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Abstract

The world changes. Therefore, successful adaptation requires flexible decision-
making. Knowing when to rely on what is known (exploit) or sample alterna-
tives (explore) is crucial to this flexibility, as this decision influences the knowl-
edge we have about the world. Previous work on adaptive exploration has largely
been studied at the level of action-value estimation, with the focus on the ac-
tions themselves68,122,61. This approach has been fruitful, allowing us to begin
to taxonomize the kinds of exploration that exist and the contexts under which
they operate, and this has helped us to take first steps toward understanding
the influence of neuromodulatory systems on these taxonomized forms of explo-
ration64,161,177,162. However, these results concentrate on behavioral outcomes
rather than how a learner should change the set of rules that shape whether one
should explore new options or exploit what they know (i.e. decision policy). So,
investigating how underlying decision dynamics shift under changing conditions
to adaptively navigate the exploration-exploitation continuum is an important
complement to previous work.

At the implementational level, two neuromodulatory systems may drive these
decision dynamics. Previous computational work has proposed that competition
between and within corticobasal ganglia-thalamic (CBGT) populations repre-
senting specific actions should encode decision uncertainty with explicit links
to changes in underlying decision parameters46,44,43,131. In addition, the locus
coereleus-norepinephrine (LC-NE) system modulates exploration states under
uncertainty10, with changes in firing rates indexing the explore-exploit decision
state79.

Adaptive decision-making is also driven by latent learning. Learning the la-
tent, higher order structure of the environment speeds learning in contexts that
share structural similarities, but distinct superficial features29,83. Explore-exploit
dynamics are linked with this kind of learning under experimental and natural-
istic environmental conditions137,138,62,63, with latent learning of environmental
structure shaping future exploration136. Understanding how the underlying de-
cision policy evolves while learning higher order structure paints a richer and
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more naturalistic picture of the mechanisms driving flexible adaptation.
To shed light on the mechanisms that may be driving dynamic decision pol-

icy, this dissertation develops a set of experiments to test how decision pol-
icy adapts at two levels of abstraction. As a first step, I examine how decision
policies shift choices in response to an environmental change from an algorith-
mic perspective (Chapter 2). Then I test theoretically motivated predictions
about how corticostriatal and locus coeruleus-norepinephrine dynamics may me-
diate this process (Chapters 2 and 3). Finally, to explore how decision policy
reconfiguration may facilitate higher-level inference, I test how these adaptive
exploration-exploitation dynamics contribute to learning serially dependent,
higher-order structure (Chapter 4).
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1.2 The cortico-basal ganglia-thalamic network. The hyperdirect path-
way is marked in red, the indirect pathway is marked in blue, and
the direct pathway is marked in green. FSI, fast spiking interneurons;
GPe, globus pallidus external segment; GPi, globus pallidus inter-
nal segment; SNc, substantia nigra pars compacta; STN, subthala-
mic nucleus; STR, striatum. Diagram adapted44 . . . . . . . . . . 14

2.1 Dynamic decision policy reconfiguration. A) The degree of conflict
and volatility shifts the optimal balance between exploration and ex-
ploitation. B) The drift diffusion model. C) Accuracy (probability
that left choice selected is selected; P(L)) as a function of coordinated
changes in the rate of evidence accumulation (v) and the amount of
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2.2 Task and uncertainty manipulation. A) In Experiment 1, participants
were asked to choose between one of two ”mystery boxes”. The point
value associated with a selection was displayed above the chosen mys-
tery box. The sum of points earned across trials was shown to the
left of a treasure box on the upper right portion of the screen. B) In
Experiment 2, participants were asked to choose between one of two
Greebles (one male, one female). The total number of points earned
was displayed at the center of the screen. The stimulus display was
rendered isoluminant throughout the task. C) The manipulation of
conflict and volatility for Experiments 1 (gray) and 2 (black). Each
point represents the combination of degrees of conflict and volatil-
ity. Under high conflict, the probability of reward for the optimal and
suboptimal target is relatively close. Under high volatility, a switch
in the identity of the optimal target selection is relatively frequent. 26

2.3 Behavior. A) Mean accuracy and reaction time for the manipulation
of conflict in Experiment 1. B) Mean accuracy and reaction time for
the manipulation of volatility in Experiment 1. Each point represents
the average for a single subject. The distribution to the right repre-
sents the bootstrapped uncertainty in the mean difference between
conditions (high conflict or high volatility subtracted from low con-
flict or low volatility). Distributions with 95% CIs that do not en-
compass 0 are marked with an asterisk. C) Mean accuracy for Ex-
periment 2. Each purple line represents a subject. The black line rep-
resents the mean accuracy calculated across subjects. D) Reaction
time distributions for each subject for Experiment 2. The black line
represents the mean reaction time calculated over subjects. Error bars
indicate a bootstrapped 95% confidence interval. For panels C and
D, λ values shown above each plot specify the average period of op-
timal choice stability and the probability of reward shown on the x-
axis specifies the degree of conflict. Means are calculated over all tri-
als. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
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2.4 Changes in ideal observer estimates as a function of condition for Ex-
periment 1. A) Changes in the belief in the value of the optimal tar-
get (∆B) as a function of conflict and volatility over time. B) Be-
lief in the value of the optimal choice by condition and averaged over
all trials. C) Changes in change point probability (Ω) as a function
of conflict and volatility over time. D) Change point probability by
condition and averaged over all trials. Error bars represent 95% CIs.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Change point sensitivity of underlying decision processes. Posterior
distributions for each decision parameter are shown for the trial prior
to a change point to three trials after the change point. A) The drift
rate. B) The boundary height. C) Non-decision (onset) time. D) Start-
ing bias. E) Drift criterion. F) Degree of fit to observational data as
information loss. The models that lost the least information are marked
with an asterisk. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Change-point-evoked uncertainty. A) Changes in ideal observer es-
timates of uncertainty over time and their effect on the boundary height
and the drift rate. Directly after a change point, the boundary height
increases and the drift rate slows. Over time, the boundary height
returns to its baseline value and the drift rate increases. B) Fitted
estimates of change-point-evoked drift rate and boundary height for
both experiments with 95% CIs of the posterior distributions. Inset
plots represent data from Experiment 2. . . . . . . . . . . . . . . 41

2.7 The decision surface. A) Representing decision space in vector form.
An angle (θ) was calculated between sequential values of (a,v) co-
ordinates, beginning with the trial prior to the change point. This
represents subject-averaged data from Experiment 1. Note that these
trajectories are z-scored. B) Distributions depicting the angle between
drift rate and boundary height for both Experiments 1 and 2. Each
subpanel shows the distribution of angles between (a, v) over sequen-
tial trials, beginning with the trial prior to the change point. The area
of the shaded region is proportional to the density and the arrow rep-
resents the circular mean. . . . . . . . . . . . . . . . . . . . . . . 45
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2.8 Model comparisons for the effect of volatility and conflict on the re-
lationship between drift rate and boundary height. A) The posterior
probability for models testing for an effect of volatility and conflict
on the angle of shift in a and v, θ. B) The Bayes Factor for the null
model relative to the alternative models specifying either an effect
of time relative to a change point alone or a conditional effect on this
evoked response θ. C) The Bayes Factor for the evoked response model
relative to the surviving alternative models specifying a conditional
effect on the evoked response, θ. Note that time refers to time rel-
ative to the onset of a change point. All models specifying an inter-
action also include main effects. Dotted horizontal lines refer to grades
of evidence160. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.9 Method for analyzing pupil data. A) The evoked pupillary response
was characterized according to seven metrics. B) These pupillary fea-
tures were submitted to a principal component analysis. The con-
tribution of each feature to the variance explained for the first two
components is plotted for each subject. Note that we also conducted
a supplementary analysis of the task-evoked pupillary response us-
ing a more conventional method with similar results. . . . . . . . 49

2.10 Model comparisons for the effect of change-point-evoked pupillary
dynamics on the relationship between drift rate and boundary height
(θ). A) The posterior probability for models testing for an effect of
pupillary dynamics on θ. B) The Bayes Factor for the evoked response
model relative to the alternative models specifying an effect of pupil-
lary dynamics on the evoked response, θ. Note that time refers to time
relative to the onset of a change point. All models specifying an in-
teraction also include main effects. . . . . . . . . . . . . . . . . . 52
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3.1 Biologically realistic CBGT network performance. (A) Each CBGT
nucleus is organized into two action channels (red and blue) except
a common population for striatal FSIs (Fast Spiking Interneurons)
and cortical interneurons (CxI). CBGT network image adapted from157.
(B) Average firing rate profiles for D1-SPNs (first column) and D2-
SPNs (second column) for trials where left action was chosen, 100ms
before the decision time (t=0). The D1-SPNs encoding the ”left” ac-
tion are shown in blue whereas the D1-SPNs encoding the ”right” ac-
tion are shown in orange. The thick solid lines represent the firing
rates profiles for fast trials (short RTs) and thin dashed lines repre-
sent the firing rates profiles for slow trials (long RTs). The left-dSPNs
show a ramping of activity closer to decision time and the slope of
this ramp scales with response speed. (C) Drift rates are negatively
correlated to decision uncertainty. Simulated subjects represent sim-
ulations for different network instances and initial conditions (ran-
dom seeds). (D) Drift rate and decision uncertainty profiles aligned
to the change point. The drift rate drops whereas the decision un-
certainty increases as expected at the change point. . . . . . . . . 88

3.2 Analysis method. Step 1. Preprocessing of fMRI data. Step 2. Single-
trial estimates of the hemodynamic response. Step 3. Singular Value
Decomposition. Step 4. Logistic regression with an L1 penalty. Af-
ter crossvalidation, this outputs a predicted response (left or right),
here coded as 0 or 1. The further the predicted response from the in-
flection point of the logistic function, the more certain the prediction.
The distance of this predicted response from the optimal choice rep-
resents classifier uncertainty for each trial. Here, the predicted prob-
ability of a left response ŷt1 is 0.2. The distance from the optimal choice
on this trial, and, thereby, the classifier uncertainty, ut1 is 0.2. De-
cision parameters were estimated by modeling the joint distribution
of reaction times and responses within a drift diffusion framework. 92
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3.3 Classification performance and feature importance from trial-wise
actions. A) The mean cross-validated ROC curve and area under it
for classifying single-trial actions for each subject. The black dashed
line represents chance performance. B) Balanced accuracy for the clas-
sification of trial-wise actions per subject, where each point corresponds
to the performance in each cross-validation fold. C) Encoding weight
maps in standard space for both hemispheres, averaged across sub-
jects. D) The mean encoding weight and 95% confidence intervals
(CI) within regions of interest in the left hemisphere. Points repre-
sent individual subjects. Bars display the median across subjects. E)
The mean encoding weight and 95% CI within regions of interest in
the right hemisphere. SN: Substantia nigra; GPi: Internal segment
of globus pallidus; GPe: External segment of globus pallidus; EXA:
Extended amygdala; NAC: Nucleus accumbens; Pu: Putamen; Thal:
Thalamus; SMCx: Somatomotor cortex. . . . . . . . . . . . . . . 96

3.4 Change-point-evoked behavior and certainty. A) Accuracy as the prob-
ability of selecting the optimal choice. B) Change-point-evoked re-
action times. C) Change-point-evoked classifier uncertainty (blue)
and drift rate (v), or certainty (green). D) Bootstrapped distribu-
tions of the relationship between decoded classifier uncertainty and
certainty (v) by subject and in aggregate. . . . . . . . . . . . . . 99

3.5 CBGT network performance. (A) Choice probability of the CBGT
network model in an exemplary session of 40 trial and 4 blocks. The
reward contingency (left/right action is rewarded) is changed every
10 trials (marked by vertical dashed lines). The horizontal dashed
line represents a chance level (50%) probability to choose left. The
trial by trial probability was averaged over many sessions and sim-
ulated subjects. The choice probability of choosing left starts at chance
level (≈ 50%) when the session begins (trial = 0) but reaches an per-
formance of ≈ 70% at the middle of the block. The reward contin-
gency changes every block (every 10 trials), i.e every alternate block
(10-20, 30-40) is a block where action right is rewarded. The chocie
probability of left action drops during these blocks, because action
right is chosen. (B) Firing rate profiles of all the nuclei of the CBGT
network for trials where left action was chosen. The decision thresh-
old of 30(spikes/s) is marked by a horizontal dashed line. (C) En-
coding weights for CBGT nuclei for predicting the action chosen. 117
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4.1 Chemotaxis and valeretaxis. A) Chemotaxis, or the movement of an
organism in response to a chemical gradient4. The landscape of chemoat-
tractants and chemorepellents shapes navigation toward or away from
a chemical, respectively. The inset image shows a neutrophil in pur-
suit of nutrients. Image adapted under the CC 3.0 License. B) Valere-
taxis, or action selection in response to a value landscape. The land-
scape of reward (green cells) and punishment (red cells) shapes ac-
tion selection. Here, blue cells represent grid walls. Each panel shows
an optimal path, annotated by arrows. The left panel shows the base-
line reward landscape. The central panel shows a rotation of this base-
line reward landscape. The right panel shows an inversion of the op-
timal path, maintaining a similar degree of complexity as the base-
line and rotated paths, but altering path shape. . . . . . . . . . 120

4.2 Task. A) Participants were presented with a set of four doors that
acted as selection arms for spatial navigation, with each door mov-
ing the participant left, right, up, or down in latent graph space. To-
tal points for a round were shown above a treasure box on the up-
per left. B) If participants navigated to a cell on the optimal path,
they were rewarded with a coin. Navigating to a cell outside the op-
timal path was punished with a negative point. Navigating to a cell
that had already been visited made the selection arm for that response
disappear and the participant received 0 points for that trial. C) Be-
tween trials, participants saw a blank screen with a reminder of their
point score. D) The left panel shows round-based feedback. Follow-
ing a round of six choices, the participant was given summative feed-
back with a reminder of the game reset. The right panel shows ag-
gregate feedback over rounds, displayed at the end of the task. . . 121

14



4.3 Behavior. A) Mean accuracy over blocks. The Baseline phase is shown
in black, the Rotation phase is shown in red, and the Inversion phase
is shown in blue. The horizontal dashed line marks criterion perfor-
mance. The inset plot shows a bootstrapped estimate of the pairwise
difference in learning rate between the Inverted and Rotated phase,
expressed as number of blocks to criterion. Each line represents a sin-
gle subject. B) A reduced-bias estimate of reaction time variability
over blocks by phase. Shaded error shows a bootstrapped estimate
of 95% CIs. ) Valeretaxis for a single representative subject over time.
The optimal path is shown in green and cells selected by the partic-
ipant are shown in gray. To illustrate initial learning and peak learn-
ing in the Baseline phase, the first panel shows path selection in the
first block of the Baseline phase, followed by the final Baseline block.
The next two plots show early learning in the Rotation and Inver-
sion phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.4 Decision dynamics. A) Deviance Information Criterion (DIC) scores
for models testing the sensitivity of the four key parameters of the
Drift Diffusion Model (DDM), boundary height (a), drift rate (v),
non-decision time (t), and starting bias (z). DIC scores are relative
to the fit of a null, intercept-only model. B) Block-wise response of
drift rate relative to phase transition points, with Baseline estimates
in black, Rotation estimates in red, and Inversion estimates in blue.
Vertical dashed lines mark blocks prior to phase transitions. A full
distribution is shown for each block. . . . . . . . . . . . . . . . . 125
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Chapter 1

Introduction

Consider a novice archer attempting to hit a target. Learning to aim for the

center of the target and shoot is easy enough for her to learn under stable con-

ditions. But when the wind shifts the trajectory of her arrow, she may not know

which set of actions to take to hit the target. With practice she learns to adapt

by aiming her arrow opposite to the wind with sufficient magnitude. However,

if she wants to adapt under variable conditions, she needs to learn how to adapt

her responses without specific experience. Importantly, even if the optimal strat-

egy were given in each scenario, the same intended action may not yield the

same reward. This inherent variability of experience comes not only from the

dynamics of the environment we find ourselves in, but also from our own behav-

ior170 and from internal algorithms, both cognitive52 and implementational143,152.

Dynamic adaptation would seem to be a difficult problem, then, because we

can’t possibly have experience with all possible states of the environment (and

ourselves).
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1.1 The value of noise

However, injecting noise into a system can be advantageous. For example, sen-

sory noise in both sensory signals and sensory receptors limits the amount of in-

formation available to the central nervous system, acting as a useful constraint

on neural computation49. Further, behavioral noise can ensure that agents aren’t

trapped in local minima, preventing higher order learning169. More abstractly,

signal processing in general can benefit from noise. For example, the concept of

stochastic resonance, originally from statistical physics, describes how adding

noise to a periodic signal actually enhances information transfer for weak signals

when the input-output system is nonlinear58, and this idea has been successfully

applied to neural systems under the guise of ”stochastic facilitation”98.

Returning to our archer, absent an explicitly known way to grapple with the

influence of these sources of variance on behavior under changing conditions,

another way of navigating this problem is to embrace noise. Thus one way the

archer could improve her performance is to adopt a generally exploratory pos-

ture, sampling the space of possible strategies and observing outcomes. Much

research has shown that generally exploring the environment seems to be a good

approach to promote flexible learning20.

However, a more systematic way to navigate shifting environments is to de-

velop a set of rules for when to explore alternative strategies or exploit what is

known. In other words, one needs to establish a decision policy. But what form

should this decision policy take in order to improve the chances of success under
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changing conditions?

Emerging research shows that exploration can be dissociated into two gen-

eral categories – as a bias to acquire information (‘directed exploration’) and

the pure randomization of choice independent of informational value (‘random

exploration’). Here, both directed and random exploration improve learning169.

In directed exploration, exploration is pushed toward more informative op-

tions using a deterministic information bonus, increasing the value of more in-

formative options. Within a reinforcement learning framework, this can be writ-

ten as:

Q(a) = r(a) + IB(a) (1.1)

where r(a) is the expectation of reward for a given choice a and IB(a) repre-

sents the ’information bonus’ for that action, resulting in a total value for the

decision Q(a). Under this framework, if the learner is in a directed exploration

state, the choice made will be the one with the highest total value according to

this formulation.

In contrast, random exploration drives exploration using noise. This can be

written as:

Q(a) = r(a) + η(a) (1.2)

where η(a) is zero-mean random noise. Importantly, the exact nature of ran-

dom exploration is largely dependent on the nature of the noise distribution.
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These two forms of exploration are not mutually exclusive169, and the balance

between directed and random exploration may shift according to task demands.

Wilson and colleagues put forth the combined formulation:

Q(a) = r(a) + IB(a) + η(a) (1.3)

Here, directed and random influences on exploration have additive effects on

the total value of a given choice, with the learner prompted toward exploration

when information bonus reaches a threshold or random decision noise pushes

the learner away from exploitation.

One approach is to balance these exploration strategies over time, accord-

ing to varying task demands. If our archer is just beginning to learn, she may

not have a pre-existing bias governing which actions are high in informational

value. Here, you might expect that the balance tips toward the randomized side

of exploration. After practice, she figures out a general approach to aiming her

arrow, and realizes which actions might contain the most informational value,

biasing her exploration toward the directed form.

How exactly the balance between directed and random exploration evolves

over time, and how exactly decision policy in total (including exploitative dy-

namics) is an open question. One relevant factor driving these dynamics might

be the evaluation of evidence over time.
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1.2 The drift diffusion model

Learning these higher order relationships requires the evaluation of evidence to

update decisions in response to environmental change – that is, over time. And,

often, the accuracy of our decisions trades off with their speed.

Sequential sampling models capture this tradeoff, and operate under the as-

sumption that noisy information is sampled over time until a threshold of evi-

dence is reached to make a decision146. For sequential sampling models measur-

ing the relative degree of evidence for two choices, a response is initiated when

the difference in the evidence accumulated for two options reaches a prespecified

criterion. When evidence accumulation is discrete, this is known as a random

walk model. When evidence accumulation is continuous, this is known as a dif-

fusion process55. Within this class, the drift-diffusion model (DDM)126 assumes

that information is continuously integrated over tim (Fig. 1.1). The DDM is

one of the most popular accumulation-to-bound models, and it has enjoyed a

fruitful history of revealing the processes underlying perceptual and cognitive

decisions128). The parameters of this model have distinct influences on evidence

accumulation, with the drift rate (v) representing the rate of evidence accumu-

lation, the boundary height (a) as the amount of information required to cross

the decision threshold, nondecision time (t) as motor-induced delays in the on-

set of the accumulation process, and starting bias (z) as a bias to begin accumu-

lating evidence for one choice over another.

The parameters of this model exhibit sensitivity to feedback and choice his-
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tory119,127,45,46,99,154. Specifically, fluctuations in the rate of evidence accumu-

lation (drift-rate) track the relative value of an action46,100,16,130,26 and fluctu-

ations in the amount of evidence needed to gate a decision (boundary height)

track an internal estimate of environmental change112,172,111,19,26, suggesting

that this model is responsive to changes in value estimation. Moreover, new

evidence has shown that changes in the drift rate and the boundary height pro-

mote adaptive variability when a decision needs to be updated to compensate

for a shift in action-outcomes26, suggesting that such accumulation models are

capable of acting as a useful approximation of the processes driving reward-

based exploration. Finally, the DDM has the capacity to shape the variability

of decisions on a trial-wise basis, allowing us to see both how shifts in parame-

ters change decision policy and sculpt choices and reaction times.

Next, I review two plausible neuromodulatory systems that may modulate

decision policy dynamics.

1.3 Implementational mechanisms

1.3.1 The corticobasal ganglia-thalamic (CBGT) circuit.

The corticobasal ganglia-thalamic (CBGT) circuits (Fig. 1.2) are critical for

action selection88. The canonical model of the CBGT circuit has three major

pathways, each serving to suppress (the indirect pathway), promote (the direct

pathway), or reactively brake action outputs (the hyperdirect pathway). This

canonical model is organized according to multiple action channels101,23, or sets

of pathways associated with a given action (e.g. Left or Right button press),

11



Figure 1.1: The drift diffusion model. The rate of evidence accumulation is the drift rate (v),
the amount of information needed to make a decision is the boundary height (a), the starting bias
for the decision process is (z), and the non-decision time related to motoric processes is the onset
time (tr).

and each action channel contains a direct and an indirect pathway. The division

of the CBGT into action channels is supported by empirical findings showing

that the execution of specific actions correlates with co-activation of spatially

clustered populations of direct and indirect medium spiny neurons (MSNs)86.

Activation of the direct pathway suppresses the globus pallidus internal segment

(GPi), relieving the thalamus from tonic inhibition and allowing it to facilitate

action execution by activating primary motor cortex. On the other hand, ac-

tivation of the indirect pathway activates the globus pallidus external segment

(GPe) and subthalamic nucleus (STN) to promote GPi/SNr output, suppressing

action.

In addition, the direct and indirect pathways are modulated by dopaminer-
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gic feedback from the substantia nigra pars compacta (SNc) during value-based

decision-making75. Due to the opposing effects of dopamine (DA) on the di-

rect and indirect pathways139,36, these dopaminergic feedback signals ultimately

reinforce rewarded actions and suppress punished actions, suggesting these dy-

namics should shape value-based decision-making70,158.

Further, both theoretical23,25,127,44,46 and experimental174 evidence suggests

that the CBGT circuits are critical to the evidence accumulation process. The

topological encoding of actions in the striatum110,91,1 and the convergence of

projections to the GPi/SNr85,1 suggests that the direct and indirect pathways

may compete for control over the output of the basal ganglia, encoding the “ev-

idence” for a given decision as the relative activation of the direct and indirect

pathways within the corresponding action channel16,43. Critically, this competi-

tion between the pathways has been theoretically linked to the rate of informa-

tion accumulation during decision making157.

1.3.2 The locus coereleus norepinephrine (LC-NE) system

The locus coeruleus (LC) is a small nucleus in the brainstem, and the main

source of the neuromodulator norepinephrine (NE). The LC receives input from

a diffuse set of brain regions, including the forebrain, cerebellum, and the brain-

stem10. The LC-NE system has two distinct modes9 that map onto distinct de-

cision states10. In the phasic mode, a burst of LC activity results in a global,

temporally precise release of NE. This increases the gain on cortical processing

and encourages exploitation. In the tonic mode, NE is released without the tem-
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Figure 1.2: The cortico-basal ganglia-thalamic network. The hyperdirect pathway is marked in
red, the indirect pathway is marked in blue, and the direct pathway is marked in green. FSI, fast
spiking interneurons; GPe, globus pallidus external segment; GPi, globus pallidus internal seg-
ment; SNc, substantia nigra pars compacta; STN, subthalamic nucleus; STR, striatum. Diagram
adapted44

poral precision of the phasic mode, increasing baseline NE9. This encourages

disengagement from the current task and facilitates exploration. The dynamic

fluctuation of these two modes is thought to optimize the trade-off between the

exploitation of stable sources of reward and the exploration of potentially better

options10. Similar to the classic Yerkes-Dodson curve relating arousal to perfor-

mance175, performance is optimal when tonic LC activity is moderate and pha-

sic LC activity increases following a goal-related stimulus11. Thus the LC-NE

system, which can be indirectly measured by fluctuations in pupil diameter10,79,

may be a central mechanism for modulating selection policies.
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1.4 Cognitive maps and latent learning

Decision policy is also linked with latent learning under experimental and nat-

uralistic environmental conditions136,137,138,62,63. When Tolman introduced the

concept of cognitive maps151, he introduced the concept of latent learning, par-

ticularly in terms of latent relational representations that go beyond stimulus-

response association. The bulk of research citing Tolman’s effects and his the-

oretical interpretation have been justifiably used to support the idea of spatial

maps115 and their corresponding neural representations of space47. Recent find-

ings suggesting that the neural encoding of spatial maps also represent nonspa-

tial features37,8 have prompted the re-examination of Tolman’s cognitive maps

to study relational structure at the level of knowledge organization for nonspa-

tial inference in both humans and machines164,18, with empirical support for the

idea that the reorganization of knowledge in terms of cognitive maps aids gener-

alization to shared knowledge structures96,92,82.

In the reinforcement learning context, the concept of cognitive maps encoding

relational structure of the environment has recently re-emerged as an updated

version105 of the successor representation38. The successor representation (SR)

is a reinforcement learning algorithm that builds a predictive map of the envi-

ronment to summarize the relationship between states separated by multiple

state transitions. To accomplish this long-range prediction of state, the SR oc-

cupies an intermediate position on the model-based to model-free continuum

of reinforcement learning, balancing the tradeoff between biased and flexible
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decision-making60:

Standard model-free reinforcement learning updated using temporal difference

learning:

V (S) = V (S) + α(Robserved + γV (snew − V (S)) (1.4)

Unlike standard temporal difference learning algorithms that operate over

prediction errors in value (Eqn. 1.4), the SR can be learned via a form of tem-

poral difference learning using the difference between observed and predicted

state occupancy as the error signal102 (Eqn. 1.5):

M(S) = M(S) + α(onehot(snew) + γM(snew −M(S)) (1.5)

Here M represents the successor representation matrix. The onehot(snew)

keeps track of state visitation. When the agent visits a new state, one visit is

added to the count of visits to that state in the row corresponding to that state

in M . The sucessor prediction error is the difference between the expected suc-

cessor of state s from predictive horizon discounted sucessors of the new state.

A learning rate α applies to the prediction error.

Offline replay, a memory process in which the hippocampal network inter-

nally generates patterns of activation representing compressed versions of prior

experience144, has been suggested to combine current experience with previous

memories120 to guide future behavior104,103. Offline replay is not solely a repe-

tition of the past, but a dynamic process sensitive to goal-specification121 that

reverses in response to prediction error7. Specifically, human and animal stud-
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ies have shown a role for offline replay in inferring latent environmental struc-

ture104,173. Combining SR with a family of reinforcement learning algorithms

called Dyna147 (SR-Dyna) shows promise as a computational framework for

learning relational structure132. Here, the predictive map learned by the SR is

learned online and state transitions are replayed offline. Mounting evidence sup-

ports the plausibility of SR-Dyna in both humans and rats as a computational

basis for reinforcement learning41,105.

Finally, the successor representation can be decomposed into successor fea-

tures, which abstract successor representations from their context to define

primitive components of state representation102. This decomposition allows

the agent to generalize to tasks that require similar component features95,102.

As mentioned in the previous section, the complexity of the hierarchical rein-

forcement learning problem can be drastically reduced by defining subgoals, or

“options”145. Similarly, decomposing successor features compactly represents

abstracted subroutines to reduce the complexity of the problem space while

maintaining a state-based representation, and, due to the recombinant nature

of these features, this also increases the span of tasks to which the successor

representation can generalize because multiple task solutions can be represented

as the linear combination of features95,94.

How exactly humans flexibly balance the adaptive value of noise (exploration)

with the value of acting on what they know (exploitation) to dynamically adapt

to changing conditions is under-explored. In this dissertation, I first examine

how decision policies shift choices in response to an environmental change (Chap-
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ter 2). A dynamic variant of the two-armed bandit task39 designed to impose

periodic changes in the most rewarding choice will be used to conduct an initial,

exhaustive exploration of how decision policy evolves in response to a change in

action-outcome contingencies.

Then I conduct two experiments to test the role of two plausible neuromodu-

latory systems in these decision policy parameter shifts (Chapters 2 and 3). In

Chapter 2, I first consider the locus coereleus-norepinephrine (LC-NE) system,

which is known to modulate exploration states under uncertainty. Pupil diam-

eter shows a tight correspondence with LC neuron firing rate10, with changes

in pupillary signal indexing the explore-exploit decision state79. Because of this

link between LC-NE and the regulation of behavioral variability in response to

uncertainty, LC-NE system responses, as recorded by pupil diameter, should

associate with the trajectory through decision policy space following a change

in action-outcome contingencies. Specifically, if the LC-NE system were sensi-

tive to change points, then I should observe phasic activity following a change in

action-outcome contingencies.

In Chapter 3, I test how corticostriatal dynamics might modulate decision

policy. Corticostriatal activation is robustly linked to action selection, with di-

rect and indirect pathway activation facilitating and suppressing action selec-

tion, respectively88. Further, previous work using a biologically realistic spiking

CBGT network has shown links between changes in the decision parameters

used to define the decision policy I observed in Chapter 2, and CBGT dynam-

ics during learning. In these studies, the rate of evidence accumulation relies
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on differences in the simulated ratio of direct pathway spiny projection neurons

(dSPNs) to indirect pathway spiny projection neurons (iSPNs) in opposing ac-

tion channels (left or right selection), while the amount of information needed

to make a decision relies on overall iSPN activation across action channels46,131.

Given the limited resolution of fMRI, I hypothesize this link will largely mani-

fest as a correlation between neural activation associated with the competition

between actions and drift rate. Specifically, our quantification of decision un-

certainty derived from our decoded neural representation of action selection

competition should negatively correlate with the drift rate following a shift in

reward contingencies. When drift rate drops after the detection of a change,

decision uncertainty should peak. As drift rate recovers to baseline levels, deci-

sion uncertainty should be minimized. The nuclei of the CBGT circuit should

be essential to this relationship, with a “lesioned” analysis (excluding CBGT

activity) failing to show this relationship to the same degree.

Finally, Chapter 4 explores how decision policy adapts in response to latent

environmental structure abstracted from any single learned stimulus-response

mapping. I test this using a foraging experiment that manipulates the optimally

rewarding path in a grid-based world. After learning the initial path, the opti-

mal path is rotated such that the learner needs to exploit second-order knowl-

edge regarding the shape of the path to earn reward. The rotation of the path

will test the degree to which participants learn the higher order structure of

associations between stimuli. Speeded learning of the rotated path relative to

the initially learned path would be evidence of learning the initial higher order
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structure. In addition, I predict that behavioral variability (i.e., RT variance

and choice variability) should expand after the rotation and contract as partic-

ipants relearn the adjusted ”grid”. I expect that participants will follow a deci-

sion policy profile similar to those predicted in Chapters 2 and 3, initially start-

ing in a slow exploratory state, with decreased rate of evidence accumulation

and, possibly, a transient increase in boundary height. This should be followed

by a gradual recovery of drift rate to baseline as the path is found.
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Chapter 2

Decision policy dynamically reconfigures under uncertainty

The following text was adapted from Bond, Dunovan, Porter, Rubin, and Ver-

stynen 2021.

2.1 Introduction

”Should I stay or should I go?” refers not only to an iconic 1980s punk

anthem but also the fundamental dilemma all animals face in uncertain or un-

stable environments. Should someone buy coffee from the cafe that serves their

favorite roast or try the new cafe that opened down the street? If their favorite

drink is bitter one day, is that a sign to switch to a new blend or is one subpar

experience inadequate to prompt a switch? Ultimately, these decisions converge

to a single predicament: whether we choose an action that we believe is likely

to produce desirable results (i.e., exploit) or risk choosing another action that is

less certain, on the chance that it will produce a more positive outcome (i.e., ex-

plore)116. Ultimately, this is the problem of knowing when to change your mind.
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Figure 2.1: Dynamic decision policy reconfiguration. A) The degree of conflict and volatility
shifts the optimal balance between exploration and exploitation. B) The drift diffusion model.
C) Accuracy (probability that left choice selected is selected; P(L)) as a function of coordinated
changes in the rate of evidence accumulation (v) and the amount of information needed to make
a decision, or the boundary height (a). D) Reaction time as a function of changes in the rate of
evidence accumulation and the boundary height. E) Decision policy reconfiguration.

The shift of a decision policy from exploratory to exploitative states is driven

by environmental context. To illustrate this, Figure 2.1A shows what happens

when a simple reinforcement learning (RL) agent tries to maximize reward in

a dynamic variant of the two-armed bandit task (148; see Methods). Here, the

relative difference in reward probability for the two actions (conflict) and the

frequency of a change in the optimal action (volatility) were independently ma-
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nipulated. For each level of conflict and volatility, a set of tabular Q-learning148

agents played the task with learning rate held constant while the degree of ran-

domness of the selection policy (β in a Softmax function) varied. The agent

that returned the most rewards was identified as the agent with the best exploration-

exploitation balance. Increasing either form of uncertainty led to selecting agents

with more random or exploratory selection policies (Fig. 2.1A). As the value of

the optimal choice decreases relative to the value of a suboptimal choice (con-

flict increases), the learner exploits what she already knows. Action values grow

unstable (volatility increases) when the clarity of the optimal choice is constant

(constant conflict), and the learner is biased toward exploration21. As these two

forms of uncertainty change together, the gradient of action selection strategy

also changes.

Knowing how decision policies shift in the face of dynamic environments re-

quires looking at the algorithmic properties of the policy itself. One popular set

of algorithms for describing the dynamics of decision making are accumulation-

to-bound processes like the drift-diffusion model (DDM126). The normative

form of the DDM proposes that a decision between two choices is described by

a noisy accumulation process that drifts towards one of two decision boundaries

at a specific rate (Fig. 2.1B). Two parameters of this model are critical in de-

termining the degree of randomness of a selection policy: the rate of evidence

accumulation (drift rate; v) and the amount of information required to make

a decision (boundary height; a). For example, decreasing the drift rate and in-

creasing the boundary height leads to more random decisions (Fig. 2.1C), with
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the speed of these decisions depending on the ratio of the two parameters (Fig.

2.1D). Thus exploratory policies can result in either fast or slow decisions, de-

pending on the relative configuration of drift rate and boundary height.

Are the parameters that govern accumulation of evidence for decision making

modifiable? Previous modeling work has shown that the parameters of a DDM

process can be modulated by feedback signals and choice history119,127,45,46,99,154

with different mechanisms for adapting the drift rate and the boundary height.

In value-based decision-making tasks where the statistics of sensory signals are

equivalent for all actions, drift rate fluctuations appear to track the relative

value of an action or the value difference between actions46,100,16,130. In contrast

to value estimation, selection errors in this context have been linked to changes

in the boundary height54,53,25,72,71,46,45 and internal estimates of environmental

change112,172,111,19.

One plausible neural mechanism for this migration along the surface of selec-

tion policies is the locus coereleus norepinephrine (LC-NE) system, which has

been linked to adaptive behavioral variability in response to uncertainty153,40,28.

The LC-NE system has two distinct modes9 that map onto distinct decision

states10. In the phasic mode, a burst of LC activity results in a global, tempo-

rally precise release of NE. This increases the gain on cortical processing and

encourages exploitation. In the tonic mode, NE is released without the tem-

poral precision of the phasic mode, increasing baseline NE9. This encourages

disengagement from the current task and facilitates exploration. The dynamic

fluctuation of these two modes is thought to optimize the trade-off between the
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exploitation of stable sources of reward and the exploration of potentially bet-

ter options10. Thus the LC-NE system, which can be indirectly measured by

fluctuations in pupil diameter10,79, may be a central mechanism for modulating

selection policies.

We investigated the malleability of decision policies as the environment ne-

cessitates a change of mind as to what constitutes the ”best” decision. To con-

trol environmental uncertainty, we manipulated the volatility of changes in

action-outcome contingencies (i.e., which of two targets returns the most re-

wards), as well as ambiguity in optimal choice (conflict), while human partic-

ipants performed a dynamic variant of the two-armed bandit task149. We pre-

dicted that, in response to suspected changes in action-outcome contingencies,

humans would exhibit a stereotyped adjustment in the drift rate and boundary

height that pushes decisions from certain, exploitative states to uncertain, ex-

ploratory states and back again (Fig. 2.1E). In addition, using pupillary data,

we explored whether the LC-NE system covaries with shifts of the boundary

height in response to a change in action outcomes to facilitate exploration, con-

sistent with prior studies84,108,34.

2.2 Results

Across two experiments we used a dynamic two-armed bandit task with equiv-

alent sensory reliability across arms to independently manipulate the reward

conflict and the volatility of action outcomes in order to measure how underly-

ing decision processes respond to changes in action-outcome contingencies (see
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Figure 2.2: Task and uncertainty manipulation. A) In Experiment 1, participants were asked to
choose between one of two ”mystery boxes”. The point value associated with a selection was dis-
played above the chosen mystery box. The sum of points earned across trials was shown to the left
of a treasure box on the upper right portion of the screen. B) In Experiment 2, participants were
asked to choose between one of two Greebles (one male, one female). The total number of points
earned was displayed at the center of the screen. The stimulus display was rendered isoluminant
throughout the task. C) The manipulation of conflict and volatility for Experiments 1 (gray) and
2 (black). Each point represents the combination of degrees of conflict and volatility. Under high
conflict, the probability of reward for the optimal and suboptimal target is relatively close. Under
high volatility, a switch in the identity of the optimal target selection is relatively frequent.
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Stimuli and Procedure). Both of these experiments shared a common feedback

structure. Participants were asked to select either the left or right target pre-

sented on the screen using the corresponding key on a response box. Rewards

were probabilistically determined for each target and, if a reward was delivered,

it was sampled from a Gaussian distribution. The optimally rewarding target

delivered reward with a predetermined probability (P (optimal)) and the subop-

timal target gave reward with the inverse probability (1 − P (optimal)). After

a delay determined by the rate parameter of a Poisson distribution (λ), the re-

ward probabilities for the optimal and suboptimal targets would switch.

In Experiment 1, twenty-four participants completed four sessions (high and

low conflict; high and low volatility) each composed of 600 trials. During each

session, they were asked to select one of two coin boxes (Exp. 1: Fig. 2.2A).

The levels of conflict and volatility for all four conditions in Experiment 1 are

shown as gray dots in Fig. 2.2C. Experiment 2 was a replication of Experiment

1 with more extensive within-subject sampling of conflict and volatility, as well

as the inclusion of pupilometry as a proxy for measuring LC-NE dynamics. In

Experiment 2, participants were asked to choose between one of two Greebles

(one male, one female). Each Greeble probabilistically delivered a monetary re-

ward (Exp. 2: Fig. 2.2B). Participants were trained to discriminate between

male and female Greebles prior to testing to prevent errors in perceptual dis-

crimination from interfering with selection on the basis of value estimation.

Four participants completed nine sessions composed of 400 trials each, gener-

ating 3600 trials in total per subject. The levels of conflict and volatility for all
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Figure 2.3: Behavior. A) Mean accuracy and reaction time for the manipulation of conflict in Ex-
periment 1. B) Mean accuracy and reaction time for the manipulation of volatility in Experiment
1. Each point represents the average for a single subject. The distribution to the right represents
the bootstrapped uncertainty in the mean difference between conditions (high conflict or high
volatility subtracted from low conflict or low volatility). Distributions with 95% CIs that do not
encompass 0 are marked with an asterisk. C) Mean accuracy for Experiment 2. Each purple line
represents a subject. The black line represents the mean accuracy calculated across subjects. D)
Reaction time distributions for each subject for Experiment 2. The black line represents the mean
reaction time calculated over subjects. Error bars indicate a bootstrapped 95% confidence interval.
For panels C and D, λ values shown above each plot specify the average period of optimal choice
stability and the probability of reward shown on the x-axis specifies the degree of conflict. Means
are calculated over all trials.

nine conditions in Experiment 2 are shown as black dots in Fig. 2.2C. Impor-

tantly, Experiment 2 manipulated the same forms of uncertainty as Experiment

1, but had different perceptual features and more expansively sampled the space

of conflict and volatility. Given the similarity in design, the behavioral results

for both of these experiments are presented together below.
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2.2.1 The influence of ambiguity and instability on speed and accu-

racy

We first looked at overall speed and accuracy effects in both Experiments 1 and

2. In Experiment 1, accuracy (i.e., optimal choice selection) suffered as the op-

timal choice grew more ambiguous, with accuracy in the low conflict condition

being 1.2 times higher than what is observed in the high conflict condition (Fig.

2.3A; β = 1.213, 95% CI: 1.192, 1.235, z=21.36, p<2e-16). In contrast, in-

creasing conflict had no observable impact on overall reaction times (Fig. 2.3A;

β = −6.902e−5, 95% CI: -0.002, 0.002, t =-0.06, p=0.951). As expected, par-

ticipants also became less accurate as the instability of action outcomes (i.e.

volatility) grew (Fig. 2.3B; β = 0.092, 95% CI: 0.077, 0.111, z=10.36, p<2e-16).

Under volatile conditions, participants also took slightly longer to make a deci-

sion (β = −0.012, 95% CI: -0.015,-.010, t=-10.80, p<2e-16); however, while this

effect on reaction times was statistically reliable, the impact of volatility on re-

action times was weak (increasing volatility increased reaction time by ∼ 13 ms

on average; Fig. 2.3B).

Experiment 2 served as a high powered test of whether the effects we ob-

served in Experiment 1 were replicable at the within-subject level. Because

Experiment 2 independently manipulated conflict and volatility, we were able

to test whether conflict and volatility interacted to affect behavior. We found

similar effects of conflict and volatility on accuracy as we observed in Experi-

ment 1 (Fig. 2.3C). Accuracy increased as conflict decreased (i.e. as the prob-

ability of reward increased; β=0.223, 95% CI=0.189,0.256, z=12.757, p<2e-
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16). As the environment grew less volatile, accuracy increased (β=0.101, 95%

CI=0.066,0.14, z=5.828, p=5.6e-09). We did not observe an interaction of con-

flict and volatility on accuracy (β=0.024, 95% CI=-0.013, 0.058, z=1.364, p=0.173).

However, we did find that conflict and volatility interacted to affect reaction

time (RT; β=-0.002, 95% CI=-0.004, -0.001, t=-3.084, p=0.002), with a linear

increase in reaction time as the environment grew less volatile and conflict was

highest (when p(r) = 0.65 R̄T = 0.472, 0.480, 0.493 as a function of λ; see Fig.

2.3D for RT distributions). When conflict was moderate (p(r) = 0.75) or low

(p(r) = 0.85), volatility had a nonlinear effect on RTs. Here, reaction times

decreased when volatility was moderate (R̄T = 0.483 when λ=20 and p(r) =

0.75; R̄T = 0.518 when λ=20 and p(r) = 0.85). Reaction times increased to

approximately the same extent within moderate or low conflict conditions when

volatility was high (R̄T = 0.499 when λ=10 and p(r) = 75; R̄T = 0.528 when

λ=10 and p(r) = 0.85) and when volatility was low (R̄T = 0.506 when λ = 30

and p(r) = 0.75; R̄T = 0.534 when λ = 30 and p(r) = 0.85), with an increase

in baseline reaction times when conflict was low relative to moderate (R̄T =

0.527 when p(r) = 0.85; R̄T = 0.496 when p(r) = 0.75; see Supp. Fig. ?? for

interaction visualization).

At the gross level, over all trials within an experimental condition, increasing

the ambiguity of the optimal choice (conflict) and increasing the instability of

action outcomes (volatility) decreases the probability of selecting the optimal

choice. Reaction time effects were inconsistent, with a negligible effect of volatil-

ity in Experiment 1. Experiment 2 revealed that volatility and conflict inter-
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Figure 2.4: Changes in ideal observer estimates as a function of condition for Experiment 1. A)
Changes in the belief in the value of the optimal target (∆B) as a function of conflict and volatil-
ity over time. B) Belief in the value of the optimal choice by condition and averaged over all trials.
C) Changes in change point probability (Ω) as a function of conflict and volatility over time. D)
Change point probability by condition and averaged over all trials. Error bars represent 95% CIs.

act to influence reaction times in complex ways. However, because trials where

action-outcome contingencies change are so infrequent, even under high volatil-

ity conditions, these overall effects on speed and accuracy may be masking more

subtle behavioral dynamics in response to feedback changes. We adopt a more

focal, model-based analysis in the next section to clarify these peri-change point

dynamics.
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2.2.2 Tracking estimates of action value and environmental volatil-

ity

We calculated trial-by-trial estimates of two ideal observer parameters of envi-

ronmental states (see Cognitive model for calculation details;112,155). Belief in

the value difference (∆B) reflects the difference between the learned values of

the optimal and suboptimal targets. For ease of interpretation, we refer to the

converse of belief as doubt, such that when belief decreases doubt increases. ∆B

thus reflects a local estimate of uncertainty regarding the choices themselves. To

capture the estimated probability of fundamental shifts in action values, we cal-

culated how often the same action gave a different reward (change point proba-

bility; Ω). Here Ω reflects a global estimate of uncertainty in the environment,

specifically the uncertainty in response contingencies. We used the data from

Experiment 1 to assess how well these learning estimates captured our imposed

manipulations, and observed similar results in Experiment 2 (Supp. Fig. ??).

In Experiment 1 we observed a sharp decrease in ∆B after a switch in ac-

tion outcomes and a gradual return to asymptotic values (Fig. 2.4A) with a

decreased difference in reward probability resulting in increased doubt (2.4B;

β = 0.216, 95% CI:0.206, 0.224, t=46.24, p<2e-16).

As expected, less volatile conditions allowed the learner to more fully update

her belief in the value of the optimal choice over all trials (β = 0.058, 95%

CI:0.050, 0.068, t=12.32, p<2e-16), though to a smaller degree than low con-

flict conditions allowed (see Fig. 2.4B). Increasing volatility resulted in a sharp

increase in the estimate of Ω at the onset of a change point with a quick return
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to a baseline estimate of change (Fig. 2.4C). Notably, this estimate of Ω was

more sensitive to change points when conditions were relatively volatile, with a

more pronounced peak in response to a change under high volatility conditions

than under low volatility conditions (Fig. 2.4C). Correspondingly, over all tri-

als, Ω was higher under more volatile conditions (Fig. 2.4D, β = −0.022, 95%

CI:-0.023, -0.020, t=-30.74, p<2e-16) indicating sensitivity to the increased fre-

quency of action outcome switches in the reward schedule.

When the identity of the optimal choice was clear (i.e. when conflict was

low), the estimate of Ω was more sensitive to the presence of a true change

point than when the optimal choice was ambiguous (i.e. when conflict was high)

(Fig. 2.4C,D). This observation is consistent with the idea that increasing the

difficulty of value estimation and, thereby, the assignment of value to a given

choice also impairs change point sensitivity. Interestingly, increasing conflict

nevertheless resulted in a net increase in Ω calculated over all trials (Fig. 2.4D;

β=-0.006, 95% CI:-0.007, -0.004, t=-8.64, p<2e-16), likely because higher con-

flict conditions increased the baseline estimate of change instead of enhancing

sensitivity to true change points (see change point response and relative base-

line values for the high conflict condition in Fig. 2.4C). Here, the system con-

servatively over-estimates the volatility of action outcomes, assuming a slightly

greater frequency of changes in the probability of reward for the optimal choice

than we imposed (actual proportion of change points for high conflict condition:

0.041± 0.004; estimated Ω: 0.105± 0.014).

Reassuringly, net change point probability was much greater when change
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points were more frequent (see increased Ω estimates for high volatility condi-

tions over high conflict conditions in Figure 2.4D). These results suggest that

our formulation of these ideal observer estimates adequately captures our ma-

nipulation of volatility and conflict at a continuous level.

Thus, these ideal observer parameters show a reliable response to a change in

action-outcome contingencies. The difference in value belief decreases, or doubt

increases, when a change point occurs and slowly recovers over the course of six

to eight trials as participants learn new action-outcome contingencies. The ini-

tial drop in belief difference is deeper and the recovery time after a change point

is slower in conditions with greater overall uncertainty (i.e. under high conflict

and high volatility). In contrast, internal estimates that a change has occurred

briefly spike at a change point, indicating that participants can reliably detect

that something has changed, and quickly settle after a few trials. Interestingly,

net change point probability estimates are higher in the conditions with higher

uncertainty (high conflict, high volatility), likely reflecting increased vigilance

for changes in those conditions. In the next section we explore how the underly-

ing parameters of the decision process itself respond to local changes in action-

outcome contingencies.

2.2.3 Different forms of uncertainty impact distinct decision pro-

cesses

Our next goal was to test which decision parameters were sensitive to a change

point. To this end, we estimated the change point evoked response of the bound-
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Figure 2.5: Change point sensitivity of underlying decision processes. Posterior distributions for
each decision parameter are shown for the trial prior to a change point to three trials after the
change point. A) The drift rate. B) The boundary height. C) Non-decision (onset) time. D) Start-
ing bias. E) Drift criterion. F) Degree of fit to observational data as information loss. The models
that lost the least information are marked with an asterisk.

ary height a, drift rate v, non-decision time t, starting bias z, and drift criterion

dc for each trial surrounding the change point. To detect changes in the change-

point-evoked distributions for each decision parameter, we evaluated whether

the sequential distributions evoked by each trial were significantly different, be-

ginning with the trial preceding the change point and ending three trials after
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the change point. For example, if the 95% CI of the z distribution evoked on

the trial prior to the change point overlapped with the 95% CI of the distribu-

tion evoked on the change point and so on for all successive trials considered,

then we would conclude that z failed to show change point sensitivity (see Hi-

erarchical drift diffusion modeling for details). To select the model that best

accounted for the data, we compared the deviance information criterion (DIC)

scores141 for these models. DIC scores provide a measure of model fit adjusted

for model complexity and quantify information loss. A lower DIC score indi-

cates a model that loses less information. Here, a difference of ≤ 2 points from

the lowest-scoring model cannot rule out the higher scoring model; a difference

of 3 to 7 points suggests that the higher scoring model has considerably less

support; and a difference of 10 points suggests essentially no support for the

higher scoring model141,30.

Under this analysis, we found that only the boundary height and drift rate

showed change point sensitivity as defined above. The drift rate showed a clear,

persistent separation between trial-specific distributions, with a rapid decrease

at the onset of the change point (t−1 95% CI = 1.021, 1.218; t0=-0.972, -0.779)

and a return to baseline values thereafter (t1=-0.656, -0.46; t2=0.039, 0.241;

t3=0.411, 0.616; Fig. 2.5A). The boundary height showed a transient response

to the change point, spiking (t−1 95% CI = 0.792, 0.819; t0=0.820, 0.847) and

then dropping to baseline levels (t1=0.789, 0.815; t2=0.783, 0.811; t3=0.780,

0.808; Fig. 2.5B).

The remainder of the decision parameters showed no change point sensitiv-
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ity. Non-decision time showed no clear response (t−1 95% CI = 0.183, 0.188;

t0=0.183, 0.186; t1=0.184, 0.191; t2=0.181, 0.186; t3=0.183, 0.186; Fig. 2.5C)

along with the starting bias (t−1 95% CI = -0.112, -0.01; t0=-0.098, 0.002; t1=-

0.090, 0.008; t2=-0.069, 0.032; t3=-0.055, 0.045; Fig. 2.5D) and the drift cri-

terion (t−1 95% CI = 0.229, 0.439; t0=0.175, 0.374; t1=0.223, 0.435; t2=0.245,

0.458; t3=0.244, 0.464; Fig. 2.5E).

Further, models fitting drift rate and boundary height lost the least null-

model-adjusted information relative to models of the change-point-evoked re-

sponse for the other parameters, showing that a change-point-evoked decrease in

drift rate and spike in the boundary height best accounted for our observational

data in comparison to all alternatives (∆DICnull for v = -978 and ∆DICnull for

a = -13.7; see Figure 2.5F).

Given that only the drift rate and boundary height showed change point sen-

sitivity, we next focused on how those two parameters related to internal esti-

mates of change and conflict in both experiments. Recall that we used the ideal

observer parameters ∆B and Ω as proxies for internal estimates of belief in the

difference in learned target values and change point probability, respectively.

This provided a continuous quantification of our manipulation of conflict and

volatility (see Tracking estimates of action value and environmental volatility).

Experiment 2 provided an intensively sampled within-subject test of the change-

point-evoked mapping between decision processes and these ideal observer esti-

mates.

In order to determine the nature of the mapping between the ideal observer
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parameters and the change-point sensitive decision parameters, we estimated

single and dual-parameter models mapping ∆B and Ω and the change-point-

sensitive decision parameters, drift rate and boundary height, and examined

the fit of these models to our data. We found that the model mapping ∆B

to drift rate and Ω to boundary height provided the best fit in Experiment 1

(∆DICnull = −2698.0; left panel of Table 2.1.

To test whether this mapping was preserved in an independent data set, we

performed the same model comparison procedure for Experiment 2. Because

Experiment 2 followed a replication-based design, we fit a separate model to

each subject to assess the replicability of the best fitting model from Experi-

ment 1. While we found support for the model mapping ∆B to drift rate and Ω

to boundary height, we also found that the DIC scores for the single-parameter

model mapping ∆B to v alone fit the data equally well (see right panel of Ta-

ble 2.1 for summary statistics and Supp. Fig. ?? for subject-wise values). Al-

together, this suggests that we have strong evidentiary support for a mapping

between value-driven belief and drift rate (Fig. 2.6A, blue). However, the sup-

port for a mapping between change point probability and boundary height (Fig.

2.6A, red), while robustly present in Experiment 1, fails to appear when tested

in an independent data set.

For a more granular assessment of how drift rate and boundary height re-

spond to a change point, we quantified the change-point-evoked effect of ∆B

and Ω on drift rate and boundary height , respectively, for both experiments

(see Hierarchical drift diffusion modeling for details). In Experiment 1, we found
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that the rate of evidence accumulation, v, increased with the belief in the value

of the optimal choice relative to a change point (βv∼∆B = 0.576, 95% CI: 0.544,

0.609, empirical p = 0.000; Fig. 2.6B, left panel). The boundary height in-

creased with change point probability (βa∼Ω = 0.046, 95% CI: 0.005, 0.088,

empirical p = 0.001; Fig. 2.6B, right panel).

Experiment 2 showed similar, but attenuated, results, with drift rate increas-

ing with ∆B (∆B (βv∼∆B = 0.112, 95% CI: 0.016, 0.227, empirical p = 0.004;

Fig. 2.6B, inset panel on left) and an unreliable effect of Ω on boundary height

(βa∼Ω = −0.036, 95% CI: -0.155, 0.097, empirical p = 0.282; Fig. 2.6B, in-

set panel on right). Therefore, as the belief in the value of the optimal choice

approaches the reward value for the optimal choice, the rate of information ac-

cumulation increases. An internal estimate of change point probability weakly

increases the amount of information required to make a decision, although this

latter effect is less reliable.

Altogether, these results suggest a drift rate mechanism for adaptation to

change that may also combine with boundary height dynamics (Fig. 2.6A).

However, the strength of the drift rate response weakened and the boundary

height response was statistically unreliable in Experiment 2 (Fig. 2.6B, inset

panels). When a change point is detected and the threshold for committing to

a choice (a) responds, it shows a weak, transient increase. At the same time,

the drift rate approaches zero, allowing time for the decision process to diffuse

and encouraging a random selection. As the learner accrues information about

the new optimal choice, the rate of information accumulation slowly recovers to
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Experiment 1
∆B Ω DIC ∆DICnull ∆DICbest

∗I v a -18643.9 -2698.0 0.0
II a v -16265.6 -319.7 2378.3

III – v -16180.5 -234.7 2463.3
IV v – -18630.8 -2684.9 13.1
V – a -15949.20 -3.4 2694.7

VI a – -16032.8 -87.0 2611.1
VII – – -15945.8 0.0 2698.0

Experiment 2
∆B Ω ∆DICnull ∆DICbest

∗∼I v a -90.3 ±71.7 1.0 ±0.8
II a v -7.6±13.1 83.8 ±60.5

III – v -8.5 ±13.1 82.9 ±61.4
∗∼IV v – -90.8 ±71.0 0.5 ±1.1

V – a 0.3 ±2.5 91.6 ±70.6
VI a – 0.95 ±1.4 92.3 ±70.9

VII – – 0 ±0 91.3 ±71.5

Table 2.1: Model comparison for Experiments 1 and 2. Roman numerals refer to a given model,
as defined by the mapping between the ideal observer estimates and decision parameters in the
first two columns. The left panel shows the deviance information criterion (DIC) scores for the
set of models considered during the model selection procedure for Experiment 1. The right panel
shows the DIC scores for the equivalent model selection analysis for Experiment 2, with a model
estimated for each of four subjects. Values shown represent the mean and standard deviation com-
puted over subjects. Note that the raw DIC values for each of the subjects in Experiment 2 are
included in Supplementary Table ??). The column labeled DIC gives the raw DIC score, ∆DICnull

lists the change in model fit from an intercept-only model (the null-adjusted fit), and ∆DICbest

provides the change in null-adjusted model fit from the best-fitting model. The best performing
model is denoted by an asterisk, with equivocal best cases marked by a tilde.

asymptotic levels, with the decision process assuming a more directed path to-

ward the choice that has accrued evidence for reward. Together, the changes in

these underlying decision processes, largely driven by drift rate dynamics, point

to a mechanism for gathering information in a relatively slow, unbiased man-

ner shortly after the learner suspects she should update her valuation. We now

explore these dynamics in more detail in the next section.
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Figure 2.6: Change-point-evoked uncertainty. A) Changes in ideal observer estimates of uncer-
tainty over time and their effect on the boundary height and the drift rate. Directly after a change
point, the boundary height increases and the drift rate slows. Over time, the boundary height re-
turns to its baseline value and the drift rate increases. B) Fitted estimates of change-point-evoked
drift rate and boundary height for both experiments with 95% CIs of the posterior distributions.
Inset plots represent data from Experiment 2.
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2.2.4 Environmental instability prompts a stereotyped decision tra-

jectory

So far we have established that both the drift rate and the boundary height can

be independently manipulated by two different estimates of environmental un-

certainty with different temporal dynamics, although this effect reduces to drift

rate dynamics in Experiment 2. This suggests that a change in action-outcome

contingencies prompts a unique trajectory through the space of possible decision

policies (Fig. 2.1E).

To visualize this trajectory, we plot the temporal relationship between drift

rate and boundary height beginning with the trial prior to the change point

and ending three trials after the change point (Fig. 2.7A). To clearly visualize

the distribution of the change-point driven response in the relationship between

drift rate and boundary height over time, we also represent the trialwise shift in

these two decision variables as vectors. The trial-by-trial estimates of drift rate

and boundary height were taken from the best model of the fitted change-point-

evoked response and z-scored (see Different forms of uncertainty impact distinct

decision processes for model selection). Then the difference between each se-

quential set of boundary height and drifr rate coordinates, (a, v), was calculated

to produce a vector length. The arc tangent between these differenced values

was computed to yield an angle in radians between sequential decision vectors,

concisely representing the overall decision dynamics (θ, Fig. 2.7B; see Decision

vector representation for methodological details).

For Experiment 1, following a shift in response contingencies, the naviga-
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tion of this decision surface follows a stereotyped pattern. The boundary height

spikes and drift rate decreases rapidly, gradually recovering and stabilizing over

time (see the trial prior to the change point in Fig. 2.7A). This decision trajec-

tory is robust in Experiment 1 (Fig. 2.7B, top panel).

Here, we find that the distribution of θ prior to a change point averages to

∼ 300◦, sharply changes in response to the observation of a change point (∼

165◦) and steadily returns to values prior to the onset of a change (main panels

in Fig. 2.7B). One trial after the change point, drift rate sharply decreases and

boundary height spikes, after which boundary height quickly recovers and drift

rate steadily progresses toward its baseline value.

However, this trajectory is substantially more variable in Experiment 2, with

most of the response restricted to the drift rate dimension and inconsistent tra-

jectories along the boundary height dimension (Fig. 2.7B, lower panel). Here,

the distribution of θ prior to a change point averages to ∼ 270◦ and shifts to

∼ 90◦ with the observation of a change. In both experiments, we find that

the decision trajectory quickly responds to a shift in action outcomes and also

quickly recovers and stabilizes.

Having characterized the change-point-evoked trajectory through the range of

decision policies, we next asked whether conditions of increased volatility and

increased conflict might modify its path. To this end, we conducted a com-

parison of a null model with models specifying the change-point evoked re-

sponse alone and this evoked response as a function of conflict and volatility.

To estimate this relationship between drift rate and boundary height, we used
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Bayesian circular regression106. First, we tested the null hypothesis that the de-

cision dynamics (the relationship between drift rate and boundary height; θ)

were solely a function of the intercept, or the average of the decision dynamics

θ:

θ = β0

We call this the null model.

To test the hypothesis that decision dynamics varied solely as a function of

time after a switch in action-outcome contingencies, we estimated the vector of

change in (a, v) coordinates (θ) relative to a change point, with the time scale of

consideration determined by the results of a stability analysis from Experiment

1 (see Model proposals and evaluation; Supp. Fig. ??):

θ = β0 + β∆ti:3

We call this the evoked response model.
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Figure 2.7: The decision surface. A) Representing decision space in vector form. An angle (θ)
was calculated between sequential values of (a,v) coordinates, beginning with the trial prior to the
change point. This represents subject-averaged data from Experiment 1. Note that these trajec-
tories are z-scored. B) Distributions depicting the angle between drift rate and boundary height
for both Experiments 1 and 2. Each subpanel shows the distribution of angles between (a, v) over
sequential trials, beginning with the trial prior to the change point. The area of the shaded region
is proportional to the density and the arrow represents the circular mean.

Our model comparison logic was as follows. We first evaluated whether the

posterior probability of the evoked response model was greater than that for the

null model. This would suggest that time relative to a change point alone is a

better predictor of decision dynamics than the average response. If the poste-

rior probability of the evoked response model reliably exceeded the posterior

probability of the null model, we then quantified the evidence for alternative

models relative to the evoked response model. The sole effect of time relative to

a change point was then framed as the new null hypothesis.

We used Bayes Factors to quantify the ratio of evidence for two competing

hypotheses. If the ratio is close to 1, then the evidence is equivocal. As the ra-
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tio grows more positive, there is greater evidence for the model specified in the

numerator, and if the ratio is less than 1, then there is evidence for the model

specified in the denominator78. Evidence for the null hypothesis is denoted

BF01 and evidence for the alternative hypothesis is denoted BF10. Because Ex-

periment 2 took a within-subject approach, a separate model was fit for each

participant for all proposed models.

To determine whether volatility and conflict affected these peri-change de-

cision dynamics, we modeled changes in decision policy on the drift rate and

boundary height surface as a function of λ and p, where λ corresponds to the

average period of stability and p corresponds to the mean probability of reward

for the optimal choice (see Fig. 2.8 for the full set of models considered). We

explored the potential influence of volatility and conflict on the relationship be-

tween drift rate and boundary height by examining the posterior probability for

each hypothesized model given the set of alternative hypotheses (Model propos-

als and evaluation; Fig. 2.8A). We found that the evoked response model de-

scribing the relationship between shifts in decision parameters and time relative

to a change point was more probable than the null model (see Fig. 2.8A).

We also present the evidence for the null model against each alternative model

as a Bayes Factor (BF01) (Fig. 2.8B). The 95% confidence interval for the BF01

comparing the ratio of evidence for the null model and the evoked response

model specifying time-dependent effects of volatility included 1, suggesting in-

conclusive evidence for either of these models. Likewise, the 95% confidence in-

terval for the BF01 comparing the evidence for the null model against the model
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specifying change-point-evoked effects of conflict included 1, suggesting no sub-

stantive difference between them. Given the equivocal evidence for these two

models we excluded them from further comparison with the evoked response

model.

A B

C

Figure 2.8: Model comparisons for the effect of volatility and conflict on the relationship between
drift rate and boundary height. A) The posterior probability for models testing for an effect of
volatility and conflict on the angle of shift in a and v, θ. B) The Bayes Factor for the null model
relative to the alternative models specifying either an effect of time relative to a change point
alone or a conditional effect on this evoked response θ. C) The Bayes Factor for the evoked re-
sponse model relative to the surviving alternative models specifying a conditional effect on the
evoked response, θ. Note that time refers to time relative to the onset of a change point. All mod-
els specifying an interaction also include main effects. Dotted horizontal lines refer to grades of
evidence160.
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The remainder of the models had substantially negative BF01 values (Fig.

2.8B), suggesting that they better fit the data than the null model and allowing

them to survive to the next stage of analysis. To evaluate the hypothesis that

time alone best accounted for the data, we computed the BF01 for the evoked

response model against the surviving models from the null model analysis. We

find that, for all of the remaining models, the BF01 is substantially positive

(Fig. 2.8C), indicating that the evoked response model best accounted for the

data (posterior probability of evoked response model given the set of models

considered: 0.76± 0.473; posterior prob. for 3/4 participants > 0.99).

These analyses suggest that the relationship between the rate of evidence

accumulation and the boundary height is only related to the change point it-

self. We find no evidence to suggest that changing the degree of volatility or

changing the degree of conflict changes the path of the decision policy following

a change point. Thus, the stereotyped response of the decision policy is solely

dependent on the presence of a change point rather than either the history of

change point frequency or the history of optimal choice ambiguity. Note that

while the ideal observer estimates respond to our conditional manipulations of

volatility and conflict, the decision dynamics θ we observe do not reflect these

effects. This is due to the noisy, imperfect correspondence between the ideal

observer signals and a and v. This suggests that adaptation to environmental

changes in action-outcome contingencies involves a rapid, coordinated increase

in the relationship between the amount of information needed to make a deci-

sion and a decrease in the rate of information accumulation, with a stereotyped

48



return to a stable baseline soon thereafter until another change occurs.

2.2.5 No evidence for locus-coeruleus norepinephrine (LC-NE) sys-

tem contribution to the decision trajectory

B

Magnitude

C

A

Figure 2.9: Method for analyzing pupil data. A) The evoked pupillary response was characterized
according to seven metrics. B) These pupillary features were submitted to a principal component
analysis. The contribution of each feature to the variance explained for the first two components is
plotted for each subject. Note that we also conducted a supplementary analysis of the task-evoked
pupillary response using a more conventional method with similar results.

The LC-NE system is known to modulate exploration states under uncertainty

and pupil diameter shows a tight correspondence with LC neuron firing rate10,125,

with changes in pupil diameter indexing the explore-exploit decision state79.

Similar to the classic Yerkes-Dodson curve relating arousal to performance175,

performance is optimal when tonic LC activity is moderate and phasic LC ac-

tivity increases following a goal-related stimulus11, but see80 for an exception.
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Because of this link between LC-NE and the regulation of behavioral variabil-

ity in response to uncertainty, we expected that LC-NE system responses, as

recorded by pupil diameter, would associate with environmental uncertainty

and the trajectory through decision policy space following a change in action-

contingencies. Specifically, if the LC-NE system were sensitive to a change in

the optimal choice, then we should observe a moderate spike in phasic activity

following a change in action-outcome contingencies. Note that we do not ob-

serve previously established links between exploratory choice behavior and the

pupillary response79,107,156. We ask the reader to titrate their interpretation of

these pupillary data accordingly.

We characterized the evoked pupillary response on each trial in Experiment 2

using seven metrics: the mean of the pupil data over each trial interval, the la-

tency to the peak onset and offset, the latency to peak amplitude, the peak am-

plitude, and the area under the curve of the pupillary response (see Pupil data

preprocessing; Fig. 2.9A). From a computational perspective, reducing the di-

mensionality of this set of pupillary response metrics expands the set of models

we can consider without taxing computational resources in a reasonable amount

of time. Further, dimensionality reduction of the pupillary response allows us to

capture separable sources of variance relating to timing and amplitude effects

without restricting the data to a smaller set of metrics and possibly discarding

information (e.g. timing effects may not be constrained to peak latency or onset

latency; amplitude effects may not be constrained to peak dilation amplitude).

Therefore, we submitted these metrics to principal component analysis to re-
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duce their dimensionality while capturing maximum variance.

Evoked response characterization and principal component analyses were con-

ducted for each session and for each subject in Experiment 2. The 95% CI for

the number of principal components needed to explain 95% of the variance in

the data was calculated over subjects and sessions to determine the number of

principal components to keep for further analysis. To aid in interpreting subse-

quent analysis using the selected principal components, the feature importance

of each pupil metric was calculated for each principal component and aggre-

gated across subjects as a mean and bootstrapped 95% CI (Fig. 2.9). We found

that the first two principal components explained 95% of the variance in the

pupillary data. Peak onset, peak offset, and latency to peak amplitude had the

greatest feature importance for the first principal component (Fig. 2.9B, upper

panel). Mean pupil diameter and peak amplitude had the greatest feature im-

portance for the second principal component (Fig. 2.9B, lower panel). Thus, for

interpretability, we refer to the first and second principal components as timing

and magnitude components, respectively (Fig. 2.9B). Note that we also con-

duct this analysis using more conventional methods of pupillary analysis and

continue to observe a null effect (see Pupil data preprocessing for details).
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Figure 2.10: Model comparisons for the effect of change-point-evoked pupillary dynamics on the
relationship between drift rate and boundary height (θ). A) The posterior probability for mod-
els testing for an effect of pupillary dynamics on θ. B) The Bayes Factor for the evoked response
model relative to the alternative models specifying an effect of pupillary dynamics on the evoked
response, θ. Note that time refers to time relative to the onset of a change point. All models
specifying an interaction also include main effects.

To test for the possibility that fluctuations in norepinephrine covaried with

changes in the drift-rate and the boundary height, we evaluated a set of mod-

els exploring the relationship between the timing and magnitude components of

the change-point-evoked pupillary response and shifts in θ. As in our previous

model comparison (Fig. 2.8; see Environmental instability prompts a stereo-

typed decision trajectory), we found that the model describing the relationship

between decision policy shift and time relative to a change point had the high-

est posterior probability given the set of models considered (Fig. 2.10A). To fur-

ther evaluate the extent of the evidence for the evoked response hypothesis, we

present the evidence for the evoked response model against the original model
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set as BF01 (Fig. 2.10B). We find unambiguous evidence in favor of the evoked

response model relative to the models specifying the modulation of θ via the

timing and magnitude features of the change-point-evoked pupillary response

(posterior probability of time-null model given the set of models considered:

0.997 ± 0.002), with substantially positive BF01 values. We find no evidence

that the pupillary response associates with the dynamics of the decision policy

changes in response to a change in action-outcome contingencies.

2.3 Discussion

We investigated how decision policies change when the rules of the environment

change. In two separate experiments, we characterized how decision processes

adapted in response to a change in action-outcome contingencies as a trajec-

tory through the space of possible types of exploratory and exploitative decision

policies. Our findings highlight how, in the context of two choice paradigms,

when faced with a possible change in outcomes, humans rapidly shift to a slow

exploratory strategy by reducing the drift rate and, sometimes, increasing the

boundary height in a stereotyped manner. Using pupillary data, we were un-

able to detect a relationship between the LC-NE system and the dynamics of

adaptive decision policies in unstable environments. Our findings show how the

underlying decision algorithm adapts to different forms of uncertainty.

Exploration and exploitation states are not discrete, but exist along a contin-

uum2. Instead of switching between binary states, humans manage environmen-

tal instability by adjusting the greediness of their decision policies133,124,50,170,117,118,168.
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Depending on the relative configuration of parameters in the accumulation to

bound process, this adjustment can manifest as either speeded or slowed deci-

sions (Fig. 2.1E)6,126. Our results suggest that, in the context of volatile two-

choice decisions, humans adopt a mechanism that simultaneously changes the

rate of evidence accumulation and, sometimes, the threshold of evidence needed

to trigger a decision, so as to adapt to an environmental change (Fig. 2.6A). As

soon as a shift in action outcomes is suspected, an internal estimate of change

point probability increases and an estimate of the belief in the value of the opti-

mal target plummets (Fig. 2.7A). The rapid increase in change point probabil-

ity causes a rapid rise in the boundary height on the subsequent trial, thereby

increasing the criterion for selecting a new action and allowing variability in the

accumulation process to have a greater influence on choice (Fig. 2.7B), although

this latter effect is inconsistent across experiments. These changes lead to slow

exploratory decisions that facilitate discovery of the new optimal action and re-

sult in a quick recovery of the original threshold value over the course of a few

trials. In parallel, the rate of evidence accumulation for the optimal choice de-

creases, with an immediate drop that gradually returns to its asymptotic value

as the belief in the value of the optimal choice stabilizes. These results show

that when a learner confronts a change point, the decision policy becomes more

exploratory by simultaneously increasing the amount of evidence needed to

make a decision and slowing the integration of evidence over time. Together,

these decision dynamics form a mechanism for gathering information in an un-

biased manner that slows the decision at the decision process level but responds
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quickly relative to a suspected change in trial time.

Critically, our finding that underlying decision policies can reconfigure multi-

ple underlying decision parameters closely parallels recent work in the domain of

information-seeking. Information seeking has been decomposed into random and

directed components170. Random exploration refers to inherent behavioral vari-

ability that leads us to explore other options, while directed exploration refers

to the volitional pursuit of new information. Feng and colleagues recently found

that random exploration is driven by changes in the drift rate and the boundary

height, with drift rate changes dominating the policy shift50. When environmen-

tal conditions encouraged exploration, the drift rate slowed, reducing the signal-

to-noise ratio of the reward representation. This finding clearly aligns with our

current observations showing that the drift rate sharply decreases in response to

a change point and that this change in drift rate dominates the reconfiguration

of decision processes, though our experiments were not designed to isolate the

directed and random elements of exploration.

Our results are also broadly consistent with a growing body of research con-

verging on the idea that decision policies are not static, but sensitive to changes

in environmental dynamics45,154. Previous work by our lab45 has shown how,

during a modified reactive inhibitory control task, different feedback signals tar-

get different parts of the accumulation-to-bound process. Specifically, errors in

response timing drove rapid changes in the drift rate on subsequent trials, while

selection errors (i.e., making a response on trials where the response should be

inhibited) changed the boundary height. Further, there is new evidence that
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the drift rate adapts on the basis of previous choices, independent of the feed-

back given for those choices. Urai and colleagues have convincingly demon-

strated that choice history signals sculpt the dynamics of the accumulation pro-

cess by biasing the rate of evidence accumulation154. Our current findings and

these previous observations119,127 all highlight how sensitive the parameters of

accumulation-to-bound processes are to immediate experience.

Previous literature has shown a conflict-induced spike in reaction time (e.g.77).

However, our complex reaction time results depart from this. One reason for

this departure may relate to the demands of the task we are asking participants

to perform. While increased cognitive demand should increase reaction times

across conditions, we observe a linear decrease in reaction time as a function of

volatility when conflict is highest, and we also see that a net increase in con-

flict decreases reaction times (Fig. 2.3D). We suspect that the presence of both

conflict and volatility blurs the distinction between these two sources of uncer-

tainty, especially under high volatility and high conflict conditions. We also see

this effect in our formulation of change point probability (CPP), with a bias

to overestimate CPP when conflict is high (Fig. 2.4D). It is possible that par-

ticipants also exhibit this bias to overestimate volatility when conflict is high,

which could muddle the effect of conflict on reaction times. Future research

should explore the interaction of change point and conflict estimation on the

speed-accuracy trade-off.

We hypothesized that any shift in decision policy in response to a change in

action-outcome contingencies would be linked to changes in phasic responses
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of the LC-NE pathways10. However, we failed to find any evidence of this link

using pupilary responses as a proxy of LC-NE dynamics. It should be noted,

however, that our experimental design cannot distinguish between pupillary dy-

namics driven by other catecholamines, such as dopamine, and those dynamics

driven by LC-NE system142,97,64,65, Thus it is possible that the LC-NE system

may still be playing a role in shift of decision policies, and the pupil responses

we collected were insensitive to the underlying dynamics. Nonetheless, this null

association suggests that an alternative neural mechanism drives the adaptive

changes that we observed behaviorally.

One possible alternative mechanism for resetting decision policies is is dopamin-

ergic changes to the cortico-basal ganglia-thalamic (CBGT) pathways, or ”loops”.

Both recent experimental174,43 and theoretical24,32,163 studies have pointed to

the CBGT loops as being a crucial pathway for accumulating evidence during

decision making, with the wiring architecture of these pathways ideal for im-

plementing the sequential probability ratio test23,22, the statistically optimal

algorithm for evidence accumulation decisions and the basis for the DDM it-

self126. Further, multiple lines of theoretical work have suggested that, within

the CBGT pathways, the difference in direct pathway activity between action

channels covaries with the rate of evidence accumulation for individual deci-

sions100,16,46,130, while the indirect pathways are linked to control of the bound-

ary height163,73,22,127. This suggests that changes in the direct and indirect path-

ways, both within and between representations of different actions, may regu-

late shifts in decision policies.
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Critically, the CBGT pathways are a target of the dopaminergic signaling

that drives reinforcement learning135, suggesting that changes in relative action-

value should drive trial-by-trial changes in the drift rate. Indeed, previous work

relating dopaminergic circuitry to decision policy adaptation suggests that dopamine

may play a critical role in modulating decision policies. Dopamine has substan-

tial links to exploration81 and recent pharmacological evidence suggests a role

for dopaminergic regulation of exploration in humans35. More explicitly, both

directed and random exploration have been linked to variations in genes that

affect dopamine levels in prefrontal cortex and striatum, respectively64. Physi-

ologically, previous work has found that a dopamine-controlled spike-timing de-

pendent plasticity rule alters the ratio of direct to indirect pathway efficacy in a

simulated corticostriatal network159, with overall indirect pathway activity (i.e.,

pre-decision firing rates) linked to the modulation of the boundary height in a

DDM and the difference in direct pathway activation across action channels as-

sociating with changes in the drift rate46,130. Moreover, recent optogenetic work

in mice suggests that activating the subthalamic nucleus, a key node in the in-

direct pathway, not only halts the motoric response but also interrupts cogni-

tive processes related to action selection74. Our current observations, combined

with this previous work, suggests that the decision policy reconfiguration that

we observe may associate with similar underlying corticostriatal dynamics, with

belief-driven changes to drift rate varying with the difference in direct path-

way firing rates across action channels46, and change-point-probability-driven

changes to the boundary height varying with overall indirect pathway activ-
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ity46,159. Future physiological studies should focus on validating this predicted

relationship between decision policy reconfiguration and CBGT pathways.

The current study raises many more questions about the dynamics of adap-

tive decision policies than it answers. For example, we only sparsely sampled

the space of possible states of value conflict and volatility. Future work would

benefit from a more complete sampling of the conflict and volatility space. A

psychophysical characterization of how decision states shift in response to vary-

ing forms of uncertainty will expose potential non-linear relationships between

the decision policy and feedback uncertainty. Moreover, the decisions that we

have modeled here are simple two choice decisions, constrained mostly by the

normative form of the traditional DDM framework126. Scaling the complexity

of the task will allow for a more complete assessment of how these relationships

change with more complex decisions that better approximate the choices that

we make outside the lab. This could be done by moving the cognitive model to

frameworks that can fit processes for decisions involving more than two alter-

natives (e.g.150). Finally, because our estimate of the relationship between our

ideal observer estimates of uncertainty and human estimates of uncertainty were

indirect, this work would benefit from online approximations of ideal observer

estimates, as has been done previously171. Indeed, there can be substantive in-

dividual differences in the detection of of change points171. Thus, an approx-

imation of how well the estimates of change point probability from our ideal

observer correspond to estimates that human observers hold is needed. This

approximation would validate the fidelity of the relationship between the ideal
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observer estimates of uncertainty and the decision parameters that we observed.

2.4 Conclusion

Together, our results suggest that when humans are forced to change their mind

about the best action to take, the underlying decision policy adapts in a spe-

cific way. When a change in action-outcome contingency is suspected, the rate

of evidence accumulation decreases and more evidence may briefly be required

to commit to a response, allowing variability inherent to the decision process

to play a greater role in response selection and resulting in a slow exploratory

state. As the environment becomes stable, the system gradually adapts to an

exploitative state. Importantly, we find no evidence that norepinephrine path-

ways associate with this response. This suggests that other pathways may be

engaged in this adaptive reconfiguration of decision policies. These results re-

veal the multifaceted underlying decision processes that can adapt action selec-

tion policy under multiple forms of environmental uncertainty.

2.5 Methods

2.5.1 Participants

Neurologically healthy adults were recruited from the local university popula-

tion. All procedures were approved by the Carnegie Mellon University Insti-

tutional Review Board (Approval Code: 2018_00000195; Funding: Air Force

Research Laboratory, Grant Office ID: 180119). All research participants pro-
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vided informed consent to participate in the study and consent to publish any

research findings based on their provided data.

Twenty-four participants (19 female, 22 right-handed, 19-31 years old) were

recruited for Experiment 1 and paid $20 at the end of four sessions. Four par-

ticipants (2 female, 4 right-handed, 21-28 years old) were recruited for Exper-

iment 2 and paid $10 for each of nine sessions, in addition to a performance

bonus.

Processed data and code are available within a Github repository for this

publication. Hypotheses were registered prior to the completion of data collec-

tion using the Open Science Framework56.

2.5.2 Stimuli and Procedure

2.5.2.1 Experiment 1

To begin the task, each participant read the following instructions:

”You’re going on a treasure hunt! You will start with 600 coins in

your treasure chest, and you’ll be able to pay a coin to open either a

purple or an orange box. When you open one of those boxes, you

will get a certain number of coins, depending on the color of the

box. However, opening the same box will not always give you the

same number of coins, and each choice costs one coin. After making

your choice, you will receive feedback about how much money you

have. Your goal is to make as much money as possible. Press the

green button when you’re ready to continue. Choose the left box by
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pressing the left button with your left index finger and choose the

right box by pressing the right button with your right index finger.

Note that if you choose too slowly or too quickly, you won’t earn

any coins. Finally, remember to make your choice based on the color

of the box. Press the green button when you’re ready to begin the

hunt!”

On each trial, participants chose between one of two ‘mystery boxes’ pre-

sented side-by-side on the computer screen (Fig. 2.2A). Participants selected

one of the two boxes by pressing either a left button (left box selection) or right

button (right box selection) on a button box (Black Box ToolKit USB Response

Pad, URP48). Reaction time (RT) was defined as the time elapsed from stim-

ulus presentation to stimulus selection. Reaction time was constrained so that

participants had to respond within 100 ms to 1000 ms from stimulus presenta-

tion. If participants responded too quickly, the trial was followed by a 5 s pause

and they were informed that they were too fast and asked to slow down. If par-

ticipants responded too slowly, they received a message saying that they were

too slow, and were asked to choose quickly on the next trial. In both of these

cases, participants did not receive any reward feedback or earn any points, and

the trial was repeated so that 600 trials met these reaction time constraints. In

order to avoid fatigue, a small break was given midway through each session

(break time: 0.70 ± 1.42 m). Participants began each condition with 600 points

and lost one point for each incorrect decision.

Feedback was given after each rewarded choice in the form of points drawn
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from the normal distribution N(µ = 3, σ = 1) and converted to an integer. If

the choice was unrewarded, then participants received 0 points. These points

were displayed above the selected mystery box for 0.9 s. To prevent stereotyped

responses, the inter-trial interval was sampled from a uniform distribution with

a lower limit of 250 ms and an upper limit of 750 ms (U(250, 750)). The relative

left-right position of each target was pseudorandomized on each trial to prevent

incidental learning based on the spatial position of either the mystery box or

the responding hand.

To induce decision-conflict, the probability of reward for the optimal target

(P ) was manipulated across two conditions. We imposed a relatively low prob-

ability of reward for the high conflict condition (P = 0.65). Conversely, we im-

posed a relatively high probability of reward for the low conflict condition (P =

0.85). For all conditions, the probability of the low-value target was 1− P .

Along with these reward manipulations, we also introduced volatility in the

action-outcome contingencies. After a prespecified number of trials, the iden-

tity of the optimal target switched periodically. The point at which the opti-

mal target switched identities was termed a change point. Each period of mean

contingency stability was defined as an epoch. Consequently, each session was

composed of multiple change points and multiple epochs. Epoch lengths, in tri-

als, were drawn from a Poisson distribution. The lambda parameter was held

constant for both high conflict and low conflict conditions (λ = 25).

To manipulate volatility, epoch lengths were manipulated across two condi-

tions. The high volatility condition drew epoch lengths from a Poisson distri-
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bution where λ = 15 and the low volatility condition drew epoch lengths from

a distribution where λ = 35. In these conditions manipulating volatility, the

probability of reward was held constant (P = 0.75).

Each participant was tested under four experimental conditions: high conflict,

low conflict, high volatility, and low volatility. Each condition was completed

in a unique experimental session and each session consisted of 600 trials. Each

participant completed the entire experiment over two testing days. To eliminate

the effect of timing and its correlates on reward learning31,109, the order of con-

ditions was counterbalanced across participants.

2.5.2.2 Experiment 2

Experiment 2 used male and female Greebles59 as selection targets (Fig. 2.2B).

Participants were first trained to discriminate between male and female Gree-

bles to prevent errors in perceptual discrimination from interfering with selec-

tion on the basis of value. Using a two-alternative forced choice task, partici-

pants were presented with a male and female Greeble and asked to select the

female, with the male and female Greeble identities resampled on each trial.

Participants received binary feedback regarding their selection (correct or incor-

rect). This criterion task ended after participants reached 95% accuracy (mean

number of trials to reach criterion: 31.29, standard deviation over means for

subjects: 9.99).

After reaching perceptual discrimination criterion for each session, each par-

ticipant was tested under nine reinforcement learning conditions composed of
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400 trials each, generating 3600 trials per subject in total. Data were collected

from four participants in accordance with a replication-based design, with each

participant serving as a replication experiment. Participants completed these

sessions across three weeks in randomized order. Each trial presented a male

and female Greeble59, with the goal of selecting the sex identity of the Gree-

ble that was most profitable (Fig. 2.2B). Individual Greeble identities were re-

sampled on each trial; thus, the task of the participant was to choose the sex

identity rather than the individual identity of the Greeble which was most re-

warding. Probabilistic reward feedback was given in the form of points drawn

from the normal distribution N(µ = 3, σ = 1) and converted to an integer, as in

Experiment 1. These points were displayed at the center of the screen. Partic-

ipants began with 200 points and lost one point for each incorrect decision. To

promote incentive compatibility76,90, participants earned a cent for every point

earned. Reaction time was constrained such that participants were required to

respond within 0.1 and 0.75 s from stimulus presentation. If participants re-

sponded in ≤ .1 s, ≥ 0.75 s, or failed to respond altogether, the point total

turned red and decreased by 5 points. Each trial lasted 1.5 s and reward feed-

back for a given trial was displayed from the time of the participant’s response

to the end of the trial.

To manipulate change point probability, the sex identity of the most reward-

ing Greeble was switched probabilistically, with a change occurring every 10,

20, or 30 trials, on average. To manipulate the belief in the value of the opti-

mal target, the probability of reward for the optimal target was manipulated,
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with P set to 0.65, 0.75, or 0.85. Each session combined one value of P with

one level of change point probability, such that all combinations of change point

frequency and reward probability were imposed across the nine sessions (Fig.

2.2C). As in Experiment 1, the position of the high-value target was pseudo-

randomized on each trial to prevent prepotent response selections on the basis

of location.

Throughout the task, the head-stabilized diameter and gaze position of the

left pupil were measured with an Eyelink 1000 desktop mount at 1000 Hz. Par-

ticipants viewed stimuli from within a custom-built booth designed to eliminate

the influence of ambient sources of luminance. Because the extent of the pupil-

lary response is known to be highly sensitive to a variety of influences140, we

established the dynamic range of the pupillary response for each session by ex-

posing participants to a sinusoidal variation in luminance prior to the reward-

learning task. During the reward-learning task, all stimuli were rendered isolu-

minant with the background of the display to further prevent luminance-related

confounds of the task-evoked pupillary response. To obtain as clean a trial-

evoked pupillary response as possible and minimize the overlap of the pupillary

response between trials, the inter-trial interval was sampled from a truncated

exponential distribution with a minimum of 4 s, a maximum of 16 s, and a rate

parameter of 2. The eyetracker was calibrated and the calibration was validated

at the beginning of each session. See Pupil data preprocessing for pupil data

preprocessing steps.
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2.5.3 Models and simulations

2.5.3.1 Q-Learning simulations

A simple, tabular q-learning agent148 was used to simulate action selection in

contexts of varying degrees of conflict and volatility. On each trial, t, the agent

chooses which of two actions to take according to the policy

πt =
expβ∗Qt

Σβ ∗Qt

. (2.1)

Here β is the inverse temperature parameter, 1/τ , reflecting the greediness of

the selection policy and Qt is the estimated state-action value vector on that

trial. Higher values of β reflect more exploitative decision policies.

After selection, a binary reward was returned. This was used to update the Q

table according using a simple update rule

Qt+1 = Qt + α(reward−Qt), (2.2)

where α is the learning rate for the model.

On each simulation an agent was initialized with a specific β value, ranging

from 0.1 to 3. On each run the agent completed 500 trials at a specific con-

flict and volatility level, according to the experimental procedures described in

Stimuli and Procedure. The total returned reward was tallied after each run,

which was repeated for 200 iterations to provide a stable estimate of return for

each agent and condition. The agent was tested on a range of pairwise conflict
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(P (optimal) = 0.55− 0.90) and volatility (λ = 10− 100) conditions.

After all agents were tested on all conditions, the β value for the agent that

returned the greatest average reward across runs was identified as the optimal

agent for that experimental condition.

2.5.3.2 Drift diffusion model simulations

A normative drift-diffusion model (DDM) process126 was used to simulate the

outcomes of agents with different drift rates and boundary heights. The DDM

assumes that evidence is stochastically accumulated as the log-likelihood ratio

of evidence for two competing decision outcomes. Evidence is tracked by a sin-

gle decision variable θ until reaching one of two boundary heights, representing

the evidence criterion for committing to a choice. The dynamics of θ is given

by.

dθ = vdt+ σdW for t > tr;

θ(t ≤ tr) = z/a (2.3)where v is the mean strength of the evidence and σ is

the standard deviation of a white noise process W , representing the degree of

noise in the accumulation process. The choice and reaction time (RT) on each

trial are determined by the first passage of θ through one of the two decision

boundaries {a, 0}. In this formulation, θ remains fixed at a predefined starting

point z/a ∈ [0, 1] until time tr, resulting in an unbiased evidence accumulation

process when z = a/2. In perceptual decision tasks, v reflects the signal-to-noise

ratio of the stimulus. However, in a value-based decision task, v can be taken
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to reflect the difference between Q-values for the left and right actions. Thus,

an increase (decrease) in QL − QR from 0 would correspond to a proportional

increase (decrease) in v, leading to more rapid and frequent terminations of θ at

the upper (lower) boundary a (0).

Using this DDM framework, we simulated a set of agents with different con-

figurations of a and v. Each agent completed 1500 trials of a “left” (upper bound)

or “right” (lower bound) choice task, with tr = 0.26 and z = a
2
. The values

for a were sampled between 0.05 and 0.2 in intervals of 0.005. The values for v

were sampled from 0 to 0.3 in 0.005 intervals. At the end of each agent run, the

probability of selecting the left target, P (L), and the mean RT were recorded.

2.5.3.3 Cognitive model

Our a priori hypothesis was that the drift rate (v) and the boundary height (a)

should change on a trial-by-trial basis according to two estimates of uncertainty

from an ideal observer27. We adapted the below ideal observer calculations from

a previous study155 (for the original formulation of this reduced ideal observer

model and its derivation, see112).

First we assumed that reward feedback drove the belief in the reward associ-

ated with an action. We called the belief in the reward attributable to a given

action B. This reward belief is learned separately for each action target. Given

the chosen target (c) and the unchosen target (u), the belief in the mean reward

for the chosen and unchosen targets on the next trial (trial t+ 1) was calculated

as:
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Bt+1,c = Bt,c + αtδt,

Bt+1,u = Bt,u(1− Ωt) + ΩtE(r),

(2.4)where αt denotes the learning rate, δt the prediction error, and Ωt the

change point probability on the current trial t, as discussed below. E(r) refers

to the pooled expected value of both targets:

E(r) =
r̄t0 + r̄t1

2
, (2.5)

with r̄t0, r̄t1 fixed based on the imposed target reward probabilities.

The prediction error, δt, was the difference between the reward obtained for

the target chosen and the model belief:

δt = rt −Bt,c. (2.6)

The signed belief in the reward difference between optimal and suboptimal tar-

gets (∆B) was calculated as the difference in reward value belief between target

identities:

∆Bt+1 = Bt,opt −Bt,subopt. (2.7)

Model confidence (ϕ) was defined as a function of change point probability

(Ω) and the variance of the generative distribution of points (σ2
n), both of which
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formed an estimate of relative uncertainty (RU):

RUt =
Ωtσ

2
n + (1− Ωt)(1− ϕt)σ

2
n + Ωt(1− Ωt)(δtϕt)

2

Ωtσ2
n + (1− Ωt)(1− ϕt)σ2

n + Ωt(1− Ωt)(δtϕt)2 + σ2
n

. (2.8)

Thus ϕ is calculated as:

ϕt+1 = 1−RUt. (2.9)

An estimate of the variance of the reward distribution, σ2
t , was calculated as:

σ2
t = σ2

n +
(1− ϕt)σ

2
n

ϕt

(2.10)

where σn is the fixed variance of the generative reward distribution.

The learning rate of the model (α) was determined by the change point prob-

ability (Ω) and the model confidence (ϕ). Here, the learning rate was high if

either 1) a change in the mean of the distribution of the difference in expected

values was likely (Ω is high) or 2) the estimate of the mean was highly imprecise

(σ2
t was high):

αt = Ωt + (1− Ωt)(1− ϕt). (2.11)

To model how learners update action-values, we calculated an estimate of how

often the same action gave a different reward155. This estimate gave our rep-

resentation of change point probability, Ω. The change point probability ap-

proached 1 from below as the probability of a sample coming from a uniform
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distribution, relative to a Gaussian distribution, increased:

Ωt =
U(rt)H

U(rt)H +N(rt|B∆t , σ
2
t )(1−H)

. (2.12)

In equation (2.12), H refers to the hazard rate, or the global probability of a

change point over trials:

H =
ncp

ntrials

. (2.13)

Our preregistered expectation was that the belief in the value of a given ac-

tion and an estimate of environmental stability would target different param-

eters of the DDM model. Specifically, we hypothesized that the belief in the

relative reward for the two choices, ∆B, would update the drift rate, v, or the

rate of evidence accumulation:

vt+1 = β̂v·∆Bt + vt (2.14)

while the change point probability, Ω, would increase the boundary height, a, or

the amount of evidence needed to make a decision:

at+1 = a0 + β̂a · Ωt. (2.15)
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2.5.3.4 Hierarchical drift diffusion modeling

First, to identify which decision parameters were sensitive to the onset of a

change point, we estimated the posterior distribution of drift rate (v), bound-

ary height (a), drift criterion (dc), starting point (z), and non-decision time (t)

for the trial preceding the change point in and the following three trials using

stimulus-coded fitting methods for Experiment 1. We then looked for change-

point-evoked effects in these parameters by comparing the overlap of the distri-

butions for each decision parameter for each of these trials. If less than 5% of

the mass of the trial-wise posterior distributions for a given decision parameter

overlapped, we considered those distributions to exhibit change point sensitiv-

ity.

To identify the fits that best accounted for the data, we conducted a model

selection process using Deviance Information Criterion (DIC) scores. We com-

pared the set of fitted models (Table 2.1) to an intercept-only regression model

(DICi −DICintercept). A lower DIC score indicates a model that loses less infor-

mation. Here, a difference of ≤ 2 points from the lowest-scoring model cannot

rule out the higher scoring model; a difference of 3 to 7 points suggests that the

higher scoring model has considerably less support; and a difference of 10 points

suggests essentially no support for the higher scoring model141,30.

We used these complementary model ”pruning” methods (i.e. distributional

overlap and information loss) as an out-of-set filtering method to determine

which decision parameters to include for the subsequent HDDM regression anal-

yses in Experiment 2.
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The best parameter fits, evaluated as above, were used to plot the decision

trajectory (Decision vector representation) and to estimate the change-point-

evoked relationship between those winning parameters (Model proposals and

evaluation).

For Experiment 2, to assess whether and how much the ideal observer esti-

mates of change point probability (Ω) and the belief in the value of the optimal

target (∆B) updated the rate of evidence accumulation (v) and the amount of

evidence needed to make a decision (a), we regressed the change-point-evoked

ideal observer estimates onto the decision parameters using hierarchical drift

diffusion model (HDDM) regression166. These ideal observer estimates of envi-

ronmental uncertainty served as a more direct and continuous measure of the

uncertainty we sought to induce with our experimental conditions (see Fig. 2.4

for how the experimental conditions impacted these estimates). Considering this

more direct approach, we pooled change point probability and belief across all

conditions and used these values as our predictors of drift rate and boundary

height. Responses were accuracy-coded, and the belief in the difference between

targets values was transformed to the belief in the value of the optimal target

(∆Boptimal(t) = Boptimal(t) − Bsuboptimal(t)). This approach allowed us to estimate

trial-by-trial covariation between the ideal observer estimates and the decision

parameters relative to the onset of a change point.

For both the HDDM fits for Experiment 1 and the regression analyses for Ex-

periment 2, Markov-chain Monte-Carlo methods were used to sample the poste-

rior distributions of the regression coefficients. Twenty thousand samples were
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drawn from the posterior distributions of the coefficients for each model, with

5000 burned samples and a thinning factor of five. We chose this number of

samples to optimize the trade-off between computation time and the precision

of parameter estimates, and all model parameters converged to stability. This

method generates a distributional estimate of the regression coefficients instead

of a single best fit.

To test our hypotheses regarding these HDDM regression estimates, we again

used the posterior distributions of the regression parameters. To quantify the

reliability of each regression coefficient, we computed the probability of the re-

gression coefficient being greater than or less than 0 over the posterior distribu-

tion. We considered a regression coefficient to be reliable if the estimated coef-

ficient maintained the same sign over at least 95% of the mass of the posterior

distribution.

2.5.4 Analyses

2.5.4.1 General statistical analysis

Statistical analyses and data visualization were conducted using custom scripts

written in R (R Foundation for Statistical Computing, version 3.4.3) and Python

(Python Software Foundation, version 3.5.5).

To determine how many trials would be needed to detect proposed condition

effects, we conducted a power analysis by way of parameter recovery. For this

we simulated accuracy and reaction time data using our hypothesized model

(Cognitive model) and calculated the generative or “true” mean drift rate and
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boundary height parameters across trials. Then we conducted hierarchical pa-

rameter estimation given 200, 400, 600, 800, or 1000 simulated trials. The mean

squared error of parameter estimates was stable at 600 trials for all decision pa-

rameters. Additionally, as a validation measure, we estimated parameters using

component models (drift rate alone, boundary height alone) and a combined

model (drift rate and boundary height). We found that the Deviance Informa-

tion Criterion (DIC) scores among competing models were clearly separable at

600 trials, and in favor of the hypothesized model from which we generated the

data, as expected (??). Based on these results, we used 600 trials per condition

for each participant for our first experiment. We chose to recruit 24 participants

for this experiment to fully counterbalance the four conditions (4! = 24).

Binary accuracy data were submitted to a mixed effects logistic regression

analysis with either the degree of conflict (the probability of reward for the op-

timal target) or the degree of volatility (mean change point frequency) as pre-

dictors. The resulting log-likelihood estimates were transformed to likelihood for

interpretability. RT data were log-transformed and submitted to a mixed effects

linear regression analysis with the same predictors as in the previous analysis.

To determine if participants used ideal observer estimates to update their be-

havior, two more mixed effects regression analyses were performed. Estimates of

change point probability and the belief in the value of the optimal target served

as predictors of reaction time and accuracy across groups. As before, we used

a mixed logistic regression for accuracy data and a mixed linear regression for

reaction time data.
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Because we adopted a within-subjects design, all regression analyses of be-

havior modeled the non-independence of the data as constantly correlated data

within participants (random intercepts). Unless otherwise specified, we report

bootstrapped 95% confidence intervals for behavioral regression estimates. To

prevent any bias in the regression estimates emerging from collinearity between

predictors and to aid easy interpretation, all predictors for these regressions

were mean-centered and standardized prior to analysis. The Satterthwaite ap-

proximation was used to estimate p-values for mixed effects models134,93.

2.5.4.2 Decision vector representation

To concisely capture the change-point-driven response in the relationship be-

tween the boundary height and the drift rate over time, we represented the re-

lationship between these two decision variables in vector space. Trial-by-trial

estimates of drift rate and boundary height were calculated from the winning

HDDM regression equation and z-scored. Then the difference between each se-

quential set of (a, v) coordinates was calculated to produce a vector length. The

arctangent between these subtracted values was computed to yield an angle in

radians between sequential decision vectors (Fig. 2.7B).

For Experiment 1, these computations were performed from the trial prior to

the onset of the change point to eight trials after the change point. The initial

window of nine trials was selected to maximize the overlap of stable data be-

tween high and low volatility conditions (see Supp. Fig. ??). This resulted in

a sequence of angles formed between trials -1 and 0 (∆t1 yielding θ1), 0 and 1
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(∆t2 yielding θ2), and so on. To observe the timescale of these dynamics, a cir-

cular regression106 was performed to determine how θ changed as a function of

the number of trials after the change point:

θ = β̂0 + β̂∆t + …β̂∆t8 .

To quantitatively assess the number of trials needed for θ to stabilize, we cal-

culated the probability that the posterior distributions of the regression esti-

mates (Supp. Fig. ??) for sequential pairs of trials had equal means (θ∆t =

θ∆t+1). This result (Supp. Fig. ??) provided an out-of-set constraint on the

timescale of the decision response to consider for analogous analyses in Exper-

iment 2.

Experiment 2 used the stability convergence analysis from Experiment 1 to

guide the timescale of further circular analyses and, thus, placed a constraint

on the complexity of the models proposed (Model proposals and evaluation).

Because Experiment 2 took a replication-based approach, a separate model was

fit for each participant for all proposed models. We report the mean and 95%

CI of the posterior distributions of regression parameter estimates and the mean

and standard deviation of estimates across subjects.

The circular regression analyses used Markov-chain Monte-Carlo (MCMC)

methods to sample the posterior distributions of the regression coefficients. For

both experiments, 10,000 effective samples were drawn from the posterior distri-

butions of the coefficients for each model89. Traces were plotted against MCMC

iteration for a visual assessment of equilibrium, the autocorrelation function was
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calculated to verify independence of MCMC steps, trace distributions were visu-

ally evaluated for normality, and point estimates of the mean value were verified

to be contained within the 95% credible interval of the posterior distribution for

the estimated coefficients.

2.5.4.3 Pupil data preprocessing

Pupil diameter data were segmented to capture the interval from 500 ms prior

to trial onset to the end of the 1500 ms trial, for a total of 2000 ms of data per

trial. While the latency in the phasic component of the task-evoked pupillary

response ranges from 100-200 ms on average17, suggesting that our segmenta-

tion should end 200 ms after the trial ending, participants tended to blink af-

ter the offset of the stimulus and during the intertrial interval (see Supp. Fig.

?? for a representative sample of blink timing). Because of this, we ended the

analysis window with the offset of the stimulus. Following segmentation, pupil

diameter samples marked as blinks by the Eyelink 1000 default blink detection

algorithm and zero- or negative-valued samples were replaced by linearly inter-

polating between adjacent valid samples. Pupil diameter samples with values

exceeding three standard deviations of the mean value for that session were like-

wise removed and interpolated. Interpolated data were bandpass filtered using

a .01 to 5 Hz second-order Butterworth filter. Median pupil diameter calculated

over the 500 ms prior to the onset of the stimulus was subtracted from the trial

data. Finally, processed data were z-scored by session.

For each trial interval, we characterized the evoked response as the mean of
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the pupil data over that interval, the latency to peak onset and offset, the la-

tency to peak amplitude, the peak amplitude, and the area under the curve

of the phasic pupillary response (Fig. 2.9A). We then submitted these metrics

to principal component analysis to reduce their dimensionality while capturing

maximum variance. Evoked response characterization and principal component

analysis were conducted for each session and for each subject.

The 95% CI for the number of principal components needed to explain 95% of

the variance in the data was calculated over subjects and sessions to determine

the number of principal components to keep for further analysis.

To aid in interpreting further analysis using the selected principal compo-

nents, the feature importance of each pupil metric was calculated for each prin-

cipal component and aggregated across subjects as a mean and bootstrapped

95% CI (Fig. 2.9B).

Note that we also conducted a similar analysis using more conventional meth-

ods to assess the task-evoked pupillary response and observed another null ef-

fect. Specifically, if we take the derivative of the evoked pupillary response with

respect to time129 and then characterize the pupillary response with the above

metrics and conduct principal component analysis, we again see no evidence for

a relationship between the pupillary response and the decision trajectory. Addi-

tionally, we observe no relationship between our experimental manipulations of

conflict and volatility and these metrics, or a change-point evoked shift in pre-

stimulus pupillary response (66, Supp. Fig. ??). As such, we caution the reader

to view our pupillary results in light of this lack of replication of pre-established
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exploration-driven pupillary responses.

2.5.4.4 Model proposals and evaluation

To assess the hypothesized influences on θ in Experiment 2, we began our model

set proposal with a null hypothesis. Our null model estimates decision dynamics

as a function of the intercept, or the average of θ:

θ = β0.

Next, we estimated decision dynamics solely as a function of time relative to

a change point, with the timescale of consideration determined by the results of

the stability convergence analysis from Experiment 1. We call this the evoked

response model:

θ = β0 + β∆t ...β∆tn .

We first evaluated whether the posterior probability of the evoked response

model given the data was greater than the posterior probability for the absolute

null model. If the lower bound of the 95% CI of the posterior probability for the

time-null model exceeded the upper bound of the 95% CI for the absolute null

model (i.e the posterior probability was greater for the evoked response model

and the CIs were non-overlapping), we proceeded to evaluate the evidence for

alternative models relative to this evoked response model. We evaluated the

statistical reliability of the posterior probabilities using a bootstrapped 95% CI
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computed over subjects.

We considered an explicit set of hypotheses regarding the effect of the change-

point-evoked pupillary response on boundary height and drift rate dynamics

(see Fig. 2.10 for the full set of models considered). The first two principal com-

ponents of the set of pupil metrics, which we term the timing and magnitude

components, respectively, were included in this model set to evaluate the effect

of the timing and magnitude of noradrenergic dynamics on the change-point-

evoked decision manifold. Under the assumption of a neuromodulatory effect on

decision dynamics, these principal components were shifted forward by one trial

to match the expected timing of the response to neuromodulation.

To determine whether perturbations of volatility and conflict affected change-

point-evoked decision dynamics, we estimated the evoked decision dynamics as a

function of λ and p, where λ corresponds to the average length of an epoch and

p corresponds to the mean probability of reward for optimal target selection (see

Table 2.1 for the full set of models considered).

We used Bayes Factors to quantify the ratio of evidence for competing hy-

potheses160. To estimate whether these models accounted for decision dynam-

ics beyond the effect of time relative to a change point alone, we calculate the

Bayes Factor for the evoked response model relative to each candidate model

(BF01). Finally, we calculate the posterior probability of the null model given

the full set of alternative models160. Note that this approach assumes that each

model has equal a priori plausibility.

Bayes Factor visualizations represent the mean and bootstrapped 95% CI
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with 1000 bootstrap iterations.
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Chapter 3

Cortico-basal ganglia-thalamic (CBGT) network compe-

tition supports decision policy reconfiguration

The following text was adapted from the working paper Bond, Rasero, Madan,

Bahuguna, Rubin, and Verstynen 2022.

3.1 Introduction

Even the simplest decision relies on complex processing of both external

(e.g., sensory) and internal (e.g., learned contingencies) information streams.

The choice between two actions is continually updated based on incoming sen-

sory signals at a given accumulation rate until sufficient evidence is reached to

trigger one action over the other67,126. Importantly, these parameters of infor-

mation accumulation are highly plastic, adjusting to both the reliability of sen-

sory signals112,172,111,19,26 and previous choice history154,127,119,45,46,99, in order

to balance the speed of a given decision with local demands to choose the right

action.
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We recently showed that when action-outcome contingencies change, forcing

a change of mind as to what is the most rewarding action, humans dynamically

reduce the rate of information accumulation (drift-rate, v, in a normative drift

diffusion model, DDM126) and, somewhat less reliably, increase the threshold of

evidence needed to trigger an action (boundary height, a)26. This pushes the

decision policy into a slow, exploratory state that allows for feedback learning to

push the system to the new best action-outcome contingency, which then leads

to a faster drift rate and stable boundary height (see also45).

Here we explore the underlying implementation mechanisms that drive changes

in underlying decision parameters, as agents have to change their mind in the

face of new environmental contingencies. We start with a set of theoretical ex-

periments with the neural systems thought to influence the information accumu-

lation process, known as the cortico-basal ganglia-thalamic (CBGT) networks.

These experiments, relying on biologically realistic spiking models of CBGT

pathways, make specific predictions that both explain previous results26 and

make specific predictions as to how competition between action channels drive

changes in the decision policy. We then test these predictions in humans with

neuroimaging using an ultra-high sampled, within-subject design. Each partici-

pant is tested across several weeks and several thousands of trials, where action-

outcome contingencies change on a semi-random basis. Using whole-brain de-

coding models, we estimate the relative competition between neural populations

encoding choice. Then we show how, consistent with our model predictions, this

competition informs underlying decision policy dynamics evoked by environmen-
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tal change.

3.2 Results

3.2.1 CBGT circuits control decision parameters under uncertainty

Both theoretical23,25,127,44,46 and experimental174 evidence suggests that the

CBGT circuits play a critical role in the evidence accumulation process. The

canonical CBGT circuit (Figure 1A) includes two dissociable control pathways:

the direct (facilitation) and indirect (suppression) pathways5,57. A critical as-

sumption of the canonical model is that the basal ganglia are organized into

multiple action channels69,24,165,113,14,123,44,45,158, each containing a direct and in-

direct pathway. While a strict, segregated action channel organization may not

accurately reflect the true underlying circuitry, the concept of independent ac-

tion channels provides conceptual ease when describing the competition between

possible actions without changing the key dynamic properties of the underlying

computations. Moreover, striatal neurons have been shown to organize into spa-

tiotemporal assemblies which are modulated by task specific features3,86,15,33,13.

In the canonical model101,22, activation of the direct pathway, i.e cortical ex-

citation of D1-expressing spiny projection neurons (SPNs) in the striatum, re-

leases GABAergic signals that can suppress activity in the CBGT output nu-

cleus (internal segment of the globus pallidus, GPi, in primates or substantia

nigra pars reticulata, SNr, in rodents). This relieves the thalamus from the tonic

inhibition that basal ganglia outputs normally provides, allowing the thalamus

to facilitate action execution. Conversely, activation of the indirect pathway,
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i.e D2-expressing SPNs in the striatum, controls firing in the external segment

of the globus pallidus (GPe) and the subthalamic nucleus (STN) such that it

strengthens basal ganglia inhibitory output. This suppresses activity of the tha-

lamocortical pathways, reducing the likelihood that an action gets selected in

cortex. The topological encoding of actions in the striatum110,91,1 and the con-

vergence of projections to the GPi/SNr85,1 suggests that the direct and indirect

pathways may compete for control over the output of the basal ganglia, encod-

ing the “evidence” favoring any behavioral decision as the relative activation of

the two pathways within the corresponding action channel16,43. Critically, this

competition between the pathways has been theoretically linked to the rate of

information accumulation during decision making157.

To illustrate how competition between the direct and indirect pathways reg-

ulates information processing during decision making, we designed spiking neu-

ral network model of the CBGT circuits, shown in Fig. 4.1A, with dopamine-

dependent plasticity occurring at the corticostriatal synapses159,130, and had

it perform a probabilistic dynamic 2-arm bandit task with switching reward

contingencies (26; see Materials & Methods). This task followed the same gen-

eral structure as the human participants in the current experiment (see next

section) and prior work26. In brief, the network selected one of two targets,

each of which returned a reward according to a specific probability distribu-

tion. The relative difference in reward probability (conflict) was held constant

at 75%/25% and probability of a switch in the optimal target (volatility) held

at 10 (reward contingency was changed every 10 trials). For purposes of this
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Figure 3.1: Biologically realistic CBGT network performance. (A) Each CBGT nucleus is orga-
nized into two action channels (red and blue) except a common population for striatal FSIs (Fast
Spiking Interneurons) and cortical interneurons (CxI). CBGT network image adapted from157. (B)
Average firing rate profiles for D1-SPNs (first column) and D2-SPNs (second column) for trials
where left action was chosen, 100ms before the decision time (t=0). The D1-SPNs encoding the
”left” action are shown in blue whereas the D1-SPNs encoding the ”right” action are shown in
orange. The thick solid lines represent the firing rates profiles for fast trials (short RTs) and thin
dashed lines represent the firing rates profiles for slow trials (long RTs). The left-dSPNs show a
ramping of activity closer to decision time and the slope of this ramp scales with response speed.
(C) Drift rates are negatively correlated to decision uncertainty. Simulated subjects represent sim-
ulations for different network instances and initial conditions (random seeds). (D) Drift rate and
decision uncertainty profiles aligned to the change point. The drift rate drops whereas the decision
uncertainty increases as expected at the change point.

study we focus primarily on the effects of switches in optimal targets.

Overall, the network could reliably perform this task, changing its selections

in response to a change in action-outcome contingencies effectively (Supp. Fig.

3.5A). Figure 4.1B shows the firing rates of dSPNs and iSPNs in the left action

channel, timelocked to selection onset (when thalamic units exceed 30Hz, t=0),

for both fast (< 196ms) and slow (> 314.5ms) decisions (see Supp. Fig. 3.5B
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for the dynamics of the full network). As expected, the dSPNs show a ramping

of activity closer to a left decision for trials where left decision was chosen and

the slope of this ramp scales with response speed. In contrast, we see a clearer

main effect of response speeds in the iSPNs, which have sustained high firing

during slow movements and ramping, rebound firing during fast movements

but relatively insensitive to left versus right actions. This is consistent with

our previous work showing that differences in direct pathways tracks primar-

ily with choice while differences in indirect pathways modulates overall response

speeds46, the later also supported by experimental studies176.

In order to capture the parameters of the information accumulation process

as the network makes each decision, we modeled the behavior of the CBGT net-

work using a hierarchical version of the drift diffusion model (DDM)126,167, a

canonical formalism for the process of evidence accumulation during decision-

making (Fig. 2B). This model returns four key parameters with distinct influ-

ences on evidence accumulation, with the drift rate (v) representing the rate of

evidence accumulation, the boundary height (a) as the amount of information

required to cross the decision threshold, nondecision time (t) as motor-induced

delays in the onset of the accumulation process, and starting bias (z) as a bias

to begin accumulating evidence for one choice over another (see Methods sec-

tion).

Consistent with prior observations in humans26 we found that both v and a

were the most pliable parameters across experimental conditions for the net-

work, with the best fitting model showing v being modulated on a trialwise
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basis from the estimated difference in reward value (difference in belief of re-

ward value,112) and a modulated by the estimation that a change point has oc-

curred112 (Table 1, left panel). This results in a stereotyped trajectory around

a change point (i.e., a change in the optimal target), whereby v immediately

plummets and a briefly increases, with a quickly recovering and v slowly re-

turning as reward feedback reinforces the new optimal target (Supp. Figure X).

Since prior work has shown that the change in v is more consistently observed

than changes in a26 and since v directly reflects the way information determines

the direction of choice, we focus the remainder of our analysis on the control of

v.

A central prediction of the opponent pathways models of CBGT circuits is

that competition between the direct and indirect pathways will map to the rate

and direction of information accumulation during decision-making, i.e., v 44,43,46.

In order to test this, we recorded the average activity of all the 9 subpopula-

tions of the CBGT network during the time between stimulus onset and de-

cision time for all the trials and subjects. The trial-by-trial average activity

was used as an input to a L1-penalized logistic principal component regres-

sion (LASSO-PCR) classifier to predict the action chosen (left/right) on each

trial. The cross-validated accuracies for 4 permutations of our CBGT network

(different network instance and initial conditions as a proxy for simulating in-

dividual differences) are shown in Figure 4.1C. The trial-wise average activity

was able to predict the chosen action with at least �70% accuracy (72-77%) for

each initialization of the network, with an an overall accuracy of �74% across
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the networks. It should be noted that the activity considered for prediction is

the firing during the pre-decision period, which is modulated over trials by re-

ward based plasticity of the corticostriatal weights. A reliable prediction of the

trial-wise chosen action indicates that the CBGT network learns the rewarded

action within a block as well as when reward contingencies change.

In order to estimate competition between the channels, we took the unthresh-

olded prediction from the LASSO-PCR classifier, ŷt, and calculated its distance

from the optimal target (i.e., target with the highest reward probability) on

each trial. This provides an estimate of the classifier’s certainty of the optimal

target, driven by how separable the pre-decision activity is across the network’s

action channels. Similar degrees of co-activation across the different channels

should lead to a greater distance in the classifier’s prediction from the optimal

target. Thus there should be a negative correlation between classifier uncer-

tainty and v. Across the four permutations of the network, designed to simulate

the across-subject variability we expect to observe in the human experiments

(see next section), we see that there is indeed a strong negative correlation be-

tween these variables (Fig.4.1C). More importantly, when we align both, the

classifier uncertainty and v around a change point, we see this negative associ-

ation is largely driven in response to a change in action outcome contingencies

(Fig. 4.1D), consistent with the hypothesis that changes in drift rate are driven

by competition between action channels (see also? ).
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Figure 3.2: Analysis method. Step 1. Preprocessing of fMRI data. Step 2. Single-trial estimates
of the hemodynamic response. Step 3. Singular Value Decomposition. Step 4. Logistic regression
with an L1 penalty. After crossvalidation, this outputs a predicted response (left or right), here
coded as 0 or 1. The further the predicted response from the inflection point of the logistic func-
tion, the more certain the prediction. The distance of this predicted response from the optimal
choice represents classifier uncertainty for each trial. Here, the predicted probability of a left re-
sponse ŷt1 is 0.2. The distance from the optimal choice on this trial, and, thereby, the classifier
uncertainty, ut1 is 0.2. Decision parameters were estimated by modeling the joint distribution of
reaction times and responses within a drift diffusion framework.

3.2.2 Relative value drives evidence accumulation

Following our previous work26, we had human participants perform a two-armed

bandit task with the same experimental conditions as the CBGT network while

we collected trial-evoked BOLD responses using fMRI. Each trial presented a

male and female Greeble59, with the goal of selecting the sex identity of the

Greeble that was most rewarding. Participants selected either the left or right

Greeble presented on the screen by pressing a button with their left or right

hand. To manipulate conflict, rewards were sampled from a Gaussian distribu-
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tion for each target. The optimally rewarding target delivered reward with a

predetermined probability (P(optimal)) and the suboptimal target gave reward

with the inverse probability (1 − P (optimal)) to generate high, moderate, and

low conflict (P (optimal) = 0.65, 0.75, 0.85) conditions. To manipulate volatil-

ity, we switched the reward probabilities for the optimal and suboptimal targets

according to the rate parameter of a Poisson distribution (�) to generate high,

moderate, and low volatility conditions (λ = 10, 20, 30). We tracked internal

estimates of action value and environmental volatility using trial-by-trial esti-

mates of two ideal observer parameters, the belief in the value of the optimal

choice (∆B) and change point probability (Ω), respectively (see26 and Meth-

ods for details). Across 45 runs, collected over nine testing sessions, we collected

2700 trials per participant, with the goal of confirming the predictions from our

CBGT network simulation in each individual participant.

First, we turn to the effects of our conflict and volatility manipulations on

responses. As expected, we found that accuracy increased as contingencies re-

mained stable (β = 0.011, z = 4.919, p = 8.72e−07; Fig. 4A). Consistent

with prior work26, Ω and ∆B interacted to affect accuracy (β = −0.113, z =

−2.271, p = 0.023) such that the likelihood of a change attenuated the positive

relationship between ∆B and accuracy (Supp Fig. X). We also observed a small

but statistically reliable increase in reaction times as action-outcome contingen-

cies stabilized (β = 0.001, F = 24.044, p = 9.52e−07; Fig. 4B). Again, Ω and

∆B interacted to affect reaction times (β = −0.019, F = 15.615, p = 1e−04).

Here, reaction time increased with belief as a change became more likely and re-
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action times decreased as belief increased when a change was relatively unlikely

(Supp. Fig X).

To address how a change in the environment shifts underlying decision dy-

namics, we used hierarchical DDM167 as we did with the network behavior (see

Methods for details). Given previous work and the results from our CBGT net-

work model showing that only v and, less reliably, a respond to a shift in the

environment26, we focus on the dynamic regulation of these two parameters

on evidence accumulation. Recall that we tracked internal estimates of action

value and environmental volatility using two ideal observer parameters, the

belief in the value of the optimal choice (∆B) and change point probability

(Ω), as signals that could drive trial-wise changes in DDM parameters. To as-

sess how internal estimates of value and environmental change shift decision

dynamics, we estimated single and dual-parameter models mapping ∆B and

Ω and drift rate and boundary height (see Table 1). We found that both the

dual parameter model mapping ∆B to drift rate and Ω to boundary height

and the single-parameter model mapping ∆B to drift rate provided equivocal

best fits to the data over human subjects (∆DICnull = −14.90 ± 20.58 and

∆DICnull = −13.80 ± 16.61, respectively). All other models failed to provide a

better fit than the null model (Table 2).

Again, consistent with prior work26, we found that the relationship between

Ω and the boundary height was unreliable (mean βa∼Ω = −0.053 ± 0.059;

mean p = 0.448 ± 0.452) with a statistically significant decrease in boundary

height as Ω increased in only one of four subjects (βa∼Ω = −0.122; p = 0.002).
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However, drift rate reliably increased with ∆B in three of four subjects (mean

βv∼∆B = 0.109 ± 0.075; mean p = 0.082 ± 0.162; 3/4 subjects p < 0.002).

These results suggest that as the belief in the value of the optimal choice ap-

proaches the reward value for the optimal choice, the rate of information accu-

mulation increases. We fail to observe a reliable influence of an internal esti-

mate of change on the amount of information required to make a decision.

Altogether, our findings replicate previous work showing that an estimate of

value drives the rate of evidence accumulation when a change in the environ-

ment is detected. As information about the new optimal choice accrues, the rate

of information accumulation increases in parallel, allowing the decision process

to assume a more directed path toward the more rewarding option. Using whole

brain decoding models, we now evaluate how the relative competition between

underlying neural populations encodes the dynamic regulation of evidence accu-

mulation in response to environmental change.
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3.2.3 Predicting single trial actions

Figure 3.3: Classification performance and feature importance from trial-wise actions. A) The
mean cross-validated ROC curve and area under it for classifying single-trial actions for each sub-
ject. The black dashed line represents chance performance. B) Balanced accuracy for the classifi-
cation of trial-wise actions per subject, where each point corresponds to the performance in each
cross-validation fold. C) Encoding weight maps in standard space for both hemispheres, averaged
across subjects. D) The mean encoding weight and 95% confidence intervals (CI) within regions
of interest in the left hemisphere. Points represent individual subjects. Bars display the median
across subjects. E) The mean encoding weight and 95% CI within regions of interest in the right
hemisphere. SN: Substantia nigra; GPi: Internal segment of globus pallidus; GPe: External seg-
ment of globus pallidus; EXA: Extended amygdala; NAC: Nucleus accumbens; Pu: Putamen; Thal:
Thalamus; SMCx: Somatomotor cortex. 96



For each participant, trial-wise responses at every voxel were estimated by means

of a general linear model (GLM), with trial modeled as a separate condition in

the design input matrix. Therefore, the β̂t,v estimated at voxel v reflected the

magnitude of the evoked response on trial t. These whole-brain, single-trial re-

sponses were then submitted to an L1 penalized principal component logistic re-

gression (Logistic-PCR) to predict left/right response choices. This is the same

classifier used to predict the CBGT network responses. In order to reliably gen-

erate out-of-sample predictions, the whole predictive modeling was embedded in

a leave-one-run-out cross-validation, i.e. each full imaging served as a hold-out

test set for each fold of the cross-validation. Generalizability was evaluated as

the average across all 45 runs per subject.

The classifier was able to predict single trial responses well above chance (Fig.

4.3A and B), with participant 1 having the best overall performance (AUC =

0.92 ± 0.05, balanced accuracy = 83.88 ± 6.33) and subject 2 the worst (AUC

= 0.72 ± 0.07, balanced accuracy = 65.71 ± 5.99), but still well above chance

50% performance. Subjects 3 and 4 showed both comparable, moderate predic-

tion rates (AUC = 0.82 ± 0.08, balanced accuracy = 73.55 ± 7.36; and AUC

= 0.86 ± 0.07, balanced accuracy = 77.60 ± 6.51, respectively). Thus, we were

able to reliably predict trial-wise responses well above chance for each subject

individually.

Once we were able to decode left/right choices from the whole-brain trial-

wise responses, we set out to identify which brain regions mainly contributed to

such predictions. For this, we fit our classifier to the entire dataset and trans-
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formed the obtained weight maps of each subject into encoding patterns, thus

ensuring the correct interpretation of the influence of left/right choices in the

voxel-wise responses. Fig.4.3C displays the z-scored encoding weight map, av-

erage across subjects, where, as expected, contra-lateral brain activations along

sensorimotor regions (precentral gyrus) were clearly evoked. Furthermore, quan-

tifying the importance of specific brain regions (Sensorimotor, thalamus and

striatum) by averaging the weights within them, one can see that although con-

tributions in the left-hemisphere appeared to be dominated by motor cortex

areas (see Fig.4.3D), these were outperformed by subcortical regions in the op-

posite hemisphere, particularly by the substantia nigra, putamen, caudate and

thalamus (See Fig.4.3E). Interestingly, even though the pattern of region-wise

contributions was consistent between subjects to a moderate extent, subject 2,

whose prediction performance was the lowest, exhibited the most disparate be-

havior. The importance of the rest of brain regions can be found in Table SXX.

Importantly, however, the average patterns across subjects resembled the direc-

tion of patterns observed using the same analysis from the CBGT network in

contralateral striatum and thalamus (Supp. Fig. 3.5C).

This analysis shows that we could reliably capture trial-wise choices from

single-trial BOLD responses on an individual subject basis, replicated across

four separate participants. In the next section we used this model to confirm

the predictions of the CBGT network.
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Figure 3.4: Change-point-evoked behavior and certainty. A) Accuracy as the probability of select-
ing the optimal choice. B) Change-point-evoked reaction times. C) Change-point-evoked classifier
uncertainty (blue) and drift rate (v), or certainty (green). D) Bootstrapped distributions of the
relationship between decoded classifier uncertainty and certainty (v) by subject and in aggregate.

3.2.4 Competition between action plans drives information accumu-

lation

As a reminder, our core prediction from the CBGT network model is that com-

petition between action channels should correlate with the magnitude of v on

each trial. To empirically evaluate this prediction, we examined the link be-

tween decision policy parameters and action plan competition decoded from

fMRI responses.

We focus on trials around a change point, when action-outcome contingencies

switch. The CBGT network model (as well as prior work26) predicts that, after

the onset of a change-point, v should drop and slowly recover in the direction
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of the optimal target and, coincident with this, the uncertainty of the decoder

based on human CBGT network responses should spike and reset, leading to an

overall negative association between these variables (Fig. 1C).

Consistent with these predictions, we found that v showed a stereotyped re-

sponse to the onset of a change, with a drastic plummet at the onset of a shift

in the optimal choice and a gradual recovery to baseline as action-outcome con-

tingencies remained stable. In parallel, decoder uncertainty increased as the

drift rate plummeted (Fig. 4C). Decoder uncertainty was negatively correlated

with drift rate in all subjects (Spearman’s ρ range: −0.08 to −0.04; p range:

0.00 to 0.043), with an evoked decrease in decoder uncertainty as drift rate in-

creased in 4/4 subjects, to varying degrees (mean bootstrapped β range over

subjects: −0.021 to −0.001; t range: −3.996 to −1.326; pS1 = 0.057, pS2 <

0.000; pS3 < 0.000; pS3 = 0.080, pAll < 0.000; Figure 4D).

In sum, we empirically evaluated how competition between neural populations

drives dynamic decision policy under changing conditions. Consistent with pre-

vious observations, we observe a transition to a slow exploration state at the on-

set of a suspected shift in action outcome contingencies. This shift is expressed

as changes in the rate of information accumulation, or certainty in the decision,

with information accumulation slowing at the onset of a change and increasing

as the agent learns new action-outcome contingencies. Conversely, we see that

uncertainty decoded from neural action plan competition spikes at the onset of

a change and gradually returns to baseline as the new properties of the environ-

ment are learned. These shifts in decoded uncertainty are negatively associated
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with certainty in response to suspected environmental change. This suggests

that competition between underlying neural populations may drive a dynami-

cally regulated decision policy to promote learning under changing conditions.

3.3 Discussion

We investigated the implementational mechanisms that may drive decision pol-

icy dynamics when the rules of the environment change in humans. Using a

high-powered within-subjects design wherein each subject served as an inde-

pendent replication test, we measured whole-brain hemodynamic responses as

participants learned to respond to shifting reward contingencies. First, we found

continued support for the way in which decision policy adapts to a suspected

change, with a rapid decrease in the rate of evidence accumulation upon detec-

tion of a shift, followed by a gradual recovery to baseline rates as the new prop-

erties of the environment are learned26. Critically, we have empirically validated

the theoretical and computational work predicting that competition between

neural populations encoding distinct actions modulates decision state23,25,127,44,46.

While our systems-level approach provides coarse support for the predictions

of a biologically realistic CBGT network undergoing similar conditions, the neu-

ronal dynamics of these system-level responses remain to be investigated. As a

reminder, the canonical model of the CBGT22,101 shows that the activation of

the direct pathway involves cortical excitation of D1-expressing spiny projection

neurons (dSPNs) in the striatum, which then release GABAergic signals that

can suppress activity in the CBGT output nucleus, the internal segment of the
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globus pallidus, GPi, in primates or substantia nigra pars reticulata, SNr, in ro-

dents. This relieves the thalamus from tonic inhibition, allowing the thalamus

to facilitate action execution. Conversely, activation of the indirect pathway,

involving D2-expressing SPNs in the striatum, controls firing in the external

segment of the globus pallidus (GPe) and the subthalamic nucleus (STN) such

that basal ganglia output is inhibited. The topological encoding of actions in

the striatum110,91,1 and the convergence of projections to the GPi/SNr85,1 sug-

gest that direct and indirect pathways may compete for control over the output

of the basal ganglia, encoding the “evidence” favoring any behavioral decision

as the relative activation of the two pathways within the corresponding action

channel16,43.

In previous computational studies, the rate of evidence accumulation relied

on differences in the simulated ratio of dSPN to iSPN activation in opposing ac-

tion channels (left or right selection), while the amount of information needed

to make a decision relies on overall iSPN activation across action channels46.

Given that a shift in the rules of the environment most reliably associates with

changes in the rate of evidence accumulation26, the competition we see within

the nodes of the CBGT network should correspond to competition between

iSPNs and dMSNs in opposing action channels, in contrast with overall iSPN

activation over channels. While our current work is suggestive, causal manip-

ulations of dSPN and iSPN competition should test the link between CBGT

network competition and decision state.
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3.4 Conclusion

The world changes. Therefore, successful adaptation requires flexible decision

making. Importantly, the knowledge that the world shifts should be taken into

consideration when we weigh the evidence for when to stay with what we know

against ex- ploring new options. Altogether, we show that, in both human net-

works and biologically realistic models of the cortico-basal ganglia-thalamic net-

work, a shift in the environment induces competition between encoded action

plans, slowing evidence accumulation to promote adaptive exploration. This

work is one step toward understanding the neural computation underlying dy-

namic decision policy reconfiguration, and thus, flexible decision-making under

uncertainty.

3.5 Methods

3.5.1 Participants

Neurologically healthy adults were recruited from the local university popula-

tion. All procedures were approved by the Carnegie Mellon University Institu-

tional Review Board. All research participants provided informed consent to

participate in the study and consent to publish any research findings based on

their provided data. Four participants (two female, all right-handed, 29-34 years

old) were recruited and paid $30 per session, in addition to a performance bonus

and a bonus for completing all nine sessions.

103



3.5.2 Experimental design

The experiment used male and female Greebles59 as selection targets (Fig. 1X).

Participants were first trained to discriminate between male and female Gree-

bles to prevent errors in perceptual discrimination from interfering with selec-

tion on the basis of value. Using a two-alternative forced choice task, partici-

pants were presented with a male and female Greeble and asked to select the

female, with the male and female Greeble identities resampled on each trial.

Participants received binary feedback regarding their selection (correct or in-

correct). This criterion task ended after participants reached 95% accuracy.

After reaching perceptual discrimination criterion for each session, each par-

ticipant was tested under nine reinforcement learning conditions composed of

300 trials each, generating 2700 trials per subject in total. Data were collected

from four participants in accordance with a replication-based design, with each

participant serving as a replication experiment. Participants completed these

sessions in randomized order. Each learning trial presented a male and female

Greeble59, with the goal of selecting the sex identity of the Greeble that was

most rewarding (Fig. X). Because individual Greeble identities were resampled

on each trial, the task of the participant was to choose the sex identity rather

than the individual identity of the Greeble which was most rewarding. Proba-

bilistic reward feedback was given in the form of points drawn from the normal

distribution N(µ = 3, σ = 1) and converted to an integer. These points were

displayed at the center of the screen. For each run, participants began with 60

points and lost one point for each incorrect decision. To promote incentive com-
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patibility76,90, participants earned a cent for every point earned. Reaction time

was constrained such that participants were required to respond within 0.1 and

0.75 s from stimulus presentation. If participants responded in ≤ .1 s, ≥ 0.75

s, or failed to respond altogether, the point total turned red and decreased by

5 points. Each trial lasted 1.5 s and reward feedback for a given trial was dis-

played from the time of the participant’s response to the end of the trial. To

manipulate change point probability, the sex identity of the most rewarding

Greeble was switched probabilistically, with a change occurring every 10, 20, or

30 trials, on average. To manipulate the belief in the value of the optimal tar-

get, the probability of reward for the optimal target was manipulated, with P

set to 0.65, 0.75, or 0.85. Each session combined one value of P with one level

of volatility, such that all combinations of change point frequency and reward

probability were imposed across the nine sessions (Fig. X). Finally, the position

of the high-value target was pseudo-randomized on each trial to prevent prepo-

tent response selections on the basis of location.

3.5.3 Behavioral analysis

Statistical analyses and data visualization were conducted using custom scripts

written in R (R Foundation for Statistical Computing, version 3.4.3) and Python

(Python Software Foundation, version 3.5.5). Binary accuracy data were sub-

mitted to a mixed effects logistic regression analysis with either the degree of

conflict (the probability of reward for the optimal target) or the degree of volatil-

ity (mean change point frequency) as predictors. The resulting log-likelihood
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estimates were transformed to likelihood for interpretability. RT data were log-

transformed and submitted to a mixed effects linear regression analysis with the

same predictors as in the previous analysis. To determine if participants used

ideal observer estimates to update their behavior, two more mixed effects re-

gression analyses were performed. Estimates of change point probability and

the belief in the value of the optimal target served as predictors of reaction time

and accuracy across groups. As before, we used a mixed logistic regression for

accuracy data and a mixed linear regression for reaction time data.

3.5.4 Estimating information accumulation using drift diffusion mod-

eling

To assess whether and how much the ideal observer estimates of change point

probability (Ω) and the belief in the value of the optimal target (∆B)112,26 up-

dated the rate of evidence accumulation (v), we regressed the change-point-

evoked ideal observer estimates onto the decision parameters using hierarchical

drift diffusion model (HDDM) regression166. These ideal observer estimates of

environmental uncertainty served as a more direct and continuous measure of

the uncertainty we sought to induce with our experimental manipulations. Us-

ing this more direct approach, we pooled change point probability and belief

across all conditions and used these values as our predictors of drift rate and

boundary height. Responses were accuracy-coded, and the belief in the differ-

ence between targets values was transformed to the belief in the value of the

optimal target (∆Boptimal(t) = Boptimal(t) − Bsuboptimal(t)). This approach allowed
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us to estimate trial-by-trial covariation between the ideal observer estimates and

the decision parameters.

3.5.5 MRI Data Acquisition

Neurologically healthy human participants (N=4, 2 female) were recruited.

Each participant was tested in nine separate imaging sessions using a 3T Siemens

Prisma scanner. Session 1 included a set of anatomical and functional localizer

sequences (e.g., visual presentation of greeble stimuli with no manual responses,

and left vs. right button responses to identify motor networks). Sessions 2-10

collected five functional runs of the dynamic 2-armed bandit task (60 trials per

run). Male and female ”greebles” served as the visual stimuli for the selection

targets59, with each presented on one side of a central fixation cross. Partici-

pants were trained to respond within 1.5 seconds.

To minimize the convolution of the hemodynamic response from trial to trail,

inter-trial intervals were sampled according to a truncated exponential distribu-

tion with a minimum of 4 s between trials, a maximum of 16 s, and a rate pa-

rameter of 2.8 s. To ensure that head position was stabilized and constant over

sessions, a CaseForge head case was customized for each participant. The task-

evoked hemodynamic response was measured using a high spatial (2mm3 voxels)

and high temporal (750ms TR) resolution echo planar imaging approach. This

design maximized recovery of single-trial evoked BOLD responses in subcortical

areas, as well as cortical areas with higher signal-to-noise ratios. During each

functional run, eye-tracking (EyeLink, SR Research Inc.), physiological signals
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(ECG, respiration, and pulse-oximetry via the Siemens PMU system) were also

collected for tracking attention and for artifact removal.

3.5.6 Preprocessing

fMRI data were preprocessed using the default pipeline of fMRIPrep48, a stan-

dard toolbox for fMRI data preprocessing that provides stability to variations

in scan acquisition protocols, a minimal user manipulation, and easily inter-

pretable, comprehensive output results reporting.

3.5.7 Trial-wise responses estimation

By means of a univariate general linear model (GLM) within subject trial-wise

responses at the voxel-level were estimated. Specifically, for each fMRI run pre-

processed BOLD time series were regressed onto a design matrix, where each

task trial corresponded to a different column, and was modeled using a boxcar

function convolved with the default hemodynamic response function given in

SPM12. Thus, each column in the design matrix estimated the average BOLD

activity within each trial. In order to account for head motion, the six realign-

ment parameters (3 rotations, 3 translations) were included as covariates. In ad-

dition, a high-pass filter (128 s) was applied to remove low-frequency artifacts.

Parameter and error variance were estimated using the RobustWLS toolbox,

which adjusts for further artifacts in the data by inversely weighting each obser-

vation according to its spatial noise42.

Finally, estimated trial-wise responses were concatenated across runs and ses-
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sions and then stacked across voxels to give a matrix, β̂t,v, of T (trial estima-

tions) x V (voxels) for each subject.

3.5.8 Single-trial prediction

A machine learning approach was applied to predict left/right greeble choices

from the trial-wise responses. First, using the trial-wise hemodynamic responses,

we estimated the contrast in neural activation when the participant made a left

versus right selection. A L1-constrained principal component logistic regression

(Logistic-PCR) was estimated for each subject according to the below proce-

dure. Logistic-PCR with L1 penalty constraint procedure: Dimensionality re-

duction by a singular value decomposition (SVD) to the input matrix X:

X = USV T , (3.1)

where the product matrix Z = US represents the principal component scores,

i.e. the projected values of X into the principal component space, and V T an

orthogonal matrix whose rows are the principal directions in feature space. Re-

gression of the response binary variable y (Left/Right choice) onto Z, where the

estimation of the β coefficients is subject to a L1 penalty term C in the objec-

tive function:

β̂ = argmin
β

1

2
βTβ + C

N∑
i=1

log(exp(−yi(Z
T
i β)) + 1) , (3.2)
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where β and Z include the intercept term, yi = {−1, 1} and N is the number

of observations. Projection of the estimated β̂ coefficients back to the original

feature (voxel) space to yield a weight map ŵ = V β̂ used to generate final pre-

dictions ŷ:

ŷ =
1− e−x·ŵ

1 + e−x·ŵ , (3.3)

With x being the vector of voxel-wise responses for a given trial (i.e. a given

row in the X matrix).

Here, the competition between left-right neural responses decreases classifier

decoding accuracy, as neural activation associated with these actions becomes

less separable. Therefore, classifier accuracy serves as a proxy for response com-

petition. To quantify uncertainty from this, we calculated the Euclidean dis-

tance of these decoded responses ŷ from the statistically optimal choice on a

given trial opt_choice. This yielded a trial-wise uncertainty metric derived from

the decoded competition between neural responses.

Û = d(ŷ, opt_choice). (3.4)

The same analytical pipeline was used to calculate single trial responses for

simulated data with a difference that trial wise average firing rates of all nuclei

from the simulations were used instead of fMRI haemodynamic responses.
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3.5.9 Simulations

We simulated neural dynamics and behavior using a biologically realistic cortico-

basal ganglia-thalamic (CBGT) network model45,157. The network represents

the CBGT pathway is composed of 9 neural populations cortical interneurons

(CxI), excitatory cortical neurons (Cx), striatal D1/D2-spiny projection neurons

(SPNs), striatal fast-spiking interneurons (FSI), the internal (GPi) and external

globus pallidus (GPe), the subthalamic nucleus (STN), and the thalamus (Th).

All the neuronal populations are segregated into two action channels with the

exception of cortical (CxI) and striatal interneurons(FSIs). Each neuron in the

population was modeled as an integrate-fire-or-burst-model163 and a conduc-

tance based synapse model was used for NMDA, AMPA and GABA receptors.

The neuronal and network parameters (inter-nuclei connectivity and synaptic

strengths) were tuned to obtain realistic baseline firing rates for all the nuclei.

The details of the model can be referred to in our previous work157. Although

only one set of tuned network parameters were used for this experiment, the

allowed ranges of the parameters have been stated in157 and the present set of

tuned parameters lie well within this range.

Two additional extensions have been added to this CBGT network 1) Spike-

timing-dependent plasticity for corticostriatal weights to D1/D2-STR (stria-

tum) that can be modulated by phasic dopamine for reward based learning.

2) an input framework to define common experimental parameters for a 2 arm

bandit task (eg.reward probabilities and volatility). The details of the STDP

learning have been described in detail in our previous work159. As a result of
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these extensions the CBGT network can be used to study realistic experimental

paradigms with various degrees of decision conflict (reward probabilities) and

instability of action values (volatility).

3.5.9.1 Decision threshold

A decision between the two competing actions (“left” and “right”) was consid-

ered to be made when either of the thalamic subpopulation reached a threshold

of 30Hz. This threshold was chosen based on the network dynamics for the cho-

sen parameters with a aim to obtain realistic react times. The maximum time

allowed to reach a decision was 1000ms. If none of the thalamic subpopulations

reach the threshold of 30Hz, no action was considered to be taken. Such trials

were dropped from further analysis. Reaction/decision times were calculated as

time from stimulus onset to decision (either subpopulations reach the thresh-

old). The ”slow” and ”fast” trials were categorized as reaction times ≥ 75 per-

centile (314.5ms) and reactions time < 50 percentile (196.0ms) respectively of

the reaction time distributions. The firing rates of the CBGT nuclei during the

reaction times were used for prediction analysis as discussed in section 3.5.8.

3.5.9.2 Corticostriatal weight plasticity

The corticostriatal weights are modified by a dopamine-mediated STDP rule,

where the phasic dopamine is modulated by reward prediction error. The inter-

nal estimate of the reward is calculated at every trial by a Q-learning algorithm

which is subtracted from the reward associated with the experimental paradigm
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to yield a trial-by-trial estimate of the reward prediction error. The dopamin-

ergic release is receptor dependent, i.e enables potentiation for D1-SPNs and

depression for D2-SPNs. The degree of change in the weights is dependent on

an eligibility trace which is proportional to the coincidental pre-synaptic (cor-

tical) and post-synaptic (striatal) firing rates. The STDP rule is described in

detail in159.

3.5.9.3 In silico experimental design

We follow the paradigm of a 2 arm bandit task, where the CBGT network learns

to consistently choose the rewarded action until a block change, where the re-

ward contingencies change allowing the CBGT network to show reversal learn-

ing. Each session consists of 40 trials with a block change every 10 trials. The

reward probabilities represent a conflict of (75%, 25%), eg in a left block, 75%

of the left actions are rewarded, whereas 25% of the right actions are rewarded.

The inter-trial-interval in network time is fixed to 600ms.

To maximize the similarity between the CBGT network simulations and our

human data, we randomly varied the initialization of the network (different net-

work instances with the same connectivity/synaptic conductances) to represent

outputs for different simulated subjects.
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3.6 Supplementary Figures and Tables

Table 3.1: Simulations

∆B Ω ∆DICnull ∆DICbest

I v a -29.85 ±12.76 -4.49 ±5.91

II a v -23.94 ±22.56 -10.40 ±11.22

III - v -6.16 ±4.24 -28.19 ±13.62

IV v - -22.60 ±7.28 -11.74 ±14.80

V - a -7.04 ±11.06 -27.30 ±8.16

VI a - -17.72 ±21.49 -16.62 ±11.88

VII - - 0.00 ±0.00 -34.34 ±15.97
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Table 3.2: Humans

∆B Ω ∆DICnull ∆DICbest

I v a -14.90 ±20.58 -1.52 ±1.04

II a v -0.44 ±1.11 -15.99 ±18.56

III - v -1.47 ±1.30 -14.96 ±18.56

IV v - -13.80 ±16.61 -2.63 ±3.62

V - a -1.03 ±4.46 -15.40 ±15.60

VI a - 1.00 ±0.71 -17.42 ±19.52

VII - - 0.00 ±0.00 -16.43 ±19.53
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Table 3.3: Humans by subject

Subject ∆B Ω ∆DICnull ∆DICbest

I 1 v a 0.61 -2.32

II 1 a v 0.08 -1.79

III 1 - v -1.71 0.00

IV 1 v - 1.13 -2.84

V 1 - a -0.36 -1.35

VI 1 a - 1.93 -3.64

VII 1 - - 0.00 -1.71

I 2 v a -9.91 -1.73

II 2 a v -0.69 -10.95

III 2 - v -1.17 -10.47

IV 2 v - -11.64 0.00

V 2 - a 1.89 -13.52

VI 2 a - 0.46 -12.10

VII 2 - - 0.00 -11.64

I 3 v a -45.08 0.00

II 3 a v -1.85 -43.23

III 3 - v -3.07 -42.01

IV 3 v - -37.41 -7.68

V 3 - a -7.53 -37.55

VI 3 a - 1.16 -46.25

VII 3 - - 0.00 -45.08

I 4 v a -5.23 -2.05

II 4 a v 0.71 -7.99

III 4 - v 0.07 -7.35

IV 4 v - -7.28 0.00

V 4 - a 1.90 -9.18

VI 4 a - 0.43 -7.70

VII 4 - - 0.00 -7.28
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Figure 3.5: CBGT network performance. (A) Choice probability of the CBGT network model
in an exemplary session of 40 trial and 4 blocks. The reward contingency (left/right action is re-
warded) is changed every 10 trials (marked by vertical dashed lines). The horizontal dashed line
represents a chance level (50%) probability to choose left. The trial by trial probability was aver-
aged over many sessions and simulated subjects. The choice probability of choosing left starts at
chance level (≈ 50%) when the session begins (trial = 0) but reaches an performance of ≈ 70%
at the middle of the block. The reward contingency changes every block (every 10 trials), i.e every
alternate block (10-20, 30-40) is a block where action right is rewarded. The chocie probability
of left action drops during these blocks, because action right is chosen. (B) Firing rate profiles of
all the nuclei of the CBGT network for trials where left action was chosen. The decision threshold
of 30(spikes/s) is marked by a horizontal dashed line. (C) Encoding weights for CBGT nuclei for
predicting the action chosen.
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Chapter 4

Decision policy reconfiguration and second-order learn-

ing

4.1 Introduction

You can’t step into the same river twice. More explicitly, the same

intended action may not yield the same reward, and this inherent variability of

experience comes not only from the dynamics of the environment we find our-

selves in, but also from our own behavior170 and from internal algorithms, both

cognitive52 and implementational143,152. However, the noise properties of liv-

ing systems can be adaptive. For example, sensory noise in both sensory signals

and sensory receptors limits the amount of information available to the central

nervous system, allowing filtered computations, acting as a useful constraint on

neural computation49. Further, behavioral noise can ensure that agents aren’t

trapped in local minima169. More abstractly, signal processing in general can

benefit from noise. For example, the concept of stochastic resonance, originally

from statistical physics, describes how adding noise to a periodic signal actually
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enhances information transfer for weak signals when the input-output system is

nonlinear58, and this idea has been successfully applied to neural systems under

the guise of ”stochastic facilitation”98.

In terms of human exploration under uncertainty, recent work has shown that

a shift in the rules of the environment changes the underlying decision param-

eters to adaptively shape choice and response times, promoting adaptive ex-

ploration26,51 (Chapters 2-3). In these situations, the rate of information accu-

mulation slows, resulting in noisiness in the underlying decision process and a

relatively unbiased probability of selecting one choice over another. In a rein-

forcement learning context, this effectively reduces the signal-to-noise ratio of

the evidence for the value of each choice. These underlying decision dynamics

shape the balance between exploration and exploitation (decision policy) result-

ing in dynamic adaptation to the shifting demands of our environments.

Less work has been done on how these underlying decision dynamics might

shape responses in naturalistic environments with serially dependent choice out-

comes. Further, while some work has been done on how these dynamics bene-

fit learning first-order, concrete rules regarding probabilistic stimulus-response

pairings26,51, it isn’t clear how these dynamics evolve when learning abstract

rules regarding second-order structure in the environment to form second-order

decision policy12.

I investigated how underlying decision dynamics might shape decision policy

while learning second-order features of a naturalistic environment with serially

dependent decisions. To accomplish this, I asked participants to navigate a spa-
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Figure 4.1: Chemotaxis and valeretaxis. A) Chemotaxis, or the movement of an organism in re-
sponse to a chemical gradient4. The landscape of chemoattractants and chemorepellents shapes
navigation toward or away from a chemical, respectively. The inset image shows a neutrophil in
pursuit of nutrients. Image adapted under the CC 3.0 License. B) Valeretaxis, or action selection
in response to a value landscape. The landscape of reward (green cells) and punishment (red cells)
shapes action selection. Here, blue cells represent grid walls. Each panel shows an optimal path,
annotated by arrows. The left panel shows the baseline reward landscape. The central panel shows
a rotation of this baseline reward landscape. The right panel shows an inversion of the optimal
path, maintaining a similar degree of complexity as the baseline and rotated paths, but altering
path shape.

tial reward landscape to find an optimal path. Much like chemotaxis4, or move-

ment driven by chemical gradients (Fig. 4.1A), participants were tasked with

value-driven spatial navigation, which I term valeretaxis (Fig. 4.1B). To inves-

tigate how decision policy evolves while learning and exploiting second-order

knowledge of the environment, I ask participants to solve a Baseline path and a

Rotated path, which shifts stimulus-response pairings but preserves the second-

order feature of path shape. This is followed by an Inverted path that maintains

path complexity but perturbs path shape.

4.2 Results

The goal of this experiment was to evaluate how decision policy reconfigures

while learning second-order structure. To this end, participants navigated a la-

tent grid space (Fig. 4.1B) under a cover task (Fig. 4.2). First, they were asked
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Figure 4.2: Task. A) Participants were presented with a set of four doors that acted as selection
arms for spatial navigation, with each door moving the participant left, right, up, or down in latent
graph space. Total points for a round were shown above a treasure box on the upper left. B) If
participants navigated to a cell on the optimal path, they were rewarded with a coin. Navigating
to a cell outside the optimal path was punished with a negative point. Navigating to a cell that
had already been visited made the selection arm for that response disappear and the participant re-
ceived 0 points for that trial. C) Between trials, participants saw a blank screen with a reminder of
their point score. D) The left panel shows round-based feedback. Following a round of six choices,
the participant was given summative feedback with a reminder of the game reset. The right panel
shows aggregate feedback over rounds, displayed at the end of the task.

to find an optimal baseline path (Baseline phase). Then this baseline path was

rotated to test if participants could leverage their second-order knowledge of

path shape when specific stimulus-response pairings were shifted (Rotation

phase). Finally, participants were asked to learn a path of similar complexity

but of a different shape (Inversion phase). Participants were given a block of

six trials to find the optimal path before they were returned to the center of the

grid to begin a new round. Participants were given 68 blocks per phase to learn

each map, totaling 1206 trials per subject and 22,914 trials over subjects. Feed-

back was given trial by trial (Fig. 4.2B) and following each block (Fig. 4.2D),

with summary feedback at the end of the session.

Importantly, because this task requires participants to find an optimal se-
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Figure 4.3: Behavior. A) Mean accuracy over blocks. The Baseline phase is shown in black, the
Rotation phase is shown in red, and the Inversion phase is shown in blue. The horizontal dashed
line marks criterion performance. The inset plot shows a bootstrapped estimate of the pairwise dif-
ference in learning rate between the Inverted and Rotated phase, expressed as number of blocks to
criterion. Each line represents a single subject. B) A reduced-bias estimate of reaction time vari-
ability over blocks by phase. Shaded error shows a bootstrapped estimate of 95% CIs. ) Valere-
taxis for a single representative subject over time. The optimal path is shown in green and cells
selected by the participant are shown in gray. To illustrate initial learning and peak learning in
the Baseline phase, the first panel shows path selection in the first block of the Baseline phase,
followed by the final Baseline block. The next two plots show early learning in the Rotation and
Inversion phases.

quence, the outcomes of their selections depended on previous choices (i.e. out-

comes exhibited serial dependence). Because of this serial dependence and the

complexity of the demands, this task is also more naturalistic than those em-

ployed in Chapters 2-3. See the Methods section for more detail.

4.2.1 Behavior

The logic of this design assumes that, if the learner acquires second-order knowl-

edge about the shape of the path, they should show an accelerated learning rate
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when shape (i.e. a second-order feature of the optimal path) is preserved but

perturbed in grid space so that specific stimulus-response pairings are no longer

relevant. In contrast, if the previously learned path is inverted, altering shape

but not complexity, their second-order knowledge will not be helpful and they

should show no learning rate advantage.

First, I turn to the observed behavior in terms of accuracy and reaction time.

The Baseline map was learned relatively slowly, with participants taking ∼ 50

blocks to reach criterion performance (∼ 84%; Fig. 4.3A). Given the difficulty

of learning a latent map without navigational cues or an understanding of the

selection targets corresponding to directional movements, a protracted familiar-

ization period was to be expected.

Consistent with the hypothesis that second-order knowledge of path shape

would benefit learning rate, participants quickly learned the Rotated map, reach-

ing criterion performance in an average of 3.6 ± 2.2 blocks, with a small degree

of variability over subjects (Fig. 4.3A, red line). In contrast, the Inversion map

was learned relatively slowly, taking 11.2±14.9 blocks to reach criterion, with an

elevated degree of variability relative to the Rotation phase (Fig. 4.3A, blue).

Indeed, the Rotation map was learned an average of 7.6 blocks faster than the

Inverted map (Fig. 4.3A, inset plot).

If the underlying decision policy reconfigures in response to a need to shift

stimulus-response pairings, I should also see an expansion and contraction of

reaction time (RT) variability following a phase transition. Interestingly, the

transition from the Baseline map to the Rotation map shows no reliable change
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in RT variability (β = 0.017, t = 1.219, p = 0.224). On the other hand, the

shift from the Rotated map to the Inverted map shows a spike in RT variability

during early learning (β = 0.081, t = 2.861, p = 0.004).

Fig. 4.2C shows qualitative snapshots of the emergence of optimal path-finding

in a representative participant, with cell selections shown in gray and the opti-

mal path shown in green. The first two maps show the first block of the Base-

line phase and the final Baseline block. Comparing the fourth block of Ro-

tated and Inverted map learning, the discovery of the new optimal path emerges

quickly for the path that shares second-order features of the initially learned

path. In sum, second-order knowledge appears to benefit learning rate for the

Rotation map, which shares second-order features (i.e. path shape). In contrast,

the Inverted map, which shares a similar degree of complexity but has differ-

ent second-order features, shows relatively decelerated learning. Consistent with

the idea that underlying decision policy reconfigures when participants need to

change their minds regarding the best path to take, reaction time variance ex-

pands and contracts when the optimal path shifts from one that shares second-

order features with the initially learned map to one that does not. While these

behavioral results are suggestive, the next section explicitly tests how underly-

ing decision parameters may reconfigure in response to phase transitions.

4.2.2 Decision dynamics

As a reminder, previous Chapters have shown that underlying decision policy

reconfigures upon the detection of a change in the rules of the environment,
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Figure 4.4: Decision dynamics. A) Deviance Information Criterion (DIC) scores for models testing
the sensitivity of the four key parameters of the Drift Diffusion Model (DDM), boundary height
(a), drift rate (v), non-decision time (t), and starting bias (z). DIC scores are relative to the fit
of a null, intercept-only model. B) Block-wise response of drift rate relative to phase transition
points, with Baseline estimates in black, Rotation estimates in red, and Inversion estimates in blue.
Vertical dashed lines mark blocks prior to phase transitions. A full distribution is shown for each
block.

with an initial exploratory phase followed by a gradual shift to exploitation as

the new properties of the environment are learned. These decision policy dy-

namics are largely driven by an initial decrease in the rate of evidence accumu-

lation (v), allowing time for the underlying decision process to diffuse, giving

the noisiness of the decision process greater influence over choice to encourage a

slow form of exploration. This is followed by a gradual recovery to a relatively

elevated baseline, encouraging faster, more exploitative decisions.

This experiment evaluates how underlying decision policy evolves when learn-

ing higher order structure in a more naturalistic setting, with choice outcomes

dependent on previous choices, as is often the case in the wild. In addition, this

experiment tests whether the decision policy dynamics previously observed may

benefit learning in environments that share second-order features.

Different underlying decision parameters might shape decision policy in this
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context. To examine this possibility, I tested how the four key decision pa-

rameters within the Drift Diffusion Modeling (DDM) framework (boundary

height, a; the drift rate, v; non-decision time, t; and starting bias, z) responded

to phase transitions. As a brief reminder of the meaning of these additional pa-

rameters, the boundary height represents the amount of information required

to make a decision, non-decision time represents motoric and other non-decision

related influences on the decision process, and starting bias shifts the starting

point of the decision process toward one choice over another (see the Introduc-

tion for an extended description of the DDM framework).

Here, I specifically evaluated how decision parameters responded over the

blocks surrounding a phase transition, including the three blocks following the

transition. To evaluate the degree of model fit to the observed data, I used

the Deviance Information Criterion (DIC), a metric of information loss (see

Methods for DDM modeling details). Here, a difference of ≤ 2 points from the

lowest-scoring model cannot rule out the higher scoring model; a difference of 3

to 7 points suggests that the higher scoring model has considerably less support;

and a difference of 10 points suggests essentially no support for the higher scor-

ing model141,30. Scores are described as the difference from a null, intercept-only

model.

Consistent with the bulk of my previous work, the model specifying changes

in drift rate proximal to a shift in the environment, here as the transitions be-

tween Baseline, Rotation, and Inversion phases, clearly showed the best fit to

the observational data (Fig. 4.4A). The drift rate model lost significantly less
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information than all other models, with the drift model scoring 126.72 points

below the second best-fitting model.

Having discovered the drift rate as the best fitting model, I next examined

how drift rate changed in response to phase transitions. Generally speaking,

drift rate drastically decreased at the phase transition point, with a gradual re-

covery over the following three blocks and peaking during the final blocks shown

(Fig. 4.4B). The transition from the Baseline phase to the Rotation phase de-

creased drift rate by ∼ 2.70 (p < 0.00), while the transition from the Rotation

phase to the Inversion phase decreased drift rate by ∼ 4.19 (p < 0.000), showing

the greatest change during the shift from Rotation to Inversion. These results

show that the onset of phase transition points reduces the rate of information

accumulation, with a gradual recovery to faster rates of information accumula-

tion as participants learn the new map. Although these dynamics exist when

transitioning between maps that share second-order features, they are more

pronounced when participants transition between maps that fail to share these

higher-order characteristics.

Altogether, I find initial evidence for decision policy dynamics similar to those

discovered in previous Chapters under more naturalistic conditions, with more

complex task demands and serially dependent choice outcomes. Intriguingly,

these underlying decision dynamics are more pronounced when learners transi-

tion between environments without shared second-order features, although these

dynamics exist in attenuated form when transitioning between isostructural en-

vironments.
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4.3 Discussion

I investigated how underlying decision policy evolves while learning second-

order environmental structure in a naturalistic setting. My findings provide

preliminary evidence for how humans flexibly navigate the explore-exploit con-

tinuum in the value-foraging context, or during valeretaxis, the pursuit of value

along a spatial reward landscape. These results show the generalizability of the

decision algorithm described in Chapters 2-3, where, following a shift in the

rules of the environment, humans quickly shift to a slow exploratory state by

reducing the rate of evidence accumulation. Further, this work lays the ground-

work for understanding how underlying decision policy dynamics are shaped by

prior experience.

In the reinforcement learning (RL) context, the concept of cognitive maps en-

coding the structure of the environment has recently re-emerged as an updated

version105 of the successor representation38 (SR). SR predicts transitions be-

tween states to estimate the optimal trajectory to reward38,105. The successor

representation (SR) is a reinforcement learning algorithm that builds a predic-

tive map of the environment to summarize the relationship between states sepa-

rated by multiple state transitions. In Marrian terms, the computational goal of

the task put to the participant in this paper is exactly this – the learning (and

prediction) of state transitions to find an optimal reward path.

Offline replay, a memory process in which the hippocampal network inter-

nally generates patterns of activation representing compressed versions of prior
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experience144, is one neural mechanism thought to support SR103. Offline replay

has been suggested to combine current experience with previous memories120

to guide future behavior104,103. Importantly, this is not solely a repetition of

the past, but a dynamic process sensitive to goal-specification121 that reverses

in response to prediction error7. Most relevantly, human and non-human ani-

mal studies have shown a role for offline replay in inferring latent environmental

structure104,173, similar to those employed in this paper. Mounting evidence sup-

ports the plausibility of SR-related models in both humans and rats as a com-

putational basis for reinforcement learning41,105. Future work should capitalize

on this research to explore the neural basis of the computations described in

this paper, especially exploring how hippocampal dynamics may interact with

corticobasal ganglia-thalamic network dynamics previously shown to be relevant

to evidence accumulation under uncertainty (Chaper 3).

The experimental design employed in this paper has several limitations. First,

note that my experiment does not counterbalance the Rotation and Inversion

phases to account for practice and timing effects. However, as designed cur-

rently, this means that participants have more path-finding experience for the

Inversion phase than the Rotation phase. In this sense, the current design is a

stronger test of the metalearning effect the experiment is designed to evaluate.

Still, future work should counterbalance these two test phases to minimize fa-

tigue contaminating learning in the final phase.

Second, my experiment does not clearly distinguish between sequence learn-

ing and learning the latent graph reward landscape. A high-performing learner
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might simply be learning an optimal sequence of button presses rather than un-

derlying graph space, as learning both a purely sequence-based representation

and learning a graph representation yields the same behavioral output. To dis-

sociate these possibilities, follow-up experiments will perturb the learner’s posi-

tion on the graph after they demonstrate learning, or intermittently throughout

learning. If they truly know the graph space, then they should be able to reori-

ent toward the optimal path. If they simply learned an optimal sequence, then

performance should decrement with slower recovery.

4.4 Conclusion

These results expand my previous work to show that, under more naturalistic

conditions with serial dependence between choice outcomes, the underlying de-

cision policy maintains a stereotyped response to change. As the reward land-

scape shifts, evidence accumulation rates decrease, allowing noise in the under-

lying decision process to influence response selection as a slow form of explo-

ration. As the new properties of the environment are learned, evidence is accu-

mulated at a faster rate to promote exploitative choice.

Further, the evolution of underlying decision policy appears to be influenced

by prior experience with environments that share second-order features with the

current context.

Altogether, this work shows the generalizability of adaptive decision policy

reconfiguration and establishes a basis for further investigating how structural

similarities between environments influence underlying decision policy dynamics
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to promote generalization.

4.5 Methods

4.5.1 Participants

Twenty neurologically healthy adults (18-35 years old) were recruited from the

local university population and paid $10 per session with a performance bonus

of $0.01 per point earned. All procedures were approved by the Carnegie Mellon

University Institutional Review Board. All research participants provided in-

formed consent to participate in the study and consent to publish any research

findings based on their provided data.

4.5.2 Stimuli and Procedure

The goal of this experiment was to test if the decision policy reconfiguration ob-

served in Chapters 2-3 supported exploration in service of learning second order

structure of the environment. To assess this, I first asked participants to navi-

gate a grid world with an optimally rewarding path to teach them a higher or-

der structure in terms of path shape (Fig. 4.1B). Following this baseline learn-

ing phase, I rotated the path (Rotation phase) and then exposed them to a path

of similar complexity but a different shape (Inversion phase) (see Fig. 4.1B, Ro-

tated and Inverted phases).

On each trial, the participant chose between one of four doors of different col-

ors arranged as shown in Fig. 4.2 by pressing one of four buttons on a button

box (Black Box ToolKit USB Response Pad, URP48). Each door acted as the

131



cue for a movement (Up, Down, Left, or Right) in grid space. Critically, partic-

ipants were naive to the fact that they were navigating a latent graph and they

were not informed that their selections corresponded to movements over the la-

tent map. To ensure implicit navigation of the reward landscape, there was a

cover task as described in the instructions below:

”You’re going on a treasure hunt! In this hunt, you can choose to

open one of four colored doors. Opening one of these doors may re-

veal a coin you can add to your chest. However, opening the same

door will not always give you the same number of coins.

In fact, there’s a thief afoot! The thief sometimes steals the coins

you already have. But they don’t stop there. Other times, the thief

even tries to block your access to what might be behind a given

door at a certain point in time. When they block you, the door van-

ishes. So choose carefully!

After making your choice, you will receive feedback about how many

coins you earned or lost, with a summary of your earnings after ev-

ery 6 choices. Your goal is to gather as many coins as possible.”

If the participant was rewarded for their choice, they earned one coin and this

was displayed above their selection (see Fig. 4.2B). If they navigated outside

of the optimal path, one coin was removed from their total. If they hit a wall

at the edges of the grid (blue cells in Fig. 4.1B)), the door for that choice dis-

appeared. Because participants were attempting to find an optimal sequence of
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decisions (i.e. path), if they visited a previously “consumed” cell, they earned 0

points. Feedback was displayed for 0.9 s. To prevent stereotyped responses, the

inter-trial interval was sampled from a uniform distribution with a lower limit of

250 ms and an upper limit of 750 ms (U(250, 750)).

Reaction time was constrained so that participants had to respond within

100 ms to 1000 ms from stimulus presentation. If participants responded too

quickly, the trial was followed by a 5 s pause and they were informed that they

were too fast and asked to slow down. If participants responded too slowly, they

received a message saying that they were too slow, and were asked to choose

quickly on the next trial. In both of these cases, participants did not receive any

reward feedback or earn any points.

Participants were given six trials to find the optimal path of six cells. Each

round of six trials was a block. After each block, the total point feedback for

that round was presented and they were informed that they were starting afresh

with a new round. At the beginning of each round, they were returned to the

center of the grid. Each participant completed 201 blocks, with 402 trials (67

blocks) in each of the Baseline, Rotation, and Inversion phases. For the purpose

of this preliminary experiment, each participant solved the same set of Baseline,

Rotated, and Inverted paths. This yielded 1206 trials per subject and 24,120

trials in aggregate.
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4.5.3 Analyses

4.5.3.1 Behavior

Behavioral performance was evaluated using reaction time and accuracy. Re-

action times were calculated as the interval between stimulus presentation and

button press. Accuracy was calculated as the cell-selection overlap with the cells

composing the optimal path (discounting repeated cell entries). Criterion-based

analyses relied on an estimate of chance accuracy for path selection as 1
6
, or ∼

16%. Participants were considered to have reached criterion when their accuracy

reached ∼ 84% over a block.

To assess differences in learning rate between phases, I used a paired t-test

evaluating the number of blocks to criterion for both the Rotation and Inver-

sion phases. Significance was evaluated by permutation, with 5000 shuffles of

the values for the Inversion and Rotation phases. P-values represent the likeli-

hood of observing the effect size if the null hypothesis of zero difference between

phases is true. Bootstrapped confidence intervals for the magnitude of the dif-

ference between Inversion and Rotation phases are bias-corrected and acceler-

ated, with 5000 resamples.

To minimize estimator bias, reaction time variability for each block was calcu-

lated as the square root of the mean variance over subjects. Differences in this

estimate of RT variance were assessed using a simple linear regression with the

Rotation and Inversion phases as predictors and RT variance as the outcome.
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4.5.3.2 Modeling

As in previous Chapters, I evaluated a set of hierarchical Drift Diffusion Models

(DDM) using information loss criteria to assess the degree of model fit to the

data. I use Deviance Information Criterion (DIC) scores for this evaluation be-

cause they are well-suited to measuring model fit in hierarchical models160. In-

stead of relying on a single maximum likelihood estimate, I used Markov Chain

Monte Carlo (MCMC) sampling to generate a distribution for each estimate.

In total, 9,500 effective samples were drawn from the posterior distributions of

the coefficients for each model, with the first 500 samples used as burn-in to en-

sure stability of fits89. Because convergence, or parameter stability, is crucial for

interpreting results using this approach, traces were plotted against MCMC it-

eration for a visual assessment of equilibrium, the autocorrelation function was

calculated to verify independence of MCMC steps, trace distributions were visu-

ally evaluated for normality, and point estimates of the mean value were verified

to be contained within the 95% credible interval of the posterior distribution for

the estimated coefficients.

To evaluate the significance of posterior distributions, I calculated an empir-

ical probability for each estimate by summing the number of estimate samples

in the same direction as the mean estimate and dividing by the total number of

samples. If the sign of the average value was maintained for 95% of the distri-

bution, I considered that parameter significant. Likewise, if less than 5% of two

distributions overlapped, I considered them reliably different from one another.

This was supplemented by permutation testing, as described above.
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To identify the model fits that best accounted for the data, I conducted a

model selection process using Deviance Information Criterion (DIC) scores.

We compared the set of fitted models to an intercept-only regression model

(DICi −DICintercept). A lower DIC score indicates a model that loses less infor-

mation. Here, a difference of ≤ 2 points from the lowest-scoring model cannot

rule out the higher scoring model; a difference of 3 to 7 points suggests that the

higher scoring model has considerably less support; and a difference of 10 points

suggests essentially no support for the higher scoring model141,30.
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Chapter 5

Conclusion

The goal of this dissertation was to investigate how humans flexibly balance

the adaptive value of noise (exploration) with the value of acting on what they

know (exploitation) to dynamically adapt to changing conditions. I sought to

address this question with three aims spanning the algorithmic and implemen-

tational levels of explanation. First, using a reinforcement-learning-driven evi-

dence accumulation framework, I tested how decision policy reconfigures in re-

sponse to a shift in the environment. Then, I tested the replicability of these

findings and explored the underlying implementational mechanisms for the dy-

namic decision policy reconfiguration observed. Finally, using a foraging experi-

ment, I explored how dynamic decision policy reconfiguration may also support

learning more abstract, second-order structure in the environment.

Together, this work shows that underlying decision policy evolves in a stereo-

typed manner in response to change with evidence for the CBGT network com-

petition driving this response. This decision policy reconfiguration also appears

to support metalearning. In total, the experiments in this dissertation eluci-
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date one mechanism for modulating exploration under uncertainty, and take

first steps toward understanding how this mechanism may support second-order

learning.

In Chapter 2, I test how underlying decision policy evolves in response to a

change in action-outcomes contingencies and evaluate how the locus-coeruleus

norepinephrine system may modulate these responses. I find that, when a change

in the environment is suspected, evidence is accumulated more slowly over time

in order to promote exploration, with a return to baseline rates of evidence ac-

cumulation as the new action-outcome contingencies are learned. At times, this

response is accompanied by an increase in the amount of evidence required to

make a decision, allowing greater time for the decision process to diffuse. This

change-evoked decrease in evidence accumulation rate replicates under superfi-

cially different task conditions and over three subjects, each as an independent

out-of-set test of the effect.

In Chapter 3, I explore how corticobasal-ganglia thalamic network dynamics

associate with this adaptive reconfiguration. Altogether, I show that, in both

human networks and biologically realistic models of the cortico-basal ganglia-

thalamic network, a shift in the environment induces competition between en-

coded action plans, slowing evidence accumulation to promote adaptive explo-

ration. This work is one step toward understanding the neural computation

underlying dynamic decision policy reconfiguration, and thus, flexible decision-

making under uncertainty.

Finally, Chapter 4 goes up one layer of abstraction and tests how this de-
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cision policy may reconfigure when learning higher order structure. These re-

sults expand my previous work to show that, under more naturalistic conditions

with serial dependence between choice outcomes, the underlying decision pol-

icy maintains a stereotyped response to change. As the reward landscape shifts,

evidence accumulation rates decrease, allowing noise in the underlying decision

process to influence response selection as a slow form of exploration. As the new

properties of the environment are learned, evidence is accumulated at a faster

rate to promote exploitative choice. Further, the evolution of underlying deci-

sion policy appears to be influenced by prior experience with environments that

share second-order features with the current context. This chapter is a prelimi-

nary pass at showing the generalizability of adaptive decision policy reconfigura-

tion. Further, it establishes a basis for the future investigation of how structural

similarities between environments influence underlying decision policy dynamics

to promote generalization.

Altogher, this work supports a growing body of evidence that decision policies

are dynamic functions that move along the exploration-exploitation continuum

to adapt to changes in environmental dynamics (45,87,114,154,119,127. Most impor-

tantly, my completed work expands on these observations by characterizing, for

the first time, the decision dynamics evoked in response to a suspected shift in

the rules of the environment. The work completed has assessed these dynamics

at the implementational level for two plausible neuromodulatory systems. More

generally, linking the adaptive reconfiguration of the processes underlying a de-

cision to changes in decision policy provides a scaffold to explore the mechanism
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driving shifts in action selections in response to environmental change.
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