
Basal Ganglia Dynamics
in Structure Learning

Matthew Clapp

August 2024

Neuroscience Institute
Dietrich College of Humanities and Social Sciences

Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Dr. Timothy Verstynen, Chair

Dr. Jonathan E. Rubin
Dr. Xaq Pitkow

Dr. Blake Richards, McGill University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

© 2024 Matthew Clapp
All Rights Reserved

This research was supported by NIH awards R01DA053014 and R01DA059993 as part
of the CRCNS program.



Abstract

We frequently encounter new challenges that necessitate action to achieve positive
outcomes. To navigate these challenges, our biological brains must utilize environmental
feedback from past experiences, combined with knowledge of patterns and structures in
the environment, to guide the selection of the most rewarding actions. Central to this
process is the basal ganglia, which is crucial for facilitating actions in response to
dopaminergic signaling [1] [2] [3]; however, the precise relationships between synaptic
plasticity, large-scale network dynamics, and reinforcement learning computations are
not fully understood. Additionally, it remains unclear how this system interacts with
other brain regions, particularly the hippocampus, which may provide information
regarding environmental structure [4] [5] [6] [7].

In this dissertation, I investigate the neural mechanisms underlying reinforcement
learning in the basal ganglia and its interaction with structure learning systems. First, I
introduce and demonstrate the capabilities of CBGTPy, a framework designed to
simulate biologically realistic neural dynamics and plasticity within the cortico-basal
ganglia-thalamic (CBGT) system. This flexible framework allows researchers to explore
the system’s internal dynamics at multiple scales across various simulated behavioral
tasks. Second, I examine the computational value of hippocampal representations in
reinforcement learning by employing a model of place cells derived from successor
representation [8]. These place cells, along with alternative handcrafted representations,
are used to bias cortical inputs within the CBGTPy network throughout its
performance of an example structured task [9].

The combined model exhibits enhanced flexibility and improved performance in
structured reinforcement learning tasks, mirroring observed human behaviors in similar
environments. The extent of this facilitation, however, heavily depends on the
properties of the supplied place cells. These findings suggest that hippocampal
computations are well-suited for learning task structures, though the current CBGTPy
model has limited capacity to fully leverage the information present in biological place
cells. This research underscores the importance of multi-region interactions in the
brain’s ability to solve structured tasks, offering significant insights into the neural basis
of decision-making and learning.

1



Contents

Dedication 4

Acknowledgements 5

1 Introduction and Aims 6
1.1 General Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Biological Implementation of Reinforcement Learning . . . . . . 6
1.1.2 Structure Learning with the CBGT Circuit . . . . . . . . . . . . 7

1.2 Overview of Specific Aims . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 CBGTPy: Creating an Extensible Framework . . . . . . . . . . . . . . . 9
1.4 SR-CBGT: Applying Successor Representation to RL Environments . . 10

1.4.1 Background: The Hippocampus and Successor Representation . 10
1.4.2 Creating a Structured RL Task . . . . . . . . . . . . . . . . . . . 11
1.4.3 Developing an SR Model of Place Cells . . . . . . . . . . . . . . 11
1.4.4 Merging the SR Model with CBGTPy . . . . . . . . . . . . . . . 12

1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 CBGTPy: An extensible cortico-basal ganglia-thalamic framework for
modeling biological decision making 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 The toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Agent-Environment Paradigm . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Setting up a simulation . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 User level modifications . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.1 An n-choice task in an uncertain environment . . . . . . . . . . . 33
2.3.2 A stop signal task . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.3 Optogenetic stimulation . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Modeling CBGT-hippocampal cooperation via successor representa-
tion 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Defining a Structured RL Task . . . . . . . . . . . . . . . . . . . 46
3.2.2 Successor Representation . . . . . . . . . . . . . . . . . . . . . . 47
3.2.3 Training the Place Cell Representation . . . . . . . . . . . . . . . 49
3.2.4 Extending the CBGTPy Framework . . . . . . . . . . . . . . . . 51
3.2.5 Generating RPEs with Place Cells . . . . . . . . . . . . . . . . . 53
3.2.6 Investigating Alternative Representations . . . . . . . . . . . . . 53

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2



3.3.1 GRU-SR Model Learns the Task Structure . . . . . . . . . . . . 55
3.3.2 Joint GRU-SR-CBGTPy Model Performance . . . . . . . . . . . 59
3.3.3 Performance of Alternative Place Cell Regimes . . . . . . . . . . 61

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Conclusion 70
4.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.1 The CBGTPy Framework . . . . . . . . . . . . . . . . . . . . . . 70
4.1.2 Basal Ganglia and Hippocampal Interaction . . . . . . . . . . . . 71

4.2 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Bibliography 75

Appendices 85
S1 CBGT network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

S1.1 Overview of CBGT pathways . . . . . . . . . . . . . . . . . . . . 85
S1.2 CBGT model details . . . . . . . . . . . . . . . . . . . . . . . . . 86

S2 Dopamine-dependent plasticity of corticostriatal weights . . . . . . . . . 91
S3 CGBTpy installation and dependencies . . . . . . . . . . . . . . . . . . . 94
S4 List of files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
S5 Network scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
S6 Supporting tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
S7 Supporting figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3/104



Dedication

To my sister, my mother, and my father.
This work is a testament to your love.
Thank you.

4



Acknowledgements

To my advisor, Tim Verstynen, for his unwavering support no matter the circumstances.

To the CBGTPy team, without whom this project would have been impossible: Jyotika
Bahuguna, Cristina Giossi, Jon Rubin, and Cati Vich.

To all the members of the Exploratory Intelligence group, especially Eric Yttri and Julia
Badyna, for their helpful insights.

To the uPNC Summer Undergraduate Research Program for introducing me to
computational neuroscience.

To my friends for their companionship.

5



Chapter 1

Introduction and Aims

1.1 General Background

Life is filled with decisions that are simultaneously novel yet repetitive. Consider the
adventure of fine dining at an unfamiliar restaurant: while you are certain to encounter
new faces, new foods, and new scenery, the procedures for dining out are relatively
consistent. You do not know which menu items will taste the best, but you do know to
place an order only after being seated, that the sequence in which the order is placed
does not affect what food you receive, and that the available payment methods are the
same regardless of whether you ate any dessert. This scenario illustrates two
fundamental problems: 1) how do you learn to value choices made in new environments,
and 2) how do you leverage invariant structure from prior experiences to generalize to
value-based decisions in new contexts? In this dissertation, I approach these two
problems from a computational perspective based on the circuit logic of the neural
substrates of reinforcement and structure learning in the mammalian brain. For value
learning, I developed a biologically-realistic spiking neural network model of the
mammalian cortico-basal ganglia-thalamic circuit, and I illustrated how this circuit
naturally implements dynamic reinforcement learning that can adapt in response to
changes in environmental contingencies. I then explored how relational structure is
learned through the processing of the available sensory data streams to identify
large-scale patterns [10] in order to act as a world model for subsequent reinforcement
learning. To accomplish this, I integrated existing models of relational learning in
medial temporal lobe systems with basic reinforcement learning, connecting
hippocampal-dependent computations with basal-ganglia-dependent computations.
Together, these projects illuminate how the mammalian brain can leverage similarities
between the past and present experiences to infer the presence of state relationships
relevant to immediate value-based decisions, facilitating the type of complex volitional
behavior for which most mammals are known.

1.1.1 Biological Implementation of Reinforcement Learning

The above process, referred to herein simply as structure learning [10], represents a
particularly challenging reformulation of the standard reinforcement learning (RL)
paradigm, and biological agents are demonstrably able to perform such learning with
high accuracy [11] [12]. While the exact neural mechanisms which facilitate this
behavior remain unclear, experimental evidence has cemented the cortico-basal
ganglia-thalamic (CBGT) circuit as a key contributor to action selection [13],
particularly in RL tasks [2] [14]. The CBGT contains two core pathways, often referred

6



to as the direct and indirect pathways, which serve similar yet opposing functions [1].
The direct pathway includes projections from the striatum to the internal globus
pallidus (GPi) and is associated with disinhibition of actions, while the indirect
pathway, associated with inhibition of actions, includes projections from the striatum to
the external globus pallidus (GPe) and from the GPe to the GPi [15]. Although these
pathways were classically interpreted to perform mutually exclusive tasks, it is now
understood that they are simultaneously active and that the balance of these pathways
during the decision process is what determines whether specific actions are performed or
instead suppressed in favor of alternatives [1] [15]. Crucially, the striatal spiny
projection neurons (SPNs) which originate these pathways selectively express different
dopamine receptors, with the direct and indirect SPNs expressing D1 and D2 receptors
respectively [16]. As a result, positive dopaminergic feedback from the substantia nigra
pars compacta (SNc) can strengthen the direct pathway while weakening the indirect
pathway, leading to future disinhibition of the selected action, as expected from a
reinforcement learning system [1].

While the concept of pathway competition is simple, the mechanics of the full CBGT
network are surprisingly complex. Hierarchical models such as that of Frank and Badre
(2012) show that the looping CBGT circuit can efficiently learn complex conditional
rules [17], while Caligiore et al. (2019) highlight how the interplay between multiple
learning systems is fundamental to the performance of the system as a whole, a process
they deem “super-learning” [18]. Beyond describing the underlying computations, a
truly successful model would capture the process by which dopaminergic feedback
signals drive the basal ganglia towards the optimal action selection policy. While it is
believed that striatal activity patterns are key drivers of the competitive process of
action selection [19] [20], the striatal neurons involved must necessarily perform their
learning using only the information locally available to them [21]. As a result, the
precise interplay between global network dynamics and the spike-timing-dependent
plasticity of corticostriatal synapses is crucial for the effective learning of the overall
system [21]. Although there are numerous models of dopaminergic plasticity [22] [19], a
system capable of simulating the complete CBGT loop’s interplay with complex
reinforcement learning environments, in a manner true to the known neuroanatomy and
plasticity mechanisms, is needed. Such a system would allow for the creation of
complete simulated time-courses of neural activity, spike-timing-dependent plasticity,
and agent behavior, enabling the formation and evaluation of specific testable
hypotheses about the CBGT system and its performance in various environments.
Problem: While it is clear that the CBGT pathways are involved in
reinforcement learning, it remains unclear how the system’s dynamics
regulate the flow of information during the decision-making process and how
this information is transferred across decisions.

1.1.2 Structure Learning with the CBGT Circuit

Current computational models of the basal ganglia are unable to fully explain the
performance of humans and animals in reinforcement learning tasks featuring latent
structure. For example, Frank and Badre’s hierarchical model [17] fails to describe how
structural knowledge is generalized and transferred between environments. Furthermore,
many examples of latent structures, such as spatial grids, do not elegantly lend
themselves to representation via a set of hierarchical conditional rules. For this reason,
it is intuitive to speculate that additional neural mechanisms, complementary to the
basal ganglia, could greatly facilitate structural learning. An improved model,
containing the computational processes necessary for structure learning, is clearly
required to successfully explain the known decision-making behavior of mammals.

While it is not obvious a priori which additional neural systems would enable the

7/104



CBGT loop to generate accurate behavior in structure learning tasks, the
hippocampal-entorhinal cortical system, and the neural representations present therein,
are proposed herein as a prime candidate for such a mechanism. Recent research has
shown the importance of hippocampal representations in reinforcement learning,
including the existence of “value place” neurons [7], and the relevance of the conjunctive
nature of hippocampal representations to reinforcement learning [4]. Furthermore,
imaging data supports the notion that the entorhinal cortex encodes information about
reinforcement learning tasks in a manner that reflects the underlying task structure [5].
It has been hypothesized that structure learning involves the formation of “mental
maps” much akin to the spatial maps for which the HC-EC system is famous, enabling
the behavioral agent to perform an analog of path integration to keep track of the
environmental state [7]. Recently, it has been proposed that the HC-EC system learns
to encode state as a successor representation (SR), a form of predictive map in which
hippocampal cells are tuned both towards the current state and towards expected future
states in a time-discounted manner [6] [23] [8]. The ability of the hippocampus to learn
the successor representation, and thereby encode the long-term statistical relationships
between states, is precisely the sort of computational capability that could facilitate
efficient learning in structured RL tasks.

To evaluate the potential role of the HC-EC system in RL tasks, a joint model was
constructed. As outlined in the following sections, this model combined an SR model of
the hippocampus with a physiologically-realistic model of action selection in the CBGT
loop. This combination was applied to a structured multi-arm bandit task to evaluate
the model’s ability to learn the latent structure and generalize across experiences in
similar environments. After thorough training, it was expected that the neural
representations derived from SR would greatly facilitate the performance of the basal
ganglia in this structured task. Problem: How can structure learning via
hippocampal circuits coordinate with CBGT computations to regulate
reinforcement learning?

1.2 Overview of Specific Aims

This dissertation is divided into two core components, each further subdivided into a
few main goals. The first component focuses on modeling the processes by which the
basal ganglia’s dynamics and synaptic plasticity can lead to the successful formation of
an action policy, while the second component explores how the hippocampal system
provides useful cortical representations over which the action policy can be formed.

Aim 1a: The development of CBGTPy, a physiologically-realistic model
of the cortico-basal ganglia-thalamic system, incorporating dopaminergic
plasticity and go/no-go dynamics. A new and highly flexible simulation framework
was created, enabling the adaptation of the core CBGT dynamics and dopaminergic
plasticity mechanisms to a variety of behavioral tasks, including tasks with very
complex environmental dynamics. The first step involved creating a model with
accurate single-channel dynamics based on the known anatomy of the circuit, featuring
plasticity of corticostriatal synapses and the go/no-go dynamics characteristic of the
direct and indirect pathways.

Aim 1b: The implementation of action selection dynamics, including
cross-channel competition and effective learning through credit assignment.
The CBGTPy model was extended with multiple action channels to incorporate the
winner-take-all dynamics characteristic of action selection, enabling its application to
complex RL environments. The model’s network dynamics allowed for dopaminergic
feedback to guide the selective strengthening of certain corticostriatal synapses,
facilitating the learning of the correct action policy. The completed CBGTPy framework

8/104



enables the creation of complete simulated experimental time-courses, providing useful
predictions about the relationship between neural dynamics and behavioral properties.

Aim 2a: The development of a successor representation model of
structured reinforcement learning environments. A structured RL task was
formulated, translating a real experiment into symbolic sequences. A recurrent neural
network (RNN) was trained on these sequences, and successor features were extracted
from the RNN’s internal state. Using these successor features, simulated time-courses of
hippocampal activity were produced. The successor representation, when trained on
these environments, even with only unguided random action selection behavior, was
able to encode a significant portion of the latent structure.

Aim 2b: The creation of an interface between the SR model and
CBGTPy in which the SR influences the competitive dynamics. A combined
model leveraged the SR by using the derived hippocampal representations to bias the
cortical inputs to the full CBGT system model. To enable the SR to guide reinforcement
learning, a method was developed for estimating state values and using the resulting
reward prediction errors to guide action policy formation. When applied to a structured
RL task, the combined SR-CBGTPy model demonstrated enhanced flexibility in
response to changes in environmental state, leading to improved behavioral performance.

1.3 CBGTPy: Creating an Extensible Framework

The primary objective of CBGTPy is to serve as an extensible Python package for
the simulation of a physiologically-realistic decision-making agent with internal
dynamics directly modeled after the cortico-basal ganglia-thalamic loop. The
construction, simulation, and analysis of the CBGTPy model reflect contributions from
myself and a diverse team of interdisciplinary researchers. This model achieves high
realism through the implementation of multiple underlying neural pathways, the use of
spiking neural populations, and the application of a realistic spike-timing-dependent
plasticity rule. Furthermore, the framework is designed around the principle of
flexibility, exemplified by a clear division in the model between the dynamics of the
behavioral agent and the dynamics of the external environment. This structure enables
the straightforward adaptation of the CBGT system to a wide range of simulated
experimental protocols, including complex multi-choice reinforcement learning tasks,
with minimal additional developmental effort.

The network architecture, dynamics, and implementation details of CBGTPy are
outlined in detail in Clapp et al. (in prep) [24], the text of which is reproduced herein
as Chapter 2. The architecture is structured around the notion of cross-channel
competition, where the competition is driven primarily by the within-channel balance of
direct and indirect pathway activity. An overview of the relevant cellular populations
and their respective pathways is shown in Figure 2.1. Stimulation of the cortical
populations serves as the input to the network, while the firing rates of the thalamic
populations serve as the output. When the thalamic firing rates exceed a threshold, it
triggers the selection of the corresponding action and the removal of stimulation for the
non-selected cortical populations. Dopaminergic feedback, representing a reward
prediction error, triggers plasticity, affecting the corticostriatal weights and biasing the
activity patterns of the action channels in future trials accordingly. In this way, the
model is capable of learning to consistently select the most rewarding action, even when
the values of the actions change over time, though it is unable to learn the more
complex latent structures of the tasks.

9/104



1.4 SR-CBGT: Applying Successor Representation
to RL Environments

Building a bridge between successor representation (SR) and structured
reinforcement learning tasks was a multistage process. First, an example task was
precisely characterized as a sequence of discrete events, and an initial non-SR
representation of environmental state was learned from this sequence. Then, successor
features, upon which the SR is computed, were extracted from this non-SR state
representation. The result of this process was a successor representation of state along
with a corresponding model of place cell activity. These place cell representations were
then used to control the cortical inputs and dopaminergic feedback of the full CBGT
model, allowing the network to alter its behavioral policy in response to changes in
environmental state.

1.4.1 Background: The Hippocampus and Successor
Representation

Successor representation is an algorithm for estimating the values of states by
combining two structures: a vector which estimates the immediate reward value for each
state, and a matrix which encodes the expected discounted future occupancy of each
state given the current state [25]. The value of any particular state is thus estimated as
the dot product of the reward vector and the corresponding row of the future occupancy
matrix. The successor representation balances flexibility and efficiency of model-based
and model-free learning, as the experience of reward can boost the value of states likely
to precede the current state, as with model-based learning, without imposing any other
assumptions as to the structure of the state space [26].

There are many observed similarities between the SR transition matrix and the
activity patterns of hippocampal place cells in CA1, with these cells appearing to
represent a predictive map influenced by transition probabilities between
locations [6] [23] [8]. Grid cells, in turn, have been proposed to serve as a
low-dimensional encoding of the SR matrix [23] [8]. This description of the
hippocampus as the SR agent is a unifying principle which can successfully explain CA1
activity in a variety of spatial environments, including environments with reward [23] [8].
Furthermore, as the SR paradigm is based on the notion of state transitions, it is able
to predict the formation of place cell representations of non-spatial states as well. For
this reason, this project models the HC-EC system as encoding a successor matrix
representation of the state of structured RL tasks.

It is also important to consider the processes by which place cell representations
could potentially interact with the basal ganglia system. The cells in CA1, which are
argued to encode the SR matrix [6], form the primary output of the hippocampal system
and are known to project to the prefrontal cortex [27]. The prefrontal cortex, in turn, is
a component of the hierarchical looping structure of the CBGT network [28]. From here,
the place cell representations can influence every level of the CBGT hierarchy, an idea
supported by the observation of place-dependent activity in primate premotor and
primary sensorimotor cortex [29]. The activity of “place-value” cells could also serve as
an important input for downstream calculations of expected value, and it is possible
that this computation involves the orbitofrontal cortex [7]. These areas could influence
the calculation of dopaminergic reward prediction errors in the substantia nigra pars
compacta (SNc) through intermediate regions such as the subthalamic nucleus [3] [30].

10/104



1.4.2 Creating a Structured RL Task

A prime example of a structured RL task is that of a multi-armed bandit task with a
hidden reward structure. In this project, a variation on a four-arm bandit task was
employed, adapted from Bond (2022) [9]. In this task, the agent is challenged to make a
sequence of six decisions. After each decision, the agent receives either a reward, a
penalty, or neither, and after each block of six decisions, the agent is prompted to begin
the next block. Here, the multi-armed bandit serves to obscure a latent structure, in
which choosing an arm is equivalent to traveling in a certain direction on a grid. Each
grid square contains either a reward or a penalty, and attempting to leave the
boundaries of the map or revisit the same reward twice results in no reward. Each
phase of the task uses a different map and runs for 68 blocks, in which the agent
attempts to learn the structure of the environment and maximize reward. If an agent is
capable of learning a latent structure which generalizes across environments, it is
expected that learning in future phases will be facilitated depending on the similarity of
those environments with those in previous phases. Indeed, human behavioral data
indicates that learning is facilitated greatly when the new map is a rotation of the
previous map, meaning that the environmental structure is preserved with simply a
different action binding [9]. When the new map features a perturbation in the shape of
the optimal path, which alters the underlying structure of the environment, there is
much less facilitation [9].

As this task features a rich latent structure, whose grid-like nature bears more
similarity to a map than to a hierarchy, it serves as an ideal example of the sort of
structured RL problem for which HC-EC computations could be useful. A set of
artificial place cells were developed that encoded this grid structure while obeying the
physiologically-realistic predictive coding properties of SR. These cells were then used as
inputs to the CBGTPy model to determine the extent to which this structural
information facilitates the RL process.

1.4.3 Developing an SR Model of Place Cells

To develop a model of place cell activity patterns during the RL task, it was
necessary to (1) process sequences of sensory events into a notion of state, (2) extract
successor features from the state with which the SR matrix can be formed, and (3)
describe the precise relationship between the SR matrix and place cell activity. To apply
the SR model, the task was adapted to a sequential and symbolic format, where the
symbols represented the sensory experiences associated with cues, motor actions, or
rewards. To process the sequence of observed events into an encoding of environmental
state, a recurrent neural network (RNN) was used. RNNs are a form of artificial neural
network which possess a hidden state vector, such that the output and new state of the
network at the current time step are contingent on both the current input as well as the
hidden state of the network from the previous timestep [31]. As outlined in
Section 3.2.3, the RNN was trained to predict future sensory events, such as rewards,
from past sensory events generated by the RL task. The RNN thus learned to encode
an estimate of environmental state into its hidden state vector, using only the sensory
information available to the agent, albeit in a non-physiologically-realistic manner.

Once an embedding of environmental state was learned by the RNN, the next task
was to extract a suitable set of basis features for the successor model. For simplicity, the
basis features were formed as a linear transformation of the RNN state. Then, using the
mathematical relationship between place cells and successor features described by de
Cothi and Barry [8], a place cell activity pattern can be computed for each RNN state.
Through gradient descent training, the final place cells were optimized to maximize
their ability to predict future sensory events. Since these place cell activation patterns

11/104



are derived from an SR matrix, they are expected to behave similarly to real CA1 place
cells. When these trained models were combined, the final network was capable of
processing sequences of sensory events and producing realistic place cell representations
at each step of the RL task.

1.4.4 Merging the SR Model with CBGTPy

The final objective of this project was to augment the complete CBGT network
model with the place cell activation patterns governed by the successor representation
model. To accomplish this, the SR model and the RL environment were adapted to run
within the framework provided by CBGTPy, as outlined in Section 3.2.4 and Figure 3.4.
Execution passed between the agent (CBGT network) and environment/SR, and a
complete experimental time-course was produced as a result. During each trial, the
cortical populations of the CBGT model received input signals corresponding to the
current place cell vector. These cortical areas, through the corticostriatal pathways,
drive activity downstream to select a single action. Furthermore, using a simple gated
mixture-of-experts model, a value estimate of the state is learned and used to calculate
reward prediction errors (RPEs). As the basal ganglia receives these RPEs over the
course of a simulation, dopaminergic plasticity in the corticostriatal synapses shape the
action policy. The behavior generated by the combined CBGT network was expected to
show similar accuracy to human behavior in the latent grid task.

1.5 Summary

New environments bring new decisions, and to make these decisions in an effective
manner, mammals must overcome two core challenges: first, they must assign values to
their choices and use these values to guide their selection process, and second, they must
leverage structural similarities to generalize from their past experiences to new contexts.
While the biological goals of value learning and structure learning are simple to describe,
it is unclear how the necessary computations are performed by the physiology of the
cortico-basal ganglia-thalamic system. This project addresses these questions using a
two-pronged computational modeling approach. First, the CBGTPy framework provides
a platform for studying how realistic neural dynamics and plasticity rules in the CBGT
system can lead to the proper selection of rewarding actions. Second, the computational
value of hippocampal representations in RL is explored through the development of a
combined model in which these representations act to bias the cortical input streams of
the full CBGTPy network. While the CBGT loop alone is likely incapable of efficiently
learning environmental structures, such as the structure of the latent grid task, the
HC-EC system appears ideal for learning structural information and providing this
information in a form that is useful for augmenting learning in other brain regions. The
CBGT network model, when provided with place-cell-like cortical inputs, is designed to
flexibly alter its action policy in response to changes in environmental state,
reproducing the observed capabilities of humans in structured RL environments.

12/104



Chapter 2

CBGTPy: An extensible
cortico-basal ganglia-thalamic
framework for modeling
biological decision making

This chapter is a reproduction of the text of the paper of the same name, which is
currently undergoing revision for publication [24]. I would also like to acknowledge the
programming and writing contributions of the co-authors: Dr. Jyotika Bahuguna,
Cristina Giossi, Dr. Jonathan E. Rubin, Dr. Timothy Verstynen, and Dr. Catalina
Vich.

2.1 Introduction

With the rise of fields like cognitive computational neuroscience [32], there has been
a resurgence of interest in building biologically realistic models of neural systems that
capture prior observations of biological substrates and generate novel predictions at the
cellular, systems, and cognitive levels. In many cases, researchers rely on off-the-shelf
machine learning models that use abstracted approximations of biological systems (e.g.,
rate-based activity and rectified linear unit gating, among others) to simulate properties
of neural circuits [33–35]. For researchers interested primarily in cortical sensory
pathways, these systems work well enough at making behavioral and macroscopic
network predictions [36], but they often fail to provide biologically realistic predictions
about underlying cellular dynamics that can be tested in vivo. Although there are a
wealth of biologically realistic simulations of cortical and non-cortical pathways that
have helped to significantly advance our understanding of BG function, these are often
designed to address very narrow behaviors and lack flexibility for testing predictions
across multiple experimental contexts [1, 37–40].

Here we present a scientifically-oriented tool for creating model systems that emulate
the control of information streams during decision making in mammalian brains.
Specifically, our approach mimics how cortico-basal ganglia-thalamic (CBGT) networks
are hypothesized to regulate the evidence accumulation process as agents evaluate
response options. The goal of this tool, called CBGTPy, is to provide a simple and
easy-to-use spiking neural network simulator that reproduces the structural and
functional properties of CBGT circuits in a variety of experimental environments. The
core aim of CBGTPy is to enable researchers to derive neurophysiologically-realistic

13



predictions about basal ganglia dynamics under hypothesis-driven manipulations of
experimental conditions.

A key advantage of our CBGTPy framework is that it separates most properties of
the behaving agent from the parameters of the environment, such that experimental
parameters can be tuned independently of the agent properties and vice versa. We
explicitly distinguish the agent (Section 2.2.3) from the environment (Section 2.2.3).
The agent generates two behavioral features – action choice and decision time – that
match the behavioral data typically collected in relevant experiments and affords users
the opportunity to analyze the simultaneous activity of all CBGT nuclei under
experimental conditions. The flexibility of the environment component in CBGTPy
allows for the simulation of both simple and complex experimental paradigms, including
learning tasks with complex feedback properties, such as volatility in action-outcome
contingencies and probabilistic reward scenarios, as well as rapid action control tasks
(e.g., the stop signal task). On the biological side, CBGTPy incorporates
biologically-based aspects of the underlying network pathways and dynamics, a
dopamine-dependent plasticity rule [40], and the capacity to mimic targeted stimulation
of specific CBGT nuclei (e.g., optogenetic stimulation). CBGTPy also allows the easy
addition of novel pathways, as well as modification of network and synaptic parameters,
so as to enable modeling new developments in the CBGT anatomy as they emerge in
the literature. After a brief review of the CBGT pathways in the next subsection, in
Section 2.2 we provide a full description of the structure, use, and input parameters of
CBGTPy. In Section 2.3, we go on to present examples of its usage on a variety of
standard cognitive tasks, before turning to a discussion in Section 2.4. Various
appendices (S1, S2, S4, S5) present additional details about the CBGT model and
CBGTPy toolbox, including the implementation of synaptic plasticity and a guide for
CBGTPy installation.

Recent findings have suggested that the simple concepts of rigidly parallel
feedforward basal ganglia (BG) pathways may be outdated [41,42]∗, and part of the
motivation for CBGTPy is to provide a tool for developing and exploring more nuanced,
updated theories of CBGT dynamics as new discoveries are made. Indeed, achieving a
full understanding of CBGT circuit-level computations requires the development of
theoretical models that can adapt with and complement the rapidly expanding
empirical evidence on CBGT pathways. The fundamental goal of the CBGTPy toolbox
is to provide a framework for this rapid theoretical development, which balances
biological realism with computational flexibility and extensibility.

2.2 The toolbox

The core of the CBGTPy toolbox comprises an implementation of a spiking model
CBGT network tuned to match known neuronal firing rates and connection patterns
that have been previously used to study various aspects of basal ganglia function in
cognitive tasks [21,43–45]. The CBGT network model is composed of 6 different
regions/nuclei shown in Figure 2.1: a cortical component, segregated into excitatory
(Cx) and inhibitory (CxI) subpopulations; striatum, containing two subpopulations of
spiny projection neuron (dSPNs involved in the so-called direct pathway, and iSPNs,
involved in the indirect pathway) and also fast-spiking interneurons (FSI); external
globus pallidus (GPe), which is divided into prototypical (GPeP) and arkypallidal
(GPeA) subpopulations; subthalamic nucleus (STN); internal segment of globus pallidus

∗We use traditional terminology of “direct” and “indirect” pathways and SPNs (e.g, Figure 2.1.
While we recognize that the idea of a unified indirect pathway is outdated, it is useful to maintain a term
to refer to the complement of the direct projection from dSPNs to GPi and the ascending pallidostriatal
connections.

14/104



Fig 2.1. Overview of the CBGT network. The connectivity and cellular
components of each CBGT channel in a CBGTPy agent are based on known biology.
Direct pathway connections are shown in green, indirect pathway connections are shown
in blue, and pallidostriatal connections are represented in gold, with arrows ending in
circles marking the postsynaptic sites of inhibitory connections and those ending in
triangles for excitatory connections. Dopaminergic feedback signals associated with
rewards following actions induce plastic changes in corticostriatal synapses (pink
arrows). A trial begins when the Cx population receives a stimulus and the model
assumes a decision is made when the activity of the Th population reaches a certain
threshold. In the current implementation of the network, the pallidostriatal pathways
(gold colors) are only considered for the stop signal task.

(GPi); and a pallidal-receiving thalamic component (Th), which receives input from GPi
and Cx and projects to cortical and striatal units.

Within each region, we model a collection of spiking point neurons, modeled in a
variant of the integrate-and-fire framework [46] to include the spiking needed for
synaptic plasticity while still maintaining computational efficiency. Numerical
integration is performed via custom Cython code, rather than relying on existing
frameworks, such as NEURON [47], BRIAN [48], or NetPyNE [49], a design choice
which simplified the overall software stack. The core strengths of these frameworks are
in the simulation of multi-scale or multi-compartment models, whereas one of the
strengths of the CBGTPy model is the high level of direct control that can be exerted
over the neural parameters throughout the interactions between the network and its
environment (see Section 2.2.1). The integration is performed in a partially-vectorized
manner, in which each variable is represented as a list of Numpy arrays, one array per
neural population. Further details of the implementation of this network, including all
relevant equations and parameter values, are provided in S1.

CBGTPy allows for the simulation of two general types of tasks that cover a variety
of behavioral experiments used in neuroscience research. The first of these tasks is a
discrete decision-making paradigm (n-choice task) in which the activity of the CBGT
network results in the selection of one choice among a set of options (see Section 2.3.1).
If plasticity is turned on during simulations, phasic dopamine, reflecting a reward
prediction error, is released at the corticostriatal synapses and can modify their efficacy,
biasing future decisions. We note that the inclusion of a biologically-realistic,
dopamine-based learning mechanism, in contrast to the error gradient and
backpropagation schemes present in standard artificial agents, represents an important

15/104



feature of the model in CBGTPy. We present the details of this learning mechanism in
S2.

The second of these tasks is a stop signal paradigm (stop signal task), where the
network must control the execution or suppression of an action, following the onset of
an imperative cue (see Section 2.3.2). Here activity of the indirect and pallidostriatal
pathways, along with simulated hyperdirect pathway control, determines whether a
decision is made within a pre-specified time window. The probability of stop and the
relevant RT distributions can be recorded across different values of parameters related
to the stop signal.

2.2.1 Agent-Environment Paradigm

We have adopted an environment-agent implementation architecture, where the internal
properties of the CBGT network (the agent) are largely separated from the external
properties of the experiment (the environment). Interaction between the agent and
environment is limited in scope, as shown in Figure 2.2, and occurs only at key time
points in the model simulation. The core functionality of the agent is the mapping from
stimuli to decisions and the implementation of post-decision changes (e.g., synaptic
strength updates) to the CBGT network, while the environment serves to present
stimuli, cues, and rewards.

Fig 2.2. Example of interactions between the environment and the agent
(CBGT network). The segregation of tasks between the environment and agent
allows for independent modification of both. Tables with green title box depict some of
the variables that can be easily modified by the user (see Section 2.2.3) while those in
red are automatically updated or set internally. We have divided these variables into
two sections: agent-related (Section 2.2.3) and environment-related (Section 2.2.3). The
arrow from the environment to the agent block is unidirectional because once the
stimulation starts it is not possible to change the environment. The arrow between the
interface and network is bidirectional because they are always in constant interaction
with each other, the interface controlling the simulation while the actual agent evolves
the CBGT network.

CBGTPy uses a data-flow programming paradigm, in which the specification of
computing steps is separated from the execution of those steps [50]. Internally, the
initialization and simulation of the agent-environment system is divided into a large
number of specialized functions, each addressing specific tasks. These code blocks are

16/104



then organized into sequences, referred to as pipelines. Only after a pipeline is
constructed is it executed, transforming any input data into output data. The use of
pipelines allows for individual code blocks to be rearranged, reused, and modified as
necessary, leading to efficient code reuse.

One of the main benefits of the data-flow design is its synergy with the Ray
multiprocessing library for Python. Ray operates on a client-server model and allows for
the easy distribution of tasks and worker processes based on the available resources [51].
While the sequence of steps for running a simulation can be constructed locally, those
same steps can be distributed and performed remotely on the Ray server. As a result,
CBGTPy directly supports running on any system that can support a Ray server, which
includes high-core-count computing clusters, while maintaining the exact same interface
and ease-of-use as running simulations on a local machine. The user, however, can
choose to run the model without any multiprocessing library or an alternative
multiprocessing library to Ray. These options are explained in detail in the Section
2.2.2.

In the following subsections, we explain all the details of the toolbox by separately
describing the agent and environmental components that can be changed by the user.
The CBGTPy toolbox can be found in the Github repository
https://github.com/CoAxLab/CBGTPy/tree/main. The instructions to install it and
the list of functions contained in the toolbox can be found in S3 and S4, respectively.

2.2.2 Setting up a simulation

One of the objectives of CBGTPy is to enable end users to easily run simulations
with default experimental setups. Furthermore, users can specify parameter
adjustments with minimal effort, specifically through use of a configuration variable,
which we describe in greater detail in the following sections.

The following list contains a mandatory set of instructions to be executed in order to
implement the entire process associated with running a simulation. These instructions
will proceed with a default set of parameters. We also provide two example notebooks
(n-choice task and stop signal task), which can be found in the repository and include
these steps and commands.

• Import all relevant functions.

• Create the main pipeline.

• Import the relevant paramfile for the selected experiment type.

• Create configuration dictionary with default values.

• Run the simulation, specifying which multiprocessing library to use.

• Extract relevant data frames (e.g., firing rates, reaction times, performance).

• Save variables of interest as pickle files.

• Plot variables of interest (e.g., firing rates and reward data frames).

We explain each of these steps in detail. Note that if Ray multiprocessing is being
used, changing the local IP node (e.g., when the underlying Wi-Fi/LAN network has
changed) requires stopping the previous instance of the Ray server and restarting it
with the newly assigned IP. We also explain how to shut down the Ray server at the end
of this section.

17/104

https://github.com/CoAxLab/CBGTPy/tree/main


Import relevant functions. All the relevant imports can be implemented with the
following commands:

import pandas as pd

import numpy as np

import cbgt as cbgt

import pipeline_creation as pl_creat

import plotting_functions as plt_func

import plotting_helper_functions as plt_help

import postprocessing_helpers as post_help

Create the main pipeline. Here the user can choose to run either the n-choice task
or the stop signal task by assigning a variable experiment choice†. Depending on the
choice of this variable a relevant pipeline is created. A pipeline consists of all the
modules required to run a task and returns a pipeline object that can be used.

For a basic n-choice task, the experiment choice needs to be set as

experiment_choice = "n-choice"

while for a basic stop signal task, it is set as

experiment_choice = "stop-signal"

In both cases, the user also should decide how many choices or action channels the
current instance of CBGTPy should create and run, using the variable
number of choices:

number_of_choices = 2

While a common version of this decision making task is run with
number of choices = 2, it can also be run for an arbitrary number of choices (i.e.,
number of choices ≥ 1). The change in the number of choices and corresponding
action channels requires scaling of some of the parameters in order to ensure
maintenance of the same amount of input to certain shared CBGT nuclei irrespective of
the number of action channels. We explain these scaling schemata in S5. Please note
that some parameters have to be appropriately updated in the configuration variables
(e.g., Q data frame, channel names) according to the number of choices selected. We
explicitly mention which parameters should be updated with the number of choices as
we describe them below, and we include example notebooks in the repository for
different cases.

The pipeline is created with commands

pl_creat.choose_pipeline(experiment_choice)

pl = pl_creat.create_main_pipeline(runloop=True)

Import the relevant paramfile for the selected experiment type. The
paramfile contains dictionaries of default parameter values for the neural populations
and plasticity model based on the choice of the experiment.

if experiment_choice == ’stop-signal’:

†If the variable experiment choice is not set, the pipeline creation gives an error because of the
ambiguity of which experiment to run.

18/104



import stopsignal.paramfile_stopsignal as paramfile

elif experiment_choice == ’n-choice’:

import nchoice.paramfile_nchoice as paramfile

The imported attributes, which can be listed out using dir(paramfile), can be
modified according to the user’s preferences. For example, setting the cellular
capacitance value to 0.5 is accomplished with

paramfile.celldefaults[’C’] = 0.5

Create configuration dictionary with default values. The configuration
variable is a dictionary in which some parameters take internally set default values,
whereas others need to be assigned values to run a simulation. A minimal
configuration variable consists of the following parameters, the details of which are
described in S9 Table, S10 Table, S11 Table, S12 Table, S13 Table, S14 Table and
explained separately in Section 2.2.3.

configuration = {

"experimentchoice": experiment_choice,

"seed": 0,

"inter_trial_interval": None, # default = 600ms

"thalamic_threshold": None, # default 30sp/s

"movement_time": None, # default sampled from N(250,1.5)

"choice_timeout": None, # default 1000

"params": paramfile.celldefaults,

"pops": paramfile.popspecific,

"receps": paramfile.receptordefaults,

"base": paramfile.basestim,

"dpmns": paramfile.dpmndefaults,

"dSPN_params": paramfile.dSPNdefaults,

"iSPN_params": paramfile.iSPNdefaults,

"channels": pd.DataFrame([["left"], ["right"]], columns=["action"]),

"number_of_choices": number_of_choices,

"newpathways": None,

"Q_support_params": None,

"Q_df": None,

"n_trials": 3,

"volatility": [1,"exact"],

"conflict": (1.0, 0.0),

"reward_mu": 1,

"reward_std": 0.1,

"maxstim": 0.8,

"corticostriatal_plasticity_present":True,

"record_variables": ["weight", "optogenetic_input"],

"opt_signal_present": [True],

"opt_signal_probability": [[1]],

"opt_signal_amplitude": [0.1],

"opt_signal_onset": [20.],

"opt_signal_duration": [1000.],

"opt_signal_channel": ["all"],

"opt_signal_population": ["dSPN"],

"sustainedfraction": 0.7

}

Note that the parameter corticostriatal plasticity present does not have to

19/104



be introduced in the configuration dictionary when running the stop signal task (see
reference on the example notebook). Additionally, it is important to include the stop
signal parameters within the configuration dictionary when executing the stop signal
task.

configuration = {

"stop_signal_present": [True, True],

"stop_signal_probability": [1., 1.],

"stop_signal_amplitude": [0.6, 0.6],

"stop_signal_onset": [60.,60.],

"stop_signal_duration": ["phase 0",165.],

"stop_signal_channel": ["all","left"],

"stop_signal_population":["STN","GPeA"],

}

More details will be provided in the corresponding sections. For reference, you can find
an example notebook on github.

Run the simulation At this stage, the user can choose the number of cores to be
used (num cores) and the number of parallel simulations that should be executed with
the same configuration variable but a different random seed (num sims). Moreover,
the user can optionally specify one of the two supported multiprocessing libraries, Ray
and Pathos, to use to run the simulation. Ray is a library providing a compute layer for
parallel processing. To start the Ray server, on the command line, run Ray server to
execute the head node and obtain the local IP node, in the following way:

ray start --head --port=6379 --redis-password="cbgt"

This command should list a local IP along with a port number. Hence, to initiate a Ray
client that connects to the server started above, the user will have to substitute the local
IP node, obtained from the previous command line, in place of <local ip node> in

ray start --address=<local ip node>:6379 --redis-password="cbgt"

Any port number that is free to use in the machine can be used. Here port number 6379
is used, which is the default port number for Ray. To use Ray, the last step consists of
setting the variable use library in the notebook to ‘ray’. As an alternative to Ray,
Pathos is a library that distributes processing across multiple nodes and provides other
convenient improvements over Python’s built-in tools. To use Pathos, no additional
setup is required beyond setting the variable use library to ‘pathos’. If the user
does not want to use any of the above-mentioned libraries, this should be specified by
setting the variable use library to ‘none’. The simulation is performed by filling in
values for these variables in the following command and executing it:

results = cbgt.ExecutionManager

(cores=num_cores,use=use_library).run([pl]*num_sims,[configuration]*num_sims))

To ensure the simulation results are both reproducible and robust to minor changes
in initial conditions, CBGTPy offers control over the pseudorandom number generator
seed. The random seed controls the initial conditions of the network, including precisely
which neurons connect together, under the constraint of the given connection
probabilities and the baseline background activity levels of the CBGT nuclei. The
simulation returns a results object, which is a dictionary containing all the data
produced by the model, typically organized into data frames [52].

20/104

https://github.com/CoAxLab/CBGTPy/blob/main/network_simulation-stop-signal.ipynb
https://github.com/CoAxLab/CBGTPy/blob/main/network_simulation-stop-signal.ipynb


Extract relevant data frames Once the results object has been returned, specific
variables and tables of interest can be extracted (see S2 Fig). All the variables available
can be listed by accessing the keys of the variable results, which is done by executing
the following command:

results[0].keys()

All environmental variables passed to the simulation can also be accessed here for
cross-checking.

Some additional data frames related to the simulation are also returned. One of
these data frames is results[0]["popfreqs"], which returns the population firing
rate traces of all nuclei, with each neuronal subpopulation as a column and each time
bin of simulated time as a row (see S3 Fig). This data frame can be addressed directly
by executing its name in a command line.

Another relevant data frame is datatables[0], which contains a list of chosen
actions, optimal actions, reward outcomes, and decision times for all of the trials in the
simulation (see S4 Fig). When running multiple simulations in parallel (i.e., num sims

> 1), datatables[i] is returned, where i indicates the corresponding thread. This
data frame can be extracted by first executing the command

datatables = cbgt.collateVariable(results,"datatables")

and next typing datatables[i] on the command line, to access the results of the ith

simulation.
As part of the model’s tuning of dopamine release and associated

dopamine-dependent corticostriatal synaptic plasticity, the model maintains Q-values for
each action, updated according to the Q-learning rule (details in S2). These values are
available in results["Q df"], where each column corresponds to one of the possible
choices (see S5 Fig). These data frames are designed for easy interpretation and use in
later data processing steps. It should be however noted that while Q-values are updated
and maintained by CBGTPy, the q-values do not influence the selection of decision
choice. The selection of decision choice is solely dependent on the corticostriatal weights.

CBGTPy also provides a function to extract some of these data frames in a more
processed form. The specific command for the n-choice task is given by

firing_rates, reward_q_df, performance, rt_dist, total_performance =

plt_help.extract_relevant_frames(results, seed, experiment_choice)

where firing_rates provides a stacked up (pandas command melt) version of the
results[0]["popfreqs"] that can be used in the seaborn.catplot() plotting function,
reward_q_df compiles data frames for reward and q-values, performance returns the
percentage of each decision choice, rt_dist returns the reaction time distribution for
the simulation, and total_performance compares the decision and correctdecision

in datatables[i] and calculates the performance of the agent. Depending on the
experiment choice, the function returns relevant data frames. Note that for the stop
signal task, the data frames returned are just firing_rates and rt_dist.

The time-dependent values of the recorded variables can also be extracted for both
the n-choice task and the stop signal task using the following command:

recorded_variables =

post_help.extract_recording_variables(results,

results[0]["record_variables"],

seed)

21/104



Presently, for the n-choice task, CBGTPy only allows recording the variable weight
or optogenetic input. The former can be used to track the evolution of corticostriatal
weights during a n-choice experiment. The variable optogenetic input can be
recorded and plotted to check if the optogenetic input was applied as intended to the
target nuclei. The list of variables to be recorded should be specified in the
configuration variable. In the example of the configuration variable used above, both
weight and optogenetic input are recorded.:

configuration = {

..

"record_variables": ["weight", "optogenetic_input"],

..

}

An example of plotting these data frames is included in the example python
notebook in the GitHub repository. In addition, for the stop signal task, CBGTPy also
allows the recording of the variable "stop input", which can be used to check if the
stop signal inputs were applied correctly to the target nuclei.

Save variables of interest as pickle files All the relevant variables can be
compiled together and saved in a single pickle file. Pickle files provide a method for
saving complex Python data structures in a compact, binary format. The following
command saves the object results with additional data frames of popfreqs and
popdata into a pickle file network_data in the current directory:

cbgt.saveResults(results, "network_data", ["popfreqs","popdata"])

Basic plotting functions (plot firing rates and reward data frame) CBGTPy
provides some basic plotting functions. The firing_rates data frame from the above
functions can be passed to function plot_fr, which returns a figure handle that can be
saved (see Figure 2.3), as follows:

FR_fig_handles = plt_func.plot_fr(firing_rates, datatables, results,

experiment_choice, display_stim)

In addition to the firing rates data frame, the plotting function plot fr requires the
datatables (also extracted along with firing rates data frame), the original results
variable, experiment choice and display stim. The experiment choice ensures
that relevant nuclei are plotted and the display stim is a boolean variable that can be
set to True/False. When set to True, the stimulation information (e.g., optogenetic or
stop signal) is indicated over all trials during which the stimulation was applied. Note
that, for a longer simulation, this may slow the plotting function, because the function
checks if a stimulation is applied on every trial before indicating the result in the figure.
The stop signal application is indicated as a bright horizontal red bar above firing traces
of the stimulated nuclei (e.g., Fig 2.7). The optogenetic stimulation is indicated as a
blue bar for excitatory stimulation and yellow for inhibitory stimulation (e.g., Fig 2.8).

The reward and Q-values data frame can be plotted with the function
plot_reward_Q_df as follows; note that a figure is shown in the example notebook:

reward_fig_handles = plt_func.plot_reward_Q_df(reward_q_df)

22/104

https://github.com/CoAxLab/CBGTPy/blob/main/network_simulation-n-choice.ipynb
https://github.com/CoAxLab/CBGTPy/blob/main/network_simulation-n-choice.ipynb
https://github.com/CoAxLab/CBGTPy/blob/main/network_simulation-n-choice.ipynb


Fig 2.3. Example figure showing firing rates for all the nuclei in the n-choice
task. Example figure showing firing rates for all nuclei for three consecutive trials of a
2-choice task, color-coded to distinguish times associated with decision making (pink,
decision phase) and subsequent times of sustained activity in the selected channel (grey,
consolidation phase) of each trial. The unshaded regions between each pair of trials are
the (inter-trial interval). In each panel, the blue (orange) trace corresponds to activity
in the left (right) action channel. In this example, the model chooses right on the first
trial and left on the second; in the third trial, where decision making times out, no
sustained activation is applied to the cortical channel (top left subplot) during the
consolidation phase (grey region).

Shut down Ray server In case the Ray server was selected as the multiprocessing
library to use to run the simulation, when the user is done working with the network,
the Ray server can be shut down via the terminal with the command

ray stop

or, if the processes have not all been deactivated, with the command

ray stop --force

2.2.3 User level modifications

CBGTPy allows for modifications of several parameters that a user can easily
perform. All the parameters in the configuration variable can be modified. A
modified value is usually in the form of a data frame or a dictionary. The underlying
function (ModifyViaSelector) in frontendhelpers.py iterates through all the
features listed in the data frame/dictionary and updates the default values with the new

23/104



values passed to the configuration variable. If the user wants to use the default value
of a parameter, it is essential to specify the parameter value as None, as also shown in
Section 2.2.2. We can subdivide the parameters that can be modified into two major
classes, which we will discuss separately: a) parameters related to the agent, which we
call the agent parameters (Section 2.2.3); b) parameters related to the experimental
environment, which we call the environmental parameters (Section 2.2.3).

Through the adjustment of the appropriate parameters, the user can adapt the
model to study a variety of important scientific questions. For example, one could
introduce new neural pathways and vary their connectivity to study the effects on the
system’s dynamics and behavior (e.g., addition of a cortico-pallidal pathway, which may
complement stopping mechanisms in the BG pathways [53]). Alternatively, the user
could study the effects of specific neural parameters on decision-making and stop signal
tasks. Additionally, by introducing optogenetic stimulation to different populations,
such as dSPN and iSPN striatal populations, the user could model how the timing and
intensity of this stimulation influences the plasticity and learning processes. For
example, it has been shown that inhibition of dSPNs during learning impairs
performance in a goal-directed learning task [54]. CBGTPy allows stimulation of
multiple populations at different phases of a task, which enhances the options for
exploring possible functional pathways and their roles in task performance. Lastly,
CBGTPy allows many environmental parameters to be modified for an n-choice or
stop-signal task while simulating the activity of the CBGT network. For example, one
could test the idea that the slowing down of decision times in healthy humans [55] when
there is a high conflict or similarity between choices is related to increased activity in
the STN [56]. Taken together, the large number of both network and environmental
parameters available for the end user to control is a strength of the CBGTPy framework
and greatly increases its ultimate scientific utility.

A detailed list of features of the CBGTPy package that can be easily modified by
the user can be found in table S8 Table.

Agent parameters

General neuron parameters The parameters common to all neurons can be
modified using the params field in the dictionary configuration. A complete list of
editable neuronal parameters is listed in S9 Table. For example, the following dictionary
entry can be modified to change the capacitance (C) of all neurons:

"params": pd.DataFrame([[30]], columns=["C"]),

Population-specific neuronal parameters The neuronal parameters of a specific
population can be modified using the field pops in the dictionary configuration.
These parameters will override the default values set by the params field. A complete
list of editable parameters is given in S10 Table. In the following example, the
membrane time constant (Taum) of the neurons in the FSI population is specified:

"pops": {"FSI": {"Taum": [60]}},

Synaptic parameters The parameters of the synapses (GABA, AMPA or NMDA)
can be modified through the field receps in the configuration variable. A complete
list of editable synaptic parameters is given in S11 Table. In the following example, the
membrane time constants of AMPA and GABA synapses (Tau AMPA, Tau GABA) are
specified:

24/104



"receps": pd.DataFrame([[100, 100]], columns=["Tau_AMPA", "Tau_GABA"]),

Population-specific baseline input parameters Each neuron receives a
background input from a random Gaussian process with a specified mean frequency and
variance equal to 1. Depending on the nature of the background input, the Gaussian
process can be excitatory (AMPA and NMDA) or inhibitory (GABA). The user can
specify the mean frequency, the efficacy, and the number of connections from the
background Gaussian process to the neurons in the population with the dictionary base.
A complete list of editable input parameters is given in S12 Table. In the following
example, the frequency of the external AMPA inputs (FreqExt AMPA) applied to FSI
neurons is specified:

"base": {"FSI": {"FreqExt_AMPA": [100]}},

Dopamine-specific parameters The dopamine-related parameters can be modified
via the dpmns parameter, which takes as its input a data frame containing the field
name and the names of the parameters to be updated. A complete list of these editable
parameters is given in S13 Table. In the following example, the dopamine decay rate
(dpmn tauDOP) is specified:

"dpmns": pd.DataFrame([[5]], columns=["dpmn_tauDOP"]),

SPN-specific dopaminergic parameters The SPN-specific dopaminergic
parameters for corticostriatal projections to dSPNs and iSPNs can be modified via d1

and d2, respectively, which take as their input a data frame containing the field name
and the parameters to be updated. The complete list of these editable parameters is
given in S14 Table. In the following example, the learning rate (dpmn alphaw) and the
maximal value for the corticostriatal weights (dpmn wmax) are specified:

"dSPN_params": pd.DataFrame([[39.5, 0.08]], columns=["dpmn_alphaw",

"dpmn_wmax"]),

"iSPN_params": pd.DataFrame([[-38.2, 0.06]], columns=["dpmn_alphaw",

"dpmn_wmax"]),

New pathways The parameters of a specific pathway can be changed by using the
variable newpathways. This variable can also be used to add new connections. This
takes as its input a data frame that lists the following features of the pathway: source
population (src), destination population (dest), receptor type (receptor),
channel-specific or common (type), connection probability (con), synaptic efficacy
(eff) and the type of the connection (plastic), which can be plastic (True) or static
(False). An example of a cortico-pallidal pathway involving AMPA synapses with 50%
connection probability, synaptic strength 0.01, and no plasticity is presented in the
following dictionary entry:

"newpathways": pd.DataFrame([["Cx", "GPe", "AMPA", "syn", 0.5, 0.01, False]])

If the user wishes to change multiple pathways at once, then the variable can be given a
list of data frames as input.

25/104



Q-learning process CBGTPy uses Q-learning to track the internal representations
of the values of the possible choices, which depend on the rewards received from the
environment. The parameters of this process can be modified via the variable
Q support params. The two parameters that can be modified are C scale and q alpha.
The former controls the scaling between the change in phasic dopamine and the change
in weights, and the latter controls the change in choice-specific q-values with reward
feedback from the environment. An example of how to specify these two parameters is
presented in the following dictionary entry:

"Q_support_params": pd.DataFrame([[30, 0.1]], columns=["C_scale", "q_alpha"]),

The equations showing the roles of these parameters are described in detail in S2.

Q-values data frame The choices available to the agent can be initialized with
identical values (e.g., 0.5) representing an unbiased initial condition. Alternatively,
non-default values for the Q-values data frame (such as values biased towards one
choice) can be initialized using the variable Q df. An example of how to specify this
variable is presented in the following dictionary entry:

"Q_df_set": pd.DataFrame([[0.3, 0.7]], columns=["left", "right"]),

Note that this parameter should be updated according to the number of choices
specified in the variable number of choices. The above example shows an initialization
for a 2-choice task.

Cortical activity In addition to the background inputs that generate the baseline
activity of all of the CBGT nuclei, the cortical component provides a ramping input to
the striatal and thalamic populations, representing the presence of some stimulus or
internal process that drives the consideration of possible choices. The maximum level of
this input can be defined by the parameter maxstim and specified using the following
dictionary line:

"maxstim": 0.8,

Corticostriatal plasticity The corticostriatal plasticity in the n-choice experiment
can be switched on and off using the corticostriatal plasticity present

parameter. When it is set to True, the corticostriatal weights change based on rewards
and dopaminergic signals (for more details see S2). When it is set to False, the
simulation proceeds without any update in the corticostriatal weights and the Q-values.
The value of this parameter is set to True using the following dictionary line:

"corticostriatal_plasticity_present": True,

Sustained activation to the action channel for the selected choice In order to
resolve the temporal credit assignment problem [21], we rely on post-decision sustained
activation to keep the selected channel active during the phasic dopaminergic
activity [57,58]. After the choice has been made, following the onset of a trial (decision
phase), the cortical component of the action channel associated with the selected choice
continues to receive inputs, while the unselected channels do not (consolidation phase);
see Figure 2.3. This phase may also represent the movement time of the agent. The
assumption here is that this activation provides an opportunity for corticostriatal

26/104



plasticity that strengthens the selected choice. The parameter sustainedfraction is
the fraction of input stimulus maintained during the consolidation phase in the cortical
channel corresponding to the action selected by the agent, and it can be specified using
the following dictionary entry:

"sustainedfraction": 0.7,

Once the dopamine signal has been delivered at the end of the consolidation phase,
all cortical inputs are turned off for the inter-trial interval. See Section 2.3.1 and Fig
2.4 for more details on the trial phases.

Thalamic threshold In the default set-up, when the thalamic firing rate of either
choice reaches 30 Hz, that choice is selected. This threshold can be specified by the user
by setting the parameter thalamic threshold in the following way:

"thalamic_threshold": 30,

Environment parameters

Experiment choice The parameter experiment choice is set at the beginning of
the simulation (see Section 2.2.2). It also needs to be sent as a configuration variable, so
that the specific functions and network components relevant to the appropriate
experiment are imported.

Inter-trial interval The parameter inter trial interval allows the user to specify
the inter-trial interval duration. The inter-trial interval also corresponds to the duration
of the inter-trial-interval phase of the simulation, where the network receives no
external input and shows spontaneous activity. When no value is specified (None), a
default value of 600ms is used. The user can set the value of this parameter using the
following dictionary entry:

"inter_trial_interval": 600,

Movement time After a choice is made, the chosen action channel receives sustained
activation at some fraction (with a default value of 70%) of the initial cortical input
strength. As noted in the previous section, this phase of the simulation (consolidation
phase) represents the movement time, which is distinct from the reaction time, provides
a key window for corticostriatal synaptic plasticity to occur, and remains unaffected by
the selected choice. The length of this phase can be controlled with the parameter
movement time. The default value of the movement time (when this parameter is set to
None) is sampled from a normal distribution N (250, 1.5). However, the user can choose
to set it to a constant value by passing a list ["constant", N], where N represents the
constant value of movement time for all trials. The other option is to sample from a
normal distribution of specified mean N using ["mean", N]. The movement time can be
set to a fixed value as follows:

"movement_time": ["constant", 300],

Choice time out The parameter choice timeout controls the duration of the time
interval in which a choice can be made. The default value of this parameter (when it is
set to None) is 1000ms. This parameter can be changed as follows:

27/104



"choice_timeout": 300,

Choice labels The data frame channels allows the labels for the action channels to
be changed. The new labels can be used to access information about the action
channels. An example is shown below:

"channels": pd.DataFrame([["left"], ["right"]], columns=["action"]),

Note that this parameter should be updated according to the number of choices
specified in the variable number of choices. The above example shows an initialization
for a 2-choice task.

Number of trials The n trials parameter sets the number of trials to be run
within a simulation. Note that this number should be greater than the volatility
parameter (described in the following paragraph). However, if only 1 trial is to be
simulated, then volatility parameter should be set to None. Examples of how to set
this parameter are as follows:

"n_trials": 2,

"n_trials": 1,

...

"volatility": [None, "exact"]

For more details about setting volatility parameter, please refer to the following
paragraph.

Volatility The parameter volatility indicates the average number of trials after
which the reward contingencies switch between the two choices. The volatility
parameter is a list consisting of two values, [λ, ‘option’], where option can be set as
exact or poisson. The λ parameter generates a reward data frame where the reward
contingency changes after an average of λ trials. The option exact ensures that the
reward contingency changes exactly after λ trials whereas the option poisson samples
the change points from a Poisson distribution with parameter λ. However, note that
this parameter cannot be 0 or the total number of trials. To perform a simulation in
which the reward contingencies do not change until the end of the simulation, set this
parameter to n trials−1 and drop the last trial from the analysis. An example of how
to define and specify the volatility is shown in the following command line:

"volatility": [2, "exact"],

Note that for a 1-choice task or stop signal task, the volatility parameter is not
applicable and hence should be defined differently; specifically, the parameter λ should
be set to None as follows:

"volatility": [None, "exact"],

Reward probability The parameter conflict represents the reward probability of
the reward data frame and is defined as a tuple of reward probabilities for the n choices.
In the following example, for a 2-choice task, the first reward probability corresponds to

28/104



the first choice listed in the channels parameter (e.g., "left"). The reward
probabilities for the choices are independent, thereby allowing reward structure to be
set in the format (p1, p2) as in the two following examples, representing unequal and
equal reward probabilities, respectively:

"conflict": (0.75, 0.25),

"conflict": (0.75, 0.75),

Note that this parameter should be updated according to the number of choices
specified in variable number of choices. The above example shows an initialization for
a 2-choice task. For example, for a 3-choice task the reward probabilities can be defined
as:

"conflict": (1.0, 0.5, 0.2),

Reward parameters The trial-by-trial reward size is generated by a random
Gaussian process, with a mean (reward mu) and a standard deviation (reward std)
that can be assigned. To simulate binary rewards, choose mean = 1 and standard
deviation = 0, as follows:

"reward_mu": 1,

"reward_std": 0.0,

Optogenetic signal If the experiment requires an optogenetic signal to be applied,
then this should be indicated in the configuration variable by setting
opt signal present to True, with each boolean variable corresponding to each nucleus
specified in the list of populations to be stimulated, as shown below:

"opt_signal_present": [True],

...

..

"opt_signal_population": ["dSPN"],

The above example shows the case, when only one population (i.e dSPNs) is stimulated.
More than one population can be stimulated simultaneously as shown below:

"opt_signal_present": [True, True],

...

..

"opt_signal_population": ["dSPN", "iSPN"],

Optogenetic signal probability The opt signal probability parameter accepts
either a float or a list. The float represents the probability of the optogenetic signal
being applied in any given trial. For example, the user wants all the trials in the
simulation to be optogenetically stimulated, i.e opt signal probability = 1.0, it
should be defined as shown below:

"opt_signal_probability": [1.0],

Alternatively, a specific list of trial numbers during which optogenetic stimulation
should be applied can also be passed. An example is shown below:

29/104



"opt_signal_probability": [[0, 1]],

In the above example, a list of trial numbers [0, 1] indicates that the optogentic
stimulation is applied to trial numbers 0 and 1.

Please note that if more than one nucleus will be stimulated, the
opt signal probability expects a list of floats (probabilities) or list of list (list of
trial numbers). For example, as mentioned in an example above, say the user wants to
stimulate two populations (dSPN and iSPN) at trial numbers [0,1] and [1,2] respectively:

"opt_signal_present": [True, True],

..

"opt_signal_population": ["dSPN", "iSPN"],

"opt_signal_probability": [[0, 1],[1, 2]],

Optogenetic signal amplitude The amplitude of the optogenetic signal can be
passed as a list of floats to the parameter opt signal amplitude. A positive value
represents an excitatory optogenetic signal, whereas a negative value represents an
inhibitory optogenetic signal. An example of excitation is shown below:

"opt_signal_amplitude": [0.1],

If we want to send different amplitudes of optogenetic signals to different populations,
for example, an excitatory (0.3) to dSPNs and inhibitory (−0.25) to iSPNs, then the
amplitudes should be specified as :

"opt_signal_present": [True, True],

..

"opt_signal_population": ["dSPN", "iSPN"],

"opt_signal_amplitude": [0.3, -0.25],

Optogenetic signal onset The opt signal onset parameter sets the onset time for
the optogenetic signal. The onset time is measured relative to the start of the decision
phase. For example, to specify that optogenetic stimulation will start 20ms after the
decision phase begins, the appropriate command is:

"opt_signal_onset": [20.],

Optogenetic signal duration The duration for which the optogenetic signal is
applied can be controlled by the parameter opt signal duration. This parameter
accepts a numerical value in ms as well as phase names as strings. For example, to
apply the optogenetic stimulation for 1000ms after the signal onset, the command is:

"opt_signal_duration": [1000.],

However, in order to apply optogenetic stimulation during the whole decision phase, the
duration variable should be the string “phase 0” as shown below:

"opt_signal_duration": ["phase 0"],

This allows the user to specifically target decision (“phase 0”), consolidation (“phase
1”) and inter-trial interval (“phase 2”) phases with optogenetic stimulation.

30/104



Optogenetic signal channel The user can also control whether the optogenetic
signal is applied globally to all action channels (all), to a randomly selected action
channel (any), or to a specific action channel (for instance, left). To do so, the
parameter opt signal channel needs to be specified as in the example below:

"opt_signal_channel": ["all"],

Optogenetic signal population The optogenetic stimulation can be applied to a
single or multiple populations in the same simulation. In either case, the population
names should be defined as a list. The target population can be specified using the
parameter opt signal population. In the example below, the dSPN population is set
as the target population:

"opt_signal_population": ["dSPN"],

Although the optogenetic-related parameters can be used to mimic the effect of a
stop signal manifested as the application of a step input current to a population, the
network also has a number of modifiable parameters that are specific to injecting the
stop signal to target nuclei via a box-shaped current.

Recorded variables CBGTPy allows recording of time-dependent values of both the
corticostriatal weights and any optogenetic inputs to any CBGT nuclei that are being
stimulated by using the parameter record variables. The first component of
record variables can be used to track the evolution of the weights from cortex to
dSPNs or iSPNs during an n-choice experiment. The latter component records the
optogenetic input applied to the target population and is especially useful for debugging
purposes. Both of these variables can be extracted as a data frame by calling the
function extract recording variables as described in Section 2.2.2. Note that, for
the parameter weight, cortical weights to both dSPNs and iSPNs for all choice
representations (channels) are recorded. In addition, when running the stop signal task,
the stop signal inputs can be recorded as well. Here, we can see an example of how to
extract the weights and the optogenetic input:

"record_variables": ["weight", "optogenetic_input"],

In addition, for the stop signal task, CBGTPy also allows the recording of the variable
"stop input", which can be used to check if the stop signal inputs were applied
correctly to the target nuclei.

"record_variables": ["stop_input"],

Stop signal If the experiment requires the stop signal to be applied, then this option
should be selected in the configuration variable by setting stop signal present to
True. Different stop signals can be applied to different target populations during the
same execution. For these, the stop signal present variable is defined as a list whose
length depends on the number of target populations. For example, if we apply stop
signals to two different populations, we have to set this variable as follows:

"stop_signal_present": [True, True],

Note that the user can apply the stop signals to as many nuclei as desired.

31/104



Stop signal populations The target populations for the stop signal can be specified
using the parameter stop signal population. In the example below, the STN and
GPeA populations are set as the target populations:

"stop_signal_populations": ["STN", "GPeA"],

All the examples presented below corresponding to the stop signal task are designed
taking into account that the stop signal is injected into these two populations.

Stop signal probability The stop signal probability can be specified using the
parameter stop signal probability, which is a list whose entries can take a float or a
list as input. If a float (between 0 and 1) is introduced, then this value represents the
probability to which the stop signal is applied. These trials are picked randomly from
the total number of trials. Alternatively, if a sublist is specified, then it must contain
the numbers of those trials where the user wants the stop signal to be applied. Note
that the entries in the main list refer to the populations specified in the same order as
in the variable stop signal populations. For example, within the statement

"stop_signal_probability": [1.0, [2, 3, 6]],

the first float value represents a 100% probability of applying the “first” stop signal to
the first specified nucleus (STN), while the subsequent list of values represents the
numbers of the trials on which the “second” stop signal will be applied to the other
target region (GPeA).

Stop signal amplitude The amplitude of the stop signal can be passed as a float to
the parameter stop signal amplitude. Note that this parameter is a list and that
every value refers to the corresponding population. The order should follow the order of
the populations. For example,

"stop_signal_amplitude": [0.4, 0.6],

Stop signal onset The parameter stop signal onset sets the times when the stop
signals are injected into the target nuclei. The onset time is measured with respect to
the start of the decision phase. In the example proposed below, the stop signal
stimulation at the STN starts 30ms after the decision phase begins, while that applied
to the GPeA starts 60ms after the decision phase begins:

"stop_signal_onset": [30., 60.]

Stop signal duration How long each stop signal is maintained can be controlled
using the parameters stop signal duration. As in the previous cases, this is a list
whose order must follow that of the target populations. In the following example, a stop
signal lasting 100ms is applied to the STN while another with duration 160ms is
applied to the GPeA:

"stop_signal_duration": [100., 160.]

In order to apply the stop signal throughout an entire phase, the duration variable
should be set to a string containing the name of the phase when the user wants to apply
the stop signal, as shown below:

32/104



"opt_signal_duration": ["phase 0", "phase 1"],

This allows the user to specifically target decision (“phase 0”), consolidation (“phase
1”) and inter-trial interval (“phase 2”) phases with persistent stop signal stimulation.

Stop signal channel The user can also control if the stop signal applied to a specific
population is presented to all action channels (all), to a uniformly and randomly
picked action channel (any), or to a specific action representation (for instance, left).
These can be specified using the parameter stop signal channel. In the following
example, one stop signal is presented to the STN populations of all of the action
channels, while the second stop signal is applied only to the GPeA population
corresponding to the “left” action channel:

"stop_signal_channel": ["all", "left"]

2.3 Experiments

In this section, we present some details about examples of the two primary
experiments that CBGTPy is designed to implement.

2.3.1 An n-choice task in an uncertain environment

This task requires the agent to select between n choices (e.g., left/right in a 2-choice
task). The selection of each choice leads to a reward with a certain probability.
Moreover, the reward probability associated with each choice can be abruptly changed
as part of the experiment. Thus, there are two forms of environmental uncertainty
associated with this task: a) conflict, or the degree of similarity between reward
probabilities; and b) volatility, or the frequency of changes in reward contingencies.
Higher conflict would represent a situation where the reward probabilities are more
similar across choices, making detection of the optimal choice difficult, whereas a lower
conflict represents highly disparate values of reward probabilities and easier detection of
the optimal choice. Conflict is not specified directly in CBGTPy; rather, the reward
probabilities are explicitly set by the user (Section 2.2.3). An environment with high
(low) volatility corresponds to frequent (rare) switches in the reward contingencies. The
volatility can be set by the parameter λ, which determines the number of trials before
reward probabilities switch. The user can choose between whether the trials are
switched after exactly λ trials or whether switches are determined probabilistically, in
which case λ represents the rate parameter of a Poisson distribution that determines the
number of trials before reward probabilities switch (Section 2.2.3).

Using the reward probabilities and volatility, the backend code generates a reward
data frame that the agent encounters during the learning simulation. The reward data
frame is used in calculating the reward prediction error and the corresponding
dopaminergic signals, which modulate the plasticity of the corticostriatal projections.

At the beginning of the simulation, the CGBT network is in a resting phase during
which all CBGT nuclei produce their baseline firing rates. When a stimulus is presented,
the network enters a new phase, which we call phase 0 or decision phase. We assume
that at the start of this stage a stimulus (i.e., an external stimulus, an internal process,
or a combination of the two) is introduced that drives the cortical activity above
baseline. Cortical projections to the striatal populations initiate ramping dynamics
there, which in turn impacts activity downstream in the rest of the BG and Th. We
also assume that when the mean firing rate of a thalamic population exceeds a

33/104



designated threshold value of 30 spikes per second (the so-called decision boundary), the
CBGT network, and hence the agent, has made a choice. This event designates the end
of phase 0, and the duration of this phase is what we call the reaction time. If a decision
is not made within a time window ∆maxms after the start of the phase, then we say
that none of the available choices have been selected and the decision is recorded as
“none”. Such trials can be excluded from further analysis depending on the hypothesis
being investigated.

Fig 2.4. Representation of the different phases of the simulated decision
process. This sketch represents the simulation of one trial of the 2-choice task in which
a left choice is made. The first red vertical line, at time 0, represents the time of onset
of a ramping stimulus to Cxi for both i, which indicates the start of the trial. The
second red vertical thick line depicts the decision time (end of phase 0 ). The third red
vertical line depicts the end of the motor response period associated with the decision
(end of phase 1 ), which is also the time when reward delivery occurs and hence
dopamime level is updated. After this time, the reset phase (phase 2 ) starts; this ends
after 600ms (inter trial interval), when a new trial starts (right-hand vertical red line).
Orange and blue traces represent the mean thalamic firing rates Thi for i ∈ {left, right},
respectively, and the horizontal black dotted line highlights the decision threshold.

To allow for selection between n different choices we instantiate n copies of all
CBGT populations except FSI and CxI. This replication sets up action channels
representing the available choices that can influence each other indirectly through the
shared populations and otherwise remain separate over the whole CBGT loop. To
distinguish between the firing ratse of the populations within channels, we will call them
Popi, where Pop refers to the corresponding CBGT region and i refers to the channel
name (e.g., Cxleft, Cxright for n = 2).

The presentation of a stimulus to the cortical population is simulated by increasing
the external input frequency in all copies of the cortical Cx populations that ramp to a
target firing rate Itarget. The ramping current Iramp(t) is calculated as

Iramp(t) = Iramp(t− dt) + 0.1
[
Itarget(t)− Iramp(t− dt)

]
where dt is the integrator time step, and the external input frequency also changes
according to

fext,x(t) = fext,x,baseline(t− dt) + Iramp(t).

34/104



After a Th population reaches the threshold and hence a decision is made, the
ramping input to Cx is extinguished and a subsequent period that we call phase 1 or
consolidation phase begins, which by default has duration sampled from a normal
distribution N (µ = 250ms, σ = 1.5ms) but can also be fixed to a given duration. This
phase represents the period of the motor implementation of the decision. Activity
during phase 1 strongly depends on what happened in phase 0 such that, if a decision i
occurred at the end of phase 0, then Cxi will be induced to exhibit sustained activity
during phase 1 [57] (see S2), while in any non-selected action channels, the cortical
activity returns to baseline. If no decision has been made by the network (within a time
window ∆maxms, with a default value of 1000 ms), then no sustained activity is
introduced in the cortex (see Figure 2.3, 3rd trial, the top left subplot showing cortical
activity).

Finally, each trial ends with a reset phase of duration 600ms (although this can be
adjusted by the user), which we call phase 2 or the inter-trial interval phase, when the
external input is removed and the network model is allowed to return to its baseline
activity, akin to an inter-trial interval.

A visualization of the decision phases is shown in Figure 2.4, where two different
options, right and left, are considered. The blue trace represents the thalamic activity
for the right channel, Thright, while the orange trace represents that for the left
channel, Thleft. At the end of phase 0, we can see that Thleft reaches the decision
threshold of 30 spikes per second before Thright has done so, resulting in a left choice
being made. During phase 1, the Thleft activity is maintained around 30 spikes per
second by the sustained activity in Cxleft.

In this task, critical attention should be paid to phase 0, as this represents the
process of evidence accumulation where the cortical input and striatal activity of both
channels ramp until one of the thalamic populations’ firing rates reaches the threshold
of 30Hz. To be largely consistent with commonly used experimental paradigms, the
maximal duration of this phase is considered to be ∆max = 1000ms such that, if the
agent makes no decision within 1000 ms, the trial times out and the decision is marked
as “none”. These trials can be conveniently removed from the recorded data before
analysis. If a decision is made, then the simulation proceeds as though a reward is
delivered at the end of phase 1 – that is, at the end of the motor sensory response –
such that phase 1 represents the plasticity phase, where the choice selected in phase 0 is
reinforced with a dopaminergic signal. During this phase, the cortical population of the
selected channel receives 70% of the maximum cortical stimulus applied during the
ramping phase, although the user can change this percentage. This induces sustained
activity that promotes dopamine- and activity-dependent plasticity as described in S2.
The activity-dependent plasticity rule strengthens (weakens) the corticostriatal weight
to dSPNs (iSPNs) of the selected channel when dopamine rises above its baseline level.
CBGTPy allows for the specification of other parameters such as learning rate,
maximum weight values for the corticostriatal projections and dopamine-related
parameters (see details with examples in Section 2.2.3).

At the beginning of the simulation, with baseline network parameters, the selection
probabilities are at chance level (i.e., 50% for a 2-choice task). If the network
experiences rewards, however, the dopamine-dependent plasticity strengthens the
corticostriatal projection to the dSPN population of each rewarded choice, thereby
increasing the likelihood that it will be selected in the future. CBGTPy allows for
probabilistic reward delivery associated with each option, as well as switching of these
probabilities between the two actions (Figure 2.5). When such a change point occurs,
the previously learned action now elicits a negative reward prediction error, forcing the
network to unlearn the previously learned choice and learn the new reward contingency.

35/104



0.0

0.5

1.0

P(
A)

reward probability: (P(A) = 1.0, P(B) = 0.0)

0.0

0.5

1.0

P(
A)

reward probability: (P(A) = 0.9, P(B) = 0.1)

0 5 10 15 20 25 30 35 40
Trials

0.0

0.5

1.0

P(
A)

reward probability: (P(A) = 0.75, P(B) = 0.25)

Fig 2.5. Probability of choosing the more rewarded action (e.g., A or B) for
different levels of conflict in a 2-choice task. The reward contingencies flip
between the two choices every 10 trials (marked by vertical dashed lines), at which
point the probability of choosing the more rewarded option drops below chance. The
probability of choosing A is high in the 1st and 3rd blocks; however, the probability to
choose A drops in the 2nd and 4th blocks (where B is rewarded with a higher
probability). Performance, measured in terms of probability of selecting option A,
degrades in general as conflict increases, but sensitivity to change points drops. The
performance was averaged over 50 random seeds for each conflict level.

2.3.2 A stop signal task

The stop signal task represents a common paradigm used in cognitive psychology
and cognitive neuroscience for the study of reactive inhibition [59]. In this task,
participants are trained to respond as fast as possible after the presentation of a “Go”
cue. Sometimes the “Go” cue is followed by the presentation of a “Stop” cue, which
instructs subjects to withhold their decision and hence, if successful, prevents any
corresponding movement before it begins.

Imaging and electrophysiological studies in humans, rodents, and monkeys agree in
reporting that STN neurons become activated in response to a stop signal [60], providing
a fast, non-selective pause mechanism that contributes to action suppression through
the activation of the cortical hyperdirect pathway [61,62]. However, this mechanism, by
itself, mostly fails to inhibit locomotion, appearing to be not selective and long-lasting
enough to prevent a late resurgence of the evidence accumulation process as needed to
guarantee a complete cancellation of the execution of the motor response [63]. A
complementary slower but selective mechanism is thought to be provided by the
activation of arkypallidal neurons in the GPe in response to an external stimulus that
instructs the network to brake the ongoing motor planning process [62–64]. According
to this idea, a long-lasting action inhibition results from the activation of pallidostriatal
GABAergic projections. For more details on how this mechanism takes place see [42].

To reproduce these mechanisms and to simulate the interruption of the action
selection process, we inject two independent, external, excitatory currents directly into
STN and GPeA neurons during a typical CBGT simulation. This choice is based on the
findings of Mallet et. al. (2016) [63]. The stop signal is excitatory and hence is

36/104



simulated by up regulating the baseline input frequency to the AMPA receptors

fext,x(t) = fext,x(t) + stop amplitude,

where stop amplitude defines the magnitude of the stop signal stimulation. The
currents injected as a step function cause an increase in the firing rates of the target
nuclei. Both of these external currents are defined using parameters that can be
modified in an easy and user-friendly way, without requiring any familiarity or advanced
knowledge of the details of the implementation (see Section 2.2.3 for further details and
examples).

The following list of parameters characterizes each one of these currents:

(a) amplitude, specifying the magnitude of the stimulation applied;

(b) population, specifying the CBGT region or sub-population being stimulated.

(c) onset, specifying the onset time of the stimulation, with respect to the trial onset
time (i.e., the beginning of phase 0 );

(d) duration, defining the duration of the stimulation. Since the length of phase 0 is
not fixed and is dependent on how long it takes for the thalamic firing rates to
reach the decision threshold (30Hz), this parameter should be set carefully;

(e) probability, determining the fraction of trials on which the stop signal should be
introduced;

(f) channel, defining which action channels are stimulated.

A more detailed description of all of these parameters can be found in Section 2.2.3. The
details of the stop parameters used to reproduce Figure 2.7 are included in S16 Table.

The characterization of the different network phases described in Section 2.2 slightly
changes when performing the stop signal task (see Figure 2.6). During the decision
phase (phase 0, which in this task lasts for a maximum of 300 ms) the stop signals are
directly presented to the target populations by injecting independent external currents.
The user can choose the moment of the injection by manipulating the variable
stop signal onset time. These signals are kept active for a period equal to
stop signal duration, with a magnitude equal to the stop signal amplitude.
These values do not need to be the same for all of the stop signals used. At this stage,
two possible outcomes follow: (a) despite the presentation of the stop signals, the
network still manages to choose an action; or, (b) the network is not able to make an
action after the presentation of the stop signals, and phase 0 ends with no action
triggered, which represents a stop outcome. The former option could arise for various
reasons; the strength of the stop signal may not be sufficient to prevent the network
from triggering an action or the evaluation process may still have enough time to
recover, after the stop signal ends, to allow the thalamic firing rates to reach the
decision threshold (e.g., 30Hz) within the permitted decision window.

In Figure 2.7 we show an example of stop signal stimulation applied to STN and
GPeA populations, independently, in a 1-choice task. The onset of the stimulation
applied to STN occurred at 30ms while that for the stimulation of GPeA was set to
60ms; both signals were applied for a duration of 145ms. Both stimulations were
applied in both of the trials shown. Note that trial number 1 corresponds to a correct
stop trial (no decision was made within phase 0 ), whereas the following trial
corresponds to a failed stop trial. These outcomes can be inferred from the activity of
various populations at the end of the decision making windows: the thalamic firing rate
reaches a higher level there and the firing traces in GPi decrease more for the failed stop
trial than for correct stop, while cortical activity is sustained beyond this time
specifically when stop fails.

37/104



Fig 2.6. Representation of the phases of the stop signal task with two action
channels. This sketch represents one trial of the simulation. The first red vertical line
indicates the presentation of the cortical stimulus (causing ramping of cortical activity),
which represents the start of the trial. Red and green horizontal bars depict the
presentation of two stop currents, according to the onset time and duration values
chosen by the user. In this example, the two stop signals are considered to be applied
with different onset times t1 and t2, respectively. The second red vertical line depicts
either the moment when an action has occurred (end of phase 0 ) or that 300ms has
expired and no action has been triggered, so a successful stop has occurred. The third
red vertical line depicts the end of the motor sensory response phase (end of phase 1 ), if
an action is triggered (failed stop). Here, the stop was successful (no decision threshold
crossing within the decision window), so no motor sensory response is visible. Finally,
the reset phase (phase 2 ) occurs, after which a new trial begins. Blue and orange traces
represent the mean thalamic firing rates Thx for x ∈ {right,left}, respectively, and the
horizontal black dotted line marks the decision threshold.

2.3.3 Optogenetic stimulation

CBGTPy also allows for simulation of optogenetic stimulation of CBGT nuclei while
an agent performs the available tasks (stop signal or n-choice). Optogenetic stimulation
is implemented by setting a conductance value for one of two opsins dependant upon
the mode of stimulation, channelrhodopsin-2 for excitation and halorhodopsin for
inhibition. The excitatory or inhibitory optogenetic input is applied as a current Iopto
added to the inward current Iext of all neurons in a nucleus or subpopulation during a
typical CBGT simulation such that

Iopto(t) =

{
gopto(V (t)− VChR2) gopto ≥ 0

−gopto(V (t)− VNpHR) gopto < 0

where the conductance gopto is a signed value entered via the configuration variable in
the notebooks. The reversal potential of channelrhodopsin (VChR2) was considered to
be 0mV and halorhodopsin (VNpHR) was considered to be −400mV [65].

The stimulation paradigm includes the following parameters:

(a) amplitude, the sign of which specifies the nature (positive→excitatory /
negative→inhibitory) and the absolute value of which specifies the magnitude of
the conductance applied;

38/104



Fig 2.7. Example figure showing firing rates for all nuclei for two
consecutive stop trials. Note that the simulation has been run in a 1-channel regime
and two stop currents have been applied to STN and GPeA, respectively (see thick red
bars). Segments of the simulation are color-coded to distinguish times associated with
decision making (pink, phase 0) and subsequent times of motor response (grey, phase 1,
showing sustained activity in the selected channel when a decision is made) in each trial.
The unshaded regions after the trials are the inter-trial-intervals (phase 2).

(b) population, specifying the CBGT region or sub-population being stimulated;

(c) onset, specifying the onset time of the stimulation;

(d) duration, defining the duration of the stimulation;

(e) probability, indicating the fraction of trials or a list of trial numbers to include
stimulation;

(f) channel, specifying which action channels are stimulated.

The parameter population should be entered as a list of the subpopulations to be
stimulated. The parameter onset is calculated from the beginning of phase 0 ; for
example, if this parameter is 10, then the optogenetic stimulation starts 10ms after
phase 0 starts. The parameter duration controls the duration of the optogenetic
stimulation. This parameter either accepts a numeric value in ms or a string specifying
which phase should be stimulated. The numeric value stipulates that the list of selected
populations will be stimulated from the specified onset time for the specified time
duration. The string (e.g., “phase 0”) stipulates that the stimulation should be applied
throughout the specified phase, thereby allowing the user to specifically target the

39/104



decision, consolidation or inter-trial interval phase. If an optogenetic configuration
results in extending the duration of a phase (e.g., strongly inhibiting dSPN may extend
phase 0 ), a time out is specified for every phase to prevent a failure to terminate the
phase. The default timeouts for phase 0, 1 and 2 are 1000ms, 300ms and 600ms
respectively unless specified by the user.

The parameter probability offers the flexibility of either assigning a number that
determines the fraction of trials (randomly sampled from the full collection of trials) on
which the stimulation is to be delivered or else entering a list of specific trial numbers.
Lastly, the parameter channel specifies the name of the action channel, such as “left”,
onto which the stimulation should be applied. This parameter also accepts two
additional options, “all” or “any”, the former of which leads to the application of a
global stimulation to the same population in all channels and the latter of which
randomly selects a channel for stimulation on each trial. The details of the optogenetic
input is included in S17 Table.

We show an example of optogenetic stimulation applied to a list of iSPN and dSPN
populations in a 3-choice task (Figure 2.8). The excitatory stimulation (shown as thick
blue bar), with an amplitude of 0.1, was applied to the iSPN populations of all the
channels (namely A, B, and C) in the first trial, for the duration of phase 0. An
increased activity in the iSPN population (activation of the indirect pathway) caused a
choice time out on this trial. In the subsequent second trial, an inhibitory stimulation
with an amplitude of −0.5 was applied to the dSPNs (shown as yellow bar) for 400ms.
This resulted in brief but strong inhibition of dSPNs (direct pathway), thereby delaying
the action selection. This can be observed by comparing the durations of the decision
phase between the second and third trials, where no such manipulation was imposed.

2.4 Discussion

Here we introduce CBGTPy, an extensible generative modeling package that
simulates responses in a variety of experimental testing environments with agent
behavior driven by dynamics of the CBGT pathways of the mammalian brain. A
primary strength of this package is the separation of the agent and environment
components, such that modifications in the environmental paradigm can be made
independent of the modifications in the CBGT network. This allows the user to derive
predictions about network function and behavior in a variety of experimental contexts,
which can be vetted against empirical observations. Moreover, various changes in the
parameters of the network, as well as the experimental paradigm, can be made through
the higher-level configuration variable that is sent as an argument in running the
simulation, thereby avoiding a considerable coding effort on the part of the user.
CBGTPy also returns behavioral outcomes (e.g., choices made and decision times) and
“recordings” of neuronal outputs (instantaneous firing rates) for all of the CBGT nuclei
in the form of easily usable and readable data frames. Overall, CBGTPy allows for
theorists and experimentalists alike to develop and test novel theories of the biological
function of these critical pathways.

The individual components of CBGTPy are all designed to enable maximum
flexibility. The basal ganglia model is constructed in an organized series of steps,
beginning with high-level descriptions of the model and gradually providing more
fine-grained details. Developing a modification to the network becomes a matter of
inserting or modifying the appropriate components or steps, allowing high-level
redesigns to be implemented as easily as more precise low-level modifications.
CBGTPy’s high degree of extensibility can, in large part, be attributed to its use of a
data-flow programming paradigm. Neural pathways between major populations, for
example, can be specified at a very high level, requiring only a single entry in the

40/104



Fig 2.8. Example figure showing optogenetic stimulation for the nuclei
‘iSPN’ and ‘dSPN’. The configuration specified was: amplitude: [0.5, -0.5],

duration: [‘phase 0’, 400], trial numbers: [[0], [1]], channels:

[‘all’, ‘all’]. The excitatory optogenetic stimulation given to iSPN (shown as blue
bar) and lasts all through phase 0, whereas inhibitory stimulation to dSPN (shown as
yellow bar) lasted for 400ms. In both cases, stimulation were applied to all

channels (namely A, B and C) of the nuclei.

pathway table to describe how each subpopulation is connected. If the connectivity of a
particular subpopulation, or even a particular neuron, needs adjustment, then the later
steps in network construction can be adjusted to implement those changes. CBGTPy
was designed with this degree of flexibility to ensure that in the future, more complex
biological models of the CBGT network can be developed and implemented in an
efficient manner.

Of course, CBGTPy is not the only neural network model of these
cortical-subcortical networks. Many other models exist that describe the circuit-level
dynamics of CBGT pathways as either a spiking [53,66–71] or a
rate-based [38,39,72–78] system. CBGTPy has some limitations worth noting, such as
not being as computationally efficient as rate-based models in generating macroscale
dynamics, including those observed using fMRI or EEG, and associated predictions.
Also, the properties of the cortical systems modeled in CBGTPy are quite simple and
do not capture the nuanced connectivity and representational structure of real cortical
systems. For these sorts of questions, there are many other modeling packages that
would be better suited for generating hypotheses (e.g., [79]). Where CBGTPy excels is
in its a) biologically realistic description of subcortical pathways, b) scalability of
adding in new pathways or network properties as they are discovered, c) flexibility at
emulating a variety of typical neuroscientific testing environments, and d) ease of use for
individuals with relatively limited programming experience. These benefits should make

41/104



CBGTPy an ideal tool for many researchers interested in basal ganglia and thalamic
pathways during behavior.

One issue that has been left unresolved in our toolbox is the problem of parameter
fitting [80,81]. Spiking network models like those used in CBGTPy have an immense
number of free parameters. The nature of both the scale and variety of parameters in
spiking neural networks makes the fitting problem substantially more complex than that
faced by more abstracted neural network models, such as those used in deep learning
and modern artificial intelligence [82,83]. This is particularly true when the goal is to
constrain both the neural and behavioral properties of the network. Models like
CBGTPy can be tuned to prioritize matching cellular level properties observed
empirically (for example see [44]) or to emphasize matching task performances to
humans or non-human participants (see [45]). We view this as a weighted cost function
between network dynamics and behavioral performance whose balance depends largely
on the goals of the study. To the best of our knowledge, there is no established solution
to simultaneously fitting both constraints together in these sorts of networks. Therefore,
CBGTPy is designed to be flexible to a wide variety of tuning approaches depending on
the goal of the user, rather than constrain to a single fitting method.

Because our focus is on matching neural and behavioral constraints based on
experimental observations, CBGTPy’s environment was designed to emulate the sorts of
task paradigms used in systems and cognitive neuroscience research. We purposefully
constructed the environment interface to accommodate a wide variety of traditional and
current experimental behavioral tasks. These tasks are often simpler in design than the
more complex and naturalistic paradigms used in artificial intelligence and, to an
increasing degree, cognitive science. Nonetheless, a long-term goal of CBGTPy
development is to interface with environments like OpenAI’s Gym [84] in order to
provide not only a mechanistic link towards more naturalistic behavior, but also a
framework to test hypotheses about the underlying mechanisms of more dynamic and
naturalistic behaviors.

In summary, CBGTPy offers a simple way to start generating predictions about
CBGT pathways in hypothesis-driven research. This tool enables researchers to run
virtual experiments in parallel with in vivo experiments in both humans and non-human
animals. The extensible nature of the tool makes it easy to introduce updates or
expansions in complexity as new observations come to light, positioning it as a
potentially important and highly useful tool for understanding these pathways.

42/104



Chapter 3

Modeling CBGT-hippocampal
cooperation via successor
representation

3.1 Introduction

Consider the process of dining out at a restaurant. To have a rewarding experience
and to avoid negative outcomes, one must perform a sequence of actions in this
environment, such as getting seated, ordering food, ordering dessert, and paying the bill.
There are many possible courses of action, each of which may incur a different degree of
reward, and the general problem of learning the best behavioral pattern that maximizes
future rewards is known as reinforcement learning (RL) [85]. Within the mammalian
brain, the process of action selection [13], particularly in RL tasks, is believed to be
heavily driven by the cortico-basal ganglia-thalamic (CBGT) pathways [2] [14]. In
response to dopaminergic input from the substantia nigra pars compacta (SNc), the
CBGT circuit adjusts its internal competitive dynamics to favor previously rewarded
actions (e.g., [1]), thus fulfilling the core computational goal of RL. Simple action
policies, however, in which rewarding actions are broadly favored, are far from sufficient
to solve real-world tasks such as dining out. First, the value of an action is heavily
contingent upon the context in which it was performed, so the agent’s action selection
process must consider the current environmental state. In other words, the importance
of paying a bill depends heavily on whether food has previously been ordered. Second,
for the learning process to be efficient, the agent must identify and leverage the patterns,
or structure, present in the environment. For example, one might select food based on
the expected bill without needing to relearn the casual relationship between food and
bills for each new restaurant visited. Both of these points require the agent to learn the
structure of the environmental state space and use state information throughout the RL
process. Thus, it is natural to ask how the dynamics of the basal ganglia network may
integrate structural information to guide the formation of complex action policies.

Structure learning, the process of inferring the latent structure of the environmental
state space from experience [10], is quite a distinct problem from RL. It is unclear how
the basal ganglia alone would be equipped to perform all the computations necessary to
both determine the shape of state space of a task and perform RL over that space.
There is, however, substantial evidence that structured RL tasks engage multiple
learning systems within the brain, and that it is the coordination of these systems that
enables the production of complex volitional behavior [18]. Notably, activity within the

43



hippocampal-entorhinal cortical (HC-EC) system, famous for its role in spatial
navigation [27], appears to encode the latent structure of structured RL tasks [5].
Conceptually, behavior in structured RL tasks can be viewed as navigation over a
mental map [7] in which each environmental state is a location on the map. This
conceptual parallel suggests that the neural representations present in the hippocampus
could encode the distinct metaphorical places over which the RL action policy should be
learned.

There is a wealth of evidence supporting the existence of a role for the HC-EC
system in RL tasks. Neural recordings in primates during a dynamic bandit task
indicate that, as the values of the bandits change over time, some hippocampal cells
respond to specific locations on the latent manifold of bandit values [7]. These cells
have been deemed “place value cells” and their presence indicates that the hippocampus
could encode the state of RL tasks in a manner similar to the spatial states of
navigation tasks [7]. The hippocampus also appears to aid RL by forming a conjunctive
representation over which value learning can occur [4]. These conjunctive
representations allow values to be assigned to combinations of features, such that the
value of a feature depends on the context in which it appears. Human neuroimaging
data indicates that this representation, provided by the hippocampus, influences reward
prediction errors in the basal ganglia [4]. Furthermore, other human imaging studies
indicate that, when presented with a set of bandit tasks with varying correlative
structures, the structures of the tasks are encoded in the activity of the entorhinal
cortex in a manner that generalizes across tasks of similar structure [5]. Taken together,
it is evident that the HC-EC system is engaged during RL problems and that the
system may encode the structure of the RL task state space. The hippocampus may
influence the RL process in the basal ganglia both during the process of action selection
and during reward-induced dopaminergic plasticity. As the cortex is the primary driver
of striatal activity, it is likely that hippocampal projections to the cortex are key to this
interaction. CA1 neurons, which include hippocampal place cells, project to prefrontal
cortex [27], and electrical recordings in primates have established that primary
sensorimotor and premotor cortical neurons can exhibit spatially-selective activity [29].
These cortical areas, in turn, project to the basal ganglia [28], completing the avenue by
which place cells could influence action selection and decision-making.

Perhaps the key to understanding the computational role of hippocampal
representations in RL lies in the apparent predictive nature of the representations and
how those representations appear to be influenced by environmental transitions [6]. It
has been hypothesized that the hippocampus embodies a particular form of predictive
coding known as successor representation (SR), in which each state is encoded in terms
of the expected future occupancy of other states [6] [23] [8]. SR is particularly useful for
RL, as the one of the direct outputs of SR is a transformation matrix that describes the
extent to which each potential future state transition contributes to the value of the
present state [26]. Notably, in SR, each individual feature of the representation is tuned
both towards a particular state and to the states which often precede it [6]. This
matches observations that place cells in rodents appear to be influenced by an animal’s
movement patterns, with individual place cells expanding their receptive fields
backward relative to the direction of the animals [23]. Furthermore, an imaging study in
humans has shown that hippocampal activity appears to be influenced by transition
probabilities in non-spatial tasks [23]. The similarity between place cell fields and SR is
also supported by modeling results. A model of place cells by de Cothi and Barry has
shown how, given a set of boundary vector cells to serve as the state basis vector, SR
gives rise to simulated place cells that are quite similar to their biological equivalents [8].
SR is thus a unifying idea that could explain how the hippocampal network performs
the same fundamental computations in both spatial and non-spatial contexts.

44/104



Fig 3.1. A four-armed bandit with latent structure (A) The agent sees only four
buttons representing the four arms of the bandit, with no spatial information provided.
Each button, however, secretly corresponds to movement in a cardinal direction. (B)
The task contains 68 blocks, each block consisting of a start cue followed by six trials.
Each trial consists of an action along with the corresponding positive, negative, or
neutral reward feedback. (C) The sequence of actions within a block determine the
agent’s trajectory on the latent grid, with the optimal sequence of actions corresponding
to following an optimal path on the grid. (D) Deviations from the optimal path result
in less net reward. The value of the squares do not depend on the order in which they
are visited, though each square only provides a non-zero reward once per block when
first visited.

Here, we explore how place-cell-like representations, similar to those present in the
HC-EC system, could aid the CBGT circuit in forming a complex action policy within a
structured RL task. We consider a four-armed bandit task, illustrated in Figure 3.1,
with a grid-like latent structure that closely resembles the type of pseudo-spatial
structure the HC-EC system is expected to be best equipped to learn. First, we show
how a model of place cells, derived from SR, gives rise to a neural representation of
environmental state in which the place cells are tuned to the distinct latent states of the
RL task. The SR-derived representation is contrasted with two handcrafted
representations which encode distinct aspects of the task structure. Secondly, we
incorporate these place cell representations into a model of the basal ganglia, using the
CBGTPy python toolbox [24], to investigate how the place-cell-like representations
could complement the structure and dynamics of the CBGT network and produce a
simulated behavioral agent capable of learning a complex multi-step optimal policy.

45/104



Furthermore, we investigate how properties of the neural representations, such as
sparsity, and structural properties of corticostriatal connectivity influence the network’s
performance. Ultimately, this work aims to highlight how structure learning, as
performed via hippocampal circuits, can potentially coordinate with the basal ganglia to
regulate RL in complex environments.

3.2 Methods

3.2.1 Defining a Structured RL Task

Within the scope of this chapter, RL tasks are composed of a discrete sequence of
interactions between an environment and a behavioral agent. The environment
possesses a hidden state st, and each state transition is accompanied by a visible
sensory observation xt. Each sensory observation is a symbol selected from a predefined
symbol set, which includes any cue presentations, movements, or reward presentations
that might occur throughout the task. As shown in Figure 3.2, certain state transitions
are influenced solely by the environmental state, while others involve the selection of a
transition by the agent from a list of available options. The environment is defined as
being memoryless, meaning that an agent with knowledge of the true present state st
does not gain any additional predictive power by knowing the values of past states or
observations.

Fig 3.2. Relationship between the environmental state s and sensory
observation x. Sensory observations are generated by environmental transitions. Some
transitions, termed decision steps, are selected by the agent in response to options
presented by the environment, while other transitions are influenced only by the
internal dynamics of the environment. The behavioral agent only has access to the
sequence of observations and not the true underlying state.

Each possible observation symbol is assigned a reward quantity R(x), and the goal
of an RL agent is to maximize the expected time-discounted sum of future rewards. In
other words, the agent aims to influence the environmental state through its actions to
achieve the states with the highest possible value

V (s) = E

[ ∞∑
t=0

γtR(xt)|s0 = s

]
(3.1)

46/104



where γ is a time-discounting factor that determines the trade-off between the quantity
of a reward and the delay of the reward. The agent, however, only has access to the
symbolic sequence of observations and thus must form its own internal model of the
environment and an estimate ŝt of the true state. The agent’s estimate of state value,
given imperfect information about the environmental structure and transitions, is
denoted V̂ .

To serve as a prototypical example of a structured RL task, this work adapts the
latent grid bandit task introduced by Bond [9]. In this four-arm bandit task, the
behavioral agent is asked to complete a sequence of six decisions, each of which may
result in a reward, penalty, or neither. Unknown to the agent, the rewards presented in
the task are dictated by the agent’s position on a latent two-dimensional grid, as shown
in Figure 3.1, with each of the four options corresponding to a movement in one of the
four cardinal directions. Thus, the value of a particular bandit arm is contingent on the
sequence of arms previously selected, but the structure of this contingency is relatively
simple once the structure of the latent space is understood. Through extensive
repetition of the 6-choice blocks, the agent should eventually discover the optimal
six-step path that maximizes reward. The pseudo-spatial structure of the latent grid is
precisely the sort of structure that hippocampal circuits would excel at learning. So, it
serves as an ideal test-bed for how hippocampal representation might enable the basal
ganglia to select the optimal action along each point on the imaginary path.

To adapt the task from Bond [9], we must precisely describe the sensory observations
that occur throughout the performance of the task. As outlined in panel B of Figure 3.1,
each of the 68 blocks of the task contain a start cue followed by six trials, and each trial
consists of an action followed by a reward signal. The events of the task can therefore
be represented by symbolic sequences constructed from the following alphabet:

{START,A,B,C,D,+1,−1, 0} (3.2)

Here, START is the block start cue, while A, B, C, and D indicate the selection of
each of the four bandit arms. The three possible reward values, positive, negative, and
neutral, are represented by +1, −1, and 0 respectively. R(x) is set to zero for all
symbols except +1 and −1. Each trial is two symbols long, and each block is
1 + 2× 6 = 13 symbols long. A complete run of the entire task is 13× 68 = 884 symbols
long and contains 6× 68 = 408 separate decisions. The state of the task is determined
by the current row and columnar position of the agent within the latent grid, along with
the list of cells that have already been visited during the current block. As each block of
6 trials is independent, the environment resets to the same initial state s0 after the end
of each block.

To successfully perform this task, the agent must accomplish two objectives each
time it is presented with the opportunity to make a decision. First, it must process the
previously-observed symbols x0, x1, · · · , xt−1 to form an internal estimate ŝt of the
environmental state, and then it must select xt from {A,B,C,D} to maximize

E
[∑∞

t′=t γ
t−t′R(xt′)|ŝt

]
. To accomplish these goals, the agent must perform both

structure learning, to understand the relationships between past and future
observations, and RL, in which the state value estimates and observed rewards guide
the formation of an action policy.

3.2.2 Successor Representation

Within the SR paradigm, the agent forms an estimate of the time-discounted future
occupancy matrix M , whose entries are defined as

M(s, s′) =

∞∑
t=0

γtP (st = s′|s0 = s) (3.3)

47/104



or equivalently

M(s, s′) = E

[ ∞∑
t=0

{
γt st = s′

0 otherwise
|s0 = s

]
(3.4)

where s is the present state, s′ is a future state, and γ is the time discounting factor†.
The key property of M is that the agent’s value estimate V̂ (s) of any particular present
state s can be calculated through the simple dot-product operation

V̂ (s) =
∑
s′

M(s, s′)R(s′) =

∞∑
t=0

∑
s′

γtR(s′)P (st = s′|s0 = s) (3.5)

where R(s′) is the amount of immediate reward the agent expects to receive directly
after visiting state s′. Here one of the major strengths of SR becomes evident, as the
agent can learn M , which encodes the environmental structure, and R, which encodes
the reward of each state, independently. Furthermore, changes in either M or R can be
immediately reflected in the value estimate without needing to perform value iteration.

While the definition of SR above relies on the existence of discrete states, de Cothi
and Barry (2020) describe a generalization to distributed representations [8]. Given any
vector-valued function f of the state estimate ŝ, the successor matrix M̃ represents a
linear mapping from f(ŝ) to the expected time-discounted sum of future values of f(ŝ),
denoted ψ̃(ŝ).

ψ̃(ŝ) = M̃f(ŝ) = E

[ ∞∑
t=0

γtf(ŝt)|ŝ0 = ŝ

]
(3.6)

The entries of the vector f(ŝ) are referred to as the basis features, while the entries
of the vector ψ̃(ŝ) are referred to as the successor features. Importantly, when the basis
features are a one-hot encoding of states, the resultant successor matrix M̃ is identical
to the previously-defined M . The matrix M̃ can be learned through temporal difference
learning via the update equation

M̃t+1 ← M̃t + αM̃

[
f(ŝt) + γM̃tf(ŝt+1)− M̃tf(ŝt)

]
⊗ f(ŝt)⊤ (3.7)

where αM̃ is the learning rate. This update equation leverages the important fact that

E
[
f(ŝt) + γψ̃(ŝt+1)− ψ̃(ŝt)

]
= 0 (3.8)

which provides a notion of successor prediction error. Each entry of M̃t is adjusted by a
value proportional to the successor error, times the learning rate, times the partial
derivative ∂ψ̃(ŝt)/∂M̃t = 1⃗⊗ f(ŝt)⊤ of the successor features with respect to the entries
of M̃t.

The model of de Cothi and Barry also outlines the relationship between the
successor features ψ̃(ŝt) and the place cell activity factor p⃗(ŝt). Each place cell
corresponds to a single component of the successor vector, with the ith place cell firing
rate calculated using

p⃗(ŝt)i ∝ ReLU
[
−Ti + ψ̃(ŝt)i

]
(3.9)

where Ti is a threshold, set to 80% of the maximum value of ψ̃(ŝt)i across all
environmental states, and ReLU is the rectified linear activation function [8]. Finally,
the firing rates of the place cells are re-scaled so that each cell achieves the same
maximum activation.

†It is important to emphasize that the SR matrix M(s, s′) is distinct from the state transition
function, as the definition of M(s, s′) does not require for a direct transition to exist between s and s′.
Rather, the time-discounted future occupancy of state s′ given the current state s depends on both how
far into the future s′ is expected to be visited and how often those visits are expected to occur.

48/104



3.2.3 Training the Place Cell Representation

Key to the mechanics of SR, as described above, is the existence of an encoding of
state as a vector of basis features over which the SR matrix can be learned. This
encoding must be learned by the agent, and the quality of this encoding influences the
quality of the successor features and the accuracy of the agent’s value estimates.
Although it is not known how the brain might process sensory data to form an estimate
of environmental state, here we take a pragmatic approach, illustrated in detail in
Figure 3.3, to developing the basis vector f . First, a predictive recurrent neural network
(RNN) was trained on sequences of observations, which are purely symbolic sequences
constructed from the previously-described 8-symbol alphabet (Eq. 3.2). Second,
assuming that the hidden state ht of the RNN encodes the agent’s internal state
estimate ŝt, a transformation between ht and f(ŝt) was learned such that the final
derived place cell vector p⃗ is highly predictive of the environment’s true state. Once
both components were trained, the simulated place cells obey the properties of SR,
encode the task structure, and are computed given only a sequence of sensory
observations as input.

One very efficient form of RNN is known as the gated recurrent unit (GRU) [31].
The GRU takes in a sequence of inputs xt, along with a learnable initial state h0, and
outputs a sequence of hidden states ht. Internally, the GRU first computes a reset gate
rt that enables the network to partially forget its previous state. Then, a candidate
activation ĥt is computed using the input symbol and the partially-reset state. Finally,
the next hidden state activation ht is calculated as a linear interpolation between the
previous state ht−1 and the candidate activation, as controlled by an update gate zt.
The computations of a single iteration of the GRU are as follows:

rt = σ(Wrxt + Urht−1 + br) (3.10)

ĥt = ϕ(Whxt + Uh(rt ⊙ ht−1) + bh) (3.11)

zt = σ(Wzxt + Uzht−1 + bz) (3.12)

ht = (1− zt)⊙ ht−1 + zt ⊙ ĥt (3.13)

Here, W , U , and b are parameters learned via training, while σ and ϕ are the logistic
and hyperbolic tangent function respectively.

While training the GRU, the input xt is a one-hot encoding of the sequence of
observed sensory events, as sampled from random behavior in the task environment.
These sensory events include the block start cues, action selections, and reward signals.
The output sequence ht from the GRU is converted into a cell firing rate vector
vt = σ(ht), bounding the activity of each cell between 0 and 1. Then, a linear classifier
with a softmax activation function is applied to vt to predict xt+1. Through gradient
descent, the entire GRU-classifier network is trained to minimize this predictive loss,
leading the GRU to learn an embedding of the environmental state in the firing rates vt
which is predictive of future sensory events in xt.

Once the GRU has been trained, the model is extended with a transformation from
the GRU output vector vt to the basis cell vector ft for each time t. For simplicity, a
linear layer with logistic activation ft = σ(Wfvt + bf ) is used, where Wf and bf are the
trainable weights and biases. Once the sequence of basis feature vectors is calculated,
the corresponding successor matrix M̃ is found through temporal difference (Eq. 3.7),
after which the successor features ψ̃t (Eq. 3.6) and place cell vectors p⃗t (Eq. 3.9) follow
naturally. This place cell representation was evaluated by three distinct metrics to
compute a total loss: (1) the ability to predict the next observation, (1) the ability to
encode important aspects of the true environmental state, namely the agent’s current
location on the latent grid, and (3) the consistency of total place cell activation over

49/104



Fig 3.3. Overview of the process of generating simulated place cell activity
from sequences of observed sensory events. First, a gated recurrent unit
(GRU) [31] is trained to process sequences and compute a state representation which is
predictive of future events. Second, basis features are extracted from this state
representation, optimized such that the resultant SR representation is highly
informative about the environment’s true state. Finally, the previously-trained GRU,
basis features, and successor matrix are used to produce place cell population vectors
which change in response to sensory events.

50/104



time. Through back-propagation across the entire SR calculation, the GRU-SR model is
trained to optimize the final place cell representation.

3.2.4 Extending the CBGTPy Framework

To investigate how place-cell-like neural representations could influence the dynamics
and behavior of the basal ganglia, we extend the functionality of CBGTPy, a
fully-spiking model of the CBGT loop, in three major ways. First, the interface between
the CBGT network and the task environment is expanded to include the GRU-SR
model, which processes the key events of the simulation, namely the actions generated
by the network and rewards generated by the environment, to produce an up-to-date
place cell activity vector. Secondly, the CBGT network is adjusted so that each cortical
neuron can receive a different amount of external input, allowing the cortical activity
pattern within each channel to be driven by the place cell activity vector. Finally, the
calculation of reward prediction errors is replaced by a mixture-of-experts model,
allowing the place cell representations to inform the agent’s value estimates and
therefore the magnitude of dopaminergic feedback. The interactions between the task
environment, the CBGT network model, the place cell model, and the
mixture-of-experts model are illustrated in Figure 3.4.

Fig 3.4. Overview of interactions between the GRU-SR model, the CBGT
network, and the environment. The GRU-SR model produces place cell activations
which bias the cortical input of the CBGT loop, which selects an action. This action
triggers a possible reward from the environment. This reward, in conjunction with the
place cells, teaches a gated-mixture-of-experts to estimate the value of each place and
provide a dopaminergic RPE signal to the basal ganglia. All events (cues, actions, and
rewards) are fed back into the GRU-SR model to update the place cells for future
decisions.

Driving Cortex with Place Cells

Within the CBGTPy framework, most neural populations are subdivided into
sub-populations referred to as action channels, each of which is tuned to a different
action. Many network connections occur within action channels, such that neurons that
are tuned to a particular action drive other neurons tuned to the same action. As the
network receives dopaminergic feedback, certain action channels are reinforced, leading

51/104



to the formation of an action policy. While, in the standard CBGTPy model, every
cortical neuron within the same action channel receives the same level of external input,
here we tune each cortical neuron to a place cell. During the decision phase and
sustained activation phase of the network, the amount by which the neuron is driven
above baseline is proportional to the activation of the place cell to which it is tuned. As
a result, the amount of input received by downstream striatal SPNs during a particular
environmental state is determined by the weights of the corticostriatal connections from
the neurons that are tuned to that state. It is this difference that could allow the
CBGT network to learn an action policy which is contingent upon the current place cell
representation of state. The relationship between place cells, cortical neurons, action
channels, and striatal subpopulations is shown in Figure 3.5.

Fig 3.5. Relationship between the place cell vector, cortical cells, striatal
cells, and action channels. Each channel contains one cortical population and two
striatal subpopulations, which are all spiking components of the CBGTPy model. The
place cells, which are simply a vector of values produced by the GRU-SR model, drive
the external inputs of the cortical cells during the decision phase of the network. Each
cortical cell is tuned to a single place cell, though multiple cortical cells are tuned to
each place cell.

To ensure that the addition of cortical tuning would be reflected in downstream
neural activity, two main changes were made to the connectivity of the CBGTPy model.
First, within-channel recurrent cortical connections were removed, as these connections
would weaken the specificity of the cortical neurons by allowing neurons tuned to
different places to drive each other. Second, the corticostriatal connections were made
sparse, with approximately 10% of all neuron pairs connected, so that each striatal
neuron would receive input corresponding to a different combination of cortical neurons.
The corticostriatal connections were not random, but rather uniformly distributed so
that each place cell would influence the same number of striatal neurons, as shown in
Figure 3.6. Within each channel, each of the cortical neurons assigned to the same place
cell projected to the same set of striatal cells. Furthermore, the matrix was carefully
constructed with highly orthogonal rows to prevent the formation of any spurious
relationships between place cells.

52/104



Fig 3.6. Orthogonal uniform connectivity matrix. Each cortical neuron, which is
tuned to a single place cell, projects to a subset of striatal neurons. These projections
were configured so that the projections tuned to different place cells are maximally
orthogonal.

3.2.5 Generating RPEs with Place Cells

To provide dopaminergic feedback to the CBGT network, the agent must be
equipped with a method of forming reward prediction errors, which in turn require the
formation of a value estimate over environmental states. For this, we use a
gated-mixture-of-experts model [86] in which the place cells serve as the gates and each
expert learns the value of the corresponding place cell. The formula for the value
estimate is thus

V̂t =
p⃗t
|p⃗t|
· ϵ⃗t (3.14)

where p⃗/|p⃗| is the normalized place cell vector and ϵ⃗ is the vector of experts. This
equation is conceptually similar to how value estimates are calculated in SR using
V̂ (s) =

∑
s′ M(s, s′)R(s′).

To calculate a reward prediction error (RPE), the model measures the change in
value estimate between two successive decisions and compares this to the amount of
reward received between the two decisions.

RPE =

(
γb−aV̂ (p⃗b, ϵ⃗) +

b−1∑
t=a

γt−aRt

)
− V̂ (p⃗a, ϵ⃗) (3.15)

Here, a and b are the start times of the decisions, and p⃗a and p⃗b are the place cell
vectors used by CBGTPy during the decision processes. This RPE value is then used to
supply the CBGT network with dopaminergic feedback as well as update the experts of
the mixture-of-experts model.

ϵ⃗← ϵ⃗+ αϵ · RPE · ϵ⃗ (3.16)

Here, αϵ is a tunable parameter representing the learning rate of the experts.

3.2.6 Investigating Alternative Representations

Within the joint GRU-SR-CBGTPy model, the role of the CBGT network is to learn
a complex action policy over the representation provided by the SR model. To
investigate how properties of the representation may facilitate or hinder the formation
of a complex action policy, two alternative artificial place cell representations were
considered, each reflecting different aspects of the task structure. The first alternative
was one in which the place cells encode the current trial number within a block, which
was expected to lead the agent to form a policy that was purely a function of trial
number. The place cells were divided into six groups, each corresponding to one of the

53/104



trials within the blocks. This representation was reflective of the fact that the optimal
action policy can be described as a sequence of six actions which repeats each block,
though it does not capture any information about the latent grid structure and
therefore does not capture any dependencies between the outcomes of separate trials
within the same block. The second alternative representation was one in which a single
place cell was assigned to each of the 49 square locations on the latent grid, expected to
lead the agent to form a policy that was purely a function of latent position. Each place
cell was only active when the agent’s latent position matched the assigned position of
the cell. This representation was reflective of the fact that the optimal policy can also
be described a function of position, though it does not quite completely capture the
path-dependency of rewards. By simply replacing the GRU-SR place cell model with
these alternative representations, the CBGTPy network and gated mixture-of-experts
model can be used without modification.

As an additional experiment, we investigated the potential importance of structure
within the organization of corticostriatal connectivity. If the HC-EC circuit is
responsible for learning the structure of the task and conveying this information in the
form of place-cell-like representations, then it is unlikely that much of this learned
structure would be reflected in the organization of the corticostriatal synapses. Any
relationship between place cell representations and corticostriatal connectivity would
require a more complex interplay between CBGT and HC-EC circuit dynamics during
the formation of the place cell receptive fields. For this reason, the baseline model
assumes that corticostriatal synapses are segregated by action channel, but not by place.
While each cortical neuron is tuned to a specific place cell, the striatal neurons receive
input from a mixture of cortical neurons and is not tuned by place. The ability of the
CBGT network to learn, however, is contingent upon its ability to assign credit to the
correct synapses. For any given cortical and striatal neuron pair, the striatal neuron
may be highly active in a wider variety of states than the cortical neuron, which could
reduce the efficacy of the local plasticity rule. To determine whether the segregation of
corticostriatal synapses by place is crucial for the performance of the network, we
investigated how the ability of the network to learn an action policy over trials was
influenced by the degree of synaptic organization. The trial-based network, described in
the preceding paragraph, was trained using a range of corticostriatal connectivity
matrices in a parameter sweep. These matrices, shown in Figure 3.7, ranged from fully
segregated into six groups to uniformly mixed. At one extreme, the model with
segregated synapses has six groups of striatal cells, each receiving inputs from only one
of the six groups of cortical cells, so each striatal cell is essentially tuned to a single
place. At the opposite extreme, the model with uniformly distributed synapses would
have striatal cells that were equally driven by each group of place cells, meaning the
postsynaptic activity of each synapse is independent of the current place. By measuring
the change in performance as corticostriatal connections move from segregated to
diffuse, it is possible to determine the extent to which effective credit assignment is
reliant on the organization of these synapses.

54/104



Fig 3.7. Varying segregation of corticostriatal synapses. On the left, the
corticostriatal connections form 6 distinct sub-action channels, one for each state in the
agent’s environmental model. On the right, the corticostriatal connections are uniform
with no relationship to place.

3.3 Results

3.3.1 GRU-SR Model Learns the Task Structure

We found that, after training the GRU-SR model on random sequences from the
latent grid task, the place cells were able to effectively encode the structure of the task
and the population vector was highly predictive of reward value. Figure 3.8 shows that
the model produces a GRU cell, a basis cell, a raw SR cell, and ultimately a place cell
representation vector for each step of the task. When comparing the internal state cells
of the GRU to the place cells, it is evident that while GRU cells often abruptly change
in activity from step to step, the place cells tend to change in activity more smoothly
over time. This smoothness is measurable as an increase in the auto-correlation of cell
activity, as visualized in Figure 3.9, and this is a clear consequence of the
predictive-coding nature of SR. The SR matrix M̃ is shown in Figure 3.10.

The place cell vector after event xt was highly predictive of the event xt+1, except of
course in the case of actions, which were random and thus impossible to predict. This
indicates that the GRU successfully learned to encode an estimate of environmental
state within its hidden state vector and that this state estimate was reflected by the
place cells. Figure 3.11 shows a partial timecourse of a single experiment, depicting the
GRU-SR model’s sequence of predicted events, colored to indicate the accuracy of each
prediction. Each column represents one step of the simulation, and the rows represent
the potential events which can occur. On steps where the agent is prompted to select an
action, the GRU-SR model tends to predict each of the four actions equally, reflective of
the random behavior upon which it was trained. For steps on which the agent is due for
a reward or penalty, the linear classifier forms much stronger predictions, reflective of
the deterministic nature of the environment in this task. When considering only
predictions for the outcomes of trials, the GRU-SR model achieved an accuracy of
97.9% across a test data set of 100 runs of 408 trials each. This indicates that the
GRU-SR model has learned the vast majority of the structure of the task and that this
structural information was present in the produced place cells.

To determine whether these place cells demonstrate selectivity towards specific
squares in the latent space, the receptive field of each cell was plotted by computing the
average activation of the cell across all visits to each latent square. The receptive fields
are shown in Figure 3.12, along with the receptive fields of the other cell types of the
GRU-SR model from which the place cells are derived. These fields indicate that the

55/104



majority of place cells are selective towards particular regions of the grid, with roughly
one-third of modeled place cells showing a tuning towards a small contiguous region
akin to the fields of biological place cells, while other place cells are tuned to larger
areas like groups of rows or columns. To better quantify the size of these receptive
fields, each field was normalized to sum to 1, and the Kullback–Leibler (KL) divergence
was calculated for each field relative to a uniform distribution across the 49 squares of
the latent grid. The result is a number, measured in bits, which expressed how selective
each field is relative to an uninformative field. As shown in Figure 3.13, most place cells
had receptive fields which were smaller than half the size of the latent grid.

Fig 3.8. Partial timecourses of simulated cell activity in the GRU-SR model.
From left to right: the state of the GRU, the basis features extracted from the GRU,
the successor features derived from the basis features, and finally the place cells created
by re-scaling and thresholding the successor features.

Fig 3.9. Histograms of cell auto-correlations between times t and t+ 1. For
each cell in each population, a correlation was computed to measure the extent to which
the cell’s activity at time t predicted its activity at time t+ 1. Higher correlation values
indicate cells whose activities change gradually over time.

56/104



Fig 3.10. Computed successor matrix M̃ . This matrix indicates the relationship
between the 49 basis features and the 49 successor features.

Fig 3.11. Sensory predictions of logistic classifier trained on modeled place
cells. Shown are the first 60 events of a single run of the task. The plotted intensities
indicate the classifier’s prediction at each step, and the colors indicate the accuracy of
that prediction.

57/104



Fig 3.12. Receptive fields (green) of modeled place cells. For each cell
population, the activity of each cell was averaged across all visits to each latent grid
square.

58/104



Fig 3.13. Size distribution of pseudo-spatial receptive fields. For each place
cell, the Kullback–Leibler (KL) divergence was calculated between the cell’s receptive
field (see Figure 3.12) and a uniform receptive field. Higher KL divergence corresponds
to a more focused receptive field.

3.3.2 Joint GRU-SR-CBGTPy Model Performance

Even though the GRU-SR model can effectively learn how latent position determines
the trialwise rewards, when the GRU-SR place cells were supplied as cortical inputs to
the CBGTPy network, the model was unable to learn the optimal decision path. On
average, the model performed only around 2 of the 6 steps of the path correctly, as
shown in Figure 3.14, and it was extremely rare for the network to perform the entire
path correctly. The average total reward received by the network hovered between +1
and +2 per block.

59/104



Fig 3.14. Performance of the complete GRU-SR-CBGT model. Left: The
average number of correct steps followed by the network along the optimal path. Center:
The average total reward received in each block. Right: The proportion of blocks in
which the agent performed the entire optimal path.

Although the network failed to learn the full action policy, much of the structure
contained within the place cell representations was reflected in the weights learned by
the network. Figure 3.15 shows the final average learned weights of the network,
calculated by averaging together the corticostriatal synapses of all cortical neurons that
are receptive to the same place cell, separated by channel, and subtracting the indirect
weights from the direct weights. The resulting plot shows, for each place cell, which
action channels undergo net excitation or net inhibition by the activity of that place cell.
In essence, this shows how each place cell contributed to the decision dynamics and
therefore overall action policy of the network.

Although Figure 3.15 shows the existence of structure in the learned corticostriatal
weights, it is also important to determine whether this structure in weights is reflective
of the latent state space structure encoded in the place cell representation. For each
pair of place cell and action, the correlation between the cell’s activity and the true
expected reward value of that action was measured. Since the values of the actions
depend on the agent’s location, these correlations are expected to exist, and the
strength of a cell’s correlations indicates its predictive utility. The strength of the place
cell-action value correlation was then plotted against the average learned corticostriatal
synapse weight for that place cell and action channel. These plots, shown in Figure 3.16,
demonstrate the existence of a clearly visible and approximately linear relationship
between the predictive utility of the place cells and the magnitude of the network’s
learned weights. This potentially indicates that, despite the behavior of the network, all
the structural information of the place cells, and thus all the information necessary to
solve the task, has been encoded into the weights of the network.

Fig 3.15. Average learned weights by action channel. The final learned weight
values were averaged across all corticostriatal synapses whose cortical neurons received
input from the same place cell. This shows the activation of a single place cell influences
the balance of the network towards or against each action, essentially showing the
action policy the network learned over the place cell representations.

60/104



Fig 3.16. The relationship between learned weights and the correlation of
place cell activity to action values. For each place cell, and each action, a
correlation was computed between the activation of the place cell and the reward
received after selecting that particular action. This correlation was then plotted against
the weights that were learned for that place cell.

3.3.3 Performance of Alternative Place Cell Regimes

To qualitatively compare the GRU-SR place cells with the trial-based and
latent-square-based place cells, the average activity of each place cell, across random
behavioral trajectories, was computed both on a per-square and per-trial basis. The
plots, in Figure 3.17, depict the pseudo-spatial and temporal receptive fields of each
place cell under each representation scheme. The GRU-SR place cells formed receptive
fields that were receptive to specific areas of the latent grid and also demonstrated some
amount of temporal structure. The place cells that were tuned to trial number, as
expected, had the lowest degree of spatial selectivity, as the cells could not distinguish
between squares that were the same distance from the origin. When the place cells were
tuned to individual squares, the cells had the maximum degree of spatial selectivity but
had very diffuse temporal selectivity. This final representation was very sparse, with
only one cell active on each trial.

When the CBGTPy network was provided place cells that were tuned to trial
number, the performance of the network greatly increased relative to the original
GRU-SR place cells, with the network learning to reliably perform between 4 and 5
steps of the optimal path, over double the performance of the GRU-SR network. The
average performance by block is shown in Figure 3.18. This network was also capable of
occasionally performing the full optimal path, though still only on a minority of blocks.
Furthermore, the introduction of additional structure to the corticostriatal weights,
reflecting the six groups within each action channel, enhanced the performance of the

61/104



Fig 3.17. Comparison of the three modeled place cell regimes. Left: The
pseudo-spatial and temporal receptive fields of place cells produced by the GRU-SR
model. Center: The place cells are divided into 6 equal groups, each of which is active
during a single trial within a block. Right: Each of the 49 place cells is selective towards
exactly 1 square of the latent space. These receptive fields were computed while only
considering the population vectors that occur directly prior to an action selection, i.e.
the vectors over which the network learns an action policy, not any intermediate place
cell representation.

network. For each connectivity matrix in the sweep outlined in Figure 3.7, the average
performance of the simulated agent was calculated and plotted in Figure 3.19. The
network achieved the highest performance when the synapses were completely
segregated, and the performance dropped slightly as the synapses become more
uniformly distributed.

While Figure 3.18 shows good performance when the place cell groups were each
tuned to precisely one of the six trials of a block, increasing the temporal discounting γ
of this representation had a strong negative effect on performance. As the γ increased,
each place cell was increasingly activated during the trials preceding the trial to which it
was primarily tuned, creating overlap in the activation patterns of the six place cell
groups. As γ approached 1, the modeled place cells became equally active during each
trial, gradually losing all tuning selectivity. As shown in Figure 3.20, the gradual
increase of γ resulted in a steady decline in performance, as the network lost the ability
to form an independent action policy for each trial. At the far extreme, when γ = 1, the
network received no structural information from the place cells, which were all equally
active at all times. When the average behavior of the network was plotted by trial
(Figure 3.21), low gamma values enabled the network to form a distinct policy for each
trial, while higher values resulted in a blurring of action policy across trials.

When provided with place cells that were precisely tuned to the individual latent
squares, the network performed poorly (Figure 3.22), with results that were slightly
worse than the original GRU-SR model and greatly worse than the network with the
trial-based cells. As only 1 of 49 place cells was active each trial, only 4 of the 196
cortical neurons per channel drove the network’s decision dynamics. To determine
whether the low number of active cortical neurons was at fault for the poor

62/104



performance, an expanded version of the network was tested with double the number of
cortical neurons, a total of 392 neurons per action channel. The number of place cells
was likewise doubled so that 2 of 98 were active each trial. With the increased input
size, the model dramatically recovered its performance (Figure 3.23). These results are
comparable to the scores achieved by network with the trial-based representation
(Figure 3.18). Among the tested configurations, the expanded latent square network
had the highest path completion rate, executing the optimal sequence of six actions in
over 20% of all blocks. Taken together, the results of this section illustrate that the
properties of the supplied input representations can greatly influence the success of the
network.

Fig 3.18. Behavior with a trial-based action policy. The network received a
place cell representation which encoded the trial number, from 1 to 6, within the block.

Fig 3.19. Effect of corticostriatal synapse segregation on performance. As the
corticostriatal synapses become more uniformly distributed, network performance drops
slightly.

63/104



Fig 3.20. Effect of SR temporal discount γ on performance. The network
receive a place cell representation consisting of 6 groups, each tuned to a single trial, as
well as to the preceding trials according to the selected value of γ. When γ was 0, each
group was only active during 1 trial, and when γ was 1, each group was equally active
during all 6 trials. As γ increased, the performance of the network degraded
significantly.

Fig 3.21. Effect of SR temporal discount γ on the learned action policy. For
each condition from Figure 3.20, the behavior of the network was averaged across all
simulations and all blocks. This produces a heatmap (in green) representing the average
policy for each of the six trials.

Fig 3.22. Behavior with policy over the latent squares. The network received a
place cell representation which directly encoded the agent’s latent square coordinate,
with one place cell active at each square.

64/104



Fig 3.23. Behavior with policy over the latent squares with doubled cortical
population size. Similar to Figure 3.22, the network received a representation
encoding latent squares, but with two place cells per square. The number of cortical
neurons was likewise doubled from 196 to 392 per channel.

3.4 Discussion

In this chapter, we investigated how the CBGT circuit and HC-EC system could
potentially cooperate [18] to solve complex reinforcement learning tasks in structured
environments. To accomplish this, we placed the CBGTPy model [24] within the latent
grid environment from Bond [9], and integrated it with a variety of place cell
representations, each encoding different aspects of environmental state. Leveraging the
SR place cell hypothesis [8] [6], we developed a model of place cells that exhibits
biologically-realistic properties in non-spatial contexts. For comparison, we also
handcrafted two place cell models that encoded solely the temporal or pseudo-spatial
component of the state, in which the network would either learn an action policy over
trials or over grid squares respectively. We found that the performance of the network
varied greatly by the features of the supplied place cell representation and was also
influenced by structure embedded in the corticostriatal synaptic connectivity. Notably,
the combined network was unable to consistently learn the complete task. These results
point towards an important relationship between the structure of cortical input
representations and the learning capabilities of the basal ganglia, and furthermore gives
important clues about the nature of the basal ganglia-hippocampal interactions
necessary for solving structured RL tasks.

Starting from de Cothi and Barry’s model of SR place cells [8] in spatial navigation,
we were able to successfully develop an equivalent model for our non-spatial RL task by
replacing the spatially-tuned boundary vector cells with alternative basis features
extracted from a gated recurrent network [31]. By training this GRU-SR model on
symbolic sequences of events, such as rewards and actions, the resultant place cells
obeyed the predictive-coding nature of real place cells. Simultaneously, these place cells
encoded an estimate of environmental state, as indicated by the model’s ability to
predict future events. As a linear classifier was capable of decoding the upcoming
reward value from the place cell representation with 97.9% accuracy, it is clear the
artificial representations reflected essentially the entire structure of the structured RL
task. The majority of these artificial cells, despite being trained on wholly non-spatial
data, formed receptive fields that were spatially-selective with respect to the latent grid
space of the task. These results support the notion that, if the HC-EC circuit is indeed
a center for learning SRs, it is possible the same computational learning mechanisms
which give rise to the classical place cell receptive fields in spatial environments could
also produce receptive fields selective to agent’s position in non-spatial environmental

65/104



state spaces.
Although the majority of the simulated GRU-SR cells were selective to small,

connected regions of the latent grid, some cells were found to be selective to the
majority of the grid or to multiple regions of the grid. The failure of some GRU-SR cells
to form place-cell-like fields could be attributed to a few factors. First, the true latent
structure is not purely grid-shaped, as the task is divided into blocks of 6 trials each,
within each trial there is an alternation between action and reward, and each square
only dispenses a reward upon the first visit within a block. All of this additional
structural information is necessary to predict the occurrence of rewards and thus must
also be encoded within the place cell activation patterns. Secondly, the mathematical
definition of SR for distributed representations [8] does not require each basis feature to
be tuned to a single latent location. The GRU-SR model can achieve a low predictive
loss as long as there is still sufficient information within the basis feature vector as a
whole. As biological place cell representations are sparse, likely resulting from a form of
competitive learning [87], this indicates that the SR model is not a complete description
of the behavior of place cells and that additional computational mechanisms are at work
to produce cells selective to singular latent locations.

When joined with the CBGT network model, the combined GRU-SR-CBGTPy
model failed to achieve strong performance in the latent grid task, with an average of
two out of six steps completed and an average net reward that was barely positive.
Although the structure of the artificial place cell representation was reflected in the
learned weights of the network, the network was unable to learn the complex action
policy necessary to solve the task. Simulations performed with the alternative,
hand-crafted representations resulted in varying degrees of success, with the highest
performance achieved by a representation in which the cells encoded only the repetitive
structure of the trials and not any latent spatial information. When the cells encoded
the coordinates of the latent grid, however, network performance was greatly reduced.
As the optimal action policy, a sequence of six actions forming a path on the latent grid,
can be equally described as either a policy over trials or a policy over latent squares,
both of these alternative representations contain sufficient structural information to
solve the task. Therefore, the differences in performance are likely attributable to
differences in other properties of these representations and effects of these properties on
the dynamics of the basal ganglia.

The first major influential property of the representations appears to be sparsity.
The latent square representation was very sparse, with only around 2% of place cells
active in each state, and this sparsity likely explains the failure of the network to learn
with that configuration. With the sparse representation, very few cortical neurons were
driven by external input on each trial, leading to very low levels of activity in both the
direct and indirect pathways, as well as few synapses eligible for dopaminergic plasticity.
Previous modeling work, in which the dynamics of the CBGT circuit were compared to
the drift-diffusion model of decision-making, has shown that activity levels in several
nuclei are strongly correlated with the behavioral properties of the network [44]. In
particular, low activity of indirect SPNs was associated with a low standard of evidence
when selecting actions. Furthermore, limited contrast in activity between channels is
associated with a lower level of commitment towards any particular action choice [44].
Thus, highly sparse place cell representations may lead to an inability of the network to
form a decisive action policy. When the number of active corticostriatal synapses is
small, the information encoded in those synaptic weights does not sufficiently influence
the downstream evidence accumulation dynamics of the network, regardless of whether
the learned weights reflect the correct policy. Importantly, results from an expanded
network show that increasing the number of cortical neurons counteracts this effect and
produces successful learning. This can be viewed as increasing the signal-to-noise ratio

66/104



of the network, which is fully-spiking. Overall, it appears critical that the cortical input
representations possess a certain minimum level of total activity to ensure effective
learning and decision-making by the CBGT network.

A second important property of the cortical inputs appears to be the orthogonality
of the representations of distinct states, as the network appears to form incorrect
generalizations when the representations are not sufficiently orthogonal. Generalization,
or the ability of the agent to extrapolate learned behavior to related observations, is
both a key feature and also a core challenge of RL [88]. Fundamentally, generalization
relies on the transfer of value information from the experienced states and actions to
related states and related actions [89]. Within the context of biological RL, this transfer
relies on the underlying neural representations [89], and within the CBGT circuit
specifically, this transfer is mediated both by the corticostriatal synapses and the
dopaminergic feedback signal as part of the actor-critic framework [90]. In the joint
model, similarity in place cell representations affects both the state value estimates
learned by the mixture-of-experts model and the weights learned by the corticostriatal
synapses. The highest-performing representation was one in which the cells were divided
into six groups completely selective to the six individual trials of a block. This
representation works to minimize generalization across the trials, thereby preventing
conflation of the learned action values, which is critical for the modeled task, in which
the correct action varies between trials.

When the input representations are not completely orthogonal, some proportion of
place cells, and likewise corticostriatal synapses, are active in multiple distinct states.
As a direct result, dopaminergic feedback which occurs while the agent is in one state
affects the action policies in related states, as determined by the degree of
representational overlap. While this mechanism allows for the generalization between
similar states, it can clearly be detrimental when the similarity of representations does
not reflect the ideal degree of generalization. When the six-trial representation was
adjusted by increasing its temporal discounting, γ, over a range from 0 to 1, the six
groups became less selective and the performance of the network was greatly impeded.
These higher values of γ meant that the cells would become increasingly active in the
trials preceding the ones to which they were tuned, in accordance with the predictive
coding nature of SR, an effect that greatly increased the representational similarity of
adjacent trials. This increased similarity, and therefore decreased orthogonality,
presumably causes over-generalization, or conflation, by the network during the learning
process. This conflation at high γ was reflected as a high degree of similarity between
the learned action policies for each trial. This result demonstrates an important
obstacle for the use of SR-like representations by the basal ganglia, as temporal
discounting is a core component of SR [25]. Without a high discounting factor, an
SR-based agent would be unable to consider the long-range consequences of its actions,
but a high discounting factor leads to representations whose similarities are primarily
determined by their temporal proximity. This dramatically reduces the ability of the
network to learn an action policy that varies from step to step, as is the case with the
optimal policy of the example task.

Overall, it appears that, in order for the CBGT network to effectively learn over a
particular representation, the representation must have at least these two key properties.
Each representation must contain enough active neurons to facilitate effective
decision-making dynamics [44], and the overlaps between representations must be
limited to prevent over-generalization. These two requirements appear to be at odds
with place-cell-like and SR-like representations, which tend to be sparse [87] and
smoothed across adjacent states [8]. Additional computational mechanisms, beyond
those modeled here, are likely required to leverage the structural information present in
place-cell-like representations. These mechanisms would in turn enable the agent to

67/104



solve complex structured RL tasks such as the latent grid problem.
First, it is possible that previously-formed structure within the organization of the

corticostriatal synapses could aid in learning, as the CBGT circuit is known to be
topographically organized [91]. When the corticostriatal synapses were segregated,
matching the structure encoded in the cortical inputs, performance moderately
improved (Figure 3.19). As a result of this segregation, corticostriatal synapses whose
pre-synaptic cortical neurons were tuned to a particular state experienced less
post-synaptic activity in other states, likely leading to less spurious eligibility and more
accurate credit assignment. Theoretically, the formation of the place cell receptive fields,
during structure learning in the HC-EC system, could be guided by the connectivity of
the CBGT loops as to maximally leverage pre-existing corticostriatal structure. There is
likely a limit, however, to the extent to which this pre-existing structure can match the
shape of a particular task’s state space. This process might also require a biological
mechanism for extracting information about this corticostriatal structure from the
striatum and passing it to the hippocampus during structure learning, and it is currently
unclear how this process would be supported by the physiology [27]. Ultimately, our
results suggest that a guiding influence from the basal ganglia upon HC-EC
computations might be useful but not critical for performance. We should rather ask
how the CBGT circuit could better leverage the information provided by place cells.

As the CA1 neurons, which are the cells argued to encode the SR matrix [6], form
the primary output of the hippocampus and are known to project to the prefrontal
cortex [27], is it clear that the cortical inputs of the CBGT circuit have direct access to
place cell information. There is room, however, for additional layers of processing, both
within the cortex and by the CBGT circuit. As the CBGT circuit is hierarchically
organized, information from prefrontal cortex may go through multiple iterations of
processing by the basal ganglia before ultimately influencing action selection in motor
cortex [17]. As a result of this hierarchical organization, the basal ganglia are able to
form complex conditional action policies, which alone are theoretically sufficient for
solving structured tasks [17]. Quite relevantly, one optogenetic study in mice found
evidence for a hierarchical organization in the learned action policy of a sequence-based
task [92], indicating that the basal ganglia may apply its own hierarchy-based version of
structure learning even while performing non-hierarchical tasks. Thus it makes sense to
consider the process of structure learning within RL tasks to be shared between the
hippocampus and the basal ganglia, rather than entirely governed by one or the other.
The basal ganglia may learn a hierarchical structure, while the place cells may provide
an efficient set of conditional rules upon which the hierarchy can be built. The lack of a
hierarchical component may be the key factor preventing our CBGTPy model from fully
solving structured tasks, even when the modeled place cells contain enough information
to accurately predict the outcomes of actions.

Lastly, biological CA1 neurons likely exhibit more heterogeneity than is reflected by
the SR model presented here, as certain CA1 subpopulations appear to explicitly
encode temporal information [93] [94]. Recent calcium imaging in mice has indicated
that temporal information in dorsal CA1 neurons can influence decision-making [95].
Our artificial SR-derived place cells appear to encode much more spatial information
than temporal information, as shown in the receptive fields of Figure 3.17. The
inclusion of a stronger temporally-coded signal would likely be highly beneficial for
tasks in which a precise sequence of actions is needed to achieve the maximal reward.
An enhanced space-time encoding, which combines the properties of the two
handcrafted representations in Figure 3.17, could potentially facilitate very effective
learning. Another avenue for exploration could be the introduction of a heterogeneous
discounting factor in the SR model, producing cells with differing time horizons, thereby
introducing more temporal information. In general, larger changes in the place cell

68/104



activation pattern from trial to trial should assist the basal ganglia in learning an action
policy that is heavily contingent upon the precise trial number.

In conclusion, the HC-EC system, as a center of predictive coding, appears to be an
ideal center for structure learning. A model of place cells, derived from the predictive
code of SR, was able to process non-spatial observations during a simulated RL task.
This place cell model produced neural representations reflective of an environmental
state estimate that was sufficient to predict action outcomes with over 97% accuracy.
When joined with the CBGTPy network, however, the joint model was not able to fully
learn the optimal policy for the structured task. Through an investigation of alternative
place cell representations, it was found that the tendency of place cell representations to
overlap led to harmful over-generalizations, and attempts to reduce this
over-generalization required either increasing the representational sparsity, which
harmed the fundamental accumulative dynamics of the network, or sacrificing the
amount of structural information contained within. Although the place cells of the
HC-EC system can provide a very efficient and natural representation of the structure
of an RL task, it appears that the CBGT circuit cannot efficiently learn an action
policy directly over these representations. Rather, the hierarchical organization of the
basal ganglia may be the key to leveraging place-cell-like information in cortex, with the
basal ganglia simultaneously performing its own hierarchy-based form of structure
learning. Future work should focus on understanding the computational interplay of
these two forms of structure learning, both on a theoretical basis, and through the
potential extension of the CBGTPy model with a hierarchical component.

69/104



Chapter 4

Conclusion

4.1 Summary of Results

The objective of this dissertation was to investigate two core problems surrounding
the dynamics of the cortico-basal ganglia-thalamic (CBGT) circuit in reinforcement
learning. First, to study the system dynamics during the decision process, I developed
CBGTPy, a computational model incorporating known circuit anatomy and featuring
realistic corticostriatal plasticity. This model demonstrates accurate single-channel and
multi-channel dynamics, enabling researchers to explore hypotheses about these
dynamics across various manipulated experimental conditions. Second, to understand
how the computations of the CBGT circuit could coordinate with hippocampal
structure learning, I developed a model of place cells and integrated these cells as inputs
to the CBGTPy model during a structured reinforcement learning task. Although the
joint model achieved limited success, the simulation results revealed how particular
properties of the place cell representations could affect the learning processes in the
basal ganglia. Together, these accomplishments build a bridge between the intrinsically
model-free plasticity of the CBGT circuit and the model-based reinforcement learning
computations necessary for humans and other mammals to efficiently solve the complex
and structured tasks typical of real-world environments.

4.1.1 The CBGTPy Framework

In Chapter 2, I address my first aim: the creation of CBGTPy. This Python package
provides a flexible and extensible platform for simulating goal-directed agents with
internal CBGT circuit dynamics. By including spiking neural populations, relevant
neural pathways, and dopamine-induced synaptic plasticity, the network produces
realistic single-channel and multi-channel dynamics, such as go/no-go behavior and
competitive action selection. Environmental feedback generates reward prediction errors
and dopaminergic feedback, altering the corticostriatal pathway balance and guiding the
formation of the network’s action policy. By generating complete simulated
experimental timecourses, the CBGTPy framework enables researchers to investigate
the relationships between circuit physiology, dynamics, and behavior.

A core feature of CBGTPy is its flexibility, embodied in its data-flow programming
and agent-environment paradigms. The data-flow paradigm distinguishes between
model specification and model execution, with smaller code blocks forming steps in the
larger simulation pipeline. This organization allows for efficient modification of the
simulation. CBGTPy’s integration with multiprocessing libraries enables the final
assembled pipeline to be applied to many alternative parameter inputs in parallel. The

70



agent-environment organization separates the network agent properties, which contain
the CBGT neural circuitry, from its experimental environment, which presents stimuli
and provides rewards in response to the agent’s behavior. This separation allows for
independent modification of each component and the application of the same agent to
various experimental conditions and manipulations.

The capabilities of CBGTPy were demonstrated with three example experiments,
each showcasing important features of the platform. The first example was the n-choice
task, where the agent had to select a single action from multiple alternatives, with
rewards that were probabilistic and could change over time. During the
evidence-accumulation phase, competition between multiple action channels resulted in
a single winner crossing the thalamic decision threshold first. Later in the trial,
sustained activation of the selected pathway created high synaptic eligibility, and
dopaminergic feedback altered the eligible synapses, affecting the future dynamics and
behavior of the network. Over several trials, the agent learned to select the most
rewarding action and could flexibly adapt its decision policy when the optimal action
changed, demonstrating the network’s ability to use dopaminergic learning for
reinforcement learning in simple, relatively unstructured environments. Next, the agent
performed a stop signal task, where the subthalamic nucleus received stimulation
representing a stop cue during the decision phase. This stop cue simulation affected
downstream activity in the internal globus pallidus and thalamus, inhibiting the
selection of an action. This demonstrated the realistic go/no-go dynamics of the action
channels, consistent with the CBGT network’s known role in action facilitation and
inhibition [1]. Finally, the n-choice task was revisited with the addition of optogenetic
stimulation, which could either excite or inhibit specific nuclei at designated times in
the decision process, leading to the facilitation or suppression of action selection. These
results further showcased the realistic channel dynamics of the model and demonstrated
the utility of the CBGTPy framework for predicting the effects of experimental
interventions on CBGT network behavior. In summary, CBGTPy’s core strength lies in
its ability to test predictions at multiple scales, from synapses to behavior. This
framework opens the door to studying circuit dynamics and dopaminergic learning
within a broad range of simulated experimental contexts, a necessary prerequisite for
the remainder of the project.

4.1.2 Basal Ganglia and Hippocampal Interaction

In Chapter 3, I address my second aim: investigating the computational
coordination between reinforcement learning in the basal ganglia and structure learning
in the hippocampus. The CBGTPy agent was placed in a complex structured
environment featuring navigation over a latent grid [9], and the network was augmented
with artificial place cell representations. These artificial place cells, whose activation
patterns formed a predictive code derived from successor representation, were trained to
process sequences of sensory observations and estimate the current environmental state.
These place cell representations were supplied as cortical inputs to the network and
were also used to calculate reward prediction errors via a gated mixture-of-experts
model. This enabled the network to form a complex action policy over the latent state
space. Additionally, these successor representation place cells were compared to various
handcrafted place cell representations to understand how the properties of the
representations affected network performance.

To generate realistic place cell representations, I adapted the successor
representation model from de Cothi and Barry [8], swapping the basis features from
spatially selective boundary vector cells to an alternative set of features extracted from
the state of a recurrent artificial neural network. This recurrent network, which was
provided only non-spatial symbolic sequences of observations, was trained to produce an

71/104



internal state representation highly predictive of future events, including reward values.
Once transformed by the successor matrix, these basis features created a set of place
cells whose activation patterns formed a predictive code emulating the properties of
biological place cells. When the cell activities were plotted against the latent squares of
the structured task, most place cells formed receptive fields selective to small portions of
the state space, qualitatively similar to the receptive fields of biological place cells
during spatial navigation. This success supports the notion that the same
computational processes could enable the hippocampal-entorhinal cortical system to
learn the structure of both spatial and non-spatial environments.

When these successor representation cells were supplied to the CBGTPy network,
the agent was unfortunately unable to learn the complex multi-step action policy
required to receive the maximal possible reward. An investigation into the
corticostriatal weights revealed that the predictive power of each place cell was
accurately reflected by the values of the learned weights, indicating that the network’s
credit assignment mechanism was functional and not responsible for the behavioral
deficiencies. When provided with alternative handcrafted place cell representations, the
network’s performance changed. A place cell representation containing six groups, each
selective to an individual trial within a block, led to improved performance. Conversely,
using a representation containing forty-nine groups, each selective to an individual
latent square, decreased the network’s performance. Despite the large quantity of state
space information encoded in this second handcrafted representation, the sparsity of the
representation led to an inability to leverage the information learned by the synaptic
weights to shape downstream action-selection dynamics. Doubling the number of
cortical neurons, however, restored strong performance to the network. This indicates
that a certain minimum quantity of cortical input is required for the CBGT network to
form a robust action policy and reliably select previously rewarded actions.

Revisiting the trial-based representation with six groups, simulations that increased
the temporal discounting γ demonstrated an extremely deleterious effect on
performance. As γ increased from 0 to 1, the place cells selective for each trial became
increasingly responsive during preceding trials, mirroring the predictive coding property
of successor representation. This led to increased overlap and decreased orthogonality of
the neural representations. At higher values of γ, the network increasingly failed to
form an independent action policy for each trial, resulting in incorrect
over-generalization across environmental states. Since a high value of γ, representing
the contribution of future state transitions to the current state value, is fundamental to
the utility of successor representation, a high degree of representational overlap between
temporally proximal states is fundamentally unavoidable. In conclusion, it appears that
the degree of representational overlap between any particular pair of states must match
the appropriate degree of generalization between those states. Biologically realistic
place cell representations lead to harmful over-generalizations in tasks where the
optimal action varies sharply from step to step. This problem of over-generalization
explains the original failure of the joint model to learn a complex action policy and
points to the necessity of some additional mechanisms that would enable the basal
ganglia to leverage the extremely rich level of structural information present in
biological place cell representations. This mechanism could potentially take the form of
additional network structure, such as the introduction of hierarchical loops or additional
credit-assignment dynamics.

4.2 General Discussion

The natural world is filled with complex and structured environments. To efficiently
learn to maximize rewarding outcomes, humans and other mammals must perform

72/104



reinforcement learning while leveraging the known structure of the environment. It is
not yet fully understood, however, how the brain performs the requisite computations.
Successful performance in structured tasks likely requires the cooperation of multiple
learning centers across the brain [18], including the basal ganglia and the hippocampus.
The cortico-basal ganglia-thalamic (CBGT) circuit, with its evidence accumulation and
competitive action-selection dynamics [1] [2], appears well-suited for reinforcement
learning guided by dopaminergic reward prediction errors [3]. In contrast, the
hippocampal-entorhinal cortical system, in addition to its well-known role in spatial
navigation, may be capable of learning the structure of the environment and forming
the “mental map” over which the action policy should be learned [4] [5] [6] [7].

The development of the CBGTPy framework represents a significant step forward in
modeling the dynamics, plasticity, and behavior of the CBGT circuit, particularly
within the context of reinforcement learning tasks. This flexible platform enables
researchers to easily subject the network to various experimental manipulations,
allowing them to explore how the network dynamics at both micro and macro scales
guide the system’s computations during the decision process. When applied to the
n-choice task, the model demonstrated accurate channel dynamics and effective credit
assignment, leading to successful learning and policy-switching in a simple, volatile
environment. As the network learns to select the most rewarding action without being
supplied any additional information about the environment, this experiment exemplifies
“model-free” reinforcement learning [85]. These results demonstrate how the physiology
of the CBGT circuit supports the computations required for model-free learning.

Model-free learning, however, is inefficient in structured environments, especially
when the structure is known. Instead, model-based learning leverages knowledge of the
environmental state space to transfer value information across contexts, enabling the
agent to learn how the favorability of an action depends on the current state and relates
to the values of other states [85]. While it appears possible that the basal ganglia can
learn hierarchical task structures [17] [92], it is unknown how the circuit could learn
non-hierarchical structures or process other sources of structural information to perform
model-based reinforcement learning. Emerging evidence indicates that the
hippocampal-entorhinal cortical system is engaged during reinforcement learning tasks.
Therefore, I hypothesized that structural information provided by place cell-like
representations could be the missing key enabling the CBGT network to solve more
complex tasks. Simulation results, however, indicate that while the hippocampus could
serve as an ideal center for structure learning, the direct integration of place cell
representations as inputs to the CBGT network is insufficient to produce effective
reinforcement learning. The current CBGTPy model performs better when supplied
with inputs reflective of a simpler state space, containing a small number of highly
orthogonal representations. Additional research is needed to understand how the
dynamics of the basal ganglia can process the rich structural information present in
biologically realistic place cell representations to produce a complex and highly varied
action policy.

Future work on the CBGTPy network could focus on the creation of a hierarchical
component, where the competitive dynamics at higher levels of the hierarchy influence
the dynamics at lower levels. This would involve the introduction of additional cortical
areas and the corresponding pathways, organized into a chain-like structure rather than
the current single-loop structure. Conceptual effort would be needed to address the
credit assignment problem in such a model, as the existing sustained activation
mechanism does not intuitively extend to cortical regions not clearly belonging to a
particular action channel. If a hierarchical component were successfully introduced, the
network could learn to behave according to conditional rules, introducing a form of
hierarchical structure learning directly to the basal ganglia network. It would be

73/104



interesting to see if the presence of a hierarchy and the ability to learn conditional rules
could enable the network to become more sensitive to smaller changes in inputs,
potentially limiting harmful over-generalizations and overcoming the challenges posed
by the representational overlaps of place cells. Given the complexity of the CBGTPy
model, it might be beneficial to first focus on simpler, more theoretical hierarchical
circuit models and use those models to guide development and build predictions for the
dynamics of the full network. Ultimately, despite the experimental shortcomings of the
current model, I believe that the cooperation of reinforcement learning and structure
learning computations across multiple brain regions is the core mechanism by which the
brain solves real-world structured tasks. The work presented here represents an
important step away from studying the basal ganglia in isolation and towards
understanding the nature of these complex multi-region interactions.

74/104



Bibliography

1. Dunovan K, Verstynen T. Believer-Skeptic meets actor-critic: Rethinking the
role of basal ganglia pathways during decision-making and reinforcement
learning. Frontiers in Neuroscience. 2016;10(MAR):1–15.
doi:10.3389/fnins.2016.00106.

2. Mulcahy G, Atwood B, Kuznetsov A. Basal ganglia role in learning rewarded
actions and executing previously learned choices: Healthy and diseased states.
PLoS One. 2020;15(2):e0228081.

3. Watabe-Uchida M, Eshel N, Uchida N. Neural circuitry of reward prediction
error. Annu Rev Neurosci. 2017;40(1):373–394.

4. Ballard IC, Wagner AD, McClure SM. Hippocampal pattern separation
supports reinforcement learning. Nature Communications. 2019;10(1):1073.
doi:10.1038/s41467-019-08998-1.

5. Baram AB, Muller TH, Nili H, Garvert MM, Behrens TEJ. Entorhinal and
ventromedial prefrontal cortices abstract and generalize the structure of
reinforcement learning problems. Neuron. 2021;109(4):713–723.e7.

6. Lee H. Toward the biological model of the hippocampus as the successor
representation agent. Biosystems. 2022;213(104612):104612.

7. Knudsen EB, Wallis JD. Taking stock of value in the orbitofrontal cortex.
Nature Reviews Neuroscience. 2022;23(7):428–438.
doi:10.1038/s41583-022-00589-2.

8. de Cothi W, Barry C. Neurobiological successor features for spatial navigation.
Hippocampus. 2020;30(12):1347–1355.

9. Bond K. Adaptive decision policy dynamics. Carnegie Mellon Univerisity. 2022;.

10. Gershman SJ, Niv Y. Learning latent structure: carving nature at its joints.
Curr Opin Neurobiol. 2010;20(2):251–256.

11. Acuna D, Schrater PR. Structure Learning in Human Sequential
Decision-Making. In: Koller D, Schuurmans D, Bengio Y, Bottou L, editors.
Advances in Neural Information Processing Systems. vol. 21. Curran Associates,
Inc.; 2008.Available from: https://proceedings.neurips.cc/paper_files/
paper/2008/file/bf62768ca46b6c3b5bea9515d1a1fc45-Paper.pdf.

12. Gershman SJ, Pesaran B, Daw ND. Human reinforcement learning subdivides
structured action spaces by learning effector-specific values. J Neurosci.
2009;29(43):13524–13531.

75

https://proceedings.neurips.cc/paper_files/paper/2008/file/bf62768ca46b6c3b5bea9515d1a1fc45-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2008/file/bf62768ca46b6c3b5bea9515d1a1fc45-Paper.pdf


13. Mink JW. Basal ganglia mechanisms in action selection, plasticity, and dystonia.
Eur J Paediatr Neurol. 2018;22(2):225–229.

14. Foerde K, Shohamy D. The role of the basal ganglia in learning and memory:
insight from Parkinson’s disease. Neurobiol Learn Mem. 2011;96(4):624–636.

15. Calabresi P, Picconi B, Tozzi A, Ghiglieri V, Di Filippo M. Direct and indirect
pathways of basal ganglia: a critical reappraisal. Nat Neurosci.
2014;17(8):1022–1030.

16. Gerfen CR. Segregation of D1 and D2 dopamine receptors in the striatal direct
and indirect pathways: An historical perspective. Front Synaptic Neurosci.
2022;14:1002960.

17. Frank MJ, Badre D. Mechanisms of hierarchical reinforcement learning in
corticostriatal circuits 1: computational analysis. Cereb Cortex.
2012;22(3):509–526.

18. Caligiore D, Arbib MA, Miall RC, Baldassarre G. The super-learning
hypothesis: Integrating learning processes across cortex, cerebellum and basal
ganglia. Neurosci Biobehav Rev. 2019;100:19–34.

19. Bariselli S, Fobbs W, Creed M, Kravitz A. A competitive model for striatal
action selection. Brain research. 2019;1713:70–79.

20. Bahuguna J, Aertsen A, Kumar A. Existence and control of Go/No-Go decision
transition threshold in the striatum. PLoS Comput Biol. 2015;11(4):e1004233.

21. Rubin JE, Vich C, Clapp M, Noneman K, Verstynen T. The credit assignment
problem in cortico-basal ganglia-thalamic networks: A review, a problem and a
possible solution. European Journal of Neuroscience. 2021;53(7):2234–2253.

22. Schroll H, Hamker FH. Computational models of basal-ganglia pathway
functions: focus on functional neuroanatomy. Front Syst Neurosci. 2013;7:122.

23. Stachenfeld KL, Botvinick MM, Gershman SJ. The hippocampus as a predictive
map. Nature Neuroscience. 2017;20(11):1643–1653. doi:10.1038/nn.4650.

24. Clapp M, Bahuguna J, Giossi C, Rubin JE, Verstynen T, Vich C. CBGTPy: An
extensible cortico-basal ganglia-thalamic framework for modeling biological
decision making. Biorxiv. 2024;10.1101 / 2023.09.05.556301v1.

25. Gershman SJ. The successor representation: Its computational logic and neural
substrates. J Neurosci. 2018;38(33):7193–7200.

26. Momennejad I, Russek EM, Cheong JH, Botvinick MM, Daw ND, Gershman SJ.
The successor representation in human reinforcement learning. Nature Human
Behaviour. 2017;1(9):680–692. doi:10.1038/s41562-017-0180-8.

27. Basu J, Siegelbaum SA. The corticohippocampal circuit, synaptic plasticity, and
memory. Cold Spring Harb Perspect Biol. 2015;7(11):a021733.

28. Leisman G, Braun-Benjamin O, Melillo R. Cognitive-motor interactions of the
basal ganglia in development. Front Syst Neurosci. 2014;8:16.

29. Yin A, Tseng PH, Rajangam S, Lebedev MA, Nicolelis MAL. Place cell-like
activity in the primary sensorimotor and premotor cortex during monkey
whole-body navigation. Sci Rep. 2018;8(1).

76/104



30. Emmi A, Antonini A, Macchi V, Porzionato A, De Caro R. Anatomy and
connectivity of the subthalamic nucleus in humans and non-human primates.
Front Neuroanat. 2020;14.

31. Chung J, Gulcehre C, Cho K, Bengio Y. Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling; 2014. Available from:
https://arxiv.org/abs/1412.3555.

32. Kriegeskorte N, Douglas PK. Cognitive computational neuroscience. Nature
neuroscience. 2018;21(9):1148–1160.

33. Ma WJ, Peters B. A neural network walks into a lab: towards using deep nets
as models for human behavior. arXiv preprint arXiv:200502181. 2020;.

34. Guest O, Martin AE. On logical inference over brains, behaviour, and artificial
neural networks. Computational Brain & Behavior. 2023; p. 1–15.

35. Bowers JS, Malhotra G, Dujmović M, Montero ML, Tsvetkov C, Biscione V,
et al. Deep problems with neural network models of human vision. Behavioral
and Brain Sciences. 2022; p. 1–74.

36. Yamins DL, DiCarlo JJ. Using goal-driven deep learning models to understand
sensory cortex. Nature neuroscience. 2016;19(3):356–365.

37. Nelson AB, Kreitzer AC. Reassessing models of Basal Ganglia function and
dysfunction. Annual review of neuroscience. 2014;37:117–35.
doi:10.1146/annurev-neuro-071013-013916.

38. Girard B, Lienard J, Gutierrez CE, Delord B, Doya K. A biologically
constrained spiking neural network model of the primate basal ganglia with
overlapping pathways exhibits action selection. European Journal of
Neuroscience. 2021;53(7):2254–2277.

39. Gurney K, Prescott TJ, Redgrave P. A computational model of action selection
in the basal ganglia. I. A new functional anatomy. Biological Cybernetics.
2001;84(6):401–410. doi:10.1007/PL00007984.

40. Vich C, Dunovan K, Verstynen T, Rubin J. Corticostriatal synaptic weight
evolution in a two-alternative forced choice task: a computational study.
Communications in Nonlinear Science and Numerical Simulation.
2020;82:105048.

41. Nambu A, Chiken S. External segment of the globus pallidus in health and
disease: Its interactions with the striatum and subthalamic nucleus.
Neurobiology of Disease. 2024;190:106362.

42. Giossi C, Rubin J, Gittis A, Verstynen T, Vich C. Rethinking the external
globus pallidus and information flow in cortico-basal ganglia-thalamic circuits.
Eur J Neurosci. 2024;doi:https://doi.org/10.1111/ejn.16348.

43. Dunovan K, Vich C, Clapp M, Verstynen T, Rubin J. Reward-driven changes in
striatal pathway competition shape evidence evaluation in decision-making.
PLOS Computational Biology. 2019;15(5):1–32.
doi:10.1371/journal.pcbi.1006998.

44. Vich C, Clapp M, Rubin JE, Verstynen T. Identifying control ensembles for
information processing within the cortico-basal ganglia-thalamic circuit. PLOS
Computational Biology. 2022;18(6):e1010255. doi:10.1371/journal.pcbi.1010255.

77/104

https://arxiv.org/abs/1412.3555


45. Bond K, Rasero J, Madan R, Bahuguna J, Rubin J, Verstynen T. Competing
neural representations of choice shape evidence accumulation in humans. Elife.
2023;12:e85223.

46. Smith GD, Cox CL, Sherman SM, Rinzel J. Fourier analysis of sinusoidally
driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst
model. J Neurophysiol. 2000;83(1):588–610.

47. Carnevale NT, Hines ML. The NEURON Book. Cambridge University Press;
2006.

48. Goodman DF, Brette R. Brian: a simulator for spiking neural networks in
Python. Frontiers in Neuroinformatics. 2008;2. doi:10.3389/neuro.11.005.2008.

49. Dura-Bernal S, Suter BA, Gleeson P, Cantarelli M, Quintana A, Rodriguez F,
et al. NetPyNE, a tool for data-driven multiscale modeling of brain circuits.
eLife. 2019;8:e44494. doi:10.7554/eLife.44494.

50. Sousa TB. Dataflow programming concept, languages and applications. In:
Doctoral Symposium on Informatics Engineering. vol. 130; 2012.

51. The Ray Team. Ray 1.x Architecture; 2020. Available from:
https://docs.ray.io/.

52. McKinney W. Data Structures for Statistical Computing in Python. In: Stéfan
van der Walt, Jarrod Millman, editors. Proceedings of the 9th Python in Science
Conference; 2010. p. 56–61.

53. Goenner L, Maith O, Koulouri I, Baladron J, Hamker FH. A spiking model of
basal ganglia dynamics in stopping behavior supported by arkypallidal neurons.
European Journal of Neuroscience. 2021;53(7):2296–2321. doi:10.1111/ejn.15082.

54. Rothwell P, Hayton S, Sun G, Fuccillo M, Lim B, Malenka R. Input- and
Output-Specific Regulation of Serial Order Performance by Corticostriatal
Circuits. Neuron. 2015;88(2):345–356. doi:10.1016/j.neuron.2015.09.035.

55. Frank MJ, Samanta J, Moustafa Aa, Sherman SJ. Hold your horses: impulsivity,
deep brain stimulation, and medication in parkinsonism. Science (New York,
NY). 2007;318(5854):1309–12. doi:10.1126/science.1146157.

56. Zaghloul Ka, Weidemann CT, Lega BC, Jaggi JL, Baltuch GH, Kahana MJ.
Neuronal activity in the human subthalamic nucleus encodes decision conflict
during action selection. The Journal of neuroscience : the official journal of the
Society for Neuroscience. 2012;32(7):2453–60.
doi:10.1523/JNEUROSCI.5815-11.2012.

57. Cisek P, Kalaska JF. Neural Correlates of Reaching Decisions in Dorsal
Premotor Cortex: Specification of Multiple Direction Choices and Final
Selection of Action. Neuron. 2005;45(5):801–814.
doi:10.1016/j.neuron.2005.01.027.

58. Nonomura S, Nishizawa K, Sakai Y, Kawaguchi Y, Kato S, Uchigashima M, et al.
Monitoring and updating of action selection for goal-directed behavior through
the striatal direct and indirect pathways. Neuron. 2018;99(6):1302–1314.

59. Verbruggen F, Aron AR, Band GP, Beste C, Bissett PG, Brockett AT, et al. A
consensus guide to capturing the ability to inhibit actions and impulsive
behaviors in the stop-signal task. elife. 2019;8:e46323.

78/104

https://docs.ray.io/


60. Nambu A, Tokuno H, Takada M. Functional significance of the
cortico–subthalamo–pallidal ‘hyperdirect’pathway. Neuroscience research.
2002;43(2):111–117.

61. Schmidt R, Leventhal DK, Mallet N, Chen F, Berke JD. Canceling actions
involves a race between basal ganglia pathways. Nature neuroscience.
2013;16(8):1118–1124.

62. Schmidt R, Berke JD. A Pause-then-Cancel model of stopping: evidence from
basal ganglia neurophysiology. Philosophical Transactions of the Royal Society
B: Biological Sciences. 2017;372(1718):20160202.

63. Mallet N, Schmidt R, Leventhal D, Chen F, Amer N, Boraud T, et al.
Arkypallidal cells send a stop signal to striatum. Neuron. 2016;89(2):308–316.

64. Aristieta A, Barresi M, Lindi SA, Barriere G, Courtand G, de la Crompe B,
et al. A disynaptic circuit in the globus pallidus controls locomotion inhibition.
Current Biology. 2021;31(4):707–721.

65. Chow BY, Han X, Boyden ES. Genetically encoded molecular tools for
light-driven silencing of targeted neurons. Progress in Brain Research.
2012;196(type I):49–61. doi:10.1016/B978-0-444-59426-6.00003-3.

66. Humphries MD, Stewart RD, Gurney KN. A physiologically plausible model of
action selection and oscillatory activity in the basal ganglia. The Journal of
neuroscience : the official journal of the Society for Neuroscience.
2006;26(50):12921–42. doi:10.1523/JNEUROSCI.3486-06.2006.

67. Mandali A, Rengaswamy M, Srinivasa Chakravarthy V, Moustafa AA. A
spiking Basal Ganglia model of synchrony, exploration and decision making.
Frontiers in Neuroscience. 2015;9(MAY):1–21. doi:10.3389/fnins.2015.00191.

68. Santaniello S, McCarthy MM, Montgomery Jr EB, Gale JT, Kopell N, Sarma
SV. Therapeutic mechanisms of high-frequency stimulation in Parkinson’s
disease and neural restoration via loop-based reinforcement. Proceedings of the
National Academy of Sciences. 2015;112(6):E586–E595.

69. Lindahl M, Hellgren Kotaleski J. Untangling Basal Ganglia Network Dynamics
and Function: Role of Dopamine Depletion and Inhibition Investigated in a
Spiking Network Model. eNeuro. 2016;3(6). doi:10.1523/ENEURO.0156-16.2016.

70. Maith O, Villagrasa Escudero F, Dinkelbach HÜ, Baladron J, Horn A, Irmen F,
et al. A computational model-based analysis of basal ganglia pathway changes
in Parkinson’s disease inferred from resting-state fMRI. European Journal of
Neuroscience. 2021;53(7):2278–2295. doi:10.1111/ejn.14868.

71. Chakravarty K, Roy S, Sinha A, Nambu A, Chiken S, Kotaleski JH, et al.
Transient Response of Basal Ganglia Network in Healthy and Low-Dopamine
State. eNeuro. 2022;9(2). doi:10.1523/ENEURO.0376-21.2022.

72. Frank MJ. Hold your horses: A dynamic computational role for the subthalamic
nucleus in decision making. Neural Networks. 2006;19(8):1120–1136.
doi:10.1016/j.neunet.2006.03.006.

73. Leblois A, Boraud T, Meissner W, Bergman H, Hansel D. Competition between
feedback loops underlies normal and pathological dynamics in the basal ganglia.
Journal of Neuroscience. 2006;26(13):3567–3583.
doi:10.1523/JNEUROSCI.5050-05.2006.

79/104



74. van Albada SJ, Robinson Pa. Mean-field modeling of the basal
ganglia-thalamocortical system. I Firing rates in healthy and parkinsonian states.
Journal of theoretical biology. 2009;257(4):642–63. doi:10.1016/j.jtbi.2008.12.018.

75. Bogacz R, Larsen T. Integration of reinforcement learning and optimal
decision-making theories of the basal ganglia. Neural Computation.
2011;23(4):817–851. doi:10.1162/NECO a 00103.

76. Guthrie M, Leblois A, Garenne A, Boraud T. Interaction between cognitive and
motor cortico-basal ganglia loops during decision making: A computational
study. Journal of Neurophysiology. 2013;109(12):3025–3040.
doi:10.1152/jn.00026.2013.

77. Nevado-Holgado AJ, Mallet N, Magill PJ, Bogacz R. Effective connectivity of
the subthalamic nucleus - globus pallidus network during Parkinsonian
oscillations. The Journal of physiology. 2014; p. 1–12.
doi:10.1113/jphysiol.2013.259721.

78. Gurney KN, Humphries MD, Redgrave P. A New Framework for
Cortico-Striatal Plasticity: Behavioural Theory Meets In Vitro Data at the
Reinforcement-Action Interface. PLoS Biology. 2015;13(1):e1002034.
doi:10.1371/journal.pbio.1002034.

79. Bekolay T, Bergstra J, Hunsberger E, DeWolf T, Stewart TC, Rasmussen D,
et al. Nengo: a Python tool for building large-scale functional brain models.
Frontiers in neuroinformatics. 2014;7:48. doi:10.3389/fninf.2013.00048.

80. Oyedotun OK, Olaniyi EO, Khashman A. A simple and practical review of
over-fitting in neural network learning. International Journal of Applied Pattern
Recognition. 2017;4(4):307–328.

81. Abdolrasol MG, Hussain SS, Ustun TS, Sarker MR, Hannan MA, Mohamed R,
et al. Artificial neural networks based optimization techniques: A review.
Electronics. 2021;10(21):2689.

82. Carlson KD, Nageswaran JM, Dutt N, Krichmar JL. An efficient automated
parameter tuning framework for spiking neural networks. Frontiers in
neuroscience. 2014;8:10.

83. Rossant C, Goodman DF, Fontaine B, Platkiewicz J, Magnusson AK, Brette R.
Fitting neuron models to spike trains. Frontiers in neuroscience. 2011;5:9.

84. Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J, Tang J, et al.
Openai gym. arXiv preprint arXiv:160601540. 2016;.

85. Sutton RS, Barto AG. Reinforcement Learning: An Introduction. 2nd ed. The
MIT Press; 2018. Available from:
http://incompleteideas.net/book/the-book-2nd.html.

86. Masoudnia S, Ebrahimpour R. Mixture of experts: a literature survey. Artificial
Intelligence Review. 2014;42(2):275–293. doi:10.1007/s10462-012-9338-y.

87. Kim S, Jung D, Royer S. Place cell maps slowly develop via competitive
learning and conjunctive coding in the dentate gyrus. Nature Communications.
2020;11(1):4550. doi:10.1038/s41467-020-18351-6.

80/104

http://incompleteideas.net/book/the-book-2nd.html


88. Ghosh D, Rahme J, Kumar A, Zhang A, Adams RP, Levine S. Why
Generalization in RL is Difficult: Epistemic POMDPs and Implicit Partial
Observability. CoRR. 2021;abs/2107.06277.

89. Colas JT, Dundon NM, Gerraty RT, Saragosa-Harris NM, Szymula KP,
Tanwisuth K, et al. Reinforcement learning with associative or discriminative
generalization across states and actions: fMRI at 3 T and 7 T. Human Brain
Mapping. 2022;43(15):4750–4790. doi:https://doi.org/10.1002/hbm.25988.

90. Joel D, Niv Y, Ruppin E. Actor-critic models of the basal ganglia: new
anatomical and computational perspectives. Neural Netw. 2002;15(4-6):535–547.

91. Simonyan K. Recent advances in understanding the role of the basal ganglia.
F1000Res. 2019;8:122.

92. Geddes CE, Li H, Jin X. Optogenetic Editing Reveals the Hierarchical
Organization of Learned Action Sequences. Cell. 2018;174(1):32–43.e15.
doi:10.1016/j.cell.2018.06.012.

93. Umbach G, Kantak P, Jacobs J, Kahana M, Pfeiffer BE, Sperling M, et al.
Time cells in the human hippocampus and entorhinal cortex support episodic
memory. Proceedings of the National Academy of Sciences.
2020;117(45):28463–28474. doi:10.1073/pnas.2013250117.

94. Eichenbaum H. Time cells in the hippocampus: a new dimension for mapping
memories. Nature Reviews Neuroscience. 2014;15(11):732–744.
doi:10.1038/nrn3827.

95. Ma M, Simoes de Souza F, Futia GL, Anderson SR, Riguero J, Tollin D, et al.
Sequential activity of CA1 hippocampal cells constitutes a temporal memory
map for associative learning in mice. Current Biology. 2024;34(4):841–854.e4.
doi:10.1016/j.cub.2024.01.021.

96. Chakravarthy VS, Joseph D, Bapi RS. What do the basal ganglia do? A
modeling perspective. Biological cybernetics. 2010;103:237–253.

97. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally
segregated circuits linking basal ganglia and cortex. Annual review of
neuroscience. 1986;9(1):357–381.

98. Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia
disorders. Trends in neurosciences. 1989;12(10):366–375.

99. Mink JW. The basal ganglia: Focused selection and inhibition of competing
motor programs. Prog Neurobiol. 1996;50(4):381–425.

100. Kravitz AV, Tye LD, Kreitzer AC. Distinct roles for direct and indirect pathway
striatal neurons in reinforcement. Nature neuroscience. 2012;15(6):816–818.

101. Mallet N, Micklem BR, Henny P, Brown MT, Williams C, Bolam JP, et al.
Dichotomous organization of the external globus pallidus. Neuron.
2012;74(6):1075–1086.

102. Maass W. On the computational power of winner-take-all. Neural computation.
2000;12(11):2519–2535.

103. Hedreen JC, Delong MR. Organization of striatopallidal, striatonigral, and
nigrostriatal projections in the macaque. Journal of Comparative Neurology.
1991;304(4):569–595.

81/104



104. Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma Jr FJ, et al.
D1 and D2 dopamine receptor-regulated gene expression of striatonigral and
striatopallidal neurons. Science. 1990;250(4986):1429–1432.

105. Schultz W. Predictive reward signal of dopamine neurons. Journal of
Neurophysiology. 1998;80(1):1–27. doi:10.1152/jn.1998.80.1.1.

106. Frank MJ, Seeberger LC, O’reilly RC. By carrot or by stick: cognitive
reinforcement learning in parkinsonism. Science (New York, NY).
2004;306(5703):1940–3. doi:10.1126/science.1102941.

107. Morita K, Kato A. Striatal dopamine ramping may indicate flexible
reinforcement learning with forgetting in the cortico-basal ganglia circuits.
Frontiers in neural circuits. 2014;8(April):36. doi:10.3389/fncir.2014.00036.

108. Cui G, Jun SB, Jin X, Pham MD, Vogel SS, Lovinger DM, et al. Concurrent
activation of striatal direct and indirect pathways during action initiation.
Nature. 2013;494(7436):238.

109. Tecuapetla F, Matias S, Dugue GP, Mainen ZF, Costa RM. Balanced activity in
basal ganglia projection pathways is critical for contraversive movements.
Nature communications. 2014;5:4315.

110. Shin JH, Kim D, Jung MW. Differential coding of reward and movement
information in the dorsomedial striatal direct and indirect pathways. Nature
communications. 2018;9(1):1–14.

111. Parker JG, Marshall JD, Ahanonu B, Wu YW, Kim TH, Grewe BF, et al.
Diametric neural ensemble dynamics in parkinsonian and dyskinetic states.
Nature. 2018;557(7704):177–182.

112. Dudman JT, Krakauer JW. The basal ganglia: from motor commands to the
control of vigor. Current opinion in neurobiology. 2016;37:158–166.

113. Turner RS, Desmurget M. Basal ganglia contributions to motor control: a
vigorous tutor. Current opinion in neurobiology. 2010;20(6):704–716.

114. Rueda-Orozco PE, Robbe D. The striatum multiplexes contextual and
kinematic information to constrain motor habits execution. Nature neuroscience.
2015;18(3):453–460.

115. Thura D, Cisek P. The basal ganglia do not select reach targets but control the
urgency of commitment. Neuron. 2017;95(5):1160–1170.

116. Yttri EA, Dudman JT. Opponent and bidirectional control of movement
velocity in the basal ganglia. Nature. 2016;533(7603):402–406.

117. Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL. Stimulation of the
subthalamic nucleus changes the firing pattern of pallidal neurons. Journal of
neuroscience. 2003;23(5):1916–1923.

118. Wei W, Rubin JE, Wang XJ. Role of the indirect pathway of the basal ganglia
in perceptual decision making. Journal of Neuroscience. 2015;35(9):4052–4064.

119. Gittis AH, Nelson AB, Thwin MT, Palop JJ, Kreitzer AC. Distinct roles of
GABAergic interneurons in the regulation of striatal output pathways. Journal
of Neuroscience. 2010;30(6):2223–2234.

82/104



120. Bevan MD, Booth PA, Eaton SA, Bolam JP. Selective innervation of neostriatal
interneurons by a subclass of neuron in the globus pallidus of the rat. Journal of
Neuroscience. 1998;18(22):9438–9452.

121. Corbit VL, Whalen TC, Zitelli KT, Crilly SY, Rubin JE, Gittis AH.
Pallidostriatal projections promote β oscillations in a dopamine-depleted
biophysical network model. Journal of Neuroscience. 2016;36(20):5556–5571.

122. Ketzef M, Silberberg G. Differential synaptic input to external globus pallidus
neuronal subpopulations in vivo. Neuron. 2021;109(3):516–529.

123. Fox C, Rafols J. The striatal efferents in the globus pallidus and in the
substantia nigra. Research Publications-Association for Research in Nervous and
Mental Disease. 1976;55:37–55.

124. Smith Y, Bevan M, Shink E, Bolam JP. Microcircuitry of the direct and indirect
pathways of the basal ganglia. Neuroscience. 1998;86(2):353–387.

125. Abdi A, Mallet N, Mohamed FY, Sharott A, Dodson PD, Nakamura KC, et al.
Prototypic and arkypallidal neurons in the dopamine-intact external globus
pallidus. Journal of Neuroscience. 2015;35(17):6667–6688.

126. Saunders A, Huang KW, Sabatini BL. Globus pallidus externus neurons
expressing parvalbumin interconnect the subthalamic nucleus and striatal
interneurons. PloS one. 2016;11(2):e0149798.

127. Hernández VM, Hegeman DJ, Cui Q, Kelver DA, Fiske MP, Glajch KE, et al.
Parvalbumin+ neurons and Npas1+ neurons are distinct neuron classes in the
mouse external globus pallidus. Journal of Neuroscience.
2015;35(34):11830–11847.

128. Dodson PD, Larvin JT, Duffell JM, Garas FN, Doig NM, Kessaris N, et al.
Distinct developmental origins manifest in the specialized encoding of movement
by adult neurons of the external globus pallidus. Neuron. 2015;86(2):501–513.

129. Fujiyama F, Nakano T, Matsuda W, Furuta T, Udagawa J, Kaneko T. A
single-neuron tracing study of arkypallidal and prototypic neurons in healthy
rats. Brain Structure and Function. 2016;221:4733–4740.

130. Mastro KJ, Bouchard RS, Holt HA, Gittis AH. Transgenic mouse lines
subdivide external segment of the globus pallidus (GPe) neurons and reveal
distinct GPe output pathways. Journal of Neuroscience. 2014;34(6):2087–2099.

131. Glajch KE, Kelver DA, Hegeman DJ, Cui Q, Xenias HS, Augustine EC, et al.
Npas1+ pallidal neurons target striatal projection neurons. Journal of
Neuroscience. 2016;36(20):5472–5488.

132. Steiner LA, Tomás FJB, Planert H, Alle H, Vida I, Geiger JR. Connectivity and
dynamics underlying synaptic control of the subthalamic nucleus. Journal of
Neuroscience. 2019;39(13):2470–2481.

133. Pamukcu A, Cui Q, Xenias HS, Berceau BL, Augustine EC, Fan I, et al.
Parvalbumin+ and Npas1+ pallidal neurons have distinct circuit topology and
function. Journal of Neuroscience. 2020;40(41):7855–7876.

134. Lo CC, Wang XJ. Cortico–basal ganglia circuit mechanism for a decision
threshold in reaction time tasks. Nature neuroscience. 2006;9(7):956–963.

83/104



135. Kumar A, Cardanobile S, Rotter S, Aertsen A. The role of inhibition in
generating and controlling Parkinson’s disease oscillations in the basal ganglia.
Frontiers in systems neuroscience. 2011;5:86.

136. Kimura M. Behavioral modulation of sensory responses of primate putamen
neurons. Brain research. 1992;578(1-2):204–214.

137. Aosaki T, Graybiel AM, Kimura M. Effect of the nigrostriatal dopamine system
on acquired neural responses in the striatum of behaving monkeys. Science.
1994;265(5170):412–415.

138. Barnes TD, Kubota Y, Hu D, Jin DZ, Graybiel AM. Activity of striatal neurons
reflects dynamic encoding and recoding of procedural memories. Nature.
2005;437(7062):1158–1161.

139. Panigrahi B, Martin KA, Li Y, Graves AR, Vollmer A, Olson L, et al.
Dopamine is required for the neural representation and control of movement
vigor. Cell. 2015;162(6):1418–1430.

140. Pavlides A, Hogan SJ, Bogacz R. Computational models describing possible
mechanisms for generation of excessive beta oscillations in Parkinson’s disease.
PLoS computational biology. 2015;11(12):e1004609.

141. Tachibana Y, Iwamuro H, Kita H, Takada M, Nambu A. Subthalamo-pallidal
interactions underlying parkinsonian neuronal oscillations in the primate basal
ganglia. European Journal of Neuroscience. 2011;34(9):1470–1484.

142. Nambu A, Tachibana Y. Mechanism of parkinsonian neuronal oscillations in the
primate basal ganglia: some considerations based on our recent work. Frontiers
in systems neuroscience. 2014;8:74.

143. Pessiglione M, Guehl D, Rolland AS, François C, Hirsch EC, Féger J, et al.
Thalamic neuronal activity in dopamine-depleted primates: evidence for a loss
of functional segregation within basal ganglia circuits. Journal of Neuroscience.
2005;25(6):1523–1531.

144. de Lafuente V, Jazayeri M, Shadlen MN. Representation of accumulating
evidence for a decision in two parietal areas. Journal of Neuroscience.
2015;35(10):4306–4318.

84/104



Appendices

This supplemental information accompanies Chapter 2 and is likewise reproduced
from the paper “CBGTPy: An extensible cortico-basal ganglia-thalamic framework for
modeling biological decision making.”

S1 CBGT network

S1.1 Overview of CBGT pathways

While many of the circuit-level details of the basal ganglia (BG) pathways are complex,
with new cell types and connections being discovered with increased frequency as our
biological tools improve, the consensus conceptualization of the canonical BG circuits
has long remained stable [1,19,96]. Much of the theoretical work on this topic relates to
a profoundly influential framework for representing the passage of top-down signals
through the BG, which describes the network as a collection of feed-forward pathways,
starting from a cortical input source and flowing to output units that project to certain
thalamic nuclei and other subcortical targets [60,97–100] (Fig 1 in the manuscript). In
the direct pathway, cortical inputs drive a subpopulation of spiny projection neurons
(dSPNs) in the striatum. These dSPNs send inhibitory projections directly to basal
ganglia output units, which we refer to as the globus pallidus internal segment (GPi),
but which can be tuned to represent other outputs such as the substantia nigra pars
reticulata (SNr) to suit a user’s interests. As these output units are comprised of
GABAergic neurons that are suppressed by inhibition from the dSPNs, the traditional
view posits that the direct pathway may act to facilitate action selection by
disinhibiting populations downstream from the BG.

The traditional indirect pathway starts with cortical inputs to a second striatal
subpopulation of spiny projection neurons (iSPNs). Like dSPNs, iSPNs send inhibition
to the globus pallidus, specifically its external segment (GPe). Unlike the GPi, however,
the GPe is not itself an output unit. GABAergic GPe efferents project to the GPi/SNr,
to another region called the subthalamic nucleus (STN), and back to the striatum itself.
The GPe feedback signals to the striatum, part of what is called the pallidostriatal
circuit, rely both on prototypical (GPeP) and arkypallidal (GPeA) GPe cells [101] and
are not considered part of the indirect pathway [64]. The STN relays signals to the
GPi/SNr, but via glutamatergic rather than GABAergic synapses. Although complex in
its structural organization, the “indirect” pathway framework produces a simple
prediction: the net effect of cortical activation of iSPNs will be to inhibit GPe neurons.
As a result, GPi/SNr neurons are directly disinhibited, and STN neurons are also
disinhibited, which yields a surge in excitation to GPi/SNr that further enhances their
firing and hence the suppression of downstream targets.

A key piece for adapting this framework to action selection is the concept of action
channels. These channels represent putative parallel pathways, each responsible for
whether a specific action (perhaps a specific muscle contraction or limb movement,

85



perhaps the performance of a more complete action comprising multiple movements) is
implemented or suppressed [99]. Thus, the framework conceptualizes the basal ganglia
as a collection of independent action channels [99], with evidence accumulation or other
processing occurring in parallel across channels, until this competition results in victory
for one action, while the others are suppressed (i.e., winner-take-all selection [102]).
Outside of these canonical pathways, however, a third hyperdirect pathway stands ready
to relay excitation from cortex directly to the STN, providing a proposed mechanism for
reactive stopping that can abruptly interrupt or block all actions [60].

Beyond action selection, the CBGT pathways are also notable for their critical role
in learning. Nigrostriatal pathways send dopaminergic projections directly to the
striatal SPNs [103], where the dSPNs and iSPNs predominantly express D1 and D2
dopamine receptors, respectively [104]. Phasic dopamine signals differentially modulate
D1 and D2 pathways in response to post-action feedback [78], sculpting corticostriatal
synapses over time to effectively promote or inhibit actions in order to maximize future
returns. The critical learning signal arises from a discrepancy between a received reward
and the expected reward, known as the reward prediction error (RPE), which appears
to be encoded in the firing of dopaminergic neurons in the substantia nigra pars
compacta (SNc) [105]. Corticostriatal neural plasticity depends on the levels and timing
of dopamine signals, which leads to computational models of reinforcement learning that
integrate the RPE concept [40,75,78, 106]; such a model has even been used to suggest
the computational underpinning for the temporal profile of the dopamine signal [107].

Of course, the reality of the CBGT pathways is more complicated than would
expected from the simple canonical model. For example, from the onset of a decision
process to the execution of an action, dSPN and iSPN activity has been observed to
co-vary, contrasting with the idea that the two subpopulations activate at different times
as simple “go” or “no-go” switches, respectively [108–111]. In addition, activity of these
pathways has been found to impact the kinematics of a movement that is made, rather
than or in addition to which action is chosen [112–116]. Continuous stimulation of the
STN with deep brain stimulation in individuals with parkinsonism has been shown to
fundamentally change BG output [117], impacting impulsiveness without compromising
the selection of learned actions. Finally, the idea that hyperdirect pathway activation of
the STN acts as a brake that can prevent planned actions via direct activation of the
GPi has come into doubt as new cell types (e.g., arkypallidal cells in the GPe) and new
connections (e.g., GPe arkypallidal outputs and thalamic projections to the striatum),
have been recognized as playing critical roles in stopping [53,62–64].

S1.2 CBGT model details

The total number of neurons per population is provided in Table S1 Table.

Population CxI Cx dSPN iSPN FSI GPeA GPeP GPi STN Th
Number of neurons 186 204 75 75 75 190 560 75 750 75

S1 Table. Number of neurons considered in each population. When no distinction
between GPeA and GPeP is considered, the total number of neurons at GPe is the
sum of arkypallidals and prototypicals (750).

As in previous works [43,44,118], the activity of each neuron is described by the
integrate-and-fire-or-burst model [46], with equations given by

C
dV

dt
= −gL(V (t)− VL)− gTh(t)H(V (t)− Vh)(V (t)− VT )− Isyn(t) + Iext(t),

dh

dt
=

{
−h(t)/τ−h when V ≥ Vh,

−(1− h(t))/τ+h when V < Vh,

(1)

86/104



where V (t) denotes the activity of the membrane potential at time t. The equation
describing the evolution of the membrane potential (dV/dt) contains the leak current,
with constant conductance gL and reversal potential VL; the low-threshold Ca2+

current, with constant conductance gT , gating variable h(t), and reversal potential VT ;
the synaptic current Isyn(t); and, finally, the external current Iext(t). Parameter C
stands for the capacitance of the membrane potential. The evolution (dh/dt) of the
gating variable h(t) changes according to a the relation of V to a constant voltage
threshold for burst activation, Vh, where τ

+
h and τ−h represent, respectively, the decay

time constant when the membrane potential is below or above Vh . Finally, H(·)
represents the Heaviside step function. As with all integrate-and-fire models, a reset
condition is added to the model to control the spike generation such that if V (t) crosses
a certain threshold value Vth, then the membrane potential is reset to ta hyperpolarized
membrane potential Vre, simulating the spike onset time. That is, if V (t−) > Vth, then
V (t+) = Vre and a spike has been made by the specific neuron. Parameters of the
neuronal model are provided in Table S2 Table.

Population C (cm2) gL (mS/cm2) gT (mS/cm2) VL (mV ) Vh (mV ) VT (mV ) Vth (mV ) Vre (mV ) τ−h (ms) τ+h (ms)

CxI 1 1/10 0 −55 −60 120 −50 −55
Cx 1 1/20 0 −55 −60 120 −50 −55 20 100

dSPN 1 1/20 0 −55 −60 120 −50 −55 20 100
iSPN 1 1/20 0 −55 −60 120 −50 −55 20 100
FSI 1 1/10 0 −55 −60 120 −50 −55 20 100
∗GPe 1 1/20 0.06 −55 −60 120 −50 −55 20 100
GPeA 1 1/20 0.06 −55 −60 120 −50 −55 20 100
GPeP 1 1/20 0.06 −55 −60 120 −50 −55 20 100
GPi 1 1/20 0 −55 −60 120 −50 −55 20 100
STN 1 1/20 0.06 −55 −60 120 −50 −55 20 100
Th 1 1/27.78 0 −55 −60 120 −50 −55 20 100

S2 Table. Neuronal parameters. Parameters used in the integrate-and-fire-or-burst
model (see equation (1)) where C is the membrane capacitance and coincide with the
inverse of the membrane time constant, gL is the leak conductance, gT is the low
threshold Ca2+ maximal conductance, VL is the leak reversal potential, Vh is the
threshold potential for the burst activation, VT is the low threshold Ca2+ reversal
potential, τ−h is the burst duration, and τ+h is the hyperpolarization duration. ∗ Values
in this row are the ones used when no intrinsic separation of neurons is considered.

All neurons in the network communicate through the simulated release of
neurotransmitters across synapses. When action potentials arrive at postsynaptic
neurons, the activity of each neuron’s AMPA, GABA, and NMDA receptors increases
according to the synaptic weight and neurotransmitter type. The activation of these
receptors induces cellular currents which, in turn, drive future action potentials. The
synaptic current Isyn(t) is therefore modeled as

Isyn(t) = gAMPAsAMPA(t)(V (t)− VE) +
gNMDAsNMDA(t)

,
1 + e−0.062V (t)/3.57(V (t)− VE)

+gGABAsGABA(t)(V (t)− VI),

where gx, for x ∈ {AMPA, NMDA, GABA}, stands for the maximal conductance in
each channel; VE and VI are the excitatory and inhibitory reversal potentials,
respectively; and finally, the variable sx(t), for x ∈ {AMPA, NMDA, GABA},
corresponds to the fraction of open channels of each type. The latter variables evolve
according to the differential equations

dsAMPA

dt
=
∑

j δ(t− tj)−
sAMPA

τAMPA
,

dsNMDA

dt
= α(1− sNMDA)

∑
j δ(t− tj)−

sNMDA

τNMDA
,

dsGABA

dt
=
∑

j δ(t− tj)−
sGABA

τGABA

87/104



where tj stands for the j−th spike onset time; α is a constant rate; τx, for
x ∈ {AMPA, NMDA, GABA}, is the decay time constant of the corresponding sx.
The term (1− sNMDA) has been designed in order to prevent sNMDA from exceeding
the value of 1. Finally, δ(·) stands for the Dirac delta function.

Individual neurons within the same population are connected to each other with a
population-specific probability (px) and connection strength (weights, wx), such that
the maximal conductance for a specific receptor x, for x ∈ {AMPA, NMDA, GABA},
is given by gx = pxwx. Connections between populations similarly are characterized by
probabilities and strengths. These connections are depicted with arrows in Fig 1 in the
manuscript. The direct (green connections), indirect (blue connections), and
pallidostriatal (yellow connections) pathways are present. Depending on the type of
receptors, these connections can be inhibitory (arrows ending in a circle) or excitatory
(arrows ending in a triangle). Parameters used for the connectivity are provided in
Table S3 Table.

All populations have an external current Iext to tune their baseline firing rate, given
by

Iext(t) = Sext,AMPA(V (t)− VE) + Sext,GABA(V (t)− VI)

where Sext,x for x ∈ {AMPA, GABA} is a mean-reverting random walk derived from
the stochastic differential equation

dSext,x =
(µext,x − Sext,x)

τx
dt+ σext,x

√
2

τx
dWt.

Here, Wt is a Wiener process, τx is the time decay of the external current, and µext,x

and σext,x are computed as

µext,x = 0.001Eext,xfext,xNext,xτx,

σext,x = Eext,x

√
0.0005fext,xNext,xτx.

The parameter fext,x is the external input frequency, Eext,x is the mean efficacy of the
external connections, Next,x is the number of connections, and τx the time decay
constant. Values of all of these parameters are specified in Tables S3 Table and S5
Table.

88/104



all pathways network direct/indirect pathways network
Connected Receptor Connection Connection Connected Receptor Connection Connection
populations type Probability strength populations type Probability strength
CxI − CxI GABA 1 1.075 CxI − CxI GABA 1.0 1.075
CxI − Cx GABA 0.5 1.05 CxI − Cx GABA 0.5 1.05
Cx− Cx AMPA 0.13 0.0127 Cx− Cx AMPA 0.13 0.0127

NMDA 0.13 0.1 NMDA 0.13 0.08
Cx− CxI AMPA 0.0725 0.113 Cx− CxI AMPA 0.0725 0.113

NMDA 0.0725 0.525 NMDA 0.0725 0.525
Cx− dSPN AMPA 1 0.022 Cx− dSPN AMPA 1.0 0.015

NMDA 1 0.03, NMDA 1.0 0.02
Cx− iSPN AMPA 1 0.022 Cx− iSPN AMPA 1.0 0.015

NMDA 1 0.028 NMDA 1.0 0.02
Cx− FSI AMPA 1 0.085 Cx− FSI AMPA 1.0 0.19
Cx− Th AMPA 1 0.025 Cx− Th AMPA 1.0 0.025

NMDA 1 0.029 NMDA 1.0 0.029
dSPN − dSPN GABA 0.45 0.28 dSPN − dSPN GABA 0.45 0.28

dSPN − iSPN [119] GABA 0.45 0.28 dSPN − iSPN GABA 0.45 0.28
dSPN −GPi GABA 1 1.8 dSPN −GPi GABA 1.0 2.09

dSPN −GPeA [120–122] GABA 0.4 0.054
iSPN − iSPN GABA 0.45 0.28 iSPN − iSPN GABA 0.45 0.28

iSPN − dSPN [119] GABA 0.5 0.28 iSPN − dSPN GABA 0.5 0.28
iSPN −GPeA [64, 120–122] GABA 0.4 0.61 iSPN −GPe [123,124] GABA 1.0 4.07
iSPN −GPeP [64, 120,122] GABA 1 4.07

FSI − FSI GABA 1 2.7 FSI − FSI GABA 1.0 3.25833
FSI − dSPN [119] GABA 1 1.25 FSI − dSPN GABA 1.0 1.2
FSI − iSPN [119] GABA 1 1.15 FSI − iSPN GABA 1.0 1.1
GPeA −GPeA GABA 0.4 0.15

GPeA − iSPN [101,122,125–127] GABA 0.4 0.12
GPeA − dSPN [101,122,125–127] GABA 0.4 0.32
GPeA − FSI [101,120–122,125–127] GABA 0.4 0.01

GPeP −GPeP GABA 0.4 0.45 GPe−GPe GABA 0.0667 1.75
GPeP −GPeA [64, 77,122,128,129] GABA 0.5 0.3
GPeP − STN [120,125,126,130,131] GABA 0.1 0.37 GPe− STN [132] GABA 0.0667 0.35
GPeP −GPi [120,125,126,130,131] GABA 1 0.058 GPe−GPi GABA 1.0 0.058
GPeP − FSI [101,121,125,126,131] GABA 0.4 0.1

STN −GPeP [64, 122,133] AMPA 0.161666 0.10 STN −GPe [132] AMPA 0.161666 0.07
NMDA 0.161666 1.51 NMDA 0.161666 1.51

STN −GPeA [64, 122,133] AMPA 0.161666 0.026
NMDA 0.161666 0.075

STN −GPi AMPA 1 0.0325 STN −GPi AMPA 1.0 0.038
GPi− Th GABA 1 0.3315 GPi− Th GABA 1.0 0.3315
Th− dSPN AMPA 1 0.3285 Th− dSPN AMPA 1.0 0.3825
Th− iSPN AMPA 1 0.3285 Th− iSPN AMPA 1.0 0.3825
Th− FSI AMPA 0.8334 0.1 Th− FSI AMPA 0.8334 0.1
Th− Cx NMDA 0.8334 0.03 Th− Cx AMPA 0.8334 0.03
Th− CxI NMDA 0.8334 0.015 Th− CxI AMPA 0.8334 0.015

S3 Table. CBGT connectivity parameters. Two blocks of 4 columns each are
depicted. The first block contains information regarding the network when the 4
different pathways are simulated (see Fig 1 in the manuscript), while the second block
contains information regarding the network when only direct/indirect pathways are
simulated. Columns in each block describe the parameters used to compute, in each
population (1st columns), the maximal conductances gx, for
x ∈ {AMPA, NMDA, GABA} (2nd column), which is the product of the probability
of connectivity (3rd column) times the strength of connection (4th column). The rest of
parameters are common such that τAMPA = 2ms, τNMDA = 100ms, τGABA = 5ms,
VE = 0mV , VI = −70mV , and α = 0.6332. The references corresponding to the
weights involved in the arkypallidal pathway are specified in each of the connections.
The rest of connections were adjusted to reflect empirical knowledge about local and
distal connectivity associated with different populations [43,118,134,135], as well as
resting and task-related firing patterns (see Table S4 Table and [44]).

89/104



Population baseline FR full FR References
range (Hz) range (Hz)

dSPN [0, 5] [0, 35] [136–139]
iSPN [0, 5] [0, 35] [136–139]
GPe [40, 90] [40, 150] [140–142]
GPi [40, 90] [40, 150] [142]
STN [10, 35] [10, 55] [140–142]
Th [5, 20] [5, 85] [143]
Cx [0, 100] [144]
FSI [5, 40] [5, 70] [144]

S4 Table. Firing frequency ranges observed in different brain populations.
The second column refers to the firing frequency ranges observed experimentally during
baseline for each population set in the first column, whereas the third column refers to
the ranges observed during decision tasks. In both cases, the ranges reflect experimental
data from primates and rats (see references in the last column).

all pathways network direct/indirect pathways network
External External External External External External
input connection connections input connection connections

Population Receptor frequency efficacy number Population Receptor frequency efficacy number

CxI AMPA 3.7 1.2 640 CxI AMPA 3.7 1.2 640
Cx AMPA 2.5 2.0 800 Cx AMPA 2.3 2.0 800

dSPN AMPA 1.3 4.0 800 dSPN AMPA 1.3 4.0 800
iSPN AMPA 1.3 4.0 800 iSPN AMPA 1.3 4.0 800
FSI AMPA 4.8 1.55 800 FSI AMPA 3.6 1.55 800
GPeA GABA 2.0 2.0 2000

AMPA 2.5 2.0 800
GPeP GABA 2.0 2.0 2000 ∗GPe GABA 2.0 2.0 2000

AMPA 4.0 2.0 800 AMPA 4.0 2.0 800
GPi AMPA 0.84 5.9 800 GPi AMPA 0.8 5.9 800
STN AMPA 4.45 1.65 800 STN AMPA 4.45 1.65 800
Th AMPA 2.2 2.5 800 Th AMPA 2.2 2.5 800

S5 Table. External current parameters. Parameters used to describe the external
current (Iext) arriving at the different populations of the CBGT network. From the
third column to the last, we specify the different parameters used to describe the
external current impinging in each population specified in column 1 and for the specific
type of receptors. A non described receptor type means that the parameters are
considered to be zero. The time decay constant τ is the same for all populations and
only depends on the type of receptor being τ = 2ms if the receptor type is AMPA and
τ = 5ms if it is GABA. ∗ Values in this row are the ones used when no intrinsic
separation of neurons is considered.

90/104



S2 Dopamine-dependent plasticity of corticostriatal
weights

Synaptic plasticity in CBGTPy is implemented using a dopamine-dependent
plasticity rule, in which the synaptic updates are governed solely by local factors,
without requiring individual neurons to access information about the global system
state. This rule is an adaptation of the plasticity mechanism presented in [40].

At each corticostriatal AMPA synapse, the model tracks three key values: eligibility
E(t), weight w(t), and conductance gx(t). The conductance is associated with the
synaptic current. How much the conductance grows with each pre-synaptic spike is
determined by the weight. The weight is the plastic element in the system, which
changes over time depending on the time courses of eligibility and dopamine release.

At a computational level, E(t), which represents a synapse’s eligibility to undergo
weight modification, depends on the relative spike times of the pre- and post-synaptic
neurons involved in the synapse. To compute this quantity, we first define the variables
APRE(t) and APOST (t), which serve as instantaneous estimates of the recent levels of
pre- and post-synaptic spiking, respectively. Each time a spike occurs in the pre- or
post-synaptic cell, these values are increased by a fixed amount (∆PRE and ∆POST ,
respectively), and between spikes, they decay exponentially with a time decay constant
τPRE and τPOST , respectively. That is,

dAPRE

dt
=

1

τPRE
(∆PREXPRE (t)−APRE(t)) ,

dAPOST

dt
=

1

τPOST
(∆POSTXPOST (t)−APOST (t))

where XPRE(t) and XPOST (t) are sums of Dirac delta functions representing the spike
trains of the two neurons. That is,

XPRE =
∑

ts∈XCx

δ(t− ts), XPOST =
∑

ts∈XSPN

δ(t− ts),

where ts is the spike onset, XCx is the set of all cortical neurons projecting to the
postsynaptic neuron of interest, and XSPN refers to the identity of that postsynaptic
neuron within the striatum.

Eligibility (E(t)) changes over time according to

dE

dt
=

1

τE
(XPOST (t)APRE(t)−XPRE (t)APOST (t)− E) (2)

where τE is a time constant. Note that based on equation (2), E(t) tends toward a level
that is boosted whenever a post-synaptic spike occurs soon enough after a pre-synaptic
spike and is reduced whenever a pre-synaptic spike occurs soon enough after a
post-synaptic spike.

The corticostriatal synaptic conductance gx takes the value of the synaptic weight,
w(t), at each pre-synaptic spike time and decays exponentially in-between these spikes:

dgx
dt

=
∑
j

w(tj)δ(t− tj)−
gx

τAMPA
,

where x stands for the specific connection, tj denotes the time of the j−th spike in the
cortical presynaptic neuron, δ(t) is the Dirac delta function, τAMPA is the decay time
constant associated with AMPA synapses, and w itself changes over time based on

91/104



dopamine release and the post-synaptic neuron’s eligibility. The evolution of w is given
by

dw

dt
= [αj

wE(t)f(KDA)(w
j
max − w)]+ + [αj

wE(t)f(KDA)(w − wj
min)]

−, (3)

where the nomenclature [·]+ ([·]−) represents a function whose output is the value inside
the brackets if it is positive (negative) and 0 otherwise. The learning rate is denoted in
equation (3) by αj

w, for j ∈ {dSPN, iSPN}, depending on to which of the two
populations the post-synaptic neuron belongs. This rate has a positive sign for dSPN
neurons and a negative one for iSPN neurons to reproduce the observation that positive
feedback signals lead to a strengthening of the eligible direct pathway connections and a
weakening of the eligible indirect pathway connections. Furthermore, wj

max and wj
min

are upper and lower bounds for the weight w, respectively, for j ∈ {dPSN, iSPN}.
In equation (3), the variable KDA represents the level of available dopamine in the

network, which is computed from the amount of dopamine released through the effect of
the differential equation

dKDA

dt
= Cscale

∑
i

(DAinc(ti)−KDA)δ(ti)−
KDA

τDA
,

where DAinc(tj) the increment of dopamine, relative to a baseline level, that is
delivered at time tj . That is, after a specific decision i is made at time tj , a reward
value ri(tj) associated to action i is received, which induces a dopamine increment
based on the reward prediction error

DAinc(tj) = ri(tj)−Qi(tj),

where Qi(tj) is the expected reward for action i at time tj . This expected reward obeys
the update rule

Q(tj+1) = Qi(tj) + αQ(ri(tj)−Qi(tj)),

where αQ ∈ [0, 1] is the value learning rate. More precisely, note that to account for the
motor sensory response, the reward is delivered to the network at the end of phase 1,
300ms after the decision is made (see Fig 3 in the manuscript); Q and DAinc are
updated together at this reward delivery time, and the update of DAinc in turn impacts
the evolution of KDA. Finally, the function f(KDA) in equation (3) represents the
impact that the available dopamine KDA has on plasticity, such that, if the target
neuron lies in the dSPN population, then

f(KDA) =

{
−γ, if KDA < −µ,
γ

µ
KDA, if KDA ≥ −µ,

while if the target neuron lies in the iSPN population, then

f(KDA) =

{
ε
γ

µ
KDA, if KDA < µ,

εγ, if KDA ≥ µ.

for fixed, positive scaling parameters γ, µ. Parameters values used for the plasticity
implementation can be found in Table S6 Table and Table S15 Table.

To achieve effective learning, it is critical to address the credit assignment problem
of ensuring that the pathways promoting the choice of selected action are the ones that
are reinforced by the reward following that action. To achieve this alignment, we
introduce a sustained activation signal to the action channel associated with the
selected action throughout phase 1, based on the patterns of sustained activity that

92/104



Parameter Value

δPRE 0.8
δPOST 0.04
τPRE 15ms
τPOST 6ms
τE 100ms

αdSPN
w 39.5
αiSPN
w −38.2

wdSPN
max 0.055
wiSPN

max 0.035
wdSPN

min 0.001
wiSPN

min 0.001
ε 0.3
γ 3.0
µ 0.5

Cscale 85
τDA 2.0ms
αQ 0.6

S6 Table. Parameters used for the plasticity implementation.

have been observed in motor planning tasks [57]. Specifically, during this phase, the
internal gain of cortical stimulation is altered so that the cortical population
corresponding to the selected action maintains elevated activity (at 70% of its firing rate
from the end of phase 0 ), while cortical populations corresponding to other actions
return to baseline firing now that those actions are no longer under consideration. The
localized, sustained cortical activation ensures that the downstream striatal neurons in
the appropriate action channel have high eligibility [21].

Taken together, the alteration of the direct-indirect pathway balance increases the
tendency of the network to select the rewarded action, giving rise to learning. By using
a realistic plasticity rule to produce learning, CBGTPy will enable users to investigate
the interplay between the dopaminergic system and basal ganglia dynamics in a way
that would be impossible with a less physiologically-accurate learning rule.

93/104



S3 CGBTpy installation and dependencies

The CBGTPy codebase is written in Python 3.8. If the user is using Python
version < 3, e.g. 2.7, some of the dependent libraries may not work. Further details
about the installation procedure can be found on our github repository.

94/104

https://github.com/CoAxLab/CBGTPy/blob/main/README.md


S4 List of files

Here we provide the list of the files that are found on our Github repository and that
make up the network, including a short reference to what is implemented in each of
them. We distinguish between different sets of files: some are common and used
regardless of the type of experiment performed. The remainder have separate versions
specific to each experiment type, either the n-choice experiment or the stop-signal task,
enabling easier swapping between alternative configurations.

The common files are:

• agentmatrixinit.py: builds the CBGT network.

• backend.py: functions for handling pipeline modules, also connects to the Ray
server.

• frontendhelpers.py: deals with the environment variable passed.

• generateepochs.py: where rewards and changepoints are defined; rewards are
probabilistic and delivered according to which action has been chosen.

• pipeline creation.py: creates all modules constituting the pipeline.

• plotting functions.py: implementation of functions useful for data visualization.

• plotting helper functions.py: implementation of functions useful for extracting
relevant data.

• postprocessing helpers.py: contains code to extract the data frames for recorded
variables.

• qvalues.py: sets up and updates the parameters for the Q-learning algorithm on
every trial.

• setup.py: cythonizes the corresponding core simulator code in agent timestep.pyx.

• tracetype.py: defines wrapper classes that can pair numeric values with metadata.

• generate opt dataframe.py: reads in all optogenetic signal-related parameters and
generates a data frame.

The files that are used for the simulation of the plasticity experiments are:

• agent timestep nchoice.pyx: contains code for simulating the timesteps of the
spiking network.

• init params nchoice.py: sets neurons’ parameters, receptors’ parameters,
populations’ parameters, dopamine-related parameters for dSPNs and iSPNs, and
action channels’ parameters with either the defaults or values passed as arguments
from the notebook.

• interface nchoice.py: main simulation controller loop, interacts between
environment and the CBGT network.

• popconstruct nchoice.py: sets up connections between populations and
corresponding parameters such as the probability of connection, the mean
synaptic efficacy, and the parameters associated with synaptic plasticity (S2).

The files that belong to the stop-signal task experiment are:

95/104

https://github.com/CoAxLab/CBGTPy/blob/main/README.md


• agent timestep stopsignal.pyx: contains code for simulating the timesteps of the
spiking network.

• generate stop dataframe.py: reads in all stop signal-related parameters and
generates a data frame.

• init params stopsignal.py: sets neurons’ parameters, receptors’ parameters,
populations’ parameters, dopamine-related parameters for dSPNs and iSPNs, and
action channels’ parameters with either the defaults or values passed as arguments
from the notebook; this version differs from the one used to perform the plasticity
experiment since different populations are considered for the simulation of the two
experiments.

• interface stopsignal.py: main simulation controller loop, interacts between
environment and the CBGT network.

• popconstruct stopsignal.py: sets connections between populations and
corresponding parameters such as the probability of connection, the mean
synaptic efficacy, and the parameters associated with synaptic plasticity.

96/104



S5 Network scaling

The CBGTPy model allows for the simulation of networks with an arbitrary number
of action channels, with a default setting of 2 channels. As the number of channels is
varied, certain pathways are automatically adjusted to ensure that the overall quantity
of synaptic input to each subpopulation remains constant, allowing the neurons to
maintain their proper baseline firing rates. To determine which pathways require
scaling, the connectivity pattern of each pathway is compared to a set of cases, which
are outlined in Figure S1 Fig. If, for a given pathway, each target subpopulation only
receives input from a single channel or from a shared source, no scaling factor is applied.
If, however, each target subpopulation receives input from all action channels, then that
pathway requires a scaling factor. This factor is calculated as 2/n, where n is the new
number of action channels. When n > 2, the scaling factor is used to reduce the
connection probability so that the expected number of afferent synapses per neuron
remains constant. As a special case, when n = 1 and the scaling factor is 2, the weights
of the synapses are increased rather than the connection probability, to avoid potentially
setting the pathway’s connection probability over 100%. For a detailed listing of
connections to which a scaling factor is applied, see Table S7 Table.

S1 Fig. Overview of scaling rules. Pathways featuring solely divergent (A) or
parallel (B,C) connectivity never have a scaling factor applied. As the number of
incoming connections to each target subpopulation remains constant, no scaling of the
pathway parameters is needed. When the number of action channels is reduced from 2
to 1, pathways defined by convergent (D) or all-to-all (E) connectivity have their
synaptic weights scaled up by a factor of 2. When the number of action channels is
increased above 2, convergent (F) and all-to-all (G) pathways have their synaptic
connection probabilities decreased via the scaling factor.

97/104



all pathways network direct/indirect pathways network
Connected Receptor Scaling rule Connected Receptor Scaling rule
populations type applied? populations type applied?
CxI − CxI GABA no CxI − CxI GABA no
CxI − Cx GABA no CxI − Cx GABA no
Cx− Cx AMPA no Cx− Cx AMPA no

NMDA no NMDA no
Cx− CxI AMPA yes Cx− CxI AMPA yes

NMDA yes NMDA yes
Cx− dSPN AMPA no Cx− dSPN AMPA no

NMDA no NMDA no
Cx− iSPN AMPA no Cx− iSPN AMPA no

NMDA no NMDA no
Cx− FSI AMPA yes Cx− FSI AMPA yes
Cx− Th AMPA no Cx− Th AMPA no

NMDA no NMDA no
dSPN − dSPN GABA no dSPN − dSPN GABA no
dSPN − iSPN GABA no dSPN − iSPN GABA no
dSPN −GPi GABA no dSPN −GPi GABA no
dSPN −GPeA GABA no
iSPN − iSPN GABA no iSPN − iSPN GABA no
iSPN − dSPN GABA no iSPN − dSPN GABA no
iSPN −GPeA GABA no iSPN −GPe GABA no
iSPN −GPeP GABA no
FSI − FSI GABA no FSI − FSI GABA no
FSI − dSPN GABA no FSI − dSPN GABA no
FSI − iSPN GABA no FSI − iSPN GABA no
GPeA −GPeA GABA yes
GPeA − iSPN GABA no
GPeA − dSPN GABA no
GPeA − FSI GABA yes
GPeP −GPeP GABA yes GPe−GPe GABA yes
GPeP −GPeA GABA no
GPeP − FSI GABA yes
GPeP − STN GABA no GPe− STN GABA no
GPeP −GPi GABA no GPe−GPi GABA no
GPeP − FSI GABA no
STN −GPeP AMPA no STN −GPe AMPA no

NMDA no NMDA no
STN −GPeA AMPA no

NMDA no
STN −GPi AMPA yes STN −GPi AMPA yes
GPi− Th GABA no GPi− Th GABA no
Th− dSPN AMPA no Th− dSPN AMPA no
Th− iSPN AMPA no Th− iSPN AMPA no
Th− FSI AMPA yes Th− FSI AMPA yes
Th− Cx AMPA yes Th− Cx AMPA yes
Th− CxI AMPA yes Th− CxI AMPA yes

S7 Table. Scaling rule application per connection. Two blocks of 2 columns
each are depicted. The first block applies to the full network containing all pathways,
while the second block applies to the reduced network containing only the
direct/indirect pathways.

98/104



S6 Supporting tables

Table of reference Possibility of
parameters in the modification

Feature manuscript Specifications by the user

Number of neurons
considered in

each population

S1 Appendix:
Table S1 1

Yes

Neural parameters

S1 Appendix:
Table S1 2

Suppl. Tables:
S2 Table, S3 Table,
S4 Table, S5 Table

Yes

CBGT connectivity
parameters

S1 Appendix:
Table S1 3

Receptors type
Conn. probability
Conn. strength
Conn. presence

No
Yes
Yes
Yes

External current
parameters

S1 Appendix:
Table S1 5

Receptor
Frequency
Conn. efficacy
Conn. number

No
Yes
Yes
No

Parameters used for
the plasticity

implementation

S2 Appendix:
Table S2 1

Suppl. Tables:
S6 Table, S7 Table,
S8 Table

Yes

Parameters used for
the stop signal

implementations

Suppl. Tables:
S9 Table

Yes

Parameters used for
the optogenetic
implementations

Suppl. Tables:
S10 Table

Yes

Scaling rule
application per

connection.

S5 Appendix:
Table S5 1

No

S8 Table. Relation of all parameters editable by the user. Here we list all
those features that the user can modify and those that cannot. If so, we indicate in
which table of the Supplementary information the specific parameters are described.

99/104



Parameter Definition

N Number of receptors of the neuron
C Capacitance in nF

Taum Membrane time constant in ms
RestPot Neuron resting potential in mV
ResetPot Neuron reset potential in mV
Threshold Neuron reset potential in mV
RestPot ca Resting potential for calcium ions
Alpha ca Amount of increment of [Ca] with each spike discharge
Tau ca Time constant of Ca-related conductance
Eff ca Calcium efficacy
tauhm Duration of the burst in ms
tauhp Duration of hyperpolarization necessary to recruit a maximal

post-inhibitory rebound response in ms
V Threshold for bursts activation in mV

V T Low-threshold of Ca reversal potential in mV
g T Low-threshold of Ca maximal conductance in mS/cm2

g adr max Maximum value of the conductance
V adr h Potential for g adr max
V adr s Slop of g adr at V adr h, defining how sharp the shape of g ard is

ADRRevPot Reverse potential for ADR
g k max Maximum outward rectifying current

V k h potential for g k max
V k s Defines how sharp the shape of g k is

tau k max Maximum time constant for outward rectifying K current
n k Gating variable for outward rectifying K channel
h Gating variable for the low-threshold Ca current

S9 Table. Neuronal parameters editable by the user. These parameters can be
modified through the data frame params.

Parameter Definition

N Population-specific number of neurons in the nuclei
C Capacitance in nF

Taum Membrane time constant in ms
gT Ca low-threshold maximal conductance in mS/cm2

S10 Table. Population-specific neuron parameters changeable by the user.
These parameters can be modifiable through the dictionary pops, addressing the
population of interest.

Parameter Definition

Tau AMPA AMPA time constant in ms
RevPot AMPA AMPA reversal potential in mV

Tau GABA GABA time constant in ms
RevPot GABA GABA reversal potential in mV
Tau NMDA NMDA time constant in ms

RevPot NMDA NMDA reversal potential in mV
RevPot ChR2 Channelrhodopsin-2 reversal potential in mV
RevPot NpHR Halorhodopsin reversal potential in mV

S11 Table. Synaptic and channel parameters changeable by the user. These
parameters can be modified through the data frame receps.

100/104



Parameter Definition

FreqExt AMPA Baseline input firing rate to AMPA receptors
MeanExtEff AMPA AMPA conductance
MeanExtCon AMPA average of AMPA connections

FreqExt GABA input firing to GABA receptors
TMeanExtEff GABA GABA conductance
MeanExtCon GABA average of GABA connections

S12 Table. Population-specific baseline parameters modifiable by the user.
These parameters can be modified through the dictionary base, addressing the
population of interest.

Parameter Definition

dpmn DOP Time constant of the dopamine trace
dpmn DAt Tonic dopamine

dpmn dPRE Fixed increment for pre-synaptic spiking (Apre)
dpmn dPOST fixed increment for post-synaptic spiking (Apost)
dpmn tauE Eligibility trace decay time constant

dpmn tauPRE Decay time constant for the pre-synaptic spiking trace (Apre)
dpmn tauPOST Decay time constant for the post-synaptic spiking trace (Apost)

dpmn m Motivation, that modulates the strength of the dopamine level
dpmn E Eligibility trace

dpmn DAp Phasic dopamine
dpmn APRE Pre-synaptic spiking trace
dpmn APOST Post-synaptic spiking trace
dpmn XPRE Pre-synaptic spike time indicators
dpmn XPOST Post-synaptic spike time indicators
dpmn fDA D1 f(DA) value for D1-SPNs
dpmn fDA D2 f(DA) value for D2-SPNs
dpmn x FDA threshold for f(DA) function
dpmn y FDA threshold for f(DA) function

dpmn d2 DA eps Scaling factor for dopamine levels of D2-SPNs as compared
to D1-SPNs

S13 Table. Dopamine-related parameters editable by the user. These
parameters can be modified through the data frame dpmns.

Parameter Value

dpmn type 1 for dopamine-related variables of dSPNs or 2 for iSPN neurons
dpmn alphaw weight increment proportional to the dopamine discharge
dpmn wmax upper bound for W

S14 Table. Dopamine-related parameters for corticostriatal projections to
dSPN and iSPN neurons. Each of the striatal SPN population, dSPN and iSPN,
maintain a copy of this data structure which can be independently modified through the
data frames dSPN params and iSPN params defined in the configuration dictionary in
the notebooks.

101/104



Parameter Value

δPRE 0.8
δPOST 0.04
τPRE 15ms
τPOST 6ms
τE 100ms

αdSPN
w 39.5
αiSPN
w −38.2

wdSPN
max 0.055
wiSPN

max 0.035
wdSPN

min 0.001
wiSPN

min 0.001
ε 0.3
δ 3.0
µ 0.5

Cscale 85
τDA 2.0ms
αQ 0.6

S15 Table. Parameters used for plasticity implementation. For more details
about the plasticity parameters, please refer to S2 Appendix. The parameters without a
subscript can be modified using data frame dpmns, whereas the parameters with a
subscript dSPN or iSPN can be modified through the data frames dSPN params and
iSPN params respectively.

Parameter Description Example

Stop signal present List of boolean variables [True, True]

Stop signal probability
Proportional of trials to be
randomly selected or list of trial
numbers per nuclei

[1., 1.]

Stop signal amplitude Excitatory conductance [0.4, 0.4]
Stop signal onset Onset time in ms [70., 70.]

Stop signal duration
Duration time in ms or
phase of the simulation

[145., 145.]

Stop signal channel
List of channels
(“all” or channel name)

[“all”,“all”]

Stop signal population List of nuclei [“STN”,“GPeA”]

S16 Table. Parameters that can be set for stop signal stimulation. The
example values included in the table describe the parameters used to generate Figure 7.

102/104



Parameter Description Example

Optogenetic signal present List of boolean variables [True, True]

Optogenetic signal probability
Proportional of trials to be
randomly selected or list of
trial numbers per nuclei

[[0],[1]]

Optogenetic signal amplitude
Excitatory or inhibitory
conductance

[0.5, -0.5]

Optogenetic signal onset Onset time in ms [10., 10.]

Optogenetic signal duration
Duration time in ms or
phase of the simulation

[“phase 0”, 400.]

Optogenetic signal channel
List of channels
(“all” or channel name)

[“all”,“all”]

Optogenetic signal population List of nuclei [“iSPN”,“dSPN”]

S17 Table. Parameters that can be set for optogenetic stimulation. The
example values included in the table describe the parameters used to generate Figure 8.

103/104



S7 Supporting figures

S2 Fig. List of parameters and data frames that are returned from the
simulation.

S3 Fig. Example of results[’popfreqs’] data frame.

S4 Fig. Example of datatables[0] data frame.

S5 Fig. Example of Q df data frame.

104/104


	Dedication
	Acknowledgements
	Introduction and Aims
	General Background
	Biological Implementation of Reinforcement Learning
	Structure Learning with the CBGT Circuit

	Overview of Specific Aims
	CBGTPy: Creating an Extensible Framework
	SR-CBGT: Applying Successor Representation to RL Environments
	Background: The Hippocampus and Successor Representation
	Creating a Structured RL Task
	Developing an SR Model of Place Cells
	Merging the SR Model with CBGTPy

	Summary

	CBGTPy: An extensible cortico-basal ganglia-thalamic framework for modeling biological decision making
	Introduction
	The toolbox
	Agent-Environment Paradigm
	Setting up a simulation
	User level modifications

	Experiments
	An n-choice task in an uncertain environment
	A stop signal task
	Optogenetic stimulation

	Discussion

	Modeling CBGT-hippocampal cooperation via successor representation
	Introduction
	Methods
	Defining a Structured RL Task
	Successor Representation
	Training the Place Cell Representation
	Extending the CBGTPy Framework
	Generating RPEs with Place Cells
	Investigating Alternative Representations

	Results
	GRU-SR Model Learns the Task Structure
	Joint GRU-SR-CBGTPy Model Performance
	Performance of Alternative Place Cell Regimes

	Discussion

	Conclusion
	Summary of Results
	The CBGTPy Framework
	Basal Ganglia and Hippocampal Interaction

	General Discussion

	Bibliography
	Appendices
	CBGT network
	Overview of CBGT pathways
	CBGT model details

	Dopamine-dependent plasticity of corticostriatal weights
	CGBTpy installation and dependencies
	List of files
	Network scaling
	Supporting tables
	Supporting figures


