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Abstract

Although the cortico-basal ganglia-thalamic (CBGT) network is identified as a central
circuit for decision-making, the dynamic interplay of multiple control pathways within
this network in shaping decision trajectories remains poorly understood. Here we
develop and apply a novel computational framework — CLAW (Circuit Logic Assessed
via Walks) — for tracing the instantaneous flow of neural activity as it progresses
through CBGT networks engaged in a virtual decision-making task. Our CLAW
analysis reveals that the complex dynamics of network activity is functionally dissectible
into two critical phases: deliberation and commitment. These two phases are governed
by distinct contributions of underlying CBGT pathways, with indirect and
pallidostriatal pathways influencing deliberation, while the direct pathway drives action
commitment. We translate CBGT dynamics into the evolution of decision-related
policies, based on three previously identified control ensembles (responsiveness, pliancy,
and choice) that encapsulate the relationship between CBGT activity and the evidence
accumulation process. Our results demonstrate two contrasting strategies for
decision-making. Fast decisions, with direct pathway dominance, feature an early
response in both boundary height and drift rate, leading to a rapid collapse of decision
boundaries and a clear directional bias. In contrast, slow decisions, driven by indirect
and pallidostriatal pathway dominance, involve delayed changes in both decision policy
parameters, allowing for an extended period of deliberation before commitment to an
action. These analyses provide important insights into how the CBGT circuitry can be
tuned to adopt various decision strategies and how the decision-making process unfolds
within each regime.

Author summary

We investigate how the cortico-basal ganglia-thalamic (CBGT) network coordinates
decision-making through its interconnected pathways. Using a novel Circuit Logic
Assessed via Walks (CLAW) framework, we trace instantaneous neural activity through
virtual CBGT networks as they engage in forced choice decisions. This analysis
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uncovers two key phases of a decision: deliberation, shaped by the indirect and
pallidostriatal pathways, and commitment, driven by the direct pathway. We also
demonstrate that CBGT activity supports two distinct decision styles: fast decisions
involve an early decision boundary collapse and strong directional preference, while slow
decisions feature minimal changes during an extended deliberation phase. These
findings reveal the dynamic mechanisms within the CBGT network that underlie the
different decision processes and how these can be tuned to adapt decision-making across
varying demands and contexts.

Introduction 1

Theoretical [1–5] and empirical [6–9] studies have established that the basal ganglia, 2

working together with the thalamus and cortex, can play a critical role in the evidence 3

accumulation process during decision-making. The distributed circuits of the 4

cortico-basal ganglia-thalamic (CBGT) network simultaneously integrate external (e.g., 5

sensory signals) and internal (e.g., learned contingencies) factors, until sufficient 6

evidence is accumulated to allow one action to proceed [10,11]. The topological 7

structure of the interconnected CBGT nuclei [12–14], including their spatiotemporal 8

organization into separable action representations [15], is ideally suited for managing 9

this evidence accumulation process [3, 16, 17] and adapting its implementation based on 10

environmental feedback [12,18–21]. 11

Prior computational work [5, 22, 23] has shown how the CBGT network can regulate 12

decision policies (e.g., manage the speed-accuracy [24,25] and 13

exploration-exploitation [26,27] tradeoffs). Specifically, interactions between distinct 14

subnetworks within the CBGT pathways can be mapped to certain behavioral outcomes 15

described by parameters in a drift-diffusion model (DDM; [10,16,28]), with the 16

low-dimensional relationship between specific configurations of CBGT networks and 17

decision policies characterized in terms of three control ensembles [22]. It has been 18

further shown that dopaminergic plasticity at the corticostriatal synapses can alter the 19

activity of CBGT control ensembles, so as to modulate the resulting decision policies in 20

response to feedback following post-action outcomes [23]. These studies suggest that 21

CBGT networks can establish the static state of decision policies. In typical evidence 22

accumulation models this would be represented by fixed values of parameters such as 23

drift rate (the rate of evidence accumulation toward a decision) and boundary height 24

(the amount of evidence needed to make a decision), with gradual adaptation of these 25

factors over the course of sequences of decisions if feedback is provided. However, it 26

remains to be investigated (1) how information flows through different regions of the 27

CBGT network during the course of an individual decision and (2) how the complex 28

dynamics of CBGT networks give rise to variations in dynamic decision policies on this 29

fast timescale. 30

To address the first of these open questions, we propose in this work a novel 31

computational framework that we call CLAW, short for Circuit Logic Assessed via 32

Walks, to depict the flow of noisy neural activity through a model CBGT network on a 33

moment-by-moment basis (Fig 1A-D). Our CLAW analysis is related to, but extends, 34

the classical framework for conceptually organizing CBGT activity, which assumes that 35

the internal circuitry of the basal ganglia implements action selection through a division 36

of labor between the structurally and functionally dissociable direct pathway (Fig 1A, 37

green) and indirect pathway (blue) [13,29,30], with the former facilitating action 38

selection and the latter suppressing action selection [29]. Discoveries over the past 39

decade have revealed that, rather than functioning as independent and antagonistic 40

mechanisms for facilitating or suppressing action selection, the direct and indirect 41

pathways may engage in a dynamic competition for control over basal ganglia 42
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Fig 1. Schematic showing the steps in analyzing decision-making dynamics within the
cortical-basal ganglia-thalamic (CBGT) network. (A) CBGT network, with connections color-coded as
follows: classical direct pathway in green, classical indirect pathway in blue, and pallidostriatal pathway in gold.
Arrows ending in dots indicate postsynaptic sites of inhibitory connections, while arrows ending in triangles
indicate excitatory connections. Cx, cortical neurons; CxI, inhibitory cortical interneurons; FSI, fast spiking
interneurons; dSPN, direct spiny projection neurons; iSPN, indirect spiny projection neurons; GPe, external
globus pallidus; GPe P, prototypical neurons; GPe A, arkypallidal neurons; GPi, internal globus pallidus; STN,
subthalamic nucleus; Th, thalamus. (B) Simulated behavioral data, including firing rates, choices, and decision
times, generated by a spiking model for the CBGT network. (C) A chain of state transitions derived from the
processed data. (D) States grouped into zones, with associated transition probabilities. (E) Levels of activity
within zones mapped to DDM parameters through control ensemble analysis, showing how dynamic decision
policies emerge from flow of network activity between zones.
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output [3, 17,31,32]. Moreover, this model of CBGT pathways has been further 43

complicated by a recent reappreciation for the cellular complexity of the external 44

segment of the globus pallidus (GPe; see [33]), now seen as being composed of two 45

general classes of neurons: prototypic (GPeP) and arkypallidal (GPeA) cells [34–37]. 46

The arkypallidal neurons are currently thought to play a critical role in regulating 47

striatal signaling, particularly during tasks requiring reacitve inhibitory control [38–41]. 48

In light of these findings, here we propose a computational model that incorporates an 49

additional third pathway, the pallidostriatal pathway (Fig 1A, gold), that conveys 50

ascending feedback inhibition to the striatum and is modulated by both striatal 51

projection pathways. Then applying the CLAW framework to simulated CBGT 52

dynamics in our model specifically allows us to generate novel insights and predictions 53

about the complex interactions among all CBGT nuclei during decision processes, 54

helping us to extract the details of how specific pathways interact to control 55

decision-making dynamics. Here we use this approach to explore the way the direct, 56

indirect, and pallidostriatal pathways regulate the bidirectional control of information 57

through CBGT circuits and hence the dynamics of evidence accumulation as a decision 58

is being made. 59

To address the second question, about the dynamic variations of decision policies 60

within the fast timescale of individual decisions, we build on the prior observation of 61

separable control ensembles within the CBGT pathways [22,23]. These groupings of 62

basal ganglia components, dubbed the responsiveness, pliancy, and choice ensembles, 63

each represent a relation between CBGT firing patterns and DDM parameters that 64

encode a decision policy. Responsiveness modulates how quickly evidence evaluation 65

begins and the standard of evidence needed for decisions, in a positively correlated way, 66

and is largely associated with the overall activity in the corticothalamic loop and direct 67

pathway. Pliancy modulates evidence onset and the amount of evidence required to 68

make a decision in opposite ways, and is strongly dependent on the overall activity of 69

the indirect pathway. Choice modulates the direction and speed of evidence 70

accumulation towards one action. With this ensemble the overall activity across 71

channels has very little impact on the resulting decision policy, but instead the 72

between-channel differences in firing activity show a robust association. This control 73

ensemble framework provides mechanistic predictions about the roles of CBGT 74

pathways in tuning decision-related policies [22], and how dopamine-mediated synaptic 75

plasticity gradually shifts decision properties across multiple decisions [23]. Yet until 76

now, the detailed dynamics of how these control ensembles shape information flow 77

during the decision process has remained unknown. 78

In this work we set out to replicate the existence of the three independent control 79

ensembles, using the more biologically realistic model of CBGT circuits that includes 80

the pallidostriatal pathway for additional control. We then try to translate firing rate 81

changes associated with transitions between different network states to changes in the 82

DDM parameter space (as sketched in Fig 1D-E), allowing us to predict dynamic 83

fluctuations and adjustments in decision policies over the fast timescale on which 84

individual decisions are made. Our results reveal how instantaneous information flow 85

through different CBGT pathways produces a dynamic decision policy and demonstrate 86

two contrasting decision-making modes: fast decisions feature an early collapse in the 87

evidence accumulation threshold and a clear directional bias, while slow decisions with 88

more extended deliberation are driven by a delayed response in the decision boundary 89

height and drift rate. By comparing the dynamics of control ensemble activation across 90

fast and slow trials, we gain important insights about the contributions of specific 91

aspects of CBGT activity to flexible decision-making, which may be harnessed to adapt 92

decision policies during the evidence accumulation process. 93
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Results 94

CBGT activity and CLAW 95

Our main goal here was to extract the temporal dynamics of information flow through 96

CBGT circuits during the evidence accumulation process within individual decisions. 97

To this end, we simulated a spiking model of the CBGT network [42] in the context of a 98

simple two-choice task. Implementing a genetic search algorithm [23] we generated 300 99

distinct networks, each with a different configuration of synaptic weights, that produced 100

firing rates of all CBGT populations within experimentally observed ranges (see 101

also [22]). The networks were largely unbiased with respect to left and right choices, as 102

the same connectivity parameters were shared by both channels. For each sampled 103

network, we simulated 50 trials (i.e., choices) and gathered the time-dependent firing 104

rates from a collection of N = 10 distinct cell populations within the CBGT network, 105

across action channels representing left and right choices (Fig 1B). As a reference, Fig 2 106

shows an example of the time course of firing rates for all the nuclei in two consecutive 107

trials from an example network. The firing rates were tracked up to the decision time 108

(DT; Fig 2, pink region), defined as the time at which the instantaneous firing rate of 109

the thalamic population for either of the channels first reaches a pre-specified decision 110

threshold (set to 30 Hz). The network firing rates were computed in bins of width 111

∆t = 10 ms and binarized based on whether activity in each bin was above or below a 112

predefined threshold (Fig 2, green horizontal lines). We then defined a state sk ∈ RN
113

(k = 1, 2, 3, · · · , 2N ) to be a unique pattern of activity across the N nuclei of interest in 114

our network. Specifically, each sk = [σk1, σk2
, · · · , σkN ], where σkj ∈ {0, 1}. Thus, for 115

each trial, we can convert the sequence of binarized firing rates into a sequence of states, 116

each representing the pattern of CBGT activity in a time window. By aggregating all of 117

the state sequences, we determine the transition probabilities between states and then 118

construct a chain that describes the flow of neural states that occurs across the 119

simulated decision processes (Fig 1C). See CBGT network in the Methods section for 120

details of our modeling framework. 121

High-probability states within the CBGT network during the evidence accumulation 122

process were analyzed using a novel procedure that we call Circuit Logic Assessed via 123

Walks (CLAW). The CLAW diagram is depicted in Fig 3A. The name derives from the 124

fact that this analysis can uncover how activity flows through the CBGT circuit by 125

looking at how different cell populations are engaged together over the course of a 126

decision. Transitions between states resemble walks, or chains that can revisit the same 127

state, rather than paths, where each state is visited only once [45]. These transition 128

probabilities from the current state to a subsequent state of the CLAW are shown on 129

the directed edges in Fig 3A. We also show how each state relates to the speed 130

characteristics of a decision by color-coding each state with the mean DT of the trials 131

that visited that state. For purposes we elaborate on later, we further divided the 132

decision time distribution of the full set of simulated networks into tertiles of equal 133

mass, respectively defining fast (short DT), intermediate (medium DT), and slow (long 134

DT) networks (Fig 3B). Finally, the table in Fig 3C shows the details of the activity 135

associated with each CLAW state, including the binarized firing rates of the populations 136

of interest, the activation probability of subthalamic nucleus (STN) and arkypallidal 137

populations, the mean DT, the ratio of trials in which the left/right option was chosen, 138

and the Kullback–Leibler (KL) divergence between the left and right trials’ DT 139

distributions. 140

Note that for our CLAW analysis we used an arbitrary numbering system that 141

indicates the unique state out of all 210 possible states of the network, focusing only on 142

those that occurred with relatively high frequencies. Starting from the decision onset 143

state of the CLAW, i.e., the pre-stimulated state (PS) 60, either the left thalamus, the 144
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Fig 2. Example of the time course and binarization of firing rates for all nuclei in a two-choice
task. Each red (blue) trace corresponds to activity in the left (right) action channel in a CBGT region, and the
grey traces correspond to the populations (i.e., CxI and FSI) common to both action channels. Pink regions
represent the decision-making phase, occurring before the thalamus (Th) of one of the action channels reaches
the decision threshold of 30 Hz (dashed black line in Th panel). Grey regions represent the consolidation phase,
where partial cortical input to the selected channel is sustained [43,44]. The unshaded regions represent the
inter-trial interval. In each panel the right y-axis corresponds to binarized firing rates (dots at 0 or 1), where the
horizontal green line indicates the binarization threshold (see Fig 10 for details on how thresholds were
determined).

right thalamus, or both ramp up and cross the binarization threshold, progressing 145

through states 61, 62, and 63, while the binarized activation states of the other nuclei 146

remain unchanged. Note that at this point, thalamic firing typically remained below the 147

decision threshold of 30Hz, as this threshold is higher than the thalamic binarization 148

threshold (see the Th panel in Fig 2), which was based on the probability distribution of 149

firing rates for this nucleus. Consequently, evidence accumulation continues through 150

changes in firing of the other CBGT components until an action is selected. Following 151

the flow of transition probabilities in the CLAW diagram revealed two distinct paths of 152

decision-making: the inner CLAW (states colored blue in Fig 3C), with low probabilities 153

of transitioning directly into a decision, and the outer CLAW (states colored green), 154

with high probabilities of transitioning directly into a decision. 155

We found two distinct loops along the inner CLAW, associated with deliberation: an 156

initial deliberation phase represented by the loop 63 → 55 → 183 → 191 → 63 (and 157

symmetrically 63 → 59 → 123 → 127 → 63), and a second deliberation phase 158
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Fig 3. CLAW (Circuit Logic Assessed via Walks) diagram for CBGT network dynamics. (A) CLAW diagram. Black
numbers in boxes indicate the network states, and the transition probability from a current state to a subsequent state is indicated by
the number near the arrow pointing from the current state. The numbers below certain states (e.g., “0.82 end” below state 663)
represent the probability that if these states are reached, then they are the final states prior to decisions. (B) Overall decision time
distribution across 300 networks, categorized into three equal-count tertiles defining fast (left), intermediate (middle), and slow (right)
networks, demarcated by vertical dashed black lines. The coloring of each CLAW state in panel A corresponds to the mean DT for all
trials that visit this state, following the same color-coding scheme as in panel B. (C) Details of the states. A complete explanation of
the full set of state properties, including those related to the right choice, is presented in the Supporting Information S1 Table. From
left to right, after state labels: binarized firing rates of dSPN (D1), iSPN (D2), GPi, GPeP, and Th for left (-L) and right (-R)
channels; probability of activation (binarized firing rate = 1) for STN and GPeA for left and right channels; mean DT over the trials
that visit each state; the ratio of trials that chose left/right for those that visit each state; Kullback–Leibler (KL) divergence between
left and right trials’ DT distributions. The grey rows correspond to the initial states that occur early in each trial and never lead
directly to a decision, and the green and blue rows correspond to outer CLAW and inner CLAW states, respectively. The states in the
lower half of the CLAW are not shown; these are symmetric – up to the swap of certain L and R channel binary values – with the
states that lie in corresponding positions in the upper half.
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represented by the loop 247 ↔ 243 ↔ 251 ↔ 247. The initial deliberation phase 159

provides the network with the flexibility to reconsider its current trajectory of evidence, 160

allowing a trial to return to state 63 for a reassessment of the evidence and then reset 161

the direction of information flow. The inherent uncertainty in this phase, as reflected by 162

the balanced ratio of choosing left versus right at these states, indicates that the options 163

are still being weighed at this stage. During the second deliberation phase, activity had 164

a high probability of switching between three different states via changes in the 165

activation of key nodes like the prototypical pallidal neurons, thereby potentially 166

influencing the subsequent decision outcome (discussed below). This switching reflects a 167

second-tier deliberative process in which alternative actions were actively considered 168

before committing to a final choice. 169

In contrast to the flexible, evaluative paths along the inner CLAW, the outer CLAW 170

paths were characterized by predominantly one-way transitions, leading unambiguously 171

toward the final choice. In further support of the idea of distinct deliberative and 172

commitment phases, we noted that the states within the inner CLAW displayed no clear 173

preference between left and right choices, which suggests that the network was still 174

exploring different possibilities without any strong bias. Conversely, trials that 175

progressed along the outer CLAW paths exhibited increasing certainty and stronger 176

commitment to the choice. For instance, the left-to-right (L:R) ratio increased along the 177

one-way arrows from state 63 to states 575, 543, 535, and 663, ultimately reaching an 178

absolute 10:0 at states 535 and 663, which signifies a firm commitment to the chosen 179

alternative once the trial reached these states. Therefore, based on comparisons of the 180

transition routes and outcome ratios between the inner and outer paths, the CLAW 181

demonstrates that the complex dynamics of decision-making is separable, reflecting 182

distinct states associated with deliberation and commitment. Different CBGT 183

subnetworks have distinct activity patterns tied to these state transitions and hence 184

distinct circuit logic underlying the decision process. 185

The above analysis raises questions about how specific pathways in the CBGT 186

network control the decision dynamics. Our model incorporated three distinct pathways 187

(sub-networks): the direct pathway (colored green in Fig 1A), the indirect pathway 188

(blue), and the pallidostriatal pathway (gold). We observed that when the direct 189

pathway, via D1-expressing direct spiny projection neurons (dSPNs) in the striatum, 190

became dominant in an action channel (state 575 for left decisions), the process 191

bypassed the two deliberative phases and rapidly committed to the corresponding action, 192

leading to a short decision time characteristic of fast or intermediate networks. In the 193

case of left decisions, the activation of the left dSPN inhibited the firing of the ipsilateral 194

internal globus pallidus (GPi; 575 to 543), thus increasing left thalamic firing rate to 195

the decision threshold (at states 543, 535, or 663). Notably, this route features either no, 196

or relatively late, engagement of the indirect (including suppression of the GPeP) and 197

pallidostriatal (including activation of the GPeA) pathways, indicating that the direct 198

pathway was the primary driver of action commitment. However, if the indirect 199

pathway, via D2-expressing indirect spiny projection neurons (iSPNs), turned on more 200

quickly than the direct pathway (state 183), the trial spent more time in deliberation 201

and had a longer decision time, as indicated by the darker coloring of the inner CLAW, 202

corresponding to slow decision trials (compare colors in Fig 3A-B). Here the STN also 203

became active (see “STN-L=1” at state 183 in Fig 3C) due to the inhibitory influence 204

of D2 striatal inputs onto the GPeP, which effectively released STN from inhibition. At 205

the same time, enhanced excitation from the STN and reduced inhibition from the 206

GPeP gradually enhanced the firing of arkypallidal neurons, especially when the trial 207

was involved in the second deliberation loop (see “GPeA-L=1” and “GPeA-R=1” at 208

states 243, 247, and 251). Thus, in these cases, the dominant indirect pathway actively 209

induced pallidostriatal pathway activation, further contributing to a slowdown in 210
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decision-making. Note that in this scenario, the direct pathway was always suppressed 211

by the dominant activity of the indirect SPNs and arkypallidal neurons, so that the trial 212

was prevented from quickly executing a decision. Comparing the activation states of the 213

CBGT nuclei and the DTs between the inner CLAW and the outer CLAW shows that 214

the relative dominance of the CBGT pathways at any given time determines how 215

quickly the system converges to a decision: the direct pathway accelerates 216

decision-making while the indirect and pallidostriatal pathways decelerate it. Overall, 217

although the CLAW approach extends beyond the classical CBGT pathways, we see 218

that their distinct roles became evident within the framework of CLAW analysis. 219

We next explored the mechanistic details underlying the two deliberation phases. 220

Early in the deliberation process, the decision trajectory could turn around from state 221

183 to 191, in which left prototypical GPe neurons returned to supra-threshold activity. 222

This possibility resulted from the feedback loop between prototypical neurons and the 223

STN: the suppression of activity in GPeP via its indirect striatal input disinhibited the 224

STN, and then via the excitatory connections from STN to GPeP, the prototypical 225

neurons in turn received excitatory input, which allowed them to overcome the 226

inhibition from iSPNs and resume their supra-threshold firing. This state transition 227

highlights the possible role of the reciprocal STN-GPe prototypical neuron loop in 228

promoting exploration by lengthening the deliberation time for evidence accumulation. 229

From state 191, the trajectory could bounce back to state 183 or evolve to state 63. The 230

latter occured when the enhanced activity of arkypallidal neurons, which arose in state 231

191 due to the drive signals from STN, reduced the activity of indirect SPNs via the 232

ascending pallidostriatal connections. This input halted the surge of decision-related 233

striatal activity, including the potential activation of dSPNs, suppressed the planned 234

action, and effectively reset the evidence evaluation process. From this process, we see 235

the central role of the GPe, involving both prototypic and arkypallidal cell types, in 236

regulating bidirectional information flow in order to implement the blocking of an 237

incipient response. 238

On the other hand, if the trajectory did not turn around at state 183 but instead 239

proceeded to state 247, a second deliberation phase could occur. Here, the battle 240

between cortical drive and arkypallidal neurons’ inhibition of direct striatal activity 241

determined whether the trajectory was stuck in deliberation or committed to a decision. 242

Importantly, no trial in our simulations failed to select an action, meaning that while 243

the trial could spend time within the second deliberation phase, it did not remain 244

perpetually in a state of deliberation. If the cortical drive became more intense, the 245

ramping activity of the direct pathway (state 759 for the left channel and 507 for the 246

right channel) led to greater commitment to the corresponding decision. In contrast, if 247

dSPNs were inhibited by the stronger signals from arkypallidal neurons, then the 248

indirect pathway could become dominant (states 247, 243, 251) and temporarily 249

suppress the selection of an action, with a descending influence on information flow to 250

the GPeP, STN, GPi, and finally to the thalamus. Specifically, GPi output increased, 251

providing an enhanced suppression of the thalamic responses and leading to a 252

temporarily indecisive state. Note that the STN-GPeP subcircuit was also engaged 253

during this deliberation phase, as demonstrated by the three-state reciprocal transitions 254

between states 247, 243, and 251, where the activity of prototypical neurons in the two 255

channels switched on and off. The competition between the left and right prototypical 256

neurons determined the direction of the subsequent possible commitment, and if they 257

were both sufficiently suppressed at state 243, then the deliberation time would be 258

lengthened. From this phase, it is clear that the interactive effect of the indirect and 259

pallidostriatal pathways played a critical role in prolonging the evidence accumulation 260

process through the combination of a pause process at the striatal level along with 261

downstream effects that allowed for switching between the two possible options. 262
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To reduce the impact of firing rate variability on individual states and to categorize 263

key classes of decision trajectories, we finally partitioned all CLAW states into six zones, 264

as shown in Fig 4. The partition was based on the probabilities and activity changes 265

associated with transitions across different states. Specifically, zone I contained the 266

pre-stimulated state 60 as well as states 61, 62, and 63, where only thalamic populations 267

showed a response in their binarized firing rates to the stimulus at cortex. This zone 268

serves as a pre-decision or launching zone, from which all trials originate, marking the 269

initiation of the decision-making process. Zone II contained the group of states that 270

could have a chance of returning to the pre-decision zone through the initial 271

deliberation process. This inner CLAW zone played a critical role in early evaluation, 272

where the system could explore alternatives rather than immediately converging on a 273

specific action. In contrast, zones III and IV respectively corresponded to the left and 274

right arms of the outer CLAW, each representing a strong commitment to a given 275

action. Once the trial progressed into these zones, there was no return to deliberation 276

and the system was effectively locked into a specific decision. The only exception was 277

that both outer CLAW zones could, with a low probability, transition to the more 278

neutral state 783, which we defined as zone VI. In this state there was an equal 279

likelihood of choosing left or right actions (L:R = 5:5). Such transitions occurred when 280

enough competing evidence arrived to engage the contralateral direct SPNs before a 281

decision was made. Lastly, zone V included the states that comprised the second 282

deliberation process. We identified zones III, IV, V, and VI as absorption zones, in 283

which the probability of staying until the decision threshold was reached was 284

approximately one (Fig 4A, loop arrows). Based on the pathway dominance in each 285

zone (Fig 4B), we confirmed our previous observations that commitment to a choice 286

occurs as soon as the direct pathway becomes sufficiently dominant in an action channel 287

(zones III and IV), while increased activation in the indirect and pallidostriatal 288

pathways contributes to ongoing deliberation (zones II and V). This zone partition 289

served as a succinct representation of the state CLAW by capturing the activity of the 290

main pathway components at different phases of decision-making. As a summary of the 291

above analysis, Fig 5 shows the temporal sequence of CBGT pathway activation 292

patterns associated with different classes of decision trajectories along the zone CLAW. 293

This zone version of the CLAW provides some additional insights into the dynamics 294

of decisions through CBGT networks. First, the dSPNs in both channels were fully 295

activated in zone VI, suggesting a strong competition between the two options. The 296

existence of this neutral zone indicates that the two outer zones were actually not 297

absolute in their commitment: while most trials that reached these zones would remain 298

committed to their initial choice, a few “indecisive trials” ultimately switched to the 299

opponent action. This switch occurred due to the late ramping of the competing action 300

channel, where delayed activation in its direct pathway became sufficiently influential to 301

rapidly override the initial commitment and could lead to a decision reversal. Second, 302

there were direct paths from zone II to the outer zones, representing occasional 303

transitions from the inner CLAW to the outer CLAW that were only evident with 304

grouping of states into zones (hence they did not appear in Fig 3A). These connections 305

highlight the possibility of direct shifts from the early deliberation phase to action 306

commitment, without a need to return to zone I for a fresh re-evaluation or to continue 307

into a prolonged second deliberation phase. Along this shortcut, the dSPN firing rate 308

rapidly increased above the threshold, suppressing the original ramping activity of the 309

iSPN and GPeA, thereby preventing the trial from fully completing the deliberative 310

process and correspondingly accelerating the decision-making. Third, the irreversible 311

transition between the two deliberation zones (II and V) suggests that once the trial 312

moved into a deeper, more fully activated phase of deliberation, the likelihood of 313

resetting deliberation reduced, moving the process toward a concluding outcome and 314
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Fig 4. CLAW partitioned into zones. (A) Zone CLAW diagram. Zone I contains the pre-stimulated
state 60 as well as states 61, 62, and 63, where only the binarized firing rates of thalamic populations may
cross threshold. Zones II and V correspond to the initial and second deliberation phases within the inner
CLAW, respectively. The left and right arms of the outer CLAW are represented by zones III and IV,
respectively, each of which has a low probability of transitioning into zone VI, which consists of a single
neutral state 783. The transition probability from one zone to another is indicated by the number near
the arrow pointing from the source zone. The loop arrows represent the probability of staying in a zone or
reaching the decision threshold from that zone. (B) Details of the zones. From left to right, after zone
labels: probability of activation for dSPN (D1), iSPN (D2), GPi, GPeP, Th, GPeA, and STN for left (-L)
and right (-R) channels, when networks are in each zone. The grey rows correspond to the launching zone,
and the green and blue rows correspond to the zones containing the outer CLAW and inner CLAW states,
respectively.

preventing indefinite uncertainty, albeit with a long decision time. Comparing zone V 315

with zone VI, we see that both dSPN populations in zone VI were above threshold, 316

while the activation pattern in zone V features an analogous balance across channels but 317

for the indirect and pallidostriatal pathways (both iSPN, STN and GPeA populations 318

were above threshold). Hence, the trials reaching in zone V could not turn back from 319

this all-out battle, but rather waited to see which GPi firing rate would fall first. In this 320

sense, although the dominant activity of the indirect and pallidostriatal pathways may 321

temporarily delay the decision, the growing activation of the direct pathway in zone V 322

ultimately ensured convergence to a choice. This interplay among pathways points out 323

the network’s ability to balance deliberation and commitment, maintaining functionality 324

even in the face of competing influences. Overall, by categorizing CLAW states into key 325

zones, we gained a clearer understanding of the critical transitions between deliberation 326

and commitment, including certain shifts that were infrequent, but nonetheless 327

enhanced flexibility in complex decision-making dynamics. The zone CLAW also helps 328

us to appreciate the overall stability of decision-making processes despite the inherent 329
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Fig 5. Temporal activation of CBGT pathways for different decision trajectories along the
CLAW. The direct, indirect, and pallidostriatal pathways across both left and right channels are enclosed in
boxes, with their activation strength colored in blue, green, and gold, respectively (color bars at bottom).
Darker shades indicate stronger activation within each pathway. Nuclei that play a key role for some phase
transitions are indicated near the corresponding arrows. (A) Launching region→Left commitment. (B)
Launching region→Right commitment. (C) Launching region→ Initial deliberation→Launching region. (D)
Launching region→ Initial deliberation→ Second deliberation. The Roman numeral on the upper right corner
of each pattern corresponds to the zone labels in Fig 4.
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Fig 6. Loadings of the canonical vectors obtained from canonical correlation analysis (CCA)
between CBGT activity and DDM parameters. (A) Loadings of u, corresponding to CBGT firing
rates. The subscript ‘sum’ refers to the sum of rates in a region across both action channels, while the
subscript ‘diff’ refers to the rate in the left channel minus that in the right channel. (B) Loading of v,
corresponding to DDM parameters. These three components are referred to as choice, responsiveness, and
pliancy control ensembles, respectively.

variability present in neural firing activity, highlighting the robustness of the 330

competition between CBGT subnetworks that effectively controls how incoming 331

information leads to deliberation and decisions. 332

CLAW and decision policies 333

Previous modeling studies, using two-choice decision tasks, have identified three 334

low-dimensional control ensembles within the CBGT network. Each is associated with 335

specific changes to the decision policy, defined in terms of parameter configurations of 336

evidence accumulation models [22,23]. We replicated this analysis using our CBGT 337

network architecture, with the aim of examining the relationship between different 338

CLAW zones and decision policies. First, we gathered the behavioral features (decision 339

times and choices) produced by the simulated CBGT networks and fit their 340

distributions to the DDM using the Hierarchical Sequential Sampling Modeling (HSSM) 341

toolbox.1 This step allowed us to derive sets of four key DDM parameters associated 342

with the decision process for each network: boundary height a, drift rate v, onset time t, 343

and starting bias z. We then applied canonical correlation analysis (CCA) to compute a 344

low-dimensional mapping between correlated patterns in the space of CBGT network 345

activity and the space of DDM decision parameters. For CBGT network activity, we 346

considered two aspects of activity within each CBGT population: (1) global firing rates 347

across the left and right action channels (i.e., sum of the firing rates in each region 348

across both channels), and (2) bias in activity towards one action (i.e., difference in the 349

firing rates of each cell population, between the left and right channels). From this 350

analysis, we captured the first three pairs of component vectors that maximized the 351

correlation between CBGT activity and DDM parameters. Figure 6 shows color-coded 352

representations of the loadings from the vector u consisting of the firing rate 353

components and from the vector v comprising the DDM parameter components from 354

the CCA. See Control ensembles in the Methods section for more details. 355

1For more information on the HSSM toolbox, see https://lnccbrown.github.io/HSSM/.
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Our analysis recovered three components that are nearly identical to the components 356

found in prior work [22,23]. Comparing across columns, the first component is strongly 357

associated with the drift rate v and the between-channel differences in firing rates, 358

consistent with the previously identified choice ensemble. Greater activity of cortical, 359

striatal, STN, GPeA, and thalamic neurons in the left channel relative to the right 360

channel, coupled with weaker activity in GPi and GPeP, corresponds to more positive 361

drift rates toward the left decision. The second component, in contrast, loads heavily on 362

the overall activity of corticothalamic systems as well as the direct pathway, with 363

negative loading on both boundary height a and onset time t. This pattern agrees with 364

what had previously been called the responsiveness ensemble, because it modulates, in 365

the same direction, both how quickly evidence evaluation begins and the level of 366

evidence needed for a commitment to a decision and hence the overall response speed. 367

The final component loads heavily on both the indirect and pallidostriatal pathways and 368

shows a positive loading on a but a negative loading on t. This component matches well 369

with the pliancy ensemble, reflecting the ease with which the evidence collected can be 370

translated into a commitment to a decision. In our case, the choice ensemble 371

corresponded to the strongest component, describing the most covariance between 372

CBGT activity and DDM components, whereas in prior work it was the weakest of the 373

three components [22, 23]. Other than this ordering of components, our CCA results are 374

highly consistent with prior work using different variants of the CBGT spiking network 375

model. 376

With these control ensembles in hand, we next investigated how the dynamics of 377

CBGT network activity during decisions tunes the resulting decision policy parameters. 378

To this end, we translated the time series of CBGT firing rates to the time course of 379

individual control ensemble engagement. Specifically, for each simulated trial we 380

computed the change in the 18 CBGT firing rate measurements (see column labels in 381

Fig 6A) between consecutive time bins, denoted by ∆Fk from the (k − 1)-th to the k-th 382

bin. Next, we projected ∆Fk ∈ R18 onto the control ensemble space by mapping 383

Wk = ∆FT
k U , where the components of the u loadings comprise the columns of U , such 384

that Wk ∈ R3. Each component of Wk represents how the instantaneous firing rate 385

change from the (k − 1)-th to the k-th time bin corresponds to a change in the 386

activation, or drive, of one of the three control ensembles. Finally, we grouped all trials 387

into four types, categorized by their decision times and selected choices: fast left, fast 388

right, slow left, and slow right. Given that decision times vary across trials, we aligned 389

the trials in each group to the response time, as shown in Fig 7. For a full description of 390

this approach, see Control ensembles in the Methods section. 391

We observed that the main difference between fast choices (Fig 7AC) and slow 392

choices (Fig 7BD) is the timing at which the drives began to change. For the fast trials, 393

the choice drive showed a modest deviation from baseline, becoming positive for the left 394

action and negative for the right action. This happened near the end of the decision 395

time, marking the point at which the system began to show a directional commitment. 396

However, the drive of the responsiveness and pliancy components rose earlier and more 397

dramatically, around the midpoint of the decision process, indicating that the system 398

acted early to modulate the response speed and the degree of evidence necessary for 399

selection. For slow trials, the choice ensemble still changed a bit later than the other 400

two ensembles. Yet, considering the much longer decision times on slow trials relative to 401

fast trials (note the differences in time axis scales in Fig 7AC vs. Fig 7BD), the slow 402

cases exhibited more similar timing across the three ensembles, with all exhibiting a 403

gradual acceleration as the long decision process neared completion. In addition, the 404

increase in the magnitude of the responsiveness and pliancy ensembles was notably 405

smaller in the slow cases than that in the fast cases, while the changes in the choice 406

ensemble closely overlapped (see the right insets in Fig 7). Thus, the comparison across 407
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Fig 7. Time evolution of control ensemble drives. The percentage changes in each drive are averaged
across all trials within each of four decision groups — (A) fast left, (B) slow left, (C) fast right, and (D) slow
right, from the stimulus onset time to the decision time (set to be 0). Since each trial had a different decision
time, we performed the averaging by aligning trials on their decision times, with the averages represented by
dots connected by lines (light dashed for fast and dark solid for slow). Shadowed areas represent the standard
deviation for each group. The vertical dotted lines with colors matching the plotted curves mark the timing at
which each control ensemble’s drive shows a notable response. For fast and slow trials to the same choice, each
inset at the right aligns the drives, zoomed in on the time range with pronounced changes (approximately
75 ms), on the same scale for comparison.
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decision types shows that the critical components regulating overall decision speed are 408

responsiveness and pliancy. 409

We next considered how these control ensemble changes map to specific activity in 410

the CBGT cellular populations. Consider the distinctions in the temporal patterns of 411

control ensemble activation between fast and slow decisions in terms of the activity of 412

specific CBGT pathway components. First, as shown in Fig 6A, the increase in 413

responsiveness was associated with the overall activity in corticothalamic and direct 414

pathways, and specifically, greater activity in thalamic and dSPN neurons along with 415

weaker activity in cortical and GPi neurons. Second, the increase in pliancy 416

corresponded to the overall activity in components of both the indirect and 417

pallidostriatal pathways, reflected by the amplified activity in iSPN, STN, and GPeA 418

neurons and attenuated activity in GPeP neurons. Third, the change in the choice 419

ensemble was driven by differential activity between the two channels in all pathways. 420

From the timing difference observed from Fig 7, we inferred that a fast decision featured 421

an early surge of overall CBGT activity before the emergence of between-channel 422

differences. This seems counterintuitive, as one might expect that faster decisions would 423

involve earlier differentiation between action channels, reflecting a more immediate 424

commitment to one choice over the other. However, the delay in the emergence of 425

between-channel differences aligns with the notion that fast decisions involve a 426

stereotyped process, where the overall network activity assumes a state that is conducive 427

to rapid implementation of whichever option subsequently becomes favored. As a result, 428

only after the general decision approach had been established by the necessary 429

components of the CBGT network, did the divergence of activity between channels 430

become pronounced. This allowed for a smoother transition and potentially minimized 431

unnecessary conflict or indecision between competing action channels. In contrast, the 432

slow decision process was more deliberative, with prolonged competition and evaluation 433

between options, including additional processing associated with transient pause, action 434

switches, or suppression. These processes required the coordinated efforts of many 435

CBGT nuclei, as we discussed in CBGT activity and CLAW in the context of the initial 436

and second deliberation phases. Consequently, the turning point of the overall network 437

activity for slow decisions occurred much later than in the fast cases and was associated 438

with the emergence of a bias or preference towards one decision option. 439

In big picture terms, the temporal patterns that we observed in the control 440

ensembles are consistent with our previous CLAW analysis showing that, at least in 441

CBGT-driven decisions, there exist two stages — deliberation and commitment — to 442

every choice. Note that, in contrast to the two extended deliberation phases that most 443

fast trials bypassed (cf. Fig 4A, zones II and V), the deliberative stages of the fast trials 444

occurred during the relatively brief time that the fast trials spent in the launching 445

region (Fig 4A, zone I). During this time the rapid responsiveness and pliancy ensemble 446

responses occurred (Fig 7AC) as the CBGT network quickly organized itself for action. 447

This analysis highlights a relationship between the contribution of the three control 448

ensembles and the distinct phases of a decision, achieved through the corresponding 449

patterns of dynamic interactions among CBGT pathways. 450

By exploiting the relation between control ensembles and DDM parameters, we next 451

investigated how the dynamics of CBGT network activity during decisions can be 452

formulated in terms of serially tuning the evidence accumulation process itself during 453

the decision. For this step, and for each pair of zones (i, j) we considered the change in 454

the CBGT firing rate measurements associated with the direct transition from zone i to 455

zone j across the subset of p ≤ 300 networks that undergo this transition. Denote the 456

firing rate change from zone i to zone j by ∆Fij ∈ Rp×18. We projected ∆Fij onto the 457

control ensemble space using the u loadings derived from the CCA and obtained 458

Wij ∈ Rp×3. For each column of Wij , a positive (or negative) element indicates that the 459
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sample aligns with the corresponding control ensemble in a positive (or negative) 460

direction, and thus the parameters of DDM that have positive loadings in that control 461

ensemble will increase (or decrease) as the CBGT activity progresses from zone i to 462

zone j. As both responsiveness and pliancy ensembles influence the boundary height 463

and onset time, we finally projected Wij to the DDM space. Using the components of 464

the v loadings to form the columns of V , we computed Pij = WijV
T ∈ Rp×4 which 465

relates the firing rate changes to changes in the DDM parameters. Hence, the median of 466

all p projections in each column of Pij is proportional to the overall change in the 467

direction and magnitude of the corresponding decision policy parameter in the 468

transition from zone i to zone j. 469

Figure 8 shows the influence of the CBGT network activity flow on each parameter 470

of the DDM. The coloring and number of each arrow indicates the percentage change in 471

the parameter values as the decision trajectory traveled between CLAW zones. Note 472

that since all control ensembles had weak loadings on the bias factor z, we did not 473

consider its associated changes. First, we observed that the modulation of the drift rate 474

v along the outer CLAW was strongly positive when committing to the left action 475

(zones I/II to III) and strongly negative when committing to the right action (zones I/II 476

to IV). These shifts in the drift rate resulted in a clear directional bias and a rapid 477

approach toward the selection of the appropriate action. In contrast, v was less affected 478

when information flowed along the inner CLAW, leading to a much slower accumulation 479

process regardless of the action choice. Reversion from the outer CLAW to zone VI, 480

with equal likelihoods of the two decisions, was associated with changes in v that 481

countered the initial, commitment-related changes. Here we note that the pre-decision 482

states appear to have been somewhat biased towards the left choice, as the magnitude 483

of the modulation of v for I→ IV was twice as large as that for I→ III. This indicates 484

that the trajectories may not have needed as much of an increase in drift rate before 485

reaching the left decision threshold. Correspondingly, the drift rate modulation for the 486

initial deliberation transition I→ II was small and negative, such that this progression 487

counteracted the leftward bias and led to a more neutral exploratory state. Our results 488

on the v dynamics align well with the change in the activation pattern of CBGT regions 489

across zones (Fig 4B), as the drift rate parameter was strongly associated with 490

differential activity between left and right channels (see choice ensemble loadings in 491

Fig 6) — these between-channel differences became significant as the network activity 492

traveled along the outer CLAW, leading to dramatic changes in the drift rate, while 493

they vanished almost completely along the inner CLAW and resulted in minimal drift 494

rate changes. 495

Second, we observed a “boundary collapse” phenomenon, as each trial proceeded 496

towards a commitment to a choice, as indicated by the pink arrows throughout Fig 8B. 497

This collapse reflected a reduction in the amount of evidence needed for a choice to be 498

made, which facilitated action commitment. An exception occurred at the transitions 499

between the launching and initial deliberation phases (zones I and II), during which the 500

boundary height remained almost unchanged, staying as high as when the evidence 501

accumulation initially started. This invariance suggests a more cautious approach at the 502

onset of decision-making, with the engagement of indirect and pallidostriatal pathway 503

neurons blocking any imminent action. In contrast, progression to zone V lowered the 504

decision boundary substantially, consistent with our previous analysis that the second 505

deliberation ultimately ensured convergence to a choice. A closer inspection of the 506

binarized firing rates in the two deliberation zones (Fig 4B) reveals that the neural 507

populations in both channels were much more activated in zone V compared to zone II. 508

This implies a dramatic alteration in both the responsiveness and pliancy ensembles and 509

therefore the boundary height when transitioning to zone V. 510

Lastly, the onset time t consistently shortened no matter which decision path was 511
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Fig 8. Modulation of decision policy parameters by CBGT activity along the
CLAW. The arrows indicate variations of the individual DDM parameters (drift rate v, panel
A; boundary height a, panel B; onset time t, panel C) associated with transitions between
zones of the CLAW, computed based on the activity changes from each zone to the one
immediately downstream from it. The magnitude of each variation is indicated by the coloring
(see color bar) and the number at the start of each arrow, representing the percentage change
in parameter values.
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taken. The effect of varying t is to translate the decision time distribution. The drop in 512

t associated with the progression along the inner CLAW may seem to be at odds with 513

the increase in decision times associated with these pathways (see state colors in 514

Fig 3AB). However, the drop in t reflected the fact that the states in zone II and zone V 515

corresponded to being farther along in the decision process than zones I and II, 516

respectively. When the decision trajectory reached a later stage, e.g., zone V, the 517

process “started” faster because it had already moved past the earlier stages, i.e., zones 518

I and II, and became more prepared. As a result, the onset of the decision-making from 519

this later stage began earlier. The decision time, on the other hand, is measured as the 520

total time for the decision trajectory that visits each zone, starting from the time of 521

trial initiation in zone I and ending in a terminal zone where a decision is made. 522

Note that when we fit the DDM parameters to each CBGT network’s outputs, we 523

derived a single DDM parameter set that produced responses that most closely matched 524

those of the CBGT network for the whole decision process. These parameters represent 525

a static solution that captures the overall dynamics of decision-making across all zones 526

and transitions for all trials progressing through the network. Then, to link the 527

zone-specific activity patterns to the DDM parameters, we applied the same set of 528

canonical vectors obtained by the CCA, as performed on the static network, to the 529

firing rate changes between zones. Figure 9 provides a schematic illustration of this 530

approach for the transitions from zone I to zones III and IV, respectively. The direct 531

interpretation of this mapping is as follows: if the CBGT firing rates remained static 532

throughout the decision process – resulting in fixed DDM parameters – and we then 533

shifted to a different static set of firing rates (as if a new group of trials occupied a 534

different zone for the entire decision), the canonical vectors would predict how the DDM 535

parameters would need to change to stay consistent with the new activity pattern 536

(Fig 9A-B). In reality, however, CBGT decision output arises from moment-to-moment 537

changes in firing rates throughout each trial, rather than from a fixed set of DDM 538

parameters applied to the entire trial. In other words, trials do not stay within a single 539

zone for the whole decision process but instead transition dynamically between zones as 540

the decision unfolds. Therefore, an accurate interpretation of our “dynamic DDM” 541

analysis is to consider it as the movement of probability mass in the space of possible 542

DDM parameters and DT distributions. 543

For instance, suppose that the averaged CBGT firing rates are those for zone I. If 544

those stayed fixed, then we would obtain a specific set of DTs and choice probabilities 545

consistent with a specific DDM (i.e., specific set of fit evidence accumulation 546

parameters. Similarly, consider another DDM parameter set that corresponds to the 547

averaged CBGT firing rates for zone III. The difference in the static firing rates between 548

zone I and zone III means that, relative to the first set, the DDM parameters and the 549

probability mass of the DT distribution for the second set differ in a specific way (as 550

depicted in Fig 9B). In the actual case of dynamic decision making, however, firing rate 551

changes occur dynamically as the decision process evolves. Thus, for a decision 552

involving a transition from zone I to zone III, the relevant dynamic decision policy must 553

be intermediate between the two static cases, as illustrated by the magenta color in 554

Fig 9C. For visualization, the figure only shows a possible variation in the drift rate, but 555

the same idea applies to the boundary height and onset time. Although our current 556

analysis does not deliver a specific trajectory of DDM parameters over time (i.e., 557

v(τ), a(τ), t(τ), if time is parameterized by τ), it allows us to estimate the impact of 558

zone transitions on DDM parameters and hence to make a reasonable prediction about 559

how passage through different zones will constrain the DT and choice distribution. 560

Specifically, commitment-related zones induced significant changes in drift rate and 561

boundary height, thus driving fast decisions, while deliberative zones resulted in 562

minimal changes in these parameters and gave rise to slow decisions. Overall, our 563
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Fig 9. Mapping changes in CBGT activity across CLAW zones to variations in
DDM parameters. (A) Firing rate changes during zone transitions are mapped to the DDM
space through control ensembles. The vectors ∆F13 and ∆F14 represent the difference in the
firing rate measurements from zone I to zone III (blue) and zone IV (red), respectively. These
changes update the static DDM parameter set from (v1, a1, t1) to (v3, a3, t3) or (v4, a4, t4). (B)
The corresponding DDM behavior that fits the decision outcomes, assuming that CBGT
activity stays in one zone (here, either zone I, zone III, or zone IV) over the entire decision
process. (C) Prediction about the actual dynamic DDM behavior (magenta) as trials travel
from zone I to zone III, the DT distribution of which is constrained by those corresponding to
the static cases.
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results demonstrate the dynamic nature of decision policies and their evolution across 564

different decision-making scenarios. 565

Discussion 566

One of the multifaceted functions of the CBGT circuit is regulation of the evidence 567

accumulation process [3, 16,46]. Yet, given that the synaptic architecture of the CBGT 568

circuit is intricate, featuring complex interconnected feedforward, reciprocal, and 569

feedback pathways [6], we know very little about how it regulates the flow of 570

information on a moment-by-moment basis during an individual decision. Here we used 571

an integration of mulitple computational approaches, including generative spiking 572

neural network models of the CBGT circuit and multiple data analytic techniques, to 573

characterize the evidence accumulation process during individual decisions. Most 574

critical to this was our CLAW framework, using which we were able to capture the flow 575

of activity through CBGT pathways (Fig 3). We then grouped these states into zones to 576

categorize key classes of decision trajectories (Figs 4, 5). Further, by converting the 577

CBGT dynamics into the time evolution of control ensemble drives, we identified that 578

responsiveness and pliancy are the critical ensembles that determine the deliberation 579

period of a decision (Fig 7). Finally, we recast our control ensembles results in terms of 580

DDM parameters and investigated how CBGT activity tunes different aspects of 581

decision policies as the decision process proceeds through different zones of the CLAW 582

(Figs 8, 9). Using this framework, we found that the noisy evidence accumulation 583

process is functionally dissectible into two distinct phases, deliberation and 584

commitment, each governed by competition and cooperation among distinct CBGT 585

subnetworks. In particular, we found that the balance of overall activity across CBGT 586

regions regulates the degree of evidence needed to make a decision early during the 587

process, reflecting control of the deliberation stage. Eventually, a symmetry-breaking 588

allows action-specific direct pathway components to kick in to trigger a transition from 589

deliberation to commitment to a single choice relatively shortly before selection occurs. 590

These findings suggest that the evidence accumulation process during a single decision 591

is highly dynamic and is regulated by a complex interplay of multiple CBGT pathways 592

that play distinct roles in controlling the flow of information during decisions. 593

Our results broadly confirm the growing perspective [3, 4, 17, 32] that the direct and 594

indirect CBGT pathways engage in a dynamic competition during decision-making, 595

rather than merely functioning in isolation. Instead of a simple switch between “go” 596

and “no-go” signals, the direct–indirect competition implements a decision by 597

continuously balancing the drive for action with the need for deliberation. Our results 598

add to this picture by including the pallidostriatal pathway and highlighting the ways 599

that competition between pathways at key phases of the decision process determines its 600

progression. Specifically, when the system adopts a responsive, pliant state early in the 601

decision (Fig 7AC), the direct pathway associated with one option can gain strength 602

and accelerate the network to action selection (outer CLAW; Figs 3, 4). In other 603

instances, the influence of the indirect pathway becomes dominant, pushing the system 604

toward motor-suppressing states associated with prolonged deliberation (Fig 7BD). 605

During this process, competition between the indirect and pallidostriatal pathways, as 606

well as across action channels, determines the extent of deliberation (inner CLAW; 607

Figs 3, 4)). This interactive nature of the CBGT pathways is also critical for encoding 608

uncertainty and for adapting behavior in changing conditions. Our findings indicate 609

that understanding the role of the CBGT circuit in shaping decision-making requires 610

studying the intact dynamical system as a whole. 611

Previous recent work [22,23] introduced an “upward mapping approach” used to fit 612

CBGT-driven decision outcomes to a normative DDM model, which led to the 613
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identification of three CBGT control ensembles (choice, responsiveness, and pliancy). 614

Our work here shows that the control ensemble structure is preserved with the inclusion 615

of the arkypallidal GPe neurons and demonstrates that the transition from deliberation 616

and commitment emerges from the evolution of control ensemble activity (cf. Fig 7). 617

Based on this control ensemble analysis, we translated the changes of CBGT network 618

activity associated with transitions through CLAW zones into the evolution of 619

individual DDM parameters, providing a time-dependent algorithmic interpretation of 620

different decision strategies (see Figs 8, 9). In particular, we observed that fast trials 621

show an early and rapid reduction in decision boundary height while slow trials 622

maintain a high decision boundary for a longer time. Unlike traditional DDMs, which 623

assume that information is accumulated until a fixed threshold is crossed, our results 624

align with the recently proposed notion of a “boundary collapse” [47–50], where the 625

decision threshold dynamically adjusts in response to changing task conditions or 626

sensory evidence. The distinction between fast and slow decisions in our analysis, 627

however, emphasizes two contrasting decision strategies. On the one hand, the system 628

may rely on an early and rapid collapse of the decision boundary to push the trial 629

toward a timely action. This strategy would presumably be critical in situations that 630

require swift decision-making under time pressure, allowing the system to optimize 631

speed at the expense of deliberation. On the other hand, the system may devote an 632

extended time to gradually lowering the evidence accumulation threshold, allowing for 633

more evaluation of evidence before making a final commitment, thereby prioritizing 634

accuracy over speed. Hence, the time-varying framework that we have derived serves as 635

a more complete representation of of how decision-making dynamics can be flexibly 636

tuned to prioritize either speed or accuracy across diverse scenarios. 637

Moreover, our results reveal that decision policies are highly dynamic during a 638

decision, extending beyond boundary collapse to include other critical parameters such 639

as drift rate and onset time, especially given the mixed opinions on the use of dynamic 640

drift diffusion models [51]. We found that, as evidence accumulates, decisions involving 641

outer CLAW paths manifest as a strong directional preference (zones III, V, and VI; 642

Figs 4 8), driving the accumulation process rapidly towards a concluding outcome. In 643

contrast, decisions that travel through inner CLAW (zones II and V) sustain a slower 644

and more neutral information flow before committing to a choice. This difference in the 645

drift rate dynamics between fast and slow decisions highlights the flexibility of the 646

decision-making system in adjusting its approach to support varying strategies for 647

making choices. Meanwhile, we observed similar time-evolving patterns of the choice 648

ensemble drive, which modulated the drift rate parameter, as both fast and slow 649

decisions neared completion (insets in Fig 8, red curves). This reflects the functional 650

robustness of the system in terms of maintaining a stable stereotyped process for 651

decision-making under different conditions. 652

The results obtained in this work also support the view that prototypic GPe neurons’ 653

connections to STN and GPi form an integral component of the classical indirect 654

pathway, whereas arkypallidal GPe neurons [33] play a critical role in regulating upward 655

information processing in the CBGT circuit [41,52–54]. Complementing experimental 656

findings on the two subpopulations’ distinct firing rate characteristics [36,55], our 657

simulations and analysis suggest new insights into how the two GPe subpopulations may 658

make divergent contributions to controlling the dynamics of individual decisions. As 659

shown in Fig 2, the prototypic neurons fire at high rates during resting states, with 660

many neurons decreasing their activity in response to synaptic drive. In contrast, the 661

arkypallidal neurons maintain low baseline firing rates during rest, while they rapidly 662

and robustly increase their activity upon stimulus onset. This divergence in their firing 663

properties has distinct impacts on the associated basal ganglia targets for each cell type. 664

For the prototypic neurons, a decrease in firing rate as a decision unfolds fits well with 665
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the classical understanding of the GPe’s role within the indirect pathway, providing a 666

disinhibition of STN and the basal ganglia output nuclei [13, 19,29]. In our CLAW 667

framework, the second deliberation phase (the loop among states 247, 243, and 251 in 668

Fig 3A), characterized by zero binarized firing rates in one or both prototypic 669

populations, essentially functions as a “brake” on action selection, allowing the system 670

to terminate unwanted actions. This phase closely resembles the dynamics of the 671

classical stop signal task, where the goal is to inhibit a planned action in response to a 672

“stop” signal [56,57]. This similarity holds even though no trial in our simulations 673

completely ceased or refrained from making a choice, with STN-GPeP subnetwork 674

dynamics evolving such that the trial effectively paused, re-evaluated, and potentially 675

switched between alternative options. Hence, this phase suggests that the prototypic 676

GPe’s brake-like function operates not only during explicit stop signals, but as a more 677

general mechanism for temporal regulation during decision-making. 678

In contrast to prototypical GPe neurons, the arkypallidal GPe neurons do not 679

project to the STN or other downstream targets of prototypic neurons. Rather they 680

appear to exclusively innervate the striatum via ascending projections [58]. Due to their 681

robust activation upon trial onset, they complement the function of the STN to cancel 682

an action through their direct suppressive effect on firing at the level of striatum. Our 683

analysis shows that in the early deliberation phase (the loop among states 63, 55, 183, 684

and 191 in Fig 3A), the STN acts in the first-tier stage to suppress the basal ganglia 685

output nuclei and pause an incipient response (from 183 to 191). The arkypallidal 686

neurons then become engaged during the second-tier stage to complete the blocking of a 687

response by inhibiting the striatal regions (from 191 to 63). Note that the arkypallidal 688

neurons receive comparatively weak inhibitory striatal inputs compared to their STN 689

excitatory inputs [35,59], which allows for the recruitment of arkypallidal neurons into 690

the process of resisting commitment when activated by STN. Our results support the 691

emerging standpoint [36,52,58,60] that the GPe, with its heterogeneous collection of 692

cell types, acts not merely as a passive way-station in the indirect pathway, but as an 693

active control mechanism in regulating bidirectional information flow to facilitate 694

flexible execution or blocking of responses [52]. 695

Whether arkypallidal neurons predominantly target SPNs of the indirect or direct 696

pathway remains unclear. It was observed in [61] that the inhibitory signals from 697

arkypallidal neurons have a larger amplitude to iSPNs than dSPNs, with an 698

approximate ratio of 2:1. This suggests a preferential influence over the indirect 699

pathway. Other experimental studies suggested less pronounced bias and more balanced 700

innervation of the two types of striatal populations [58,62]. Prior modeling work, on the 701

other hand, suggested that a preferential influence of arkypallidal neurons onto dSPNs 702

is crucial for regulating reactive stopping decisions [41]. In our model, in the early 703

deliberation phase, the arkypallidal neurons effectively inhibit both pathways, 704

suppressing the overall progression of information flow in the circuit. This manifests as 705

non-preferential innervation of both types of SPNs by the arkypallidal neurons, 706

subserving an activity pattern akin to an “all stop” signal to the striatum. In the 707

transition from deliberation to commitment, we also found potential roles for inhibition 708

from arkypallidal neurons to both iSPNs and dSPNs. Specifically, the inhibition from 709

arkypallidal neurons to iSPNs in both channels disinhibits the associated dSPNs, 710

facilitating their competition and ultimately leading to a specific response selection 711

(e.g., 247→ 759 and 251→ 507 in Fig 3). Moreover, when a trial becomes stuck in a 712

cycle of indecision – where arkypallidal neurons inhibit both iSPNs and dSPNs (as seen 713

in the three-state reciprocal transitions during the second deliberation phase) – a 714

reduction in dSPN inhibition in either channel can be crucial for breaking the deadlock 715

and allowing the trial to progress toward a decision. Overall, this analysis reveals that 716

the inhibition of striatal populations by arkypallidal neurons plays different roles at 717
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different stages of the decision-making process. Although the relative strengths of the 718

inhibitory pathways from arkypallidal neurons to iSPNs and dSPNs may affect which 719

aspects are dominant, our results suggest that both components contribute to the 720

ongoing competition within the circuit and hence offer a potential reconciliation of prior 721

experimental and theoretical work. 722

Methodologically, our CLAW analysis relies on binarizing the firing rate within each 723

CBGT nucleus at each time step, using the binarized rates to define activity states, and 724

tracing transitions between states over time. Such a set of states and transitions 725

between them can be called a Boolean network [63]. The Boolean network framework 726

has been heavily used in computational biology, especially to understand dynamics of 727

complex cell signaling pathways [64–66]. The use of this framework has been far less 728

prevalent in neuroscience [67]. Although a recent paper took this approach for the 729

analysis of fMRI data [68], to our knowledge the use of Boolean frameworks for studying 730

the dynamics and evolution of activity in a neural circuit is novel. Our work here 731

highlights the utility of this approach. Harnessing this methodology in future studies 732

could provide an alternative to mean field approaches and other forms of 733

coarse-graining, with a distinct emphasis on discrete states and state transitions that 734

are meaningful for cognitive functions. 735

Our work suggests several interesting directions for future explorations. We 736

considered a pre-defined action selection task and did not include dopamine-driven 737

corticostriatal plasticity. Given the critical role of dopamine in modulating both the 738

direct and indirect pathway neurons of the striatum [69–73], incorporating plasticity 739

would be expected to significantly alter the pattern observed in our CLAW diagram and 740

will be a key future step. Moreover, we simply considered unbiased evidence for the two 741

available choices, so a natural direction for the extension of this work is to introduce 742

asymmetric evidence in plasticity studies. Another interesting avenue for future inquiry 743

would be to consider the impact of perturbations, consisting of changes in reward 744

contingencies (global) and optogenetic stimulation of specific cell populations (local), on 745

network trajectories and decision outcomes. These extensions could deepen our 746

understanding of how the CBGT circuitry shapes decision processes in response to 747

varying conditions, offering insights into potential therapeutic strategies for disorders 748

related to basal ganglia dysfunction. 749

Since the CLAW states that we derived from the binarized firing rate data were 750

defined in terms of the activity levels of CBGT populations, our simulation results 751

delivered immediate biological interpretability. The insights from our results suggest 752

several experimentally testable predictions about how, in unfamiliar decision-making 753

tasks that have not yet been learned, distributed control of decisions flows through the 754

CBGT network over time. At the most global level, we predict that especially fast 755

decisions should feature a distinctive early surge in dSPN activity with an associated 756

drop in GPi firing. On the other hand, enhanced iSPN activity and reduced GPeP 757

activity without this dSPN surge should associate with shifts into slow deliberative 758

behavioral states, and should be followed by increased STN and GPeA activity, with an 759

increased level of variability in STN-GPeP circuit activity and intensified GPeA activity 760

together manifesting as a prolonged deliberative phase. This STN-GPeP aspect of our 761

results is consistent with previous modeling work suggesting roles for the STN in action 762

delay [74] and for variable STN-GPeP dynamics in promoting exploration [19,75]. 763

While the initial increase in iSPN activity and decrease in GPeP activity may 764

predominantly arise in one action channel, the emergence of these changes widely across 765

the relevant nuclei is predicted to signify an entry into a more prolonged, second 766

deliberation phase with variability in the ensuing choices selected. 767

Optogenetics allows for targeted activation or inhibition of specific neuron 768

populations or types. Our results predict that brief GPeP stimulation or iSPN 769
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inhibition early in the decision-making process will block entry into a deliberative state, 770

allowing dSPN activity to take over and produce a decision. Consistent with the above 771

discussion, we predict that dSPN stimulation and GPeP stimulation should both 772

accelerate decisions; stimulation of these whole populations, at least in the absence of 773

significant experience, should lead to balanced likelihoods of selecting available options. 774

Our results also predict that stimulation of GPeA neurons should yield prolonged 775

deliberation. Finally, a novel prediction of our control ensemble analysis (Fig 7), in light 776

of the composition of the responsiveness and pliancy ensembles (Fig 6), is that even 777

with fast decisions, there should be a discernible rise in activity throughout much of the 778

CBGT network, with the exception of GPeP and GPi, before the channel-specific dSPN 779

surge that induces commitment to a choice. The distinction between fast and slow 780

decisions is predicted to relate not to the presence or absence of this global rise, but 781

rather to its time course and slope (starting earlier but with a more gradual rise for slow 782

decisions) and to whether it is quickly followed by channel-specific dSPN engagement 783

(fast decisions) or not (slow decisions). Overall, we have introduced a new framework, 784

binarization and CLAW, for analyzing the dynamic flow of activity through a neuronal 785

network and have used it to extract novel insights and predictions about CBGT 786

dynamics, including GPeA neurons, during individual decisions. We hope that these 787

advances spur additional experiments and modeling related to the detailed time course 788

of neuronal dynamics during the performance of cognitive functions. 789

Methods 790

CBGT network 791

In this work we simulated behavioral data using a cortico-basal ganglia-thalamic 792

(CBGT) network model. The network consists of 10 distinct populations of spiking 793

model neurons: the cortical interneurons (CxI), the excitatory cortical neurons (Cx), 794

the striatum which includes the D1- and D2-expressing spiny projection neurons (dSPN 795

and iSPN, respectively) and the fast-spiking interneurons (FSI), the globus pallidus 796

external segment, which contains prototypical and arkypallidal neuron subtypes (GPeP 797

and GPeA, respectively), the subthalamic nucleus (STN), the globus pallidus internal 798

segment (GPi), and the thalamus (Th). We considered two groups of neurons for each 799

population, corresponding to the left and right action channels, except for the CxI and 800

FSI, which are shared across both channels. For each decision trial, a choice is selected 801

when the firing rate of the thalamic population within one action channel reaches 30 Hz 802

before the firing rate of the other thalamic population. Figure 1A illustrates the 803

connectivity within the network. Each neuron evolves according to an 804

integrate-and-fire-or-burst model, and the complete model details can be found in [42]. 805

We implemented genetic algorithms (see [23] for details) based on values of 13 806

selected synaptic connection weights to generate 300 different network configurations 807

that each feature firing rates of all CBGT populations within experimentally observed 808

ranges [22]. In addition, each network exhibited trial timeouts (when no action is 809

selected within 1000 ms) on fewer than 1% of trials, and we checked to ensure that each 810

network was cortico-basal-ganglia driven, with positive correlation between cortical and 811

striatal activity. With each obtained network, we simulated 50 decision trials and 812

gathered temporal firing rate data for all populations across the two action channels. 813

To unfold the noisy neural firing activity during the dynamic decision-making 814

process, we time-binned the firing rates with ∆t = 10 ms, averaged over neurons in each 815

population, and binarized them based on whether activity was above or below a certain 816

threshold in each time bin. To determine the binarization threshold, we generated firing 817

rate histograms for all trials up to decision times, which showed either unimodal or 818
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Fig 10. Firing rate histograms for all trials up to decision times. In each panel the vertical green line
represents the binarization threshold for the firing rates. In unimodal histograms, the binarization threshold for
GPeP and GPi was defined as the firing rate at 10% of the counts, with values above this threshold binarized to
1 and values below it binarized to 0, while for GPeA, dSPN, and iSPN the threshold was set at 90% of the
counts. In bimodal histograms, the midpoint between the two peaks was defined as the binarization threshold.

bimodal distributions (Fig 10). For unimodal histograms, the binarization threshold was 819

set at the firing rate corresponding to either 10% (GPeP and GPi) or 90% (GPeA, 820

dSPN, and iSPN) of the total counts, depending on whether the non-stimulated firing 821

rate of each population was above or below its firing rate close to decision times, with 822

values above this threshold binarized to 1 and values below it binarized to 0. For 823

bimodal histograms, the binarization threshold was set at the midpoint between the two 824

peaks. Next we considered N = 10 populations of interest — dSPN, iSPN, GPi, GPeP, 825

and Th, for both left and right action channels — and we defined the set {sk}2
N

k=1 of 826

vectors in RN as the base-2 representations of all integers from 1 to 2N . Each 827

sk = [σk1, σk2, · · · , σkN ], where σkj ∈ {0, 1} for all pairs (k, j), denotes the k-th unique 828

state of the network. Consequently, we derived a sequence of states from the 829

time-binned, binarized firing rates of every single trial. Using all of these state 830

sequences, we computed the transition probabilities between all possible states. See 831

Fig 11 for a sketch of the above procedures used to process the firing rate data. Finally, 832

we built a chain for the decision dynamics (as depicted in Fig 3) based on the state 833

transitions. Specifically, for each state sk, we sorted the subsequent n (n < 2N ) paths 834

from largest to smallest and retained the largest p (p < n) paths until the (p+ 1)-th 835

path exhibited a gap of 25% or more relative to the p-th path. This whole approach for 836

the binarization and CLAW reduces firing rate variability and provides a more refined 837

model for the decision dynamics. 838
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Fig 11. Procedures for processing firing rate data. (A) Populations of interest are specified, with the simulated
temporal activity. (B) Firing rates within each population in each time bin (10 ms) are binarized into 1 (above threshold)
or 0 (below threshold). (C) Transition probabilities are computed using the full set of binarized activity sequences.

Control ensembles 839

We replicated the steps of identifying three control ensembles, as introduced 840

previously [22]. First, we mapped the behavior of our CBGT network to the 841

drift-diffusion model (DDM) by fitting the distributions of decision times and choices of 842

the simulated trials, using the Hierarchical Sequential Sampling Modeling (HSSM) 843

toolbox implemented in Python, and obtained the configuration of DDM parameters 844

(boundary height a, drift rate v, onset time t, and starting bias z) corresponding to each 845

of the 300 network configurations. Then, through the application of canonical 846

correlation analysis (CCA) on trial-averaged firing rates Fall ∈ R300×18 and DDM 847

parameters Dall ∈ R300×4, we captured pairs of linear combinations within each data set, 848

given by loadings (u, v) ∈ R18 × R4, that yielded the maximal correlation across data 849

sets. This analysis identified three such components associated with distinct decision 850

factors, referred to as choice, responsiveness, and pliancy. The canonical loadings that 851

we obtained are shown in Fig 6; see [22,23] for additional details on the method. 852

We converted the time-binned series of CBGT firing rates to a discretized time series 853

of individual control ensemble drives. To do so, for each trial we computed ∆Fk ∈ R18, 854

the difference of the averaged firing rates in the 18 model populations between time bins 855

k and k − 1. Then, ∆Fk was projected onto the three control ensemble components 856

obtained from the above CCA, via Wk = ∆FT
k U where the u loadings form the columns 857

of U , such that Wk contains three elements, each representing the change of the 858

corresponding control ensemble associated with evolving from the (k − 1)-st to the k-th 859

bin. Note that ∆F0 was set to zero as a baseline, representing the initial state of firing 860

rates before any changes in the decision process occurred. As a result, the firing rates at 861

subsequent time bins (k > 0) were adjusted relative to this baseline. The time series of 862

each element of Wk across the trials in each of the four decision groups (fast left, fast 863

right, slow left, and slow right) is displayed in Fig 7. 864

Following the same approach, we used the trial-averaged firing rate in each CLAW 865
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zone to predict the potential changes in DDM parameters as the CBGT activity evolves 866

across zones. Here we considered the changes in firing rates between each pair of 867

connected zones across all p ≤ 300 networks that had trials visiting both zones, denoted 868

by ∆Fij ∈ Rp×18 from zone i to zone j, and used these changes to compute 869

Wij = ∆FijU where Wij is a p by 3 matrix. The median of each column of Wij 870

indicates the modulation of the associated control ensemble driven by the transition in 871

CBGT activity from zone i to zone j. Finally, we projected Wij to the DDM parameter 872

space via Pij = WijV
T where the v loadings comprise the columns of V , yielding a p by 873

4 matrix. The median of each column of Pij reflects the overall change in the 874

corresponding static DDM parameter from zone i to zone j, as shown in Fig 8. 875

Supporting information 876

S1 Table. CLAW state details. The table in Fig 3 includes the details of the 877

left-related and neutral states in the upper half of the CLAW, while this table provides 878

the information for all CLAW states, with each pair of left- and right-related states 879

showing symmetry up to the swap of certain L and R channel binary values. 880
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