependent-race model (DPM) assumes that action-facilitating (i.e., direct) and action-

suppressing (i.e., indirect) signals are integrated over time as a single execution process (θe), with 

a drift-rate that increases with the ratio of direct-to-indirect pathway activation. The linear drift 

and diffusion (φe) of the execution process is described by the stochastic differential equation 

in Equation 1, accumulating with a mean rate of ve (i.e., drift rate) and a standard deviation 

described by the Wiener diffusion process (e.g., white noise) with diffusion constant σ. The 

execution process is fully described by Equation 2 in which the linear accumulation described by 

Equation 1 is scaled by an urgency signal, modeled as a hyperbolic cosine function of time with 

gain γ. 

(1) dφe = υedt + σdW

θe(t) = φe(t) · cosh(γ·t) (2) 

A response is recorded if θe reaches the execution boundary (a) before the end of the trial 

window (680ms) and before the braking process reaches the lower (0) boundary (see below). In 

the event of a stop cue, the braking process (θb) is initiated at the current state of θe with a 

negative drift rate (−vb). If θb reaches the 0 boundary before θe reaches the execution boundary 

then no response or RT is recorded from the model. The in θb over time is given by Equation 3, 

expressing the same temporal dynamics of θe but with a negative drift rate (−vb) and in the 

absence of the dynamic bias signal. The dependency between θb and θe in the DPM is described 

by the conditional statement in Equation 4, declaring that the initial state of θb (occurring at t = 

SSD) is equal to the state of θe(SSD).  
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(3) 

θb(SSD) = θe(SSD)

The DPM was fit to the average stop accuracy at each Probe SSD and the correct and 

error RT distributions (10th, 20th, 30th… 90th quantiles) in each Context group using a 

combination of global and local optimization techniques (Bogacz & Cohen, 2004; Dunovan et 

al., 2015). All fits were initialized from multiple starting values in steps to avoid biasing model 

selection to unfair advantages in the initial settings. Given a set of initial parameter values, all 

model parameters – Execution Drift-Rate (ve), Brake Drift-Rate (vb), Execution onset delay (tr), 

boundary height (a) and dynamic gain (γ) were optimized by minimizing a weighted cost 

function (see Equation 5 below) equal to the summed and squared error between an observed and 

simulated (denoted by ∧ hat symbol) vector containing the following statistics: probability (P) of 

responding on Go trials (g), probability of stopping at each Probe SSD (d={200, 250, 300, 350, 

400ms}), and RT quantiles (q={.1, .2, …, .9}) on correct (RTC) and error (RTE) trials.  

The cost-function weights (w) were derived by first taking the variance in each summary 

measure included in the observed vector (across subjects), then dividing the mean variance by 

the full vector of variance scores. This approach represents the variability of each value in the 

vector as a ratio (Ratcliff & Tuerlinckx, 2002), where values closer to the mean are assigned a 

weight close to 1, and values associated with higher variability a weight <1, lower variability a 

weight >1 (Bogacz et al., 2006; Dunovan et al., 2015). Weights applied to the RT quantiles were 

calculated by estimating the variance for each of the RT quantiles (Maritz & Jarrett, 1978) and 

then dividing the mean variance by that of each quantile. Stop accuracy weights were calculated 

by taking the variance in stop accuracy at each Probe SSD (across subjects) and then dividing the 

mean variance by that of each condition.  

dθb = vbdt + σdW

(4)
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 (5) 

In order to get an estimate of fit reliability for each model I restarted the fitting procedure from 

20 randomly sampled sets of initial parameter values. Each initial set was then optimized to 

average data in the Uniform condition using the Basinhopping algorithm (Wales & Doye, 1997) 

to find the region of global minimum followed by a Nelder-Mead simplex optimization (Nelder 

& Mead, 1964) for fine tuning globally optimized parameter values. The simplex-optimized 

parameter estimates were then held constant except for one or two designated context-dependent 

parameter(s) that were submitted to a second Simplex run in order to find the best fitting values 

in the Early and Late conditions.  

3.3 RESULTS 

3.3.1 Behavior 

To assess the behavioral differences across Contexts, I compared accuracy on stop-signal trials at 

each Probe SSD (200, 250, … 400ms) across groups as well as the mean RTs on correct 

(response on Go trials) and error (i.e., response on Stop trial) responses. Separate one-way 

ANOVAs revealed a significant effect of Context across groups on both correct RTs, F(2,72) = 

10.07, p=.00014, and error RT (stop-signal respond trials), F(2,72) = 21.722, p<.00001. A 

mixed-effects ANOVA was run to determine the statistical significance of differences in mean 

χ2
static =wg · (Pg − P̂g)2 +

∑5
d

wd · (Pd − P̂d)2

+
∑9
q

wq
C · (RTqC −RT̂Cq )2 +

∑9
q

wq
E · (RTqE −RT̂Eq )2
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stop accuracy across probe SSDs (within-subjects) and SSD Context (between-subjects). 

Reported statistics are corrected for sphericity violation using the Greenhouse-Geisser method 

(Abdi, 2010). Consistent with our hypothesis, I found a significant interaction between Context 

and Probe SSD, F(2.226,80.152)=3.604, p=.027, supporting our hypothesis that reactive 

stopping ability varies as a function of experience and expectations about control demands over 

time. Specifically, frequent exposure to later stop-signals led to delayed responding on Go trials 

as well as greater stopping success across Probe trial SSD’s, exhibited by the rightward shift in 

the stop-curve and RT distributions in the Uniform and Late conditions (see Figure 9).  

Figure 9. Effects of Context on Stop Accuracy and Response Times 

Subject-averaged stop-accuracy (left) and cumulative RT distributions for correct (Go trial; middle) and 
error (Stop trial; right) responses for all three Context conditions. Error bars reflect the 95% confidence 
interval (CI) calculated across subjects.  

3.3.2 Static Model Fits 

In order to determine which of the model parameter(s) best accounted for the observed 

behavioral effects across Contexts, I first fit the model to the average data in the Uniform group, 

leaving all parameters free (see Table 1). Using the optimized Uniform parameter estimates to 

initialize the model, I then fit different versions of the model to data in the Early and Late groups 
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allowing only one or two select parameters to vary between conditions. This form of nested 

model comparison provides a straight-forward means of testing alternative hypotheses about the 

mechanism underlying Context-specific adaptation.  

Table 1. Average Uniform Parameters and Static Model Fit Statistics 

a vE vB tr γ χ2 AIC BIC

Mean .629 1.146 -1.012 .0746 1.149 .013 -173.19 -178.61 

2xSEM .0221 .0651 .0464 .0086 .2739 8e-4 1.064 1.064 

For each model, the final Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) were calculated based on the fit to both Early and Late conditions (Figure 10A). 

These measures reflect the goodness-of-fit for alternative models while also taking into account 

the complexity of each model by placing a penalty on the number for free parameters. A 

difference of 7-10 in the IC values for two models provides strong support for the model with the 

lower value.  The model fits supported our previous findings, showing that contextual changes in 

control measures are best captured by modulation of the execution drift-rate. In Figure 10C, 

simulated data from the drift model are overlaid on the observed stop-accuracy curve and RT 

distributions in each of the groups, showing a high degree of precision in the model’s prediction 

across measures in each group. In addition to outperforming alternative models, it is worth 

juxtaposing the model’s goodness-of-fit with its relatively parsimonious assumptions – 

accounting for complex group differences in the full stop accuracy curve shape as well as correct 

and error RT distributions with only three degrees of freedom.  

I first compared alternative models in which only one parameter was free to vary across 

context (see Table 2) - either execution drift, braking drift, urgency, or boundary height. In line 
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with our previous results, leaving the execution drift-rate free provided the best account of stop-

accuracy and RT differences across contexts (Figure 10A; AICve =-355.55). The next best fit 

was afforded by allowing the urgency to vary across conditions (|AICve–AICγ| = 7.65). To 

further test the relationship between execution drift and Context, I performed another round of 

fits to test for possible interactions between the execution drift-rate and a second free parameter 

(a, vb, γ).  

Table 2. Static Fit Statistics for Early and Late Contexts 

Context Parameter χ2 AIC BIC
Execution Drift (vE) .019 -355.55 -354.6
Boundary Height (a) .039 -335.14 -334.58
Braking Drift (vB) .038 -336.64 -336.07
Urgency Gain (γ) .030 -347.90 -347.34
a & vE .0236 -355.88 -358.63
vB & vE .0260 -349.84 -352.58
γ & vE .0266 -349.03 -351.77

The AIC and BIC scores from these fits showed that a combination of execution drift and 

boundary height provided a slightly better fit than execution drift alone (Figure 10A; see Table 

2). In Figure 10B the fitted drift-rate and boundary height estimates are plotted, showing the 

change in value between Early and Late condition. It can be seen that, when drift-rate is fixed, 

the boundary height parameter shows a significant increase in the Late relative to the Early 

condition - accounting for the slower response times and higher stop accuracy. This effect on 

boundary height becomes diminished however in the model that also both parameters to vary 

across conditions, whereas the change in drift-rate remains largely the same when additional free 

parameters are included (black line shows the average of effect across all dual-parameter 

models). This asymmetry in the relative effect sizes suggests that the drift-rate is the primary 
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driver behind the observed behavioral effects and that the small improvements in fit quality with 

both drift-rate and boundary height free is not strong evidence for a dual mechanism account. 

Thus, given the parsimony and high quality fits of the drift-only model, I will focus on this 

hypothesis in all subsequent analyses of this chapter. 

Figure 10. Model Comparison and Best-Fit Predictions Across Context 

(A) AIC (dark) and BIC (light) scores for all single-parameter models, allowing either execution drift-rate
(ve; green), boundary height (a; cyan), braking drift-rate (vb; red), or urgency (γ; blue) to vary across
Context conditions., Three dual-parameter models were also included to test for possible benefits of
allowing ve (best-fitting single parameter model) to vary along with either a (yellow), vb (purple), or γ
(teal). (B) Average drift-rate parameter estimates (top panel) in the Early and Late Contexts from the best-
fit result in the single-parameter model (green) plotted alongside the corresponding change in drift-rate
averaged across all dual-parameter models (black). Same comparison is shown for the boundary height
parameter (bottom panel), which exhibits a reduction in effect size when accompanied by a free drift-rate
(yellow) compared to when the drift-rate is fixed (cyan). (C) Average model fits (lines and larger
transparent circles) overlaid on the average empirical data for Early (blue), Uniform (gray), and Late
(purple) Contexts.



43 

3.3.3 Adaptive Model Fits 

In most decision-making paradigms choices are repeatedly made between stimuli that vary along 

one or two dimensions of interest (signal-to-noise, frequency, etc.) but without any serial 

dependence between trials. Even when contextual factors are manipulated, such as the relative 

probability or value of different outcomes, these contingencies are usually conveyed to the 

subject explicitly or, in the case of animal research, overlearned prior to data collection. In this 

task, however, the behavioral differences across groups are driven by trialwise adaptation to the 

specific control demands of each Context. The previous model fits showed that modulation of 

the execution drift-rate best account for the aggregate effect Early, Uniform and Late Context 

trial distributions on behavioral performance. However, it is not clear from this analysis whether 

error-driven changes in drift-rate are able to capture trial-to-trial adjustment of RT and stop 

accuracy as statistics of the environment are learned experientially. In the next section I show 

how simple feedback-dependent tuning of the drift-rate gives rise to observed behavior, 

improving fits to the average data while also accounting for differences in the behavioral 

timecourse of learning across Contexts. 

On correct Go trials, the drift-rate is updated to reflect the signed difference between 

simulated RT on the current trial (RTt) and the Target time (TG
 = 520ms). Figure 11A shows an 

example of how the learning rule expressed by Equation 6 alters the drift-rate in response to 

timing errors on ‘Go’ trials (Figure 11A, left), increasing the drift-rate following “slow” 

responses (>520ms, Figure 11A, upper-left) and decreasing the drift-rate following “fast” 

responses (<520ms, lower-left). 

(6)vt+1 = vt + α · (vt − vt · e[T −RTt])
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On Stop trials (Figure 11A, right), the drift-rate is updated by the same rule as on Go 

trials but instead of reflecting the temporal difference between the RT and TG, the temporal error 

in RT is calculated with respect to TS. The TS parameter is initialized to the time-boundary of the 

trial (TS(0) = 680ms) and controls the magnitude of drift-rate suppression on failed “Stop” trials. 

Conceptually, TS serves a similar function as TG, acting as a temporal anchor that can be 

compared with the RT on each trial to obtain an estimate for how severely to penalize incorrect 

(as opposed to correct) “go” responses. In contrast to TG, which is a constant value (both across 

trials and Contexts), TS is a latent parameter estimated by the observer based on their 

expectations about the probability of a stop-signal across time. For instance, on the first failed 

Stop trial, the RT error (TS
t-RTt) causes the drift-rate to be suppressed enough to decrease the 

probability of the execution process reaching the boundary before 680ms. However, as the stop-

signal statistics are learned in each Context, the magnitude of drift-rate suppression following 

failed stops should diminish over time, maximally in the Early context (i.e., when late SSDs are 

unlikely) and minimally in the Late Context (i.e., when late SSDs are more likely). To account 

for this, TS was decreased following successful ‘Stop’ trials (Figure 11A, upper-right) and 

increased following trials when the model incorrectly executed a response (Figure 11A, lower-

right). The trial-outcome contingencies and learning-rate (β) used to update TS are expressed by 

Equation 7 below. 

 (7) 

To obtain estimates for the learning rate parameters for adaptation in the drift-rate (α) 

and TS (β), this adaptive form of the model was re-fit to the RT and stop accuracy data in the 

Uniform condition, holding all previously estimated parameters constant. Because standard 

Tt
S
+1 =

{
Tt
S + β · TtS , if Stop Failure

Tt
S − β · TtS , if Stop Success
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parameter optimization for accumulator models requires information about the variance of 

response-times across trials, these approaches are poorly suited for investigating how decision 

parameters respond to error on a trialwise basis. To overcome this issue, the cost function was 

modified to identify the values for α and β that minimized the difference between the average 

observed and model-predicted RT and stop accuracy over a moving window of about 30 trials 

(Equation 8). By averaging the behavior in 30-trial bins (30 bins total), this ensured that multiple 

Stop trials were included in each bin while still allowing relatively high-frequency behavioral 

changes to be expressed in the cost function. Also, these fits were performed by iteratively 

simulating the same trial sequence as observed for each individual subject, and fitting the 

average simulated subject to the average observed subject.  This ensures that direct comparisons 

can be made between the trajectory of learning in the model and actual behavior.   

 (8) 

In Figure 11B, the decision outcome (“Go” green dots; “Stop”, red dots) and Go RTs are 

shown for 120 trials of the experiment for a single representative subject, with shaded boxes 

illustrating the bin width used to calculate the timecourse of average RT (top) and stop-accuracy 

data (bottom) displayed in Figure 11C. In Figure 11C, the model-predicted change in Go RT and 

Stop accuracy across the experiment is overlaid on the corresponding empirical measure, 

demonstrating a high degree of overlap between the two. To confirm that the trial-averaged 

behavior of the model was preserved after fitting the learning rates, the stop-accuracy curve and 

RT statistics were calculated from simulations of the adaptive model and overlaid on the average 

Uniform data (Figure 11D). The model’s predictions are indeed closely aligned with all 

empirical statistics (adaptive χ2=.0042, static χ2 = .01). While this is not necessarily surprising, it 

χ2
adapt =

∑30
i

(µacc,i − µ̂acc,i)2 +
∑30
i

(µrt,i − µ̂rt,i)2
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is promising to see that introducing feedback-dependent adaptation in the drift-rate leads to 

improved fits to the average data despite not including these statistics in the learning cost 

function.  

After confirming that error-driven changes in the drift-rate were able to account for the 

temporal changes in behavior observed in the Uniform Context, I next asked if this mechanism 

was sufficient to account for observed differences in the Early and Late Contexts. If so, then 

these differences should emerge when the adaptive model is tasked with balancing the same 

goals of maximizing RT precision and minimizing inhibitory failures against environments with 

lighter/heavier control demands. In other words, the adaptive model should recover the observed 

behavioral profiles of the Early and Late Context groups when exposed to the same trial-

structure as the subjects experienced. To test this prediction, I initialized the adaptive model with 

the best-fitting Uniform parameters (including the learning rates as in Figure 11C) and ran 

simulations of the Early and Late conditions using the same trial sequence as observed by the 

subjects in each Context.  
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Figure 11. Adaptive DPM and Predicted Learning Trajectory in Uniform Condition 

(A) Schematic showing how the execution drift-rate is modulated following timing errors on Go trials
(left) and how Ts is modulated following successful and failed inhibitions on Stop trials. (B) Raw data
from a single subject (dark colors) and the model’s (light colors) performance on the same 120 trials. Go-
trial RT’s are shown in blue as a timeseries, “Go” and “stop” decisions are shown as green and red dots at
the top and bottom of the plot, respectively. Light and dark shaded areas display the bin width over which
RT and stop-accuracy data were averaged during model-fits (C) Subject-averaged timeseries (dark line)
and 95%CI (transparent gray) showing the RT on Go trials (left) and accuracy percentage on Stop trials
(right). Both timeseries are 30 points in total, each calculated as by taking the average RT/stop-accuracy
over successive~30-trial windows). The corresponding model predictions are overlaid (light gray line),
averaged over simulations to each individual subject’s data. (D) Average empirical stop-accuracy and RT
statistics in the Uniform condition, (same as shown in Figure 9) with the predictions generated from
simulations with the adaptive DPM.
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Figure 12A shows the simulated stop-curve and RT distributions generated by the 

adaptive DPM based on feedback in the Early and Late Contexts. As in the observed data, 

adaptation to Early SSDs led to impaired stopping accuracy but faster RT’s relative to simulated 

predictions in the Late Context. In Figure 12B-C, the middle panels show the same trial-binned 

RT and stop-accuracy means as in Figure 11C (Uniform Context), flanked by corresponding 

timecourses from simulations to Early (left) and Late (right) Contexts. The adaptive model 

predictions show a high degree of flexibility, conforming to idiosyncratic changes in the trialwise 

dynamics in behavior across Contexts. For instance, the RTs in the Early Context exhibit a 

relatively minor but gradual decay over the course of the experiment (Figure 12B, left), 

contrasting markedly from the sharp early increase and general volatility of RTs in the Late 

Context (Figure 12B, right). The adaptive model largely captures both patterns, underscoring 

feedback-driven adaptation in the drift-rate as a powerful and flexible tool for commanding 

inhibitory control across a variety of settings. In addition to predicting group differences in the 

timecourse of RTs, the simulations in Figure 12C show a striking degree of precision in the 

model-estimated changes in stop-accuracy, both over time and between groups. 

Finally, Figure 13A shows the adaptive drift-rate in each Context across the same trial 

blocks as shown in Figure 12C. The relative variability in drift-rate adaptation across all trials in 

each Context is summarized by the box-and-whisker plots in Figure 13B, with parameter 

estimates from the static model overlaid, showing that adaptive changes in drift-rate have a 

central tendency equal to the value that best describes the trial-averaged behavior in each group. 

Collectively, the results of the adaptive simulations suggest that goal-directed tuning of 

movement timing (RT) and control (stopping efficacy) can be achieved via feedback-dependent 

learning in the drift-rate. 
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Figure 12. Adaptive DPM Modulates Behavior to Context-Specific Control Demands 

(A) Adaptive DPM simulations based on trial sequence and SSD’s in the Early (blue) and Late (purple)
Contexts, showing the model’s trial-averaged stop-accuracy curve (left) and cumulative RT distribution
on correct (Go) and error (Stop) trials. (B) Empirical timeseries of Go RT’s with model predictions
overlaid (calculated using the same method described for Figure 11C) for Early (left), Uniform (middle,
same as in Figure 11C), and Late (right) Contexts. (C) Empirical and model predicted timeseries of stop-
accuracy for the same conditions as in panel B.
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Figure 13. Drift-Rate Adaptation to Feedback Recovers Static Model Parameters 

(A) Timeseries plots showing the change in adaptive execution drift-rate (vE) across trial blocks (same bin
width as RT and accuracy timeseries shown in Figure 12B) from the Adaptive DPM simulations in the
Early (blue), Uniform (gray), and Late (purple) Contexts. Error bars reflect the 95%CI, calculated across
subjects. All models were initialized with the optimized parameter estimates for the Uniform Context,
allowing only the execution drift-rate to vary across trials. (B) Boxplots show the distribution of trialwise
estimates of vE from the Adaptive simulations for the average subject in each Context (same color
conventions as in A). The dot markers overlaid on each boxplot represent the optimized drift-rate values
in the Static DPM. Boxplot whiskers depict the 1.5 s.d. around the mean.

3.4 SUMMARY OF RESULTS 

In contrast to most theories that assume a sensory-driven and cortically implemented drift-rate, 

the DPM posits that the drift-rate is at least partially a reflection of competing signals of the 

direct and indirect pathways in the BG. One critical prediction that follows from this assumption 

is that feedback about decision outcomes should modulate the drift-rate in ways that align 

behavioral control with the demands of the environment and facilitate goal acquisition.  

Particularly relevant to the current study, recent work has found that the weighting of 

cortico-striatal synapses on direct and indirect MSNs can be incrementally altered to generate 

faster or slower movements, and that this effect disappears in the presence of dopamine 
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antagonist (Yttri & Dudman, 2016). The authors found that closed-loop stimulation of the direct 

pathway increased movement velocity when stimulation was selectively yoked to faster 

movements and decreased movement velocity when yoked to slower movements. Surprisingly, 

the exact opposite effect was observed when stimulation was applied to indirect pathway 

neurons, increasing velocity when stimulation was applied to slower movements and vice versa. 

In other words, activity-dependent plasticity in both pathways was sufficient to bi-directionally 

alter task-relevant movement kinematics, revealing an unprecedented degree of control by BG 

circuitry. This study provides a useful computational framework for studying the effects of 

reward feedback on cortico-striatal encoding of action timing. 
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4.0  ADAPTIVE DECISIONS BETWEEN MULTIPLE ALTERNATIVES 

In the preceding section (see 3.0 ), I examined how the underlying dynamics of single-action 

decisions change with experience, showing how feedback dependent plasticity in the execution 

drift-rate incorporates control demands of the environment with task goals to drive adaptive 

behavior. By allowing the drift-rate parameter to change in response to feedback, the adaptive 

DPM was able to capture the same trial-wise fluctuations in RT and stop-accuracy as observed 

experimentally in each Context condition. The gradual tuning of the execution process is 

consistent with the well-studied effects of dopaminergic reinforcement on the direct and indirect 

pathways as (see 2.3). Moreover, these findings are in line with recent work in human 

neuroimaging (van Maanen et al., 2016) and optogenetic studies in mice (Panigrahi et al., 2015; 

Yttri & Dudman, 2016) showing a clear functional link between the striatum and the kinetics of 

goal-directed movements (see Dudman & Krakauer, (2016) for a current review). Thus, rather 

than simply opening the gate for action execution, cortico-striatal pathways appear to play an 

important role in shaping how actions are expressed so as to minimize errors in specific 

dimensions. This is an important distinction, as current RL models of BG computations do not 

offer testable predictions about the relevant environmental factors, cognitive mechanisms, or 

neural implementation of movement parameters such as the timing or velocity of action 

execution.  
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As a result, the experimental paradigms that have been developed to study RL 

phenomena have largely relied on single discrete measures of decision outcome. One such 

paradigm is the IGT (Bechara, Damasio, Damasio, & Anderson, 1994), widely considered to be 

the gold-standard behavioral task for studying value-based decision-making. In the IGT, the 

subject makes sequential draws from four decks of cards and receives feedback in the form of 

rewards and penalties. Each deck has a feedback schedule that varies along two dimensions of 

interest (see Table 3): 1) long-term payoff and 2) the frequency of positive versus negative 

feedback.  

Table 3. Target feedback schedules modeled after decks in the Iowa Gambling Task 

Low Value 
Low Frequency 

Low Value 
High Frequency 

High Value 
Low Frequency 

High Value 
High Frequency 

Target (“Deck”) A (Blue) B (Red) C (Purple) D (Green) 

Reward (+) +100 +100 +50 +50

Penalty (-) -100 to -350 -1250 -50 -250

+/- Ratio 5:5 9:1 5:5 9:1
Net Sum -250 -250 250 250

With respect to long-term payoff, decks A and B are considered “bad” decks as draws from these 

decks have a negative cumulative value and lead to long-term loss. In contrast, decks C and D 

have a positive cumulative value and lead to long-term gains, thus drawing from these decks is 

considered an optimal strategy over drawing from decks A and B. The second dimension of 

interest, reward frequency, is assessed by comparing the number of times the subject draws from 

decks A and C, which both yield positive rewards with 5 to 1 odds, with the number of times the 

subject draws from decks B and D, which yield rewards at 9 to 1 odds. The standard approach to 
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evaluating performance on the IGT involves computing scores that reflect a subject’s sensitivity 

to Payoff (P): the number of draws from decks C and D minus the number of draws from A and 

B; and Sensitivity (Q): the number of draws from decks B and D minus the number of draws 

from A and C.  

The original prediction from the IGT is that human participants are largely optimal in 

learning to draw from “good” decks that maximize their long-term gains and to avoid decks that 

increase the risk of long-term losses (Bechara et al., 1994). As it turns out, this conclusion is 

often not correct, with some studies suggesting that healthy adults regularly exhibit sub-optimal 

decision strategies that focus on gain-loss frequency at the expense of long-term gains 

(Horstmann, Villringer, & Neumann, 2012). Typically, this suboptimal strategy manifests in 

persistent draws from deck B - termed the ‘prominent deck B phenomenon’ (Lin, Chiu, Lee, & 

Hsieh, 2007)- as well as fewer draws from Deck C - termed the ‘sunken deck C phenomenon’ 

(Chiu & Lin, 2007). However, because of the way P and Q are calculated, many studies have 

overlooked this strategy as a sub-optimal, yet normative, component of behavior in healthy 

adults. The consequence of this oversight bears on the validity of performance deficits in the IGT 

that have been widely used as confirmatory evidence of impaired judgment in individuals with 

ADHD (Toplak, Jain, & Tannock, 2005) and schizophrenia (Shurman, Horan, & Nuechterlein, 

2005). Furthermore, the standard approach of collapsing across deck selections may explain 

why, despite the hundreds of studies that have confirmed the hypothesis of normative gain 

maximization (Hawthorne & Pierce, 2015), computational models of the IGT widely disagree 

with each other on the nature of adaptive, value-based decision making (Steingroever, Wetzels, 

& Wagenmakers, 2013; Worthy, Hawthorne, & Otto, 2013). One potential reason for the 

discontinuity between strictly behavioral studies of the IGT and those that attempt to model the 
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behavior computationally is that choice outcomes are not sufficient indicators of the underlying 

cognitive mechanisms. This argument is underscored by considering that models of binary 

perceptual decisions, arguably a simpler form decision-making than that probed by the IGT, 

would be impossible to distinguish without access to both decision outcomes and RTs.  

In this section, I investigate behavioral performance on a novel sensorimotor variant of 

the IGT where, instead of selecting virtual cards from a deck, human participants perform a 

center-out reach task to peripheral targets on a screen, each mirroring the feedback schedule of a 

deck in the original task. The primary motivation behind this design is to expand the behavioral 

profile of risk- and value-based decision-making by measuring the temporal and kinematic 

effects of reward frequency and long-term gains. In addition, I can control the degree of certainty 

in choice selection by increasing the spatial variance of the targets, which as I pointed out in 

Chapter I should push individuals to become more exploratory in their decisions, rather than 

exploitative. In order to theoretically motivate the expected results, I will use a simulation-based 

hypothesis generation approach that leverages knowledge about the involvement of cortico-BG 

circuitry in regulating these phenomena to generate specific predictions about the underlying 

causes of suboptimal policies and other standing debates in the literature. 

In section 3.2.3, I took the standard approach of optimizing decision and learning-rate 

parameters of the DPM to accuracy and RT data. Here I take a different approach, using a 

simplified network model to generate and test predictions about dimensions of interest in the 

data. There are a several advantages to prediction-oriented approaches that address specific 

weaknesses of model-fitting (Thura, 2016). One of the greatest strengths of accumulator models 

is that they offer a highly flexible and assumption-free mechanism for describing any bounded 

stochastic system with analog input and bounded digital output. However, greater flexibility 
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often comes at a cost to model identity (Palmeri, Schall, & Logan, 2013), the measure of how 

uniquely predictive a model is of the phenomenon it intends to describe. Optimization algorithms 

can exploit this flexibility and lead to convincing visual fits to the data that provide spurious 

evidence for the predictive utility of a model that is in fact, highly general. One way to avoid a 

model identity crisis is to develop behavioral paradigms that force models to disagree and 

therefore be falsified. Another way is to leverage previous observations to generate conditional 

predictions about how the system should behave in a novel setting. In the present study, I have 

two important sources of prior knowledge: 1) the literature reviewed in section 2.0  regarding the 

channel-like architecture of the BG and the physiological processes that drive learning and 

action-selection; and 2) the observed effects of feedback on reaching behavior in the current task 

(see 4.2.1), which provide important constraints for setting up and testing novel predictions about 

untested dimensions of behavior. 

4.1 METHODS 

4.1.1 Participants 

Neurologically healthy adults (N=35, Mean age 28 years) were recruited from greater Pittsburgh 

area through a community subject pool sponsored by Carnegie Mellon University. All 

procedures were approved by the local Institutional Review Board. Two subjects were excluded 

due to a programming error that resulted in erroneous tracking of the reach trajectory and timing. 

All subjects were informed that they were guaranteed $10 compensation for participating with 

the chance to earn up to $5 bonus based on their task performance. However, this incentive was 
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purely motivational and all subjects were compensated the full $15 for their time. The task was 

self-paced but typically lasted no more than 1.5 hours, including time dedicated to consenting, 

instruction, and practice. All subjects were given the opportunity to practice the task until they 

felt comfortable with the reaching equipment and general goals of the task.   

4.1.2 Reaching Task 

Subjects completed a center-out reach task using a stylus and pad to reach toward one of four 

spatially presented targets (2D-Normal distribution of dots) with feedback schedules modeled 

after those of the IGT. Subjects were situated in a 2-D virtual reaching environment and 

movement trajectories were recorded using a Wacom Intuos Pro Large tablet. Visual feedback 

was presented on a computer monitor perpendicular to the tablet workspace. Visual presentation 

of the hand position (filled circle) and targets were aligned so as to be veridical with the 

workspace of the tablet. At the beginning of each trial, subjects moved their right hand to the 

center of the workspace, indicated by an unfilled white circle. Once in the start circle, feedback 

of the hand and start circle disappeared and after a random delay (500-1500ms) four targets were 

presented at cardinal locations (0º, 90º,180º, 270º) around the start circle. Each target was 

presented as a Gaussian distribution of 100 dots with the mean of each distribution located 8cm 

from the start circle. Targets were presented for 300ms before disappearing, at which point the 

subject was instructed to make a ballistic reaching movement to the center of the target location. 

Visual feedback of the hand position is presented at the start of the reaching movement and 

removed after the reach is executed. After the reach is terminated, participants are given a 

feedback score. This score is calculated as the product of two values: 1) distance of reach 

endpoint from the center of the selected target (sensorimotor estimation) and 2) a “deck” score 
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for that target (value estimation). This second value follows the deck score of the typical IGT 

paradigm where each target has an assigned value on each trial, according to a specified 

combination of frequency and magnitude of gains/losses (see Table 3). For each subject, Payoff 

or P was calculated by subtracting the number of reaches to low value targets from the number 

of reaches to high value targets: P = (C + D) – (A+B). Sensitivity or Q was calculated by 

subtracting the number of reaches to targets with high reward frequency from the number of 

reaches to targets with low reward frequency: Q = (B + D) – (A+C). 

Figure 14. Multi-choice value-based reaching paradigm. 

The timeline shows a single trial of a center-out reaching experiment. Subjects initiated each trial by 
moving stylus to the center location on a stylus, with a point-by-point mapping for visual feedback 
displayed on a perpendicular monitor. Once in the center, four clusters of dots were displayed following a 
jittered interval (see Methods), prompting the subject to make a reach selection aiming at the center of the 
chosen target. The reach movement was terminated as soon as movement velocity fell below a set 
threshold to encourage ballistic reach trajectories so as to minimize slow or overly variable movements. 
Once the reach was terminated a feedback score was displayed above the chosen target, with rewards 
shown in green and penalties shown in red font. The score reflected a weighted combination of the 
endpoint-error relative to the target’s true center and the value returned by the target on that trial. For each 
of 4 blocks the subject’s cumulative score was displayed in the lower left-hand corner of the screen (not 
shown). The upper right hand panel shows an example of the stimuli displayed in the low variance 
condition. 
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4.1.3 Adaptive Multi-Alternative Network Model 

In contrast with controlling a single action (see section 3.0 ), the current task requires 

evaluation of multiple actions based on their respective histories of reinforcement. To investigate 

the utility of drift-rate adaptation as a mechanism for describing value-based decisions among 

multiple actions, I constructed a simple decision network (Figure 15) in which each target is 

encoded as an action channel with of independently accumulating Go (G) and NoGo (N) 

accumulators. For each action channel j and each trial t, the stepwise dynamics for the G and N 

accumulators were defined at each time step τ (∆τ  = 1 ms) according to Equation 9 and Equation 

10, respectively. 

 (9) 

(10) 

With νG and νN defining the drift rates of the G and N processes respectively. The diffusion noise 

on each follows a normal distribution with variance σ2 = 0.1 (Equation 11). 

(11) 

The execution process θ for each action channel j is computed in the network output layer as the 

difference between the G and N processes (Equation 12). 

(12) 

The hyperbolic cosine term introduces a dynamic bias in the signal that approximates a 

collapsing decision boundary (Dunovan et al., 2015; Ratcliff & Frank, 2012) at a rate determined 

by the parameter γ. Each trial simulation continues until the first deck execution process reaches 

the decision boundary a. At the end of each simulated trial, the network received a feedback 

θj,t(τ) = [Gj,t(τ) − Nj,t(τ)] · cosh(γ · τ)

ε
G/N
j ∼ N (0, σ2)

Gj,t(τ) = Gj,t(τ − ∆τ) + vj
G
,t∆τ + εj

G(τ)

Nj,t(τ) = Nj,t(τ − ∆τ) + vj
N
,t∆τ + εj

N (τ)
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signal, r(t), reflecting the value of the target selected. This signal was used to update the state 

value of each target, xj as shown by Equation 13. 

(13) 

On trials with positive feedback (i.e., gain), αG is applied as the learning rate whereas on trials 

with negative feedback (i.e., loss), αN is applied. Several recent computational studies have used 

a similar dual learning rate system to describe dissociable contributions of plasticity in the direct 

and indirect pathways (Cockburn et al., 2014; Collins & Frank, 2014). Here, the valence of 

feedback determines which learning rate is used to update the value estimate for each target, 

which determines the rate of learning by the “Critic” in the Actor-Critic learning model. 

However, in this model the “Actor” adjusts the weights of each action according to both αG and 

αN on each trial, as described below (see also Collins & Frank, (2014)). This state value function 

was then used to update the action selection probability pj for each Target j given by the softmax 

probability function in Equation 14 (Sutton et al., 1998). Note that lowercase pj reflects the 

updated probability for target j, as uppercase P is used to denote payoff throughout the text. 

j

where β is the inverse temperature parameter and xj(t) is the current value estimate from Equation 

13. Typically, pj is estimated for each deck and used to perform a weighted selection from the set

of possible alternatives. Here, the change in pj(t) from the previous trial pj(t -1) is calculated to 

obtain an estimate of the change in choice probability for each deck, δ (t)

(15)

xj (t + 1) = xj (t) + α · [r(t) − xj (t)]

δ     = pj (t) − pj (t − 1)(t)

(14)
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This additional step effectively converts the value update from Equation 13 into proportional 

change in selection probability for each channel. This “choice probability” error signal is then 

used to update the relative drift rates of the G (Equation 16) and N (Equation 17) processes in 

each action channel. 

(16) 

(17) 

By first converting the value prediction-error into a probability, this allows for a more straight-

forward update of the drift-rate term for the Go and NoGo units. Otherwise, large discrepancies 

in value, such as those yielded by target B, ranging between -1250 and +100, can lead to 

destabilizing changes in the drift-rate.  

Figure 15. Network of competing action channels and parameter influence on Payoff. 

The network represents each target as a separate sensory input that sends a drift-rate to the Go pathway of 
a single action channel and contributes to the drift-rates of NoGo pathways in the remaining action 
channels (i.e., center-surround architecture). Within each action channel (right inset) the Go and NoGo 
pathway activity accumulate independently and project to a single output decision node. The output 
decision node takes the difference of Go and NoGo activity, along with an urgency signal that increases 
with time, and accumulates to a decision boundary. The network chooses the first output node to reach its 
decision boundary.  
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4.2 RESULTS 

4.2.1 Analysis of Reaching Behavior 

To assess the effects of reward value and frequency, I examined the average number of reaches 

to each target, as well as the average reach error, response time (RT), and the duration of the 

reach. A one-way repeated measures ANOVA revealed a significant effect on the number of 

reaches, F(3, 96)=7.862, p<.0001 and a marginally significant effect on reach error F(1, 

32)=2.47, p=.066. Figure 16A shows that the main effect on reach number was driven by a 

general preference for targets B and D over A and C. Analysis of the endpoint error of reaching 

movements revealed a similar pattern (Figure 16B), suggesting that subjects’ target selection and 

subsequent reach precision were more sensitive to the frequency of rewards than overall reward 

magnitude. Thus, in line with previous studies of IGT performance in healthy adults, I observed 

evidence of both prominent deck B phenomenon (Lin et al., 2007) as well as the sunken deck C 

phenomenon (Chiu & Lin, 2007). Counter to my predictions, no main effect of target ID was 

found for RT F(3, 96)=.852, p=.469, or the duration of the reach F(3, 96)=.852, p=.469. 

However, inspection of the distributions of reach times (Figure 16E), showing all times for all 

subjects, revealed a clear difference in the positive skew of distributions for high value targets 

(bottom) compared to low value targets (top). One possibility is that different strategies across 

subjects had a wash out effect on the mean RT and duration measures. I explore this possibility 

in the following sections.  
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Figure 16 Summary statistics and distributions of reach durations for each target. 

The subject-averaged reach count (A), reach end-point error (B), response time, calculated as the delay 
between stimulus offset and when the reach passed a 50-pixel radius around the center start position, and 
reach duration (D). The color of each bar denotes the target’s feedback schedule. The target with feedback 
corresponding to “Deck A” in the original IGT is always shown in blue, “Deck B” in red, “Deck C” in 
purple, and “Deck D” in green. (E) RT distributions for the average subject (taking the mean RT at each 
trial in which a reach occurred to that  

One of the primary advantages of the current task is that, in addition to manipulating the 

feedback schedules associated with target, the sensory uncertainty of the target itself could be 

manipulated. This was accomplished by changing the standard deviation of the target 

distribution, with higher standard deviations making it difficult to estimate the true target center 

(Körding & Wolpert, 2004). Given the normative predictions of the model, I predicted that 

increasing target estimation uncertainty would increase exploratory dynamics in the trial-wise 

reaching behavior (see Figure 7B). Figure 17A-B shows example reaches for two subjects, 

highlighting the reaching dynamics across 200 trials under high and low sensory uncertainty. The 

first subject experienced the low variance condition in the first block, shown as the left set of 

reaches with smaller target circles. In both the low and high variance conditions, this subject 

displayed a preference for targets A (blue), B (red), and D (green) and largely avoided target C 

(purple). While the Target preferences remained largely the same, the reach trajectories to each 
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preferred target became noticeably less precise in the high variance condition (right). The second 

subject, shown in Figure 17B, showed a strong preference for target D in both high (left) and low 

(right) uncertainty conditions, but reached to all four targets noticeably more when target 

variance was high (Figure 17B, left) compared to low (Figure 17B, right). Also, similar to the 

first subject, the reach trajectories in the high Variance condition are contracted in comparison to 

those in the low Variance condition. As a formal measure of target exploration, I calculated the 

probability of switching to a new reach target between trials (Figure 17C). This measure captures 

the assumption that exploration of different targets should yield a higher probability of reaching 

to a different target from trial to trial. In contrast with my original hypothesis, increasing target 

variance did not significantly impact the probability of switching; however, inspection of the 

reach trajectories did reveal a significant increase in the degree of endpoint error (Figure 17D) 

for high- compared to low-variance targets, F(1, 32)= 30.11, p<.0001. One interpretation is that 

the additional error in the high uncertainty condition is a reflection of poor estimation of the 

target center, rather than an indicator of active exploration, per se. Of course, it is also possible 

that this variability is capturing exploration of the reach space to facilitate convergence on an 

optimal trajectory.  
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Figure 17. Target variance selectively increases reach error. 

(A) Example Subject 1 showing reaching trajectories in the low variance (left) and high variance (right)
conditions. The left-to-right order of the two sets of reaches depicts the order in which each subject
experienced the high and low variance condition blocks. Reach traces are color-coded based on the
feedback schedule assigned to each spatial location for that block of 200 trials. The Target with feedback
schedule normally assigned to “Deck A” of the IGT is always shown in blue, “Deck B” in red, “Deck C”
in purple, and “Deck D” in green. (B) Reach trajectories for a second example subject in the high variance
(left) and low variance (right) conditions. Subject-averaged means and 95% confidence intervals for the
(C) lag-1 probability of switching to a new reach target (D) reach error, (E) RT, and (F) reach duration.
Dark and light bars show the estimates corresponding to the high and low variance conditions,
respectively.

4.2.2 Adaptive Multi-Alternative Accumulator Model 

Methods for optimizing parameters of accumulator models, such as those used to fit the static 

DPM in 3.2.3 have become widely adopted as the gold standard for testing model-based 

hypotheses. However, in order for parameter optimization to be useful, there are many 

assumptions that must first be validated about the statistical influence of the model’s parameters, 

(covariance, effect-sizes, etc.). For the present purposes, I have chosen to forego a formal 

optimization of the network’s parameters. Instead I will examine how simple predictions arise 
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from hypothesis-driven manipulation of parameters representing different forces on the activity 

of each action’s direct and indirect pathway in a simplified decision network. 

I first performed a grid search of the learning parameters to investigate the effect of Go 

(αG) an NoGo (αN) learning rates on the network’s Payoff, and how this relationship was 

influenced by the inverse temperature parameter (β). Each plot in Figure 18B shows the 

networks P score for a single value of αN and different combinations of αG and β. In each plot, 

lighter lines show simulations with low values of αG (lowest = .01) with darker lines reflecting 

increasingly high values of αG (highest = .4). Moving from the left to right plots, P is shown to 

decrease as the ratio of a αG to αN increases, exacerbated by higher β values at each level. This 

relationship suggests that Payoff is modulated as a function of an agent’s relative sensitivity to 

positive and negative feedback.  

Figure 18. Payoff as a function of different learning strategies 

Payoff scores for network IGT simulations. Each line reflects the average results from 100 simulated 
agents using a unique combination of Go (αG) and NoGo (αN) learning rates Go learning rates (αG) 
ranging from 0.01 (lighter lines) to 0.4 (darker lines), and softmax temperature parameter (β). Each 
network simulation followed the same trial procedures as participants in the IGT described above (200 
total trials with same feedback schedules as experimental subjects experienced). The following 
parameters were held constant across all simulations: boundary height (a= .4), non-decision time (tr = 100 
ms), dynamic gain (γ =1.5), and initial drift-rates (eg. prior to learning)  for the Go (νG=.7) and No Go 
(νN=.4) decision variables. 
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While learning from positive feedback is surely important, these simulations suggest that 

long term gains suffer to a greater extent when adaptation to negative feedback is weak. For 

instance, the rightmost plot shows how long-term outcomes suffer as a result of impaired 

learning from negative feedback, and how matters become worse as sensitivity to positive 

feedback increases (darker red lines). The rate of decay across values of β in each plot depict 

how “exploited” a given combination of αG and αN are. In other words, when actively exploiting 

a strategy of learning only from positive feedback, long-term outcomes become increasingly 

negative. Conversely, in the leftmost plot, exploiting a strategy of high positive and negative 

feedback has the exact opposite effect – maximizing long term gains with increasing levels of β.  

In section 2.3 I speculated that RT should become faster as learning strategy becomes 

less exploratory and more exploitative (see Figure 7B). A general assumption within the 

Believer-Skeptic framework is that the dopaminergic reinforcement of direct pathway for high-

value actions should not only promote that action but also increase the speed of execution. To 

test this assumption in the context of the IGT, I ran a simulation with 40 agents using the same 

feedback schedules as the actual experiment and asked how P score related to RTs, as a measure 

of a speed-accuracy tradeoff where, in this context, accuracy is determined as efficient value-

based decision-making. The same correlation analysis was also performed for Q scores. 

Interestingly, I found that the simulated speed of responding was faster (r=.41, p=.02) for agents 

that strategically maximize long-term gains (e.g., higher P) but shows no linear relationship with 

the agent’s sensitivity to reward frequency (r=.09, p>.05).  



68 

Figure 19. Simulated agents show negative correlation between RT and Payoff, not Sensitivity 

Simulations of 40 agents with αG to αN both set equal to .2 and β=5. (medium blue line in second plot 
from the left in Figure 18). Correlations between Sensitivity (Q, left) and Payoff (P, right) with Response 
Time (RT) were calculated based on the simulated averages for each agent. Despite all having the same 
learning parameters, individual differences naturally arise due to the stochastic nature of both the model 
and the task. Thus, this simulation captures similar assumptions as when done with empirical data. 

The model prediction in Figure 19 reveals a signature of the exploration-exploitation 

trade-off. Agents in a strongly exploitative state should have faster RTs (see Figure 7B), but 

being too exploitative biases you to immediate feedback signals and reduces the efficiency of 

long-term value based decisions.  In contrast, agents that are more exploratory (i.e., longer RTs) 

tend to make more efficient long-term decisions. To test this model prediction against the 

observed data I calculated P and Q measures for each subject and correlated these scores with 

RT, defined as the time between cue offset and movement initiation, as well as the reach 

duration. Indeed, subjects with high P scores had significantly faster RTs (r=-.430, p<.05) and 

made faster reaches (r=-.547, p<.001) than lower scoring subjects (Figure 20, right), whereas 

correlating the same behavioral measures with subject-estimated Q scores revealed no reliable 

relationship (Figure 20, left). Thus, subjects who adopt the optimal strategy of maximizing long-

term gains also appear to maximize their efficiency by gaining speed.  
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Figure 20. Payoff and Sensitivity have dissociable behavioral signatures. 

Sensitivity (Q, left column) and Payoff (P, right column) were calculated for each subject and correlated 
with the subjects average RT (top row) and reach duration (bottom row). The results offer support for the 
model predictions in Figure 18, revealing a selective benefit on choice and movement efficiency for 
optimal strategies that exploit long term-gains.  

Another empirical result of interest in the current study is the finding that many subjects 

preferred target B, which yields frequent (9+:1-) and high positive rewards (+100) and extreme, 

but infrequent penalties (-1250). This outcome has surfaced in a number of recent studies and has 

become central to the debate regarding the original predictions of the IGT for normal, healthy 

adults – that they exercise optimal decision-making by prioritizing actions that maximize long-

term gains (C & D) over risky alternatives (A & B). Target A is easier to avoid as it has both a 

low frequency of reward as well as negative long-term payout. Conversely, target B provides 

long runs of high-value rewards before issuing any penalties. Several clinical studies have shown 
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that patients with Schizophrenia are more apt to exhibit prominent deck B selections, often 

attributed to distorted representations of value (Shurman et al., 2005). Other studies, however, 

where subjects are surveyed about explicit awareness of “good” and “bad” decks, have found 

that those who exhibit a preference for deck B report knowing the relative risks involved (Chiu 

& Lin, 2007). Thus, there are likely at least two different mechanisms underlying this strategy. 

To investigate the underlying mechanisms, I examined the combinations of αG, αN and β from 

the previous grid search that led to suboptimal target B selections and identified two parameter 

profiles that produced this effect.  

Interestingly, both profiles led to similar patterns in RT across targets (Figure 21A-B, 

upper-left), in line with the current findings showing no significant mean different in RT across 

targets. Based on the selection count for each target (Figure 21A-B upper-right), however, the 

current results appear more similar to the first scenario (Figure 21B), in which B and D are 

preferred, reflecting a high sensitivity to reward frequency at the expense of long-term outcomes. 

This pattern arises when αG and αN are similarly matched but in the context of a low β weight, 

thus a more exploratory and less exploitative strategy. The second scenario matches studies 

showing clinical impairments in obesity (Brogan, Hevey, & Pignatti, 2010), Schizophrenia 

(Shurman et al., 2005), and ADHD (Toplak et al., 2005) in which a sub-optimal strategy of 

discounting negative feedback (low αN) and over-weighting rewards (high αG) is actively 

exploited (high β). 
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Figure 21. Simulations of prominent "Deck B" phenomenon 

(A) Simulations with 40 agents with αN=.01, αG=.4, β=8 and (B) αN=.2, αG=.2, β=2. RT (upper left) and
number of choices (upper right) from each target. The bottom row shows for each set of simulations the
change in vG and vN across all simulated trials. In A, target B is exploited early on with an insensitivity in
αN leading to diminished effects of negative feedback on vG and vN.

4.3 SUMMARY OF RESULTS 

In the current study, I developed a novel behavioral task for studying the interaction between 

reward-based learning and sensorimotor adaptation in a virtual reaching paradigm, where the 

feedback associated with each target was modeled after a deck from the IGT. The IGT is widely 

regarded as the keystone paradigm for studying complex, economic decision-making and has 

become a mainstay in both basic (Horstmann et al., 2012; Steingroever et al., 2013; Worthy et 

al., 2013) and clinical cognitive science (Fellows, 2007; Fellows & Farah, 2005; Sescousse, 

Barbalat, Domenech, & Dreher, 2013). The primary aim of the IGT is to isolate a decider’s 

sensitivity to reward frequency from their preference for maximizing long-term gains. Typically, 

this involves tallying the number of draws from different combinations of the four decks, then 

using these counts to derive an estimate of preference for one feedback dimension or the other 

(Bechara et al., 1994). However, the collection of a single behavioral measure places a harsh 
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upper limit on making inferences about the cognitive and/or neural mechanisms that mediate 

economic choice.  

To overcome this limitation, I combined the well-designed feedback schedules from the 

original IGT with a sensorimotor reaching task that allowed for rich behavioral assay of the 

temporal and kinematic effects of reinforcement, along dimensions of frequency and value. By 

investigating economic decisions in the context of a sensorimotor experiment, this opened up the 

door for manipulations of other types of uncertainty that could potentially compound those 

addressed in the original IGT. In the present study, I hypothesized that increasing the sensory 

uncertainty in the target location would force subjects into a more exploratory state and away 

from exploiting a given strategy. To encourage subjects to prioritize accurate target estimation, 

the original feedback score following each reach was scaled relative to how close the reach 

endpoint was to the center of the target. The behavioral results indicated that increasing sensory 

uncertainty did not have any effect on the decision of which target to reach to on each trial, as 

initially predicted, but did selectively increase exploration of the final reach location. Future 

studies should test the limits of this relationship as it is possible that the high variance condition 

in the present study did not sufficiently impair target estimation, leaving intact the ability to 

exploit the same strategies used by the subject in the low variance condition.  

For all the reasons mentioned above, this task provided a unique opportunity for testing 

several key predictions laid out in Chapter I within the broader Believer-Skeptic framework. 

Here I focused on the prediction that exploitation of dopaminergic learning signals should 

promote advantageous decision-making by increasing the ratio of direct to indirect pathway 

activation in respective action channels of the BG, driving up the rate of evidence accumulation 

to facilitate faster action execution. To this end, I constructed a simple network model 
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representing each target as a single action channel driven by weighted input to functionally 

opposing Go and NoGo units that converged in the output to compete for action control. The 

network was repeatedly simulated using the same choice-dependent feedback schedules as in the 

experiment under parameter schemes that simulated varying reliance on exploratory and 

exploitative strategies as well as plausible differences in sensitivity to positive versus negative 

reinforcement. I then investigated how “individual differences” in Payoff and RT varied across 

simulated agents within a single parameter scheme, showing the predicted relationship between 

these dimensions was sustained in the current network setup and in the context of the IGT. 

Finally, I confirmed this prediction in the observed data by showing that individual differences in 

response speed and reach velocity were positively correlated with the exploitation of long-term 

gains. response s and reach duration. I discuss additional details and implications of this study in 

the next and final section.  
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5.0  FINAL SUMMARY AND CONCLUSIONS 

Over the past decade, extraordinary progress has emerged from the joining of computational 

modeling with experimental approaches to cognitive neuroscience. This is especially true for the 

two computational frameworks addressed in this thesis: (1) reinforcement learning theory, a 

major catalyst in the discovery of dopamine-encoded prediction errors (Schultz, 2015) and 

numerous corollary advancements; and (2) accumulator models of decision making, that were 

revived by the seminal discovery of single neurons in parietal cortex showing the same stochastic 

rise-to-threshold dynamics during simple perceptual choice experiments (Gold & Shadlen, 

2007). Both frameworks have solidified the importance of formal models in the study of 

cognitive phenomena, creating a quantitative link between mental processes and behavior, and 

more recently, brain activity.  

In this dissertation, my aims were to synthesize RL theory with accumulation-to-bound 

models of decision making in ways that 1) satisfy certain assumptions about how these functions 

arise from cortico-BG circuitry and 2) address critical aspects of behavior that emerge from 

experience-driven changes in the dynamics of choice. In the remaining sections I revisit the key 

issues addressed in each chapter and discuss how they fit into the broader literature on BG 

involvement in adaptive decision-making, as well as limitations of each study. Finally, I discuss 

new avenues of work in this domain that I believe are worth pursuing. 
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5.1 ENCODING UNCERTAINTY AS A COMPETITION 

In Chapter I, I proposed a novel framework for thinking about how the BG contribute to 

decision-making and identified points of convergence between the neural substrates involved in 

deciding and learning from environmental feedback. There I focused on three major points – 

first, highlighting newly discovered features of cortico-BG circuitry and their hypothesized role 

in generating adaptive behavior, specifically in the context of uncertainty. Drawing on evidence 

from recent electrophysiological work in animal models, behavioral and neuroimaging studies in 

humans, and computational theory, I proposed that the primary function of the BG is to guide 

action decisions in a flexible and goal-directed manner by maintaining control over decision 

certainty. This assertion relies on a fundamental assumption that the direct “Go” and indirect 

“NoGo” pathways act as competing forces on an action decision, with activation of the direct 

pathway playing the role of the Believer and that of the indirect pathway the role of the Skeptic 

(Dunovan et al., 2015). 

Supporting evidence for the co-activation of the direct and indirect pathways was recently 

provided by Cui et al., (2013) showing that both pathways are engaged leading up the execution 

of an action. According to the canonical model of the BG, each action is represented as a 

channel, and each channel is composed of a direct and indirect pathway through which cortical 

commands may facilitate or suppress that action, respectively. In this model, the direct and 

indirect pathways act as independently operated levers: direct pathway to facilitate and indirect 

pathway to suppress. Recent computational work by Gurney et al., (2015), however, showed that 

independent operation of one pathway or the other leads to over-activation of too many channels 

at once, or a blanket suppression over all motor output. These authors found that the solution to 

this all or none problem was to allow cortical input to drive activation in both pathways for all 
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action channels being considered for execution, resulting in actions being driven by competition 

in the output of the BG where the two cortico-striatal pathways converge in the GPi. Using a 

simplified attractor network to simulate the competition between the direct and indirect 

pathways, I showed how this basic principle could act as a unifying thread for describing the 

functional roles of BG in action control, decision-making, and RL. Expanding on a model 

proposed by Dunovan et al., (2015), I showed that increasing activation of the Skeptic exerts 

proactive control over an action by overriding the Believer and suppressing the rate of evidence 

accumulation. Critically, this graded competition allows for varying degrees of uncertainty to be 

expressed by delaying execution to allow more cortical evidence to accumulate or by 

suppressing the action all together.  

Given this mechanism for encoding uncertainty in a single action, I next examined how 

multiple actions could be represented in the context of a binary perceptual decision task, showing 

how changes in background excitability could modulate the speed-accuracy tradeoff. This 

simulation added support to a growing body of human neuroimaging studies showing that 

cortico-striatal activation increases to emphasize decision speed (Forstmann et al., 2008; 

Forstmann, Anwander, et al., 2010; van Maanen et al., 2016) or facilitate expected actions 

(Forstmann, Brown, et al., 2010). These studies have routinely shown that speed-related 

activation in the striatum is coupled with, and likely driven by control signals in the preSMA 

(Forstmann et al., 2008; King et al., 2012), which delivers diffuse excitatory drive to broad 

portions of the striatum. However, there remains no clear mechanistic hypothesis for how such 

unfocused excitation to both striatal pathways could selectively encourage speed over accuracy 

in the decision process. Counter to the intuition that such connectivity would be canceled out by 

exciting both direct and indirect populations, the model showed increasing the background 
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excitability had an accelerating effect on competing Believer-Skeptic competition. Future studies 

will be needed to validate this prediction of the model at the cellular and circuit levels. For 

instance, multi-site recordings from the striatum, GPe, and GPi would provide important insights 

into the action-channel hypothesis presumed by Believer-Skeptic. This is a core assumption of 

many BG-related models that rests on relatively weak empirical support. The theoretical 

framework I proposed in Chapter I offers both a new way of conceptualizing existing 

physiological studies of the BG pathways and novel predictions for future empirical work. 

5.2 MECHANISMS UNDERLYING CONTEXTUAL CONTROL 

A basic assumption of the Believer-Skeptic framework is that the BG acts as a bridge for binding 

cognitive processing (e.g., current goals, prior knowledge, perceptual judgements, etc.) with the 

appropriate action. In Chapter I, I covered two large bodies of literature on opposite sides of this 

bridge – on one side, studies of inhibitory control have identified critical opponent process 

dynamics between the direct and indirect pathways that give rise to efficient action selection and 

rapid cancellation of in response to unexpected shifts in environment; - and on the other side, 

studies of RL show how dopaminergic signals train cortico-striatal connections to associate 

valuable features in the environment with the actions that aid in achieving simple goals. Despite 

making up a generous portion of the behavioral research on the BG, inhibitory control and RL 

literatures have largely proceeded in parallel.  

In section 3.0 , my goal was to test the prediction that, in addition to mediating value-

based learning, dopaminergic reinforcement of the direct and indirect pathways should act as a 

tutor for proactively adjusting control to meet varying task demands. In a previous study, I 
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proposed a variation on the classic independent race model. While the IRM has been found to 

successfully predict behavior in a variety of stop-signal tasks, the notion of fully independent 

control signals underlying action execution and cancellation conflicts with the known overlap in 

their neural circuitry. In previous work (Dunovan et al., 2015) I showed that, by adapting the 

assumptions of the model to account for the convergence of proactive Go-NoGo and Braking 

signals in the BG output, the DPM was able to capture proactive and reactive forms of inhibition 

as well as task-evoked fMRI activation in premotor and thalamic regions. I found that the model 

was best able to capture behavioral and neural correlates of control by allowing contextual cues 

to proactively modulate the execution drift-rate, slowing responses to afford greater stopping 

efficacy by the nested Braking process. Following from this result, I developed an adaptive 

version of the DPM to test whether this same mechanism could explain gradual changes in 

behavior as the control demands of the environment are learned through experience.  

The results of this experiment added supporting evidence for a contextual modulation of 

the drift-rate parameter. Furthermore, by modeling the effect of trialwise feedback about the 

temporal precision of responses (i.e., with respect to the Target RT) on Go trials as well the 

Context-dependent statistics of the stop-cue on Stop trials, this simple mechanism was able to 

account for the timecourse of learning multiple dimensions of behavior.  

The findings presented in section 3.0  offer one potential solution to the issue of 

representing time in computational models of RL. Current RL models have largely focused on 

choice outcome. Focusing on a single dimension of behavior such as choice can be useful when 

testing model-predictions that expressly target that dimension, and other times this is not a 

choice but a necessary tradeoff with simplicity. However, when possible, testing predictions 

against RT data provides valuable constraints on the space of cognitive algorithms to consider 



79 

when comparing different models. Finally, with respect to behavioral models of the BG, recent 

optogenetic studies have begun probing cortico-striatal involvement in shaping movement 

kinematics, such as velocity and amplitude, inviting exciting new questions that push the 

boundaries current theories of BG-mediated behavioral control (Dudman & Krakauer, 2016; 

Wang et al., 2013; Yttri & Dudman, 2016). The model framework I proposed in section 3.0  

offers a computational perspective by which to predict manipulations of dopaminergic pathways 

during learning. 

5.3 ADAPTING MULTI-ALTERNATIVE DECISIONS TO FEEDBACK 

The present state of computational modeling in human and animal decision-making remains 

overwhelmingly concerned with the dynamics of unitary and binary decisions, and is rooted 

mostly in assumptions of perception (Gold & Shadlen, 2007). This perseveration is not without 

cause, and abandoning perception as a model system for studying choice dynamics would be 

counterproductive to say the least. While there are still a host of unresolved questions 

surrounding the nature of perceptual signals in decision-making (e.g., how I decide if the dots are 

moving to the left or the right in the first place, let along how does this impact decision 

dynamics), I do believe it is a worthwhile exercise to examine how our current models stand up 

in bigger arenas of multi-alternative choices beyond two choices.  

In section 4.0 , I set out to investigate how exploration-exploitation tradeoffs arise in the 

context of a multi-alternative reaching experiment, with target feedback designed to mirror that 

of different cards in the IGT. The exploration-exploitation tradeoff is a useful construct that 

characterizes two behavioral policies for navigating uncertainty, and often must be alternated 
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depending on context (Hills, Todd, Lazer, Redish, & Couzin, 2014). Take the example of 

learning to play the guitar. The first time a student picks up the instrument they automatically 

engage in exploration to find the most comfortable position to hold the neck, different ways to 

angle their wrist, how to rest their picking hand, and so on. Each of these positions undergoes a 

parameter optimization process, all converging toward the common goal of minimizing the 

initial awkwardness of holding a guitar. Over time, the student learns to exploit the sweet spots 

along each dimension until picking up the instrument becomes entirely automatic.  

Both the behavioral and neural correlates of this tradeoff have been thoroughly studied in 

song-birds. In one particularly elegant study, Woolley et al., (2014) found that juvenile males 

displayed wide ranging variability in the temporal sequencing and frequencies of vocal 

production in isolation. When in the presence of a potential mate, however, songs became highly 

precise versions of the noisier rendition performed when alone. This observation was paired with 

neural recordings in the avian analog of the basal ganglia showing that the stochastic nature of 

firing pattern in the BG output nucleus observed during isolated performances became highly 

predictable when performing for a mate. Human neuroimaging studies have also found neural 

signatures of policy switching the human striatum (Li & Daw, 2011), and have shown that 

multivariate patterns in the caudate nucleus track uncertainty across state changes in volatile 

environments (Jiang, Beck, Heller, & Egner, 2015).  

In section 2.0 , I proposed several mechanisms by which cortico-BG circuits could 

enforce more exploratory or exploitative learning policies, for instance increasing he level of 

tonic dopamine should dampen sensitivity to feedback by saturating receptor occupancy in the 

striatum, thereby preventing plasticity in the current cortico-striatal weighting. Similarly, 

exploitative behavior could be facilitated by increasing the background excitation through 
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diffuse glutamatergic inputs, such as those delivered by preSMA. Both of these mechanisms led 

to a common behavioral prediction – that the execution of exploited actions should be faster. In 

4.0 , I confirmed that this prediction was upheld in a simple four-channel network model, each 

channel representing a target in the reaching task as a competing pair of Go and NoGo units, 

showing that variability in Payoff across simulated agents yielded a positive relationship with 

RT. Finally, I confirmed this prediction by showing how subjects that maximized Payoff by 

exploiting actions with long-term gains also exhibited speeded RTs and reach speed compared to 

less exploitative subjects in a multi-alternative reaching paradigm inspired by the IGT.  

5.4 LIMITATIONS 

The body of work presented in this dissertation has several limitations that warrant attention. In 

4.0 , I discuss a wide range of possible, but largely speculative, links between the circuit-level 

properties of cortico-BG networks that give rise to complex behavioral phenomena. Further to 

the point, the Believer-Skeptic simulations presented in 4.0 , that form the crux of many 

corollary arguments made throughout the document, offers a comprised definition of biological 

plausibility, trading realistic complexity for behavioral understandability. The elegance of the 

algorithmic models proposed in this work is that they are constrained by biological assumptions, 

but the nature of these constraints in the decision process can only be confirmed through circuit-

level analysis of the BG pathways during adaptive decision-making. So, despite being premised 

off of a large body of emerging physiological studies, the specific biological extensions of this 

work remain relatively untested. 
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In section 3.0 , the between-group design precluded fits of the static model to individual 

subject data. This does not invalidate the results by any means, as group-level fits have been 

found to be reliable approximations of aggregated fits performed at the subject-level. Moreover, 

the Adaptive model was trained on individual data sets so as to reliably capture the rate of drift-

rate and TS adaptation across the span of a single experimental session. Still, future studies aimed 

at addressing similar learning hypotheses in accumulator dynamics would benefit from a 

repeated measures design, pending the absence of confounding order effects across conditions.  

Finally, in comparison with the more rigorous dissection of the behavior in section 3.0 , 

the link between the network model and reaching dynamics in section 4.0  offers a more tenuous 

link between a more complex model and a richer dataset. The model presented was simply used 

as a predictor for normative behavioral patterns. The increased model complexity quickly 

expands the number of free variables to formally fit to individual data. Further work can and 

should be done to identify efficient model fitting methods for dealing with more highly-

parameterized models like that described in section 4.1.3. 

5.5 CONCLUSION 

Computational models of decision making and reinforcement learning have been veritable 

workhorses in the fields of cognitive psychology and neuroscience, providing formal quantitative 

descriptions of two of the most fundamental aspects of behavior. Here I have argued for a 

biologically motivated synthesis of these two frameworks, motivated by their shared 

implementation in cortico-BG circuitry. This approach adheres to David Marr’s (1982) classic 

proposal that a true understanding of intelligent behavior requires an integrative analysis of its 
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implementational (e.g., neurobiological) and algorithmic (e.g., cognitive) levels. In spite of the 

limitations discussed above, I believe that this work has taken a meaningful step forward toward 

understanding how the dynamics of decision-making change with experience as well as the 

neural systems that mediate this phenomenon.  
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