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Abstract

Quantifying differences or similarities in connectomes has been a challenge due to the

immense complexity of global brain networks. Here we introduce a noninvasive method

that uses diffusion MRI to characterize whole-brain white matter architecture as a single

local connectome fingerprint that allows for a direct comparison between structural connec-

tomes. In four independently acquired data sets with repeated scans (total N = 213), we

show that the local connectome fingerprint is highly specific to an individual, allowing for an

accurate self-versus-others classification that achieved 100% accuracy across 17,398

identification tests. The estimated classification error was approximately one thousand

times smaller than fingerprints derived from diffusivity-based measures or region-to-region

connectivity patterns for repeat scans acquired within 3 months. The local connectome fin-

gerprint also revealed neuroplasticity within an individual reflected as a decreasing trend in

self-similarity across time, whereas this change was not observed in the diffusivity mea-

sures. Moreover, the local connectome fingerprint can be used as a phenotypic marker,

revealing 12.51% similarity between monozygotic twins, 5.14% between dizygotic twins,

and 4.51% between none-twin siblings, relative to differences between unrelated subjects.

This novel approach opens a new door for probing the influence of pathological, genetic,

social, or environmental factors on the unique configuration of the human connectome.
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Author Summary

The local organization of white matter architecture is highly unique to individuals, making
it a tangible metric of connectomic differences. The variability in local white matter archi-
tecture is found to be partially determined by genetic factors, but largely plastic across
time. This approach opens a new door for probing the influence of pathological, genetic,
social, or environmental factors on the unique configuration of the human connectome.

This is a PLOS Computational BiologyMethods paper.

Introduction

The specific brain characteristics that define an individual are encoded by the unique pattern
of connections between the billions of neurons in the brain [1]. This complex wiring system,
termed the connectome [2, 3], reflects the specific architecture of region-to-region connectivity
[4] that supports nearly all complex brain functions. Yet to date, quantifying the difference
between connectomes of two or more individuals remains a major challenge, as it requires a
reliable characterization of white matter architecture that is also sensitive to microscopic
variability.

To this end, studies have used diffusion MRI (dMRI) to measure the architecture of white
matter pathways using the diffusion properties of water molecules[5, 6]. This allows for the
mapping of white matter trajectories in the human brain and defining the graph structure of
region-to-region connectivity [7, 8]; however, while the reliability of diffusion MRI scans
has improved substantially by new acquisition approaches [9, 10], the efficiency and accu-
racy of tractography approaches have recently come into question [11, 12]. Thus, instead of
mapping region-to-region connectivity, the concept of the local connectome was proposed
as an alternative measure to overcome the limitations of diffusion MRI fiber tracking [11–
13]. The local connectome is defined as the degree of connectivity between adjacent voxels
within a white matter fascicle measured by the density of the diffusing water. A collection of
these density measurements provides a high dimensional feature vector that can describe
the unique configuration of the structural connectome within an individual, providing a
novel approach for comparing differences and similarities between individuals as pairwise
distances.

In this study, we used this local connectome feature vector as a fingerprint to quantify
similarities and difference between two white matter architectures. To evaluate the perfor-
mance of our approach, we used four independently collected dMRI datasets (n = 11, 25, 60,
118, see Methods) with repeat scans at different time intervals (ranging from the same day
to a year) to examine whether local connectome fingerprints can reliably distinguish the dif-
ference between within-subject and between-subject scans. We then examined whether the
local connectome fingerprint is a unique identifier of an individual person by testing
whether the fingerprint could determine if two samples came from the same person or dif-
ferent individuals. This uniqueness was compared with fingerprints derived from fractional
anisotropy (FA)[14], diffusivities, and conventional region-to-region connectivity methods.
Follow-up analysis revealed how local connectome fingerprints can quantify the similarity
between genetically related individuals as well as measure longitudinal changes within an
individual.
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Results

Characterization of white matter architecture

We first illustrate how the local connectome fingerprint uses the density of diffusing spins to
characterize white matter architecture within an individual. Fig 1A shows the spin distribution
functions (SDFs) [15] estimated from dMRI scans at the mid-sagittal section of the corpus cal-
losum. SDF measures the density of water diffusing at any orientation within a voxel and the
SDF magnitude at the fiber directions can quantify the connectivity of local connectome (see
Methods). An example of the local connectome quantified at the corpus callosum is illustrated
for three subjects in Fig 1B. Here the anterior and posterior portion of corpus callosum exhibit
substantial diversity between these three subjects. A repeat scan several months later reveals a
qualitative within-subject consistency. This high individuality appears to be specific to diffu-
sion density estimates. Conventional FA measures calculated from diffusivity do not yield this
qualitative between-subjectdiversity (Fig 1C).

To sample the local density measurements across all major white matter pathways, dMRI
data was reconstructed into a standard space, and the fiber directions of a common atlas were
used to sample an SDF value for each fiber direction (see Methods and Fig 2A). This approach
yielded, for each dMRI scan, a local connectome fingerprint consisting of a high-dimensional
feature vector with a total of 513,316 density estimates (Fig 2B). Fig 2C shows the fingerprints
of the same three subjects in Fig 1B and the fingerprints from their repeat scans. Consistent
with the qualitative measurements in Fig 1B, each local connectome fingerprint in Fig 2C
shows, at a coarse level, a highly similar pattern for within-subject scans and also high variabil-
ity across subjects, suggesting that the local connectome fingerprint may exhibit the unique fea-
tures of the white matter architecture.

Between-subject versus within-subject difference

To quantify how well the local connectome fingerprint captures between-subjectdifference, we
used four independently collected dMRI datasets (n = 11, 24, 60, 118) with repeat scans for a

Fig 1. The uniqueness of local connectome structure revealed by the density of diffusing water. (A) The spin distribution function

(SDF) calculated from diffusion MRI quantifies the density of diffusing water along axonal fiber bundles. The magnitudes of the SDF at axonal

directions provide density-based measurements to characterize axonal fiber bundles. (B) The density measurements obtained from the

SDFs show individuality between-subjects #1, #2, and #3 (intensity scaled between [0 0.8]). The density of diffusing water varies substantially

across different portions of the corpus callosum. The repeat measurements after 238 (subject #1), 191 (subject #2), and 198 (subject #3)

days present a consistent pattern that captures individual variability. (C) In contrast to the SDF shown in (B), the fractional anisotropy derived

from diffusivity shows no obvious individuality between the same subjects #1, #2, and #3 (intensity also scaled between [0 0.8]). This is due to

the fact that diffusivity, which quantifies how fast water diffuses, does not vary a lot in normal axonal bundles.

doi:10.1371/journal.pcbi.1005203.g001
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subset of the subjects (n = 11×3, 24×2, 14×2, 44×2, respectively). The Euclidian difference (i.e.,
root-mean-squared error) was used as a single difference estimate between any two finger-
prints. For each dataset, we computed within-subject differences (n = 33, 24, 14, 44, respec-
tively) and between-subjectdifferences (n = 495, 1104, 2687, 12997, respectively). Fig 3 shows
the within-subject and between-subjectdifferences of the four datasets. All four datasets show
a clear separation between the within-subject and between-subjectdifference distributions,
with no single within-subject pair as large as any of the between-subjectpairs. We used d-
prime [16] to quantify the separation of between-subject and within-subject differences. The
results showed d-prime values of 14.84, 12.80, 7.21, and 8.12, for dataset I, II, III, and IV
respectively, suggesting a very high degree of separation between the two distributions.

In order to understand what regions of the local connectome may be driving this within-
subject uniqueness, we looked at the spatial distribution of both between-subject and within-
subject differences (Fig 4). The absolute difference was averaged for each fingerprint entry to
map its spatial distribution. Each voxel can have multiple local connectome fingerprint mea-
surements. For visualization purposes we only calculated the difference of the first resolved
fiber (defined by the atlas). The first row of Fig 4 shows between-subjectdifferences for datasets
I, II, III, and IV. The largest between-subjectdifferences are found in core white matter struc-
tures such as the corpus callosum and central semiovale. The corpus callosum is known to

Fig 2. Local connectome fingerprinting. (A) Local connectome fingerprinting is conducted by first reconstructing diffusion MRI data into a

standard space to calculate the spin distribution functions (SDFs). A common fiber direction atlas is then used to sample the density of

diffusing water along the fiber directions in the cerebral white matter. The sampled measurements are compiled in a left-posterior-superior

order to form a sequence of characteristic values as the local connectome fingerprint. (B) One local connectome fingerprint is shown in

different zoom-in resolutions. A local connectome fingerprint has a total of 513,316 entries of scalar values. (C) The local connectome

fingerprint of subject #1, #2, and #3 and their repeat measurements (lower row) after 238, 191, and 198 days, respectively. At a coarse

level, the local connectome fingerprint differs substantially between three subjects, whereas those from the repeat scans show a

remarkably identical pattern, indicating the uniqueness and reproducibility of the local connectome fingerprint.

doi:10.1371/journal.pcbi.1005203.g002

Local Connectome Fingerprints

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005203 November 15, 2016 4 / 17



have commissural fibers connecting the cortical hemisphere, whereas the central semiovale has
association pathways connecting frontal, parietal, and occipital regions as well as projection
pathways connecting cerebral cortex and brainstem. The large differences found in these two

Fig 3. Within versus between-subject differences in the local connectome fingerprints. (A) The first row shows the matrix of pair-wise distances

between any two local connectome fingerprints for datasets I, II, III, and IV (column 1, 2, 3, and 4, respectively). The second row shows the location of the

within-subject (blue) and between-subject differences (red). (B) The histograms of within-subject (blue) and between-subject (red) differences in the

connectome fingerprints calculated from datasets I, II, III, and IV (column 1, 2, 3, and 4, respectively). The first row shows the histograms, and the second

row shows the box plot of their quartiles. In these four datasets, within-subject (blue) and between-subject (red) differences have perfect separation. In

the last row, the histograms are fitted with generalized extreme value distribution (also shown by solid curves in the second row) to estimate the

classification error of the connectome fingerprint. The estimated classification error was 4.25×10−6, 9.97×10−7, 5.3×10−3, and 5.5×10−3 for dataset I, II, III,

and IV, respectively. The larger error in dataset III and IV could be due to their longer scanning interval (6 months and one year).

doi:10.1371/journal.pcbi.1005203.g003
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regions suggest that the between-subjectdifferences could be driven by a variety of different
brain connections. The second row of Fig 4 shows within-subject differences for datasets I, II,
III, and IV. Dataset I was acquired with the shortest time interval between repeat scans (less
than 16 days), whereas dataset II (1~3 months), dataset III (6 months) and dataset IV (a year)
were acquired with longer time intervals. As shown in Fig 4, the within-subject differences are
substantially lower than the between-subjectdifferences, suggesting high uniqueness of the
local connectome fingerprint to an individual. Substantial increase of within-subject differ-
ences could be observed in the corpus callosum at datasets with a longer time interval, suggest-
ing the possibility of neuroplasticity over time.

This within-subject consistency suggests that the local connectome fingerprint could be
used as a unique subject identifier. To assess this, we used a linear discriminant analysis
(LDA) classifier [17] to determine whether two fingerprints were from the same individual
using only the Euclidian distance between fingerprints as a single classification feature. For
each dataset, the classification error was estimated using leave-one-out cross-validation. We
did not observe a single misclassification out of the 17,398 cross-validation rounds from four
datasets (17,283 different-subject and 115 same-subject pairings). To approximate the classi-
fication error, we modeled the distributions of within-subject and between-subject differ-
ences by the generalized extreme value distribution [18], a continuous probabilistic function
often used to assess the probability of extreme values (smallest or largest) appearing in inde-
pendent identically distributed random samples (last row of Fig 3B). The classification error
was quantified by the probability of a within-subject difference greater than a between-sub-
ject difference. Our analysis showed that the classification error was 4.25×10−6 for dataset I,
9.97×10−7 for dataset II, 5.3×10−3 for dataset III, and 5.5×10−3 for dataset IV. The larger
error in dataset III and IV could be due to their longer scan interval (6 months and one year).
For repeat scans acquired within 3 months, the probability of mistaking two samples of the
same subject’s local connectome fingerprint as coming from two different individuals was
low enough to consider the local connectome fingerprint a highly reliable measure of individ-
ual subject uniqueness.

Fig 4. The spatial mapping of between-subject (first row) and within-subject (second row). Dataset I was acquired within 16

days, whereas dataset II (1~3 months), dataset III (6 months) and dataset IV (a year) were acquired at longer time intervals. High

between-subject differences can be observed in white matter tissue, especially the corpus callosum and central semiovale. The

within-subject differences are much smaller, and repeat scans with longer time intervals show higher within-subject differences.

doi:10.1371/journal.pcbi.1005203.g004
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Corpus callosum fingerprint

Since gross anatomical patterns such as gyral and sulcal folding can be highly specific to an
individual, it is possible that the unique features we observed in the local connectome finger-
print reflected an artifact of the spatial normalization process. To evaluate this, we retested our
uniqueness within a restrictedwhite matter mask that only covered the median sagittal sections
of the corpus callosum defined by the Johns Hopkins University white matter atlas [19]. This
“corpus callosum fingerprint” should be free from all possible contributions of anatomical
geometry such as gyral and sulcal folding. We applied the same analysis procedures to the cor-
pus callosum fingerprint to examine whether it can reveal unique patterns specific to individu-
als within this area. The result showed d-prime values of 5.97, 5.85, 3.78, and 4.08, for dataset I,
II, III, and IV, respectively. The leave-one-out cross-validation analysis showed that classifica-
tion error was 0%, 0.089%, 1.26%, and 0.63%, for dataset I, II, III, and IV, respectively. The clas-
sification error modeled by the generalized extreme value distribution was 9.13×10−4,
5.6×10−3, 6.9×10−3, and 7.2×10−3, for dataset I, II, III, and IV, respectively. The corpus callo-
sum fingerprint itself already achieved more than 99% accuracy in subject identification. This
suggests that the high individuality of the local connectome fingerprint is due to the micro-
scopic characteristics of the white matter architecture.

Comparison with diffusivity-based fingerprints

Diffusivity-basedmetrics, such as FA, axial diffusivity (AD), and radial diffusivity (RD), also
reveal microscopic structure of white matter systems. To compare these measures against SDF,
we used the same analysis and replaced the SDF-based measures with FA, AD, and RD values
of the corresponding voxels. Our analysis showed that the d-prime values of the FA-based fin-
gerprint were 4.84, 4.70, 4.56, and 3.60, for dataset I, II, III, and IV, respectively. All values were
substantially smaller than the local connectome fingerprint. The leave-one-out cross-validation
analysis showed that classification error of the FA-based fingerprint was 0%, 0.18%, 0.22%, and
0.87%. While FA-based fingerprints also have high uniqueness with classification error less
than 1%, the performance is not superior to the 0% leave-one-out cross-validation error
achieved by the local connectome fingerprint

We also analyzed the performance of AD-based fingerprints, producing d-prime values of
4.20, 4.07, 4.33, and 3.68, for datasets I, II, III, and IV, respectively. The performance was simi-
lar to FA-based fingerprints and substantially lower than those of the local connectome finger-
print. The leave-one-out cross-validation analysis showed a classification error of 0.15% in
dataset IV. While no misclassificationwas found in dataset I, II, III, the generalized extreme
value distribution showed a classification error of 0.18%, 0.29%, and 0.18%, respectively. The
AD-based fingerprint was also inferior to the local connectome fingerprint.

The analysis on RD showed a slightly different result. The d-prime values for RD were 7.87,
9.10, 8.79, and 5.80, which were substantially better than FA-based and AD-based fingerprints.
Compared with the local connectome fingerprint, it is noteworthy that the local connectome
fingerprint substantially outperformed RD for repeat scans within 3 months (14.84 and 12.80
versus 7.87 and 9.10), but not for repeat scans with a longer time interval (7.21, and 8.12 versus
8.79, and 5.80). The classification error also showed a similar pattern. In dataset I, which had
the shortest time interval (less than 16 days), the classification errors were 4.25×10−6 for the
local connectome fingerprint and 0.28% for the RD-based fingerprint. By contrast, in dataset
IV, which had the longest time interval (around a year), the classification errors were 5.5×10−3

for the local connectome fingerprint and 3.1×10−3 for the RD-based fingerprint. The unique-
ness of the local connectome fingerprint dropped substantially over time. The possible causes
may include biological causes, such as neuroplasticity, or more systematic error, such as any
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change in data acquisition due to software updates or scanner resonance changes. This issue
was further investigated in the “Neuroplasticity revealed by the local connectome fingerprint”
section below. To summarize, compared with diffusivity-based fingerprints, the local connec-
tome fingerprints exhibited the greatest reliability for repeat scans acquired within 3 months.

Comparison with global connectivity-based fingerprints

We further compared the local connectome fingerprint with region-to-region connectivity esti-
mates from diffusionMRI fiber tracking. The same analysis pipeline used for the local connec-
tome fingerprint was used to calculate leave-one-out cross-validation error for the traditional
connectivitymatrix. The d-prime values for the region-to-region connectivitymatrices in data-
set I, II, III, and IV were at 3.44, 2.06, 2.41, and 2.25, respectively. The classification error for
datasets I, II, III, and IV were 3.6%, 13.65%, 11.81%, and 9.48%, respectively (estimated by
leave-one-out cross validation). While the classification accuracy for the traditional connectiv-
ity matrices is still quite high and similar to what has previously been observed in resting state
functional connectivity estimates [20], it is clear from these results that the greatest reliability
at characterizing connectomic uniqueness comes from local connectome measures.

Neuroplasticity revealed by the local connectome fingerprint

Our analysis of within-subject differences hinted at the possibility of changes in the local con-
nectome over time, and thus we further examined how time impacts the uniqueness of local
connectome fingerprints. If the local connectome fingerprint is sensitive to neuroplasticity, a
longer interval should result in decreased similarity between repeat scans of the same individ-
ual. To test this, we calculated the similarity of within- subject local connectome fingerprints as
a percentage of the mean between-subjectdifference (see Methods). A similarity of 100% indi-
cates that two fingerprints are identical, whereas a similarity of 0% indicates the magnitude of
the differences between two fingerprints is the same as those between unrelated subjects.

For this analysis, we calculated the similarity between repeat scans in dataset II (n = 24),
which was acquired with the widest range of time interval between repeat scans (1~3 months).
Fig 5A shows the scatter plot of the similarity against the time. A nonparametric, rank-based
test (the Mann-Kendall test) showed a significant decreasing trend in the similarity over time
(p = 0.0023). To further quantify the change of similarity in the local connectome fingerprint,
we used linear regression to calculate the coefficient (slope) between the time interval and simi-
larity. The results showed that the similarity dropped at a rate of 12.79% per 100 days. It is
noteworthy that the identical analysis was applied to FA-based, AD-based, and RD-based fin-
gerprints but none showed a significant trend (p = 0.3092, 0.4130, and 0.0702, respectively).

To further illustrate how the local connectome fingerprint revealed neuroplasticity within
individuals, we selected one subject in dataset IV that exhibited the greatest difference across
time and visualized the spatial mapping of the local connectome fingerprints between repeat
scans. This spatial mapping is shown in Fig 5B, whereas the FA map calculated from the same
data are shown in Fig 5C. The upper row shows the midsagittal view at the corpus callosum,
whereas the lower row shows an axial view at the splenium and genu of the corpus callosum.
Each voxel may have multiple local connectome fingerprint measurements (e.g. at the crossing
fiber region), and for visualization purposes, only the one associated with the first resolved
fiber (defined by the atlas) was calculated. All images are scaled by their maximum values to
provide a fair comparison. Fig 5B shows substantial differences in several core white matter
bundles between the repeat scan (annotated), whereas Fig 5C shows no obvious difference.
Since artifacts such as signal drift, coil degradation, and motion affect large regions of tissue
spanning several centimeters, the fact that the differences in the local connectome fingerprint

Local Connectome Fingerprints
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were observed in specific white matter bundles suggests that the finding is unlikely due to an
artifact.

Similarity among genetically-related individuals

The local connectome fingerprint opens the possibility for comparing not only differences but
also the similarities between individuals. To further illustrate how the local connectome finger-
print can be used to quantify white matter architecture as a phenotypic marker, we used a pub-
licly available dMRI dataset of 486 subjects from Human ConnectomeProject (2014, Q3
release), including 49 pairs of monozygotic (MZ) twins, 43 pairs of dizygotic twins (DZ) twins,
and 96 pairs of non-twin siblings. While the local connectome fingerprints of MZ twins show
generally similar patterns at the coarse level (Fig 6), there are also substantial individual differ-
ences between the twins that can be observed along the fingerprints. Consistent with these
qualitative comparisons, we found that MZ twins have smaller differences between

Fig 5. Neuroplasticity revealed by the local connectome fingerprint. (A) A scatter plot showing a decreasing

trend in similarity against time in dataset II. (B) The local connectome fingerprint from one subject in dataset IV shows

substantial differences between repeat scans. The changes include both increased and decreased connectivity at

different locations, leading to a drop in the self-similarity. The fact that these changes are located at specific white

matter bundles suggests that they are unlikely due to an image artifact. (C) The FA map calculated from the same data

shows no obvious difference between repeat scans. There is no visible trait of signal drift, motion artifact or coil

degradation, confirming the quality of the image acquisition.

doi:10.1371/journal.pcbi.1005203.g005

Fig 6. The local connectome fingerprints of monozygotic (MZ) twins, dizygotic (DZ) twins, and non-

twin siblings. Three pairs of connectome fingerprints are shown for each group, Pairs are annotated by a

connecting line. The connectome fingerprints between MZ twins show the grossly similar patterns though

some between-subject difference can still be observed. DZ twins and siblings also have a similar pattern, but

the between-subject difference becomes more prominent.

doi:10.1371/journal.pcbi.1005203.g006
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fingerprints, followed by DZ twins, siblings, and unrelated subjects (Fig 7A). It is noteworthy
that all difference distributions have large overlapping regions (Fig 7B), indicating that the dif-
ference between twins or siblings may often fall within the distribution of differences from
genetically-unrelated subjects.We further compared the similarity between twins and siblings.
On average, MZ twins have a similarity index of 12.51±1.09%, whereas similarity for DZ twins
and siblings is 5.14±1.34% and 4.47±0.59%, respectively (Fig 7C). The difference in similarity
index was significant across MZ twins, DZ twins, non-twin siblings, and other genetically-
unrelated subjects (Kruskal-Wallis test, χ2[3,22895] = 165.43, p< 0.0001). Post-hoc compari-
sons using Scheffé's S procedure showed (1) significantly higher similarity in MZ twins com-
pared with all other groups (all p< 0.001), (2) significantly higher similarity in DZ twins
compared with unrelated subjects (p = 0.001), and (3) significantly higher similarity in non-
twin siblings compared with unrelated subjects (p = 0.0146). There was no significant differ-
ence betweenDZ twins and non-twin siblings (p = 0.9989).

To address the concern of data dependency, we conducted additional permutation tests to
examine the difference in similarity across twins and unrelated subjects. A total of 10,000 per-
mutations were calculated, and all χ2 statistics calculated from the Kruskal-Wallis test were
smaller than the nonpermuted case (p< 0.0001). Thus the difference across groups was highly
significant. Further permutation tests between pairs of subject groups were also conducted.
The results showed (1) significantly higher similarity in MZ twins compared with DZ twins
(p< 0.0001), non-twin siblings (p< 0.0001), and unrelated subjects (p< 0.0001), (2) signifi-
cantly higher similarity in DZ twins compared with unrelated subjects (p< 0.0001), and (3)
significantly higher similarity in non-twin siblings compared with unrelated subjects
(p< 0.0001). There was no significant difference betweenDZ twins and non-twin siblings
(p = 0.2697).

Fig 7. The differences and similarities between twins and siblings. (A) The histograms show the distribution of

the root-mean-square-error (r.m.s.e) between MZ twins, DZ twins, non-twin siblings, and genetically unrelated subjects

calculated from their local connectome fingerprints. On average, MZ twins have the lowest difference between each

twin pair, followed by DZ twins and siblings. (B) The upper figure shows the differences fitted with generalized extreme

value distribution. The lower figure shows the box plot of the distribution to facilitate comparison. The four distributions

are mostly overlapping, indicating that twins and siblings still have high individuality similar to genetically-unrelated

subjects. (C) The similarity between MZ twins is significantly higher than that between DZ twins or non-twin siblings,

whereas the similarity between DZ twins is not statistically different from the similarity between non-twin siblings.

doi:10.1371/journal.pcbi.1005203.g007
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This result is consistent with MZ twin sharing a higher genetic similarity, whereas DZ twins
exhibit a similar genetic similarity on par with non-twin siblings.

Discussion

Local white matter architecture is so unique and highly conservedwithin an individual that it
can be considered a unique neural phenotype. Here we show that this phenotype can be quanti-
fied by measuring the density of microscopic water diffusion along major white matter fascicles
and producing a high dimensional vector that can be used to compute the distance between
two structural connectomes, i.e., a local connectome fingerprint. The distance between two
local connectome fingerprints reflects a low dimensional representation of both similarities
and differences in whole-brain white matter pathways. Our analysis showed how the local con-
nectome fingerprint exhibited unprecedentedly high between-subjectdistance, while generally
low within-subject distances, allowing for it to be used as a reliable measure of the specific con-
nective architecture of individual brains. This property paves the way for using the local con-
nectome as a phenotypic marker of the structural connectome.

The concept of local connectome is both conceptually and methodologicallydifferent from
conventional connectomicmeasures. While most studies have emphasized on region-to-region
connectivity [3] and ignored the rich information in the local white matter architecture, the
local connectome reveals the connectivity at the voxel level and characterizes local white matter
architecture to provide high dimensional data that may complement the region-to-region con-
nectivity [13]. This local connectome mindset considers the fact that the difference between
brain structures may be localized and thus may not be readily identified in the global connec-
tomic pattern. We have previously shown that the local connectome can be used to localize the
change of white matter structure due to physiological difference such as body mass index [13].

While any high dimensional representation of the human brain in a standard space has the
potential to be used as fingerprint, we showed that the uniqueness of fingerprints generated
from the local connectome was substantially higher than what was observed in diffusivity-
based fingerprints as well as fingerprints derived from region-to-region connectivity reported
by either dMRI or fMRI, as typically done in human connectomic studies [2, 20, 21]. For exam-
ple, the region-to-region structural connectivity achieved a classification accuracy around
90~97%. This is very close to the accuracy of its functional counterpart [20], that was recently
reported to have an accuracy of 92–94% in whole brain identification and 98–99% in fronto-
parietal network. Although both region-to-region connectivity approaches have accuracy
greater than 90%, the performance remains substantially lower than the perfect classification
in 17,398 leave-one-out rounds and an estimated error of 10−6 achieved by local connectome
fingerprint.

At first glance, it may seem possible that the high degree of uniqueness exhibited by the
local connectome fingerprint could be due to variability in the spatial normalization process
between individuals driven by the unique gyral or sulcal folding patterns in gray matter. While
we still cannot rule out the effect of misalignment, our comparison with the FA-based finger-
prints showed that the spatial normalization process does not fully contribute to the unique-
ness observed in the local connectome fingerprint. Both FA-based fingerprints and the local
connectome fingerprints used an identical spatial normalization mapping process, but the FA-
based fingerprints had a much higher error rate in leave-one-out cross-validation (e.g. 0.87%
for dataset IV) than the zero cross-validation error achieved by the local connectome finger-
print. Obviously, a substantial portion of the uniqueness was due to the microstructuralwhite
matter characteristics quantified in the SDF. Moreover, we observed favorable characterization
of white matter uniqueness even when our analysis was restricted to a small portion of white
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matter with minimal influence of sulcal and gyral folding (i.e., the mid corpus callosum). These
two findings support our claim that the local connectome fingerprint can reveal the unique
characteristics of the white matter architecture. Finally, the between-subjectdifferences are
mostly located within the deep white matter at the central semiovale and the corpus callosum.
This spatial specificity suggests that the uniqueness of the local connectome fingerprint is
mostly driven by mesoscopic or microscopic architectural properties, not due to an artifact of
unique folding geometry or the spatial normalization process.

It is important to point out that the local connectome fingerprint is based on a physical
measurement that is different from diffusivity-basedmetrics such as FA, AD, and RD. To fur-
ther compare their physical meanings, diffusivity quantifies how fast water diffuses in tissue
[22] and is sensitive to the structural integrity of the underlying fiber bundles [14], such as axo-
nal loss and demyelination [23–26]. This may explain why the FA map appears similar across
the normal population in which the axons have normal structure. By contrast, SDF quantifies
how much water diffuses along the fiber pathways [15, 27] and is sensitive to density character-
istics of white matter such as the compactness of the fiber bundles [15, 28, 29]. As illustrated in
our qualitative analysis (Fig 1C), while the density characteristics vary substantially among
normal populations, the FA measurements do not show obvious differences between subjects.
This highlights how the local connectome fingerprint achieved a higher uniqueness profile
than diffusivity-basedmetrics when they were used to characterize microstructuralwhite mat-
ter patterns that reflect individuality. The results led us to hypothesize that the local connec-
tome fingerprints may be more sensitive to axonal density or different levels of myelination
that are unique to individuals. Future histology studies are needed to confirm this hypothesis.

The high degree of uniqueness in the local connectome within an individual can be used to
reflect a quantifiable phenotype of neural organization. As illustrated in our analysis of twins,
the similarity in monozygotic twins was around twice as much of the dizygotic twins, whereas
our post-hoc analysis did not find significant similarity difference between dizygotic twins and
non-twins siblings. These results are highly suggestive that genetics contribute a substantial
portion to the overall construction of the local connectome, which is consistent with previous
studies showing high heritability in cortical connections [30, 31] and white matter integrity
[32–35]. Nevertheless, our results also showed that the monozygotic twins shared only 12.51%
similarity in local white matter architecture. This indicates that a high heritability may not nec-
essarily imply that most of the differences or similarity observed in phenotypes are due to
genetic factors [36]. A considerable portion of the individuality in local connectome is likely
driven by environmental factors such as life experience and learning. Thus monozygotic twins
still exhibited high individuality in their connectome. In fact, our findings showed that the
local connectome fingerprint is highly plastic over time, presented by a significant decreasing
trend in the self-similarity caused by either an increase or decrease in the local connectome fin-
gerprint measurements. This decreasing trend in the self-similarity raises many questions
about which factors (genomic, social, environmental, or pathological) sculpt the local white
matter systems. Of course, white matter integrity also varies with normative development [37–
39], a portion of which may be determined genetically. This warrants more longitudinal and
genetic analysis to identify specific contributions of genetic and environmental factors on the
uniqueness of connectomic structure, with an aim to understand how those factors interact
with abnormal brain circuits in neurological and psychiatric disorders.

It is important to point out that the highest similarity between repeat scans was around
70~80% in our study. This indicates that 20–30% of variability in the local connectome may
arise from artifacts that decrease signal-to-noise ratio, such as cardiovascular and respiratory
artifacts or computation error. This number reflects the limit of the local connectome finger-
print in detecting an anomaly in the individuals as well as finding differences in a group study.
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For example, we could not accurately identify whether two scans were from a twin pair because
the similarity between twins was only around 12.51%. However, if a disease causes a white mat-
ter change with more than 30% difference in similarity, the local connectome fingerprint may
be able to detect it. In a group study, increasing the number of subjects can average out the
effect of noise and error on the similarity, allowing us to find a group difference that is substan-
tially small. The similarity index from repeat scans allows us to gauge the strength and limita-
tion of the local connectome fingerprint and prospectively, to develop a strategy to improve its
performance.

Methods

Five independently collected dMRI datasets

The first dataset included a total of 11 subjects (9 males and 2 females, age 20~42). Each subject
had three diffusionMRI scans within 16 days on a Siemens Trio 3T system at the University of
California, Santa Barbara. All methods were approved by the local institutional review board at
the University of California, Santa Barbara. The diffusionMRI was acquired using a twice-refo-
cused spin-echo EPI sequence. A 257-direction full-sphere grid sampling scheme was used.
The maximum b-value was 5000 s/mm2. TR = 9916 ms, TE = 157 ms, voxel size = 2.4×2.4×2.4
mm, FoV = 231×231 mm.

The second set of data included a total of 24 subjects (8 males and 16 females, age 22 ~ 74).
All participants were scanned on a Siemens Tim Trio 3T system at National Taiwan University,
and all subjects had their second scan at 1~3 months. All methods were approved by the local
institutional review board at National Taiwan University. The diffusionMRI was also acquired
using a twice-refocusedspin-echo EPI sequence. The diffusion scheme is a 101-direction half-
sphere grid sampling scheme with b-max = 4000 s/mm2 (b-table available at http://dsi-studio.
labsolver.org). TR = 9600 ms, TE = 130 ms, voxel size = 2.5×2.5×2.5 mm.

The third set of data included a total of 60 subjects (30 males and 30 females, age 18 ~ 46).
All participants were scanned on a Siemens Verio 3T system at CarnegieMellon University,
and 14 of the 60 subjects had their second scan at 6 months. All methods were approved by the
local institutional review board at CarnegieMellon University. The diffusionMRI was also
acquired using a twice-refocusedspin-echo EPI sequence. A 257-direction full-sphere grid
sampling scheme was used. The maximum b-value was 5000 s/mm2. TR = 9916 ms, TE = 157
ms, voxel size = 2.4×2.4×2.4 mm, FoV = 231×231 mm.

The fourth set of diffusion data included a total of 118 subjects (91 males and 27 females,
age 22 ~ 55) that were also scanned on a Siemens Verio 3T system at the CarnegieMellon Uni-
versity. All methods were approved by the local institutional review board at the University of
Pittsburgh and CarnegieMellon University. 44 of them had another scan after one year. The
diffusion images were acquired on a Siemens Verio scanner using a 2D EPI diffusion sequence.
TE = 96 ms, and TR = 11100 ms. A total of 50 diffusion sampling directions were acquired.
The b-value was 2000 s/mm2. The in-plane resolution was 2.4 mm. The slice thickness was 2.4
mm.

The fifth dataset was from the Human ConnectomeProjects (Q3, 2014) acquired by Wash-
ington University in Saint Louis and University of Minnesota. The diffusionMRI data were
acquired on a Siemens 3T Skyra scanner using a 2D spin-echo single-shot multiband EPI
sequence with a multi-band factor of 3 and monopolar gradient pulse. A total of 486 subjects
(195 males and 291 females, age 22 ~ 36) received diffusion scans. The spatial resolution was
1.25 mm isotropic. TR = 5500 ms, TE = 89.50 ms. The b-values were 1000, 2000, and 3000 s/
mm2. The total number of diffusion sampling directions was 90, 90, and 90 for each of the
shells in addition to 6 b0 images. The total scanning time was approximately 55 minutes. The
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scan data included 49 pairs of monozygotic twin, 43 pairs of dizygotic twins, and 96 pairs of
siblings. We used the pre-processed data provided by the consortium in our analysis. Carnegie
Mellon University Institutional ReviewBoard (IRB) reviewed the research protocol for the
data analysis in accordance with 45 CFR 46 and CMU’s Federal-wideAssurance. The research
protocol has been given approval as Exempt by the IRB on March 12, 2014, in accordance with
45 CFR 46.101(b)(4) (IRB Protocol Number: HS14-139).

Local connectome fingerprinting

All five datasets were processed using an identical processing pipeline implemented in DSI Stu-
dio (http://dsi-studio.labslover.org), an open-source diffusionMRI analysis tool for connec-
tome analysis. The source code is publicly available on the same website. As shown in Fig 2A,
the diffusionMRI data of each subject were reconstructed in a common stereotaxic space using
q-space diffeomorphic reconstruction (QSDR)[40], a white matter based nonlinear registration
approach that directly reconstructed diffusion information in a standard space:

cðûÞ ¼ jJφðrÞjZ0

X

i

WiðφðrÞÞsinc s
ffiffiffiffiffiffiffiffiffiffi
6Dbi
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< ĝi;
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kJφðrÞûk

>

 !

ð1Þ

cðûÞ is a spin distribution function (SDF)[15] in the standard space, defined as the density
of diffusing spins that have displacement oriented at direction û. φ is a function that maps a
coordinate r from the standard space to the subject’s space, whereas Jφ is the Jacobian matrix of
φ, and |Jφ| is the Jacobian determinant. Wi is the diffusion signals acquired by a b-value of bi
with diffusion sensitization gradient oriented at ĝi. σ is the diffusion sampling ratio controlling
the displacement range of the diffusing spins sampled by the SDFs. Lower values allow for
quantifying more from restricted diffusion.D is the diffusivity of free water diffusion, and Z0 is
the constant estimated by the diffusion signals of free water diffusion in the brain ventricle
[40]. A σ of 1.25 was used to calculate the SDFs, and 1 mm resolution was assigned to the out-
put resolution of the QSDR reconstruction.

A common axonal directions atlas, derived from the Human ConnectomeProject (HCP)
dataset (this HCP-488 atlas is freely available at http://dsi-studio.labsolver.org), was used as a
common SDF sampling framework to provide a consistent set of sampling directions û to sam-
ple the magnitude of SDFs along axonal directions in the cerebral white matter. Gray matter
was excluded using the ICBM-152 white matter mask (MacConnel Brain Imaging Centre,
McGill University, Canada). The cerebellum was also excluded due to different slice coverage
in cerebellum across subjects. Since each voxel in the cerebral white matter may have more
than one axonal direction,multiple measurements can be extracted from the SDF of the same
voxel. The density measurements were sampled by the left-posterior-superior voxel order and
compiled into a sequence of scalar values (Fig 2B). Since the density measurement has arbitrary
units, the local connectome fingerprint was scaled to make the variance equal to 1.

Estimation of classification error

For each dMRI dataset, the root-mean-squared error between any two connectome finger-
prints was calculated to obtain a matrix of paired-wise difference. The calculated difference
was used as the feature to classify whether two connectome fingerprints are from the same or
different person. The default linear discriminant analysis (LDA) classifier provided in
MATLAB (MathWorks, Natick, MA) was used, and for each dataset, the classification error
was estimated using leave-one-out cross-validation. We also used a modeling method to calcu-
late the classification error if the leave-one-out cross-validation did not yield any classification
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error. The histograms of the within-subject and between-subjectdifferences were fitted by the
generalized extreme value distribution using the maximum likelihood estimator (gevfit) pro-
vided in MATLAB. To consider the non-negativity of the distribution, the estimated k parame-
ter of the generalized extreme value distribution was set to be greater than 0. The classification
error was estimated by the probability of a within-subject difference greater than a between-
subject difference estimated using the generalized extreme value distribution.

Comparison with traditional connectivity matrix

To compare local connectome fingerprint with region-to-region connectivitymatrix, deter-
ministic fiber tracking[28] was applied using a 100,000 uniform white matter seeding points, a
maximum turning angle of 60 degrees, and a default anisotropy threshold determined using
Otsu’s threshold [41]. The cortical regions were defined through a nonlinear registration
between the subject anisotropy map and the HCP-488 anisotropy map in DSI Studio and par-
cellated using the Automated Anatomical Labeling (AAL) atlas. The matrix entries were quan-
tified by the number of tracks ending in each of the region pairs. The root-mean-squared error
can also be calculated from any two connectivitymatrices. The classification error was also esti-
mated and compared with local connectome fingerprint.

Similarity index

The similarity index between two local connectome fingerprints was calculated by
100%×(1-d1/d0), where d1 was the difference between two fingerprints, and d0 was the expected
value of the differences between unrelated subjects scanned by the same imaging protocol. The
similarity betweenMZ twins, DZ twins, non-twin siblings, and repeated scans was calculated
and compared. The Kruskal-Wallis test was applied to four groups (MZ and DZ twins, siblings,
and unrelated subjects) with independent samples. To further study the similarity between
repeat scans, the similarity indices were tested against their scanning time intervals by the
Mann-Kendall test to study the effect of time interval on the local connectome fingerprints.
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