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Abstract

In situations featuring uncertainty about action-reward contingencies, mammals exhibit a high
degree of flexibility in adopting strategies for decision-making that are tuned in response to the
conditions that they encounter. Although the cortico-basal ganglia thalamic (CBGT) network is
implicated in information processing during decisions, it features a complex synaptic architecture,
comprised of multiple feed-forward, reciprocal, and feedback pathways, that complicate efforts to
elucidate the roles of specific CBGT populations in the process of evidence accumulation. In this
paper we apply a strategic sampling approach, based on Latin hypercube sampling, to explore
how variations in CBGT network properties, including subpopulation firing rates and synaptic
weights, map to variability of parameters in a normative drift diffusion model (DDM), representing
algorithmic aspects of information processing during decision-making. Through the application of
canonical correlation analysis, we find that this relationship can be characterized in terms of three
low-dimensional control ensembles within the CBGT network that impact specific qualities of the
emergent decision policy: responsiveness (associated with overall activity in corticothalamic and
direct pathways), pliancy (associated largely with overall activity in components of the indirect
pathway of the basal ganglia), and choice (associated with differences in direct and indirect
pathways across action channels). These analyses provide key mechanistic predictions about
the roles of specific CBGT network elements in tuning information processing dynamics during
decisions.

Author summary

Mammals are continuously subjected to uncertain situations in which they have to choose
among behavioral options. The cortico-basal ganglia-thalamic (CBGT) circuit is a complicated
collection of interconnected nuclei believed to strongly influence the ability to adapt to envi-
ronmental changes. The roles of specific CBGT components in controlling information during
decisions remains unclear. At a more phenomenological, algorithmic level, drift-diffusion models
have been shown to be able to reproduce behavioral data (action selection probabilities and
the time needed to make a decision) obtained experimentally from mammals and to provide an
abstract representation of a decision policy. In this work, we use simulated decision-making to
establish a mapping from neural activity in the CBGT circuit to behavioral outcomes. This
mapping illuminates the importance of three core sets of CBGT subnetworks in the action
selection process and how they are involved in adapting decision policies across exploitative and
exploratory situations.
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1 Introduction 1

Although making a decision can feel instantaneous, decisions in fact arise gradually from the 2

ongoing processing of external (e.g., sensory) and internal (e.g., learned contingencies) information 3

streams. In this process, the inclination toward selecting one action over others is continually 4

updated until sufficient evidence is reached to allow one action, or a set of actions, to proceed [1]. 5

The parameters associated with this process, such as the speed of integration of incoming 6

information and the level of evidence needed to make a decision, define the decision policy [2]. 7

Shortening the window of time available for evidence accumulation often, although not always, 8

leads to faster but more random or exploratory decisions. Lengthening the time for evidence 9

accumulation often leads to slower and more “greedy”, or exploitative, decisions. A fundamental 10

challenge for the brain is to manage this speed-accuracy tradeoff, and the associated exploration- 11

exploitation dilemma, via management of the evidence accumulation process, using both current 12

context and prior experience to promote effective outcomes for any given situation [3]. 13

A likely control center for information processing during decisions is the cortico-basal ganglia- 14

thalamic (CBGT) network (see Fig. 1 upper panel). The canonical CBGT circuit includes two 15

structurally and functionally dissociable control streams: the direct (facilitation) and indirect 16

(suppression) pathways [4]. Central to the canonical model is the assumption that the basal ganglia 17

are organized into multiple action channels [5–9], each containing direct and indirect pathway 18

components. While in reality actions are likely represented in a less thoroughly segregated fashion 19

across CBGT circuits [10,11], the concept of independent action channels provides conceptual 20

ease when describing the competition between possible actions without changing the key dynamic 21

properties of the underlying computations. The classical view of these pathways [4, 12, 13] is that 22

activation of the direct pathway, via cortical excitation of D1-expressing spiny projection neurons 23

(SPNs) in the striatum, unleashes GABAergic signals that can suppress activity in the CBGT 24

motor output nucleus (internal segment of the globus pallidus, GPi, in primates or substantia 25

nigra pars reticulata, SNr, in rodents) and hence relieves the thalamus from the tonic inhibition 26

that basal ganglia outputs normally provide. This release from inhibition allows the thalamus 27

to facilitate action execution. Conversely, activation of the indirect pathway, via D2-expressing 28

SPNs in the striatum, can alter firing in the external segment of the globus pallidus (GPe) and 29

the subthalamic nucleus (STN) in a way that strengthens basal ganglia inhibitory output. This 30

result suppresses activity of motor pathways and reduces the likelihood of action selection. More 31

recent experiments have revealed nuances of pathway interactions that go beyond these principles, 32

however; for example, recordings show that both indirect and direct pathway SPNs can increase 33

their activity together in the lead-up to a decision [14–16]. Overall, the topological encoding of 34

actions in the striatum [10], along with the convergence of projections to the GPi/SNr [17,18], 35

also suggests that the direct and indirect pathways may compete for control over the output 36

of the basal ganglia, encoding the “evidence” favoring any behavioral decision as the relative 37

activation of the two pathways within the corresponding action channel [19–21]. Overall, the 38

subtleties of this interaction across pathways and the details of how decision policies emerge from 39

CBGT circuits remain to be determined. 40

Over the past decade an alternative view has emerged, which posits that the primary functional 41

role of CBGT circuits is to control movement vigor [22, 23]. According to this model, rather 42

than serving as a gate to decisions, the opponent activity of direct and indirect CBGT pathways 43

controls the vigor and speed with which movements are executed. For example, optogenetic 44

stimulation of direct or indirect striatal SPNs in mice increases or decreases, respectively, the 45

speed of goal directed movements [24]. During motor learning, striatal SPNs tune their responses 46

to the required kinematics of the task, most prominently running speed [25]. In non-human 47

primates performing a reach task featuring a speed-accuracy trade-off, pallidal activity was found 48

to signify urgency and to impact the vigor with which selected movements were performed [26]. 49

Finally, human patients with pallidal lesions are able to adequately scale their voluntary grip force 50

when holding an object but lack the spontaneous force calibrations necessary for maintaining a 51

grip on objects, a phenomenon taken to reflect a lack of vigor in stabilizing movements [27]. 52

We argue that the CBGT network’s role in action selection and its role in control of movement 53

vigor can be reconciled by understanding precisely how the pathways within the CBGT control 54

information as it progresses through the network. Within the high-dimensional space of CBGT cir- 55

cuits, there exists a likely lower-dimensional mapping between the activity of specific subnetworks 56

2

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2022. ; https://doi.org/10.1101/2021.12.22.473901doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.22.473901
http://creativecommons.org/licenses/by/4.0/


Fig 1. Mapping cortico-basal ganglia-thalamic (CBGT) circuitry to behavioral
data. The CBGT network includes neurons from a variety of interconnected populations (see
Section 4.1). Blue nodes and orange nodes represent two distinct action channels, which we call
A and B; pink nodes are those populations that interact with both channels. Connection weights,
W , in the CBGT network (upper panel) modulate network firing rates, R, (central panel) that in
turn map to behavior that can be fit by a DDM (lower panel) after tuning of its parameters, P .
In the central panel, black vertical traces indicate the stimulus starting times for three
decision-making trials, while the green vertical lines mark the times when the decisions (B,B,A)
were made.

and specific properties of the evidence accumulation process. Here, we refer to these subnetworks 57

as control ensembles and the corresponding decision properties that they influence as factors. 58

Thus, synaptic plasticity, neuromodulation, and other top-down control signals that result in 59

changes in the activity of control ensembles will adjust factors and hence affect the behavioral 60

outcomes that arise when using sensory signals to guide motor decisions. In past computational 61

work, we showed how plasticity-induced changes in direct-vs-indirect pathway influence could 62
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lead to changes in two specific decision factors linked with parameters of the accumulation of 63

evidence process during decision making [28]: the rate of information accumulation (related to 64

the difference in direct pathway activity between channels) and the threshold of evidence needed 65

to initiate an action (tuned by overall indirect pathway activity, see also [29, 30]). This prior 66

study suggests that the specific synaptic configuration of CBGT pathways, which shapes the 67

firing dynamics of neurons in CBGT subpopulations, may tune certain factors of the decision 68

policy by controlling the way that information is used to guide future decision-making. 69

In this work, we move beyond this preliminary idea to develop a much more complete 70

mapping and understanding of the possible control ensembles within CBGT circuits that drive 71

specific information processing factors. To do so, we first sought to determine what possible 72

tunings of synaptic weights within CBGT pathways would result in firing rates compatible with 73

experimental observations, and hence are biologically reasonable to consider. Second, we identified 74

how the modulation of these individual weights within these ranges would impact decision-related 75

parameters, and hence could serve as building blocks of the control ensembles and overall network 76

tunings that implement various decision policies. For the latter step, we ran simulations in 77

which basal ganglia output firing rates in two competing action channels were used to determine 78

decision outcomes and response times. We fit the distributions of these simulated behavioral 79

variables with the drift diffusion model (DDM) [2, 31], a canonical formalism for the process 80

of evidence accumulation during decision-making. We subsequently used canonical correlation 81

analysis (CCA) to compute a low-dimensional mapping between CBGT synaptic weights and 82

DDM decision parameters. CCA yielded three collections of weights, each of which provides the 83

strongest impact on a corresponding component of the DDM parameter vector and hence acts as 84

the control ensemble for that factor of the decision-making process. This analysis highlights how 85

the CBGT pathways encode multiple control mechanisms for the processing of information, some 86

that regulate vigor and some that regulate choice, which collectively work together to manage 87

the speed-accuracy tradeoff during movement selection and control. 88

2 Results 89

2.1 CBGT network dynamics and behavior 90

Our main goal in this work was to establish a mapping between CBGT properties and decision 91

parameters, and thereby to identify control ensembles within CBGT networks. To this end, we 92

simulated a spiking model for the CBGT network that included two action channels (Fig. 1, upper 93

panel; see also Table 1 and other details in Section 4.1) and declared an action to be selected when 94

the instantaneous firing rate of the thalamic population for a channel first reached a pre-specified 95

decision threshold (taken for concreteness as 30 Hz [28]). Before we can progress to discussing 96

control ensembles and decision factors, however, we first need to demonstrate that our simulations 97

a) produced realistic dynamics that qualitatively map to known biological observations and b) 98

exhibited a dynamic range of behavior when we performed directed sampling of the underlying 99

synaptic weights. In regards to the dynamics, the integration of the CBGT network with the 100

control conductances g given in Table 3 (2nd column) and with an external input presented 101

simultaneously to the cortical populations Cx for both the A and B channels (see Section 4.1) 102

yielded average firing rates across neurons in each population during baseline periods as well as 103

during decision-making that agree with those observed experimentally [32–40], as documented in 104

Table 2. The mean firing rates of all populations as a function of time over a sequence of three 105

actions (B, B, A) are depicted in Fig. 1 (central panel). 106

A clearer picture of how firing rates evolve over the course of deliberation is obtained by 107

averaging over many trials (Fig. 2). At the start of each trial, a constant stimulus to both cortical 108

sensory models was turned on; because we had no difference in inputs to the populations CxA, 109

CxB, both actions had an equal chance of being selected and the firing rates in the A and B 110

subpopulations for each CBGT region were similar, albeit with small differences due to randomness 111

in the selection of initial conditions. This sustained input resulted in a nonlinear increase in 112

cortical firing rates (Fig. 2, upper left) as well as in firing rates across striatal populations (dSPN, 113

iSPN, FSI). The inhibition of SPNs by the higher-firing FSIs allowed FSI activity to rise earlier 114

than SPN firing, but eventually the SPNs did follow the cortical surge. The firing rates of the 115
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other populations also remained steady throughout much of the period leading up to an action. 116

In particular, the flat GPi firing rates indicate that its inhibitory inputs from dSPNs and GPe and 117

its excitatory inputs from STN remained balanced, but eventually with this set of conductances 118

and cortical drive, the balance broke, GPi firing decreased (although this effect appears small in 119

Fig. 2 because we have averaged jointly over trials when decision A was made and trials when 120

decision B was made), and thalamic firing quickly rose to the decision threshold (cf. [20, 28]). 121

Fig 2. Mean firing rates of the populations in the CBGT network. The firing rate in
spikes/s is averaged across 300 different trials with the control set of synaptic conductances
(second column in Table 3), from the stimulus onset time at Cx to the decision time (set to be 0,
vertical dotted line in each panel). Blue traces correspond to the sub-populations affecting the A
action, orange traces represent the sub-populations impacting the B action, and red traces are
used for the populations (CxI and FSI) common to both action channels. Shadow areas
represent the standard deviation for each population. Since each trial had a different reaction
time, we performed the averaging by aligning trials on their decision times.

In our simulations of the baseline network parameters, the synaptic conductances were identical 122

in the A and B channels. Consequently, we expect that the network would have chosen actions 123

A and B with similar likelihood on each trial and with similar frequencies across many trials. 124

Consistent with this assumption, using the baseline parameters, over the course of 300 trials 125

action A was selected 45.3% of the time, with an average reaction time of 86.45ms across all 126

trials (86.56ms for A actions, 86.36ms for B actions). 127

By independently varying the synaptic conductances of specific connections within the network, 128

but maintaining the same value for each conductance across the two channels, we determined a 129

range of values (see Table 3, 4th and 5th columns) over which neuronal firing rates remained 130

within our pre-specified acceptable ranges (Table 2). This gave us a sampling window for each 131

synapse that would still produce relatively stable and realistic firing rates. We note that these do 132

not represent the largest ranges of values that would preserve these characteristics. Indeed, after 133

we established these maximal ranges, we used them to perform Latin hypercube sampling (LHS; 134

see Section 4.2) and thus to generate 300 different configurations of network weights. For each 135

permuted network, we simulated 300 choices (i.e., trials). Initially, we found that simultaneously 136

varying parameters within the LHS procedure could push some firing rates out of bounds. Thus, 137

we completed an iterative process of successively shrinking our acceptable ranges of synaptic 138

conductance values and performing LHS until the average pre-selection firing rates were preserved 139

within our prespecified ranges (see Fig. S1). 140

We next examined the impact of each synapse on the firing rate of the corresponding postsy- 141

naptic population, based on the full set of results obtained from varying synaptic conductances 142

via the LHS procedure. Note that the relationship between synaptic weight and postsynaptic 143

rate is not as simple as it sounds, because of the multiplicity of pathways impacting the firing 144

of many populations within the CBGT (Fig. 1, upper panel). Fig. 3 shows the degree to which 145
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changes in synaptic weights influenced the firing of the post-synaptic neurons, averaged across 146

trials over the full period from trial onset to decision time. This association is represented as 147

a simple linear regression coefficient, representing the slope of the least squares linear relation 148

between the weight and the rate. The first observation that arises from this calculation is that 149

many post-synaptic populations remained rather insensitive to the variation of synaptic weights. 150

Indeed, while our LHS procedure effectively changed local firing rates of post-synaptic cells, 151

the magnitude of this influence varied substantially across pathways. Second, the directions of 152

influence matched the expected changes given the nature of the synaptic connections involved: 153

changes in inhibitory synapses largely yielded decreases in postsynaptic firing rates, while changes 154

in excitatory synapses induced increases. 155

Fig 3. Influence of synaptic weight variation on corresponding postsynaptic firing
rates. Black dots represent the estimated regression coefficient for a linear regression model with
sampled synaptic weight as an input and post-synaptic unit firing rate as the output. Vertical
lines correspond to the 95% confidence interval computed using the standard error of the
estimate (gradient) under the assumption of residual normality. Grey error bars correspond to
those cases that include the 0 regression coefficient for the slope while red error bars are the
others. Both weights and firing rates were z-scored before the analysis.

Each configuration of weights used in the LHS procedure created a unique network with 156

specific dynamics (i.e., firing rates) and information processing properties. Example results from 157

the 300 trials performed with a single network are shown in Fig. 4. This configuration produced 158

a network with a fairly unbiased selection probability, and an average RT near the modal value 159

observed across all network configurations (see Fig. 5 below). Pre-decision firing rates for this 160

network, across all trials, also stay well within biologically realistic ranges. The behavior of 161

the network was then fit to a DDM with four free parameters: a, ν, z, and t. Notice that for 162

implementation purposes, the actual bias implemented in the DDM is z × a, as shown in the 163

DDM plot in Fig. 4. These summary measures, average firing rates, selection behavior, and 164

estimated DDM parameters, were saved for each network for further analysis. 165

Overall, the LHS procedure yielded an approximately unimodal, symmetric distribution of 166

average reaction times spread over a relatively broad range, with greatest concentration between 167

50 and 150ms (Fig. 5A). This variation is largely consistent with the range of variability seen in 168

humans during speeded RT tasks. That is, while the mean reaction times in our simulations were 169

shorter than what is typically observed in both humans and non-human animals, it is important to 170

note that we were not simulating either sensory processing time or motor planning and execution 171

processes, which would add approximately 100 − 200ms to the response time in a full model 172

system (for example, see [41]). As far as the actions selected, across LHS samples, the percentage 173

of A choices remained close to 50% (Fig. 5B), reflecting a relatively unbiased sampling procedure. 174

The modulation of both choice and reaction time across parameter variations (i.e., unique 175

tunings) of the network, despite identical sensory signals across cases, suggests that the LHS 176

sampling effectively impacts how information is used in the deliberation process. To understand 177

how parameter variations modulate the components of this process, we fit each network’s choice 178

and reaction time distributions to a hierarchical drift-diffusion model (HDDM, [31]). This 179
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Fig 4. Example of data generated for a single network configuration. The left panels
show the the average pre-decision firing rates, decision outcomes (1=A, 0=B), and reaction times
across all 300 trials of a single network instance. Mean values are reported next to each plot.
From the network behavior a single set of DDM parameters was fit; these parameter values are
listed in the right panel, which shows a collection of DDM runs with these parameters. These
values represent one sample in the distributions shown in Fig. 5.

procedure returned four separate information processing parameters – boundary height a, drift 180

rate ν, onset time t, and starting bias factor z (Fig. 1, bottom; see also Methods section) – for 181

each version of the network. Histograms indicating the distributions of the estimated DDM 182

parameters (a, ν, t and z) across all permuted networks are shown in Fig. 5C-F. 183

The first pattern that pops out in these distributions is the presence of bimodality across the a 184

and t parameters, while in contrast the distributions for the drift rate ν and the bias factor z are 185

normally distributed. In particular, the distribution for ν is appropriately centered at 0, which 186

corresponds to an absence of drift towards either option as is suitable for the simulated scenario 187

that lacks the differences in reward or input that would normally impart a direction to the drift 188

rate. The bimodal distributions observed for a and t are related and involve compensation, as 189

can be seen from Fig. 5G. Specifically, the concentration of relatively high a values, which would 190

promote slower decisions, corresponds to relatively low t values, which would accelerate decisions, 191

and vice versa. Moreover, we find a second compensatory relationship in that the largest bias 192

factors, z, arise in combination with strong negative drift rates, within the particle cloud with 193

relatively large t. In contrast, lower z values are positively associated with large values of ν. This 194

suggests the possibility that the specific tunings generated by our LHS procedure give rise to two 195

distinct types of general approaches to decision-making: early onsets of evolution of the process 196

with elevated boundary heights and later onsets with lower boundary heights. Since the directions 197

of the changes between these two parameters have countermanding influences on response speed, 198

the net speed remains approximately conserved across these two clusters of decision policies. 199

To quantify the clusters that we see visually in Fig. 5G, we applied K-means clustering to 200

the DDM parameters, across network permutations, and computed the silhouette coefficient s 201

(see Section 4.4.2). We found that the best silhouette coefficient is reached for K = 3 with value 202

s = 0.68, meaning that the DDM parameter space can be clustered into three different groups 203
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Fig 5. Histograms of simulated behavioral data and best fit DDM parameter
values. Panels A and B display the histograms of the reaction times (RT, averaged over 300
trials) and the percentage of choice A (also averaged over 300 trials) across 300 networks
generated via the LHS procedure. For each network, the distribution of RTs and accuracy on
each trial were used to estimate the DDM parameters (a, ν, t, z), which are represented in
histograms in panels C-F. The vertical red lines in panels A-F correspond to the specific value
obtained for the permuted network based on the control conductances. Panel G is a 3D
representation of the (a, ν, t) parameter space with parameter z represented by the colorbar,
which is capped at 0.6 (despite one outlier at z > 0.65 and another at z ∈ (0.6, 0.65); see panel
F). In this panel, each dot represents the (a, ν, t, z) vector obtained using the HDDM algorithm
for a specific sampled network.

of parameter values: two subsets that separate high and low values of the onset time and the 204

boundary height, and a third subset that only contains a small set of data points with very high 205

boundary heights that we treat as outliers. As shown in Fig. S2, the aforementioned separation 206

splits the bimodal distributions observed for t and a in Fig. 5E,F, with each cluster effectively 207

representing a different strategy for producing a similar set of RTs and accuracy in the DDM. 208

This analysis largely confirms the clustering patterns we identified visually in the parameter 209

distributions. 210
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2.2 Low-dimensional control ensembles 211

We used canonical correlation analysis (CCA, see Section 4.4 and [42]) to uncover the low- 212

dimensional relationships between network features and decision parameters that arise as we 213

move up effective levels of analysis in the model. We ran two CCA evaluations, one exploratory 214

and one to address our primary hypothesis of interest; these were a first instance to map synaptic 215

weight schemes W to CBGT firing rates R (G : W → R; exploratory evaluation) and a second 216

instance to map R to the DDM parameters P (H : R → P ; hypothesis evaluation). For each 217

evaluation, a 4-fold cross-validation analysis (see Section 4.4) on each of the data sets W → R 218

and R→ P showed that a 3-component model best explained variance for W → R and another 219

3-component model best explained variance for R → P (Fig. 6). Specifically, the best model 220

for the W → R test explained 20.8% of the variance in the hold out test data, with a standard 221

deviation of 5%. The best model for the R→ P test explained 26.9% of hold out test variance, 222

with a standard deviation of 7%. This cross-validation performance on the hold out test data is 223

comparable to ranges observed when building prediction models in many empirical neurobiology 224

data sets. 225

Fig 6. Scores obtained when different numbers of components are considered in
the CCA. Panel A represents the scores for the CCA considering the data sets W and R while
panel B shows the scores when using R and P . Blue traces depict the mean scores over the 4-fold
cross-validation analysis (see Methods, Canonical Correlation Analysis) while the orange traces
show the scores for the full data sets (no cross-validation analysis performed). The shadowed
blue zone corresponds to the standard deviation of the scores in the cross-validation analysis.

Weights to firing rates. The exploratory CCA for W → R did not reveal any surprising 226

effects and was dominated by a few specific pathways (see Fig. S3 for details). Based on the 227

leading component, the strongest relationship observed represents the straightforward, expected 228

finding that strengthening the inhibitory synapse from GPi to thalamus associates with decreasing 229

thalamic firing rates. The second component resolves a point of minor ambiguity: since GPe and 230

STN form a reciprocal loop, the effects of changing weights of one connection pathway between 231

the two areas are hard to predict, but here we find that increases in the inhibition from GPe to 232

STN associate with decreases in activity in STN and, presumably through the resulting loss of 233

excitatory input, in GPe as well. Interestingly, the third component represents a higher order 234

form of the same relationship found in the first component: it shows that synaptic changes 235

favoring inhibitory over excitatory inputs to the GPi associate with decreasing GPi firing rates 236

and increasing thalamic firing rates. Put together, this exploratory CCA model illustrates that 237

among all of the weight changes implemented in our parameter exploration, variation in the 238

weights for the primary output nodes of the basal ganglia contribute the most to variability in 239

firing rates. Given, however, the recurrent architecture of the network and its nonlinear properties, 240

more subtle contributions of other synaptic connections to firing rates may simply be washed out 241

by the dominance of GPe, STN, and GPi influences on thalamic nuclei. 242

Firing rates to decision parameters. The CCA model evaluating our primary hypothesis, 243

that of a relationship between R→ P , proved to be more illuminating. For this analysis firing 244

rates were grouped in two ways: 1) overall activity of populations in a CBGT region averaged 245

across channels A and B, and 2) the difference in firing rates in the region between its channel A 246

and channel B populations. Figure 7 shows color-coded representations of the entries, or loadings, 247

of the matrix U composed of the firing rate components and of the matrix V comprising the 248
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DDM parameter components from the second CCA model (see Section 4.4), with overall firing 249

rates shown in the top half and between-channel differences in firing rates shown in the bottom 250

half of rows in Figure 7A. 251

Fig 7. Canonical loading matrices obtained by applying the CCA to the pair R→ P .
A) The loadings corresponding to the firing rates R. B) The loadings corresponding to the DDM
parameters P . In both panels, the values of matrix entries are represented by the color bars.

Comparing across columns, we see a clear pattern emerge with three unique components, 252

or factors, in the decision policy (i.e., DDM) space. The first factor has a strong, negative 253

loading on onset time t and a weaker negative loading on boundary height a. This pattern is 254

consistent with a responsiveness influence on the decision policy, modulating how quickly evidence 255

evaluation begins and the overall response speed, with no definitive bias towards one action or 256

another. The second factor, by contrast, manifests as a strong positive loading on boundary 257

height a and a slightly weaker negative loading on onset time t. This pattern is consistent with a 258

pliancy component, modulating the degree of evidence necessary to make a decision (i.e., length 259

of evidence accumulation vector) by primarily impacting the domain size for the diffusion process, 260

but not its direction. The final factor is expressed as a positive loading on drift rate ν, with a 261

weaker negative loading on the bias factor z. This pattern is consistent with an action choice 262

component, modulating the likelihood of selecting a specific option by impacting the direction of 263

the diffusion process. We will examine each of these components in turn. 264

The responsiveness factor was largely associated with the overall activity of corticothalamic 265

systems and the direct pathway projection (Fig. 8A). As expected from the logic of the circuit, 266

greater activity in the thalamic units and the dSPNs, which disinhibit the thalamic units, leads 267

to earlier onset times and, to some extent, lower thresholds (i.e., faster responses). The opposite 268

effect was linked with the overall activity in GPi, FSIs, and cortical units, where greater activity 269

leads to an overall slowing of responses by increasing the onset time and, to some extent, the 270

boundary height. These opposing relationships are consistent with the inhibitory nature of 271

projections from FSIs to dSPNs and from GPi to thalamus, while the cortical impact is more 272

subtle. In contrast, the differential activity between the two channels contributed relatively little 273

to the responsiveness factor. It is worth noting that we display the inhibitory cortical neurons 274

and FSIs in Figure 8 on both the sum and difference diagrams, but there is just one shared 275

population in each of these regions, so the color-coding is the same in both cases. 276

The pliancy factor, on the other hand, was heavily dependent on the overall activity of indirect 277

pathway regions across the two channels (Fig. 8B). More activity in iSPNs, STN neurons (to 278

some extent), thalamic neurons, and cortical inhibitory interneurons, as well as less activity in 279

pallidal units, all associated with an increase of the boundary height and, to a slightly lesser 280

extent, a decrease of the onset time. The former of these changes effectively increases the amount 281

of information necessary to trigger a decision, while the change in onset time moderates the 282

impact on reaction time somewhat. We also found a weaker positive association with overall 283

firing rates in the direct pathway, specifically the dSPNs, along with the cortical units. As with 284

the responsiveness factor, differential activity between channels had a more modest association 285

with changes to the pliancy factor in the DDM process. The minor effects present again loaded 286

more heavily onto indirect pathway nodes. 287

For the third factor reflecting action choice, the situation reverses (Fig. 8C) from what we see 288

in the responsiveness and pliancy factors. Overall activity across channels had very little impact 289
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Fig 8. Canonical loadings obtained by applying the CCA to the pair R,P . Panels A,
B, and C represent the relation between the firing rate of each population in the CBGT network
and the parameters of the DDM obtained in the first, second and third components of the CCA,
respectively. 1st column subpanels represent the overall activity summed across both channels
while the 2nd column represents the differences in activity between the populations in the A and
B channels. 3rd column subpanels depict the associated increases (green) and decreases
(magenta) in the DDM parameters.

on the parameters of the DDM process related to the direction of information accumulation 290

towards one action or the other. Between-channel differences in firing rates, however, had a robust 291

association. Greater activity of dSPNs, GPe units, and thalamic neurons in channel A, compared 292

to channel B, led to more positive drift rates and slightly lower starting bias factors. These effects 293

result in a steeper angle of evidence accumulation towards the boundary representing action A, 294

somewhat compensated by a starting point closer to action B. The opposite held for the indirect 295

pathway units, with greater activity of iSPN, STN, and GPi units in channel A leading to lower 296

drift rates and higher onset biases (i.e., angling the drift direction towards the boundary for 297

action B while starting closer to the boundary for A). Put succinctly, the direction of the evidence 298

accumulation process depends on the relative difference in activity across the action channels in 299

all basal ganglia populations. 300
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3 Discussion and Conclusions 301

The CBGT circuit provides a neural substrate that can control or tune the process of choosing 302

among a set of available actions [5,43]. After calibrating a computational model of the CBGT 303

network to produce similar firing rates to those observed experimentally, we fit network decision- 304

making behavior with a DDM model and performed CCA to reveal relationships among network 305

synaptic weights, firing rates and the DDM parameters. This analysis demonstrates that different 306

CBGT populations act as control ensembles capable of tuning specific information processing 307

factors that contribute to the action selection process: (1) a responsiveness factor, that highlights 308

complementary changes in the onset time of evidence accumulation and, to a lesser extent, the 309

boundary separation between actions controlled largely by overall corticothalamic and direct 310

pathway activity; (2) a pliancy factor, that represents antagonistic changes in boundary separation 311

and in onset time impacted primarily by overall indirect pathway activity; and (3) a choice factor, 312

that captures antagonistic changes in the drift rate towards one decision boundary and a shift 313

in the starting position in the DDM domain towards the other decision boundary linked mostly 314

with inter-channel differences in activity between populations. 315

These factors fit into a broader upwards-mapping conceptual framework [44] that underlies 316

the approach taken in this study (see also [28, 45]). Specifically, by sampling the collection of 317

synaptic weights (W ) within the CBGT network (i.e., the tuning of the network), we varied the 318

basis set by which control ensembles can drive characteristics of the decision policy observed 319

in the network’s overt behavior. In our framework, the parameters of the DDM (P ) provide a 320

description of the information processing dynamics of a given policy, but it was not a priori clear 321

that the CBGT network can adjust its outputs (R) in a way that corresponds to variation of each 322

individual DDM parameter. In practice, we observe that small sets of DDM parameters appear 323

together within the components of the CCA that links firing rates to DDM parameters. We refer 324

to these as the factors and they effectively parameterize the space of decision policies. The specific 325

manifestations of factors from the dynamics of underlying control ensembles lead to decision 326

policies with a specific degree of ‘greediness’ and speed-accuracy tradeoff. Interestingly, these 327

factors were obscured in a CCA applied directly to W → P , but by performing CCA separately 328

on W → R and R→ P , that is the exploratory and hypothesis-focused evaluations respectively, 329

we were able to draw the conclusions on the relationship between network properties and factors 330

of decision policies. 331

Results obtained from the pliancy and the choice factors, relating to overall indirect pathway 332

activity and inter-channel differences in dSPN activity, respectively, agree with previous computa- 333

tional observations made with dopamine-related corticostriatal synaptic plasticity (see [46–48]), 334

which showed that the boundary separation varies with overall iSPN activity while the drift 335

rate varies with the inter-channel difference in dSPN activity [28] (see also reviews [19,21,49]). 336

Interestingly, however, our new findings extend this analysis to encompass all of the major basal 337

ganglia populations. In particular our findings indicate that differences across channels in all 338

non-shared CBGT populations correlate with the DDM drift rate (and onset bias), while respon- 339

siveness and pliancy factors represent directions in DDM parameter space that are orthogonal to 340

the action choice factor and are driven primarily by changes in onset times and boundary height. 341

The between-channel differences are not independent across all nuclei, of course, as differences in 342

firing across A and B subpopulations in one nucleus will impact the relative firing of A and B 343

subpopulations in all post-synaptic nuclei. This interdependency is reflected in the multiple nuclei 344

with significant loadings in each of the control ensembles identified by the CCA. Presumably, 345

dopaminergic effects, likely combined with other forms of neuromodulation, play a central role in 346

tuning the activity levels of the control ensembles that we have identified. A natural direction 347

for the extension of this work will be to implement this tuning process in various action-reward 348

scenarios. 349

While we opted for biological realism in our network design, some abstractions beyond the 350

omission of dopaminergic plasticity needed to be made for computational efficiency. For example, 351

our CBGT network simulates the GPi output as always suppressing or blocking thalamic activity. 352

Yet this relationship between the GPi and thalamus is more complicated. Evidence suggests 353

that in non-human primates, GPi neurons and their thalamic targets tend to both increase their 354

activity leading up to arm movement in a reaching task [50]. However, this counterintuitive 355

observation may not represent the relationship between GPi and thalamic activity during the 356
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learning or decision-making process, since the experiments were made for highly well-trained 357

movements without a choice component. Another biological complication is that direct pathway 358

signals and GPe outputs may not always inhibit GPi/SNr [51, 52], which implies that more 359

complex operational principles may be at play than those represented in our model. 360

The pathways that we included also represent only a subset of the known connections within 361

the broader CBGT circuit. Other populations and pathways, such as arkypallidal neurons [53] or 362

the cortico-STN (i.e., hyperdirect) pathway [54–56], were not included in our simulations. These 363

may play additional roles as parts of the control ensembles identified here, as well as possible new 364

control ensembles, for example one contributing to a global inhibition factor capable of preventing 365

an action from being performed. We also opted for a primate variant of the CBGT pathways, 366

with GPi used as the output nucleus of the basal ganglia, as opposed to the SNr, which is the 367

primary output nucleus in rodents. It has been shown that SNr targets 42 different brainstem 368

and midbrain regions, which may implement the direct motor impacts of basal ganglia activity, 369

whereas SNr projections to thalamus may represent an efferent copy of the descending signal [57]. 370

Even though our model does not consider this complexity of the output signals from the basal 371

ganglia, in the future it could be modified to include a general brainstem motor target of the 372

output nucleus, where a decision threshold would be imposed, along with one or more separate 373

thalamic targets. If these were tuned similarly and the cortical inputs to the thalamic regions were 374

sufficiently weak, then the model behavior would not be expected to change, despite the physical 375

separation of the decision threshold from the feedback provided from thalamus to striatum and 376

cortex. The weak influence of the cortico-thalamic synaptic weight on thalamic firing rate shown 377

in Fig. 3 supports the likelihood of this robustness, although this would need to be tested to make 378

sure. Increasing the biological realism of the model, however, should be a progressive goal across 379

studies, particularly since our understanding of the anatomy and physiology of these circuits is 380

still exponentially increasing with the advent of new experimental tools that give greater clarity 381

on the underlying circuitry of these pathways. 382

Despite these limitations, our results clearly show that within the canonical CBGT circuits, 383

specific subpopulations of cells contribute to specific aspects of the information processing 384

capabilities of the network during decision-making. These low-dimensional relationships lead to 385

very specific predictions for future experimental work. For example, global versus differential (i.e., 386

between action channels) stimulation of direct and indirect pathways should manifest as changes 387

in response speed and choice behavior, respectively. Stimulation of the indirect pathway alone, 388

but globally across action representations, should result in contrasting effects on behavior, largely 389

focused on threshold of evidence (i.e., pliancy), since the responsiveness factor is dominated by 390

the direct pathway. These are just a few of the many experimental predictions generated by our 391

results. In this way, the work described here can be seen as a guide for directed hypotheses in 392

future experimental work. 393

4 Methods 394

Overall, the goal of this work is to elucidate the complicated nonlinear mapping, call it 395

F : W → P , from synaptic weights within the CBGT network to parameters in the DDM 396

that are computed by fitting the distribution of choices and reaction times (RT) produced by 397

various tunings of the CBGT network. The way that weight changes translate into different 398

RT distributions is by impacting firing rates throughout the network. Moreover, firing rates 399

are currently much more experimentally accessible than synaptic weights. Hence, we aim to 400

decompose F into a composition of two relations: the association between firing rates and changes 401

in DDM parameters, H : R→ P , and the association between synaptic weights and network firing 402

rates, G : W → R; that is, F = H ◦ G (see Fig.1 for an overview). In this section, we describe the 403

CBGT network model, the DDM model, and the data analysis that we use to link the two. 404

All simulation and analysis code reported in this work is publicly available at: https: 405

//github.com/CoAxLab/CBGTControlEnsembles.git. 406
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4.1 Neural activity: CBGT network 407

In this study, we simulate behavioral data using a cortico-basal ganglia-thalamic (CBGT) 408

network model adapted from previous works [20, 28, 45]. The network has been designed such 409

that, when a stimulus is presented to the cortex, a decision between two different choices, A or 410

B, is eventually made based on the firing rates of thalamic neurons, which are in turn impacted 411

by neuronal firing throughout the network. The network consists of 9 different populations: the 412

cortical interneurons (denoted by CxI) and the excitatory cortical neurons (Cx); the striatum, 413

which includes the D1 and D2-expressing spiny projection neurons (dSPNs and iSPNs, respectively) 414

and the fast-spiking interneurons (FSIs); the internal and prototypical-external globus pallidus 415

(GPi and GPe, respectively); the subthalamic nucleus (STN); and the thalamus (Th). The model 416

includes two groups of neurons in each population, one for the A channel and one for B, except 417

for the CxI and FSIs, which are shared between the two. The number of neurons per population 418

are given in Table 1. 419

Population CxI Cx dSPN iSPN FSI GPi GPe STN Th
Number of neurons 186 204 75 75 75 75 750 750 75

Table 1. Number of neurons in each population. The numbers corresponding to CxI and
FSI are the total number of neurons. The other values correspond to neurons per channel.

Each neuron evolves according to the integrate-and-fire-or-burst model [20,58] given by 420

C
dV

dt
= −gL(V (t)− VL)− gTh(t)H(V (t)− Vh)(V (t)− VT )− Isyn(t) + Iext(t)

dh

dt
=

{
−h(t)/τ−h when V ≥ Vh

−(1− h(t))/τ+h when V < Vh

where the equation for the membrane potential V (t) includes a leak current with conductance gL 421

and reversal potential VL; a low-threshold Ca2+ current with maximal conductance gT , reversal 422

potential VT , gating variable h(t), and time constants τ+h and τ−h representing the rate of change 423

of the gating variable h(t) before and after the membrane potential reaches a certain constant 424

voltage threshold Vh, respectively; a synaptic current, Isyn(t); and an external current Iext(t). 425

The synaptic current itself includes excitatory AMPA and NMDA and inhibitory GABA 426

components, such that 427

Isyn = gAMPAsAMPA(t)(V (t)− VE) +
gNMDAsNMDA(t)(V (t)− VE)

1 + e−0.062V (t)/3.57

+gGABAsGABA(t)(V (t)− VI),

where each gi denotes the maximal net channel conductance for i ∈ {AMPA, NMDA, GABA}. 428

VE and VI are the reversal potentials for excitation and inhibition, respectively, and si(t) are 429

open channel fractions, with dynamics given by 430

dsAMPA

dt
=

∑
j

δ(t− tj)−
sAMPA

τAMPA
,

dsNMDA

dt
= α(1− sNMDA)

∑
j

δ(t− tj)−
sNMDA

τNMDA
,

dsGABA

dt
=

∑
j

δ(t− tj)−
sGABA

τGABA
,

for spike onset times tj , rate constant α, and decay rates τi for each choice of i. Note that because 431

NMDA has the slowest decay rate, we design the sNMDA equation to explicitly prevent this 432

variable from exceeding one. 433

The external current, which is used to tune the baseline firing rate of each population, is given 434

by 435

Iext(t) = Sext,AMPA(V (t)− VE) + Sext,GABA(V (t)− VI)
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where Sext,X is a mean-reverting random walk depending on the external input frequency, the 436

efficacy of the external connections, and the number of external connections (see Table 4). 437

The neurons within a population that correspond to the same choice are connected to each 438

other and, in some cases, to those in FSI and CxI, resulting in two different channels, which we 439

call channel A and channel B. To simplify notation, we will label a specific population with the 440

subscript A or B if we want to specify that we consider the A-channel sub-population or the 441

B-channel one, respectively. The established synaptic pathways between regions that we include 442

in the model can be found in Fig. 1 (upper panel). In all simulations, the synaptic conductances 443

for the two channels are identical. Within each channel, the connections from Cx to dSPN 444

and from Cx to iSPN are equal in our control parameter set, but we allow these to differ in 445

subsequent simulations. 446

While Fig. 1 (upper panel) shows the pathways between populations, the individual neurons 447

within populations are connected with specified probabilities and synaptic conductances g in nS 448

(which we also call weights). The connection probabilities and weight ranges considered, which we 449

calibrated to obtain similar firing rates to those observed experimentally [32–40] during resting 450

states (baseline) and decision processes (Table 2), are presented in Table 3. 451

Population baseline FR full FR References
range (Hz) range (Hz)

dSPN [0, 5] [0, 35] [32–35]
iSPN [0, 5] [0, 35] [32–35]
GPe [40, 90] [40, 150] [36–38]
GPi [40, 90] [40, 150] [38]
STN [10, 35] [10, 55] [36–38]
Th [5, 20] [5, 85] [39]
Cx [0, 100] [40]
FSI [5, 40] [5, 70] [40]

Table 2. Firing rate ranges during baseline and during decision tasks for different
populations in the brain. These ranges reflect experimental data from both primates and
rats.

To represent the presentation of a stimulus to the network, we increase the external input 452

frequency for CxA and CxB from 2.2Hz to 2.5Hz. Subsequently, both channels compete to 453

make a decision. If the thalamic firing rate associated with channel A reaches a specific threshold, 454

which we take as 30Hz, before the thalamic firing rate associated with channel B, then we say 455

that decision A is selected, with a similar condition for decision B. We define the time from the 456

stimulus onset to the decision as the reaction time for a trial. If the decision thresholds for both 457

channels are not reached in a time window of 800ms, then we say that no decision has been 458

performed and we end the trial. 459

Unlike [45,48], in the version of the network implemented in this work, spike-timing-dependent 460

plasticity from the cortex to the spiny projection neurons is not included. The rest of the structure 461

and parameters remain as in [45] except for two changes. First, the leak conductance of thalamic 462

neurons, gL, is decreased from 25 to 18nS to fit experimental information about their firing rate 463

under baseline conditions. Second, after a decision is made, the external input presented to cortex 464

as a stimulus is maintained for 300ms, as in the earlier work, but here we only maintain this 465

input at 75% of its original strength. 466

4.2 Network specification and network behavior 467

By modifying the values of the maximal conductances or weights g of the connections from 468

one population to another, we obtain different configurations of the network that we call the 469

network tunings. Given the large number of weights in the full model, for tractability, we only 470

explore variations across the main feed-forward connections in the CBGT network; in simulations, 471

we also see that these connections have the strongest influence on reaction times. The weights for 472

the rest of the connections in the network are kept constant. Therefore, each tuning is generated 473

by considering different values of the 14 specific connections highlighted in bold in Table 3 (1st 474

column). 475
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For each varied connection type, we identify the interval of weights over which the population 476

firing rate remains in our allowed range, thus establishing upper and lower bounds on the g values 477

to be considered for that connection (see Table 3, 4th and 5th columns).

Connection Connection g(nS) Lower g Upper g Receptor(s)
type Probability control bound bound

Cx-Cx 0.43 0.0127 AMPA
Cx-Cx 0.43 0.15 NMDA
Cx-CxI 0.2417 0.113 AMPA
Cx-CxI 0.2417 0.525 NMDA
CxI-Cx 1.00 1.75 GABA
CxI-CxI 1.00 3.5833 GABA
Cx-dSPN 1.00 0.027 0.012 0.033 NMDA
Cx-iSPN 1.00 0.027 0.0195 0.0885 NMDA
Cx-dSPN 1.00 0.018 0.008 0.022 AMPA
Cx-iSPN 1.00 0.0986 0.008 0.059 AMPA
Cx-Th 1.00 0.035 0.008 0.0548 NMDA, AMPA
Cx-FSI 1.00 0.198 0.1905 0.63 AMPA
dSPN-dSPN 0.45 0.28 GABA
dSPN-iSPN 0.45 0.28 GABA
dSPN-GPi 1.00 2.09 0.418 2.413 GABA
iSPN-dSPN 0.5 0.28 GABA
iSPN-iSPN 0.45 0.28 GABA
iSPN-GPe 1.00 4.07 2.47 4.46 GABA
GPe-STN 0.067 0.35 0.33 0.39 GABA
GPe-GPe 0.067 1.75 GABA
GPe-GPi 1.00 0.06 0.05733 0.067 GABA
GPi-Th 1.00 0.3315 0.32017 0.357 GABA
FSI-dSPN 1.00 1.7776 GABA
FSI-iSPN 1.00 1.66987 GABA
FSI-FSI 1.00 3.2583 GABA
STN-GPe 0.1617 0.07 0.05 0.1 AMPA
STN-GPe 0.1617 1.51 NMDA
STN-GPi 1.00 0.038 0.036 0.03833 NMDA
Th-Cx 0.83 0.03 0.021 0.035 NMDA
Th-CxI 0.83 0.015 NMDA
Th-dSPN 1.00 0.3825 0.0015 0.3915 AMPA
Th-iSPN 1.00 0.3825 0.3525 0.3975 AMPA
Th-FSI 0.83 0.1 AMPA

Table 3. CBGT connectivity. From left to right, the connections included, specified in terms
of the pre- and the post-synaptic populations that they link; the probability that two cells in the
pre- and post-synaptic populations will be synaptically linked; a fixed synaptic conductance or
weight (measured in nS) used in our control case; the lower and upper bounds on weights based
on maintaining realistic neuronal firing rate; and finally the receptor types for each specific
connection. Those connections that are not in bold font (i.e. without an upper and lower bound)
are fixed to the control value during all simulations. The topology of each connection, which can
be either diffuse (they project to left and right action channels) or focal (restricted connections
within each channel), has not changed from [28](Table 3).

478

We performed Latin hypercube sampling (LHS) on values of the 14 varied weights to randomly 479

specify N = 300 different weight configurations, and thus 300 unique network tunings. In brief, 480

for each connection, we partitioned the allowed range into 300 bins of the same size. For each of 481

our 300 iterations, we selected one bin uniformly at random for each weight, independently across 482

weights. These selections were made without replacement, so that each bin was used exactly 483

once, resulting in 300 multi-dimensional bins. Within each multi-dimensional selected bin, we 484

randomly specify 14 weight values that together correspond to one configuration of the network. 485
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To perform the LHS we use the lhsmdu function implemented in Python. 486

Finally, for each tuning, we simulated 300 decision trials, each of which ended when one of 487

the thalamic subpopulations reached the decision threshold or when the allowed time for the 488

decision expired, if no decision had been reached by that time; note that the use of 300 for both 489

the number of trials and the number of LHS bins is inconsequential. On each trial on which a 490

decision was made, we considered as the CBGT output the reaction time from the introduction 491

of the stimulus to the decision; the average firing rates of all populations over that time period; 492

and the decision made. 493

4.3 Drift-diffusion model 494

For each tuned network, we fit the simulated behavioral data from the CBGT network, 495

specifically the reaction time and the choice made on each trial, with the drift-diffusion model 496

(DDM), a stochastic model that instantiates the statistically optimal performance on two- 497

alternative decision tasks (see [28, 59, 60]). The DDM assumes that decisions are made by an 498

accumulative stochastic process. Given two different boundaries, one for each choice, which 499

are separated by a distance called the decision threshold (a), and given also a starting bias za 500

determined by multiplying the decision threshold by a bias factor (z), the accumulated evidence θ 501

is a function of time τ , defined from τ = 0 up to a stopping time that occurs when θ reaches one 502

of the two thresholds, θ = 0 or θ = a. The behavior of θ is governed by the following stochastic 503

differential equation and starting condition: 504

dθ = νdτ + σdW if τ > t

θ = za if τ ≤ t

where ν denotes the rate of evidence accumulation, t is the time of onset of evidence accumulation, 505

and σ represents the level of noise in the process, which is given by the standard deviation of 506

a white noise process W . For each trial, the choice and the reaction time for the DDM are 507

determined by which boundary is reached and the time elapsed between the onset time t and the 508

moment when θ reaches one of the boundaries, respectively. 509

In our simulations, for each tuned network, we estimate the values of the quadruple (a, ν, t, z) 510

for which the DDM behavior best fits the reaction times and the selected choices obtained with 511

the CBGT network. For this purpose, we use the Hierarchical Drift-Diffusion Model (HDDM) 512

implemented in Python (see [31]) using as inputs both the reaction time (RT) and the specific 513

decision made on each successful trial (i.e., distinguishing between A and B), after first removing 514

the trials where no decision was made. 515

4.4 Data analysis 516

We consider three different sets of data: the weights selected that define the various CBGT 517

network configurations, W ; the averaged firing rates obtained from all populations of the CBGT 518

network, R; and the DDM parameter values obtained using the HDDM, P . For clearer visualization 519

and analysis of the results, we considered the averaged firing rates of each CBGT population 520

summed across both channels, A and B, and the difference in the averaged firing rates of the 521

populations between the two channels. Since there are 7 populations in each channel plus two 522

populations that the channels share, R is a 300× 16 data table, while the dimensions of W and 523

P are 300× 14 and 300× 4, respectively. Once we form these matrices, we perform additional 524

analyses to investigate relations between them. 525

4.4.1 Canonical Correlation Analysis 526

We use canonical correlation analysis (CCA, [42]) to infer the relation between the pair of 527

data sets (W,R) and again to infer information relating the pair of data sets (R,P ). In general, 528

given two data sets X = (x1, . . . , xn)> and Y = (y1, . . . , ym)>, CCA searches for vectors u ∈ Rn
529

and v ∈ Rm such that the correlation between u>X and v>Y is maximal. The vectors u,v are 530

the first pair of canonical variables. Subsequently, for each i = 2, . . . , N , we compute the ith 531

pair of canonical variables by maximizing the same correlation subject to the restriction that 532
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the new pair is uncorrelated with the previous i− 1. We call N the number of components and 533

select it to be less than or equal to min{n,m}. To compute the CCA, we use the CCA function 534

of the sklearn package in Python. To discern the minimum number of components necessary to 535

fit the data, we consider the number of components providing the best R2 score for the predicted 536

data, which is computed for the CCA function. This score is defined as 1 − a/b for a equal 537

to the sum of (ytrue − ypred)2 and b equal to the sum of (ytrue − ȳtrue)2 over all data points, 538

where for each point, ytrue denotes the true data value and ypred the predicted value from the 539

dimension reduction learned during the CCA. This expression quantifies the extent to which 540

the CCA represents the data, relative to chance. The best possible fit would yield an R2 score 541

equal to 1; notice that, although a 0 score represents a poor fit, the score can in fact be negative, 542

meaning that the model based on CCA is worse than would be expected by chance. 543

To ensure that we do not obtain spurious results based on our data sample, we apply a 4−fold 544

cross-validation analysis. In this step, we split the 300 tuned networks into two different blocks: 545

the training set, containing 75% of the tuned networks, and the testing set, comprising the 546

remaining 25% of the data. To achieve this splitting, we order the tuned networks from 1 to 300 547

and then in each i-fold, with i ∈ {1, 2, 3, 4}, we consider the tunings in positions (75(i− 1), 75i] as 548

the testing set and the rest as the training set. Hence, for different numbers of total components, 549

we compute the CCA using the training set and we test the resulting model using the testing set, 550

from which we compute the CCA score. 551

Conceptually, the canonical variables expose the variable groupings that most significantly 552

contribute to correlations between specific data sets. However, they are subject to variability 553

across samples and can be highly affected by multicollinearity. Hence, to interpret the CCA 554

results, we consider canonical loadings, which represent the correlations between the original 555

variables and the canonical variables. 556

4.4.2 K-means clustering 557

To identify different clusters of data in the HDDM output, we performed K-means clustering 558

using the KMeans function of the sklearn package in Python. For each tuned network, we 559

considered the point in R4 given by the (a, ν, t, z) obtained from DDM; together, these comprise 560

a data set of 300 points. We separated these data into K different clusters such that each 561

observation lies in the cluster with the nearest mean, minimizing the variance within clusters. 562

Before using the clustering technique, we performed a sensitivity-based normalization of the 563

HDDM output (a, ν, z, t). In this procedure, each component x ∈ {a, ν, z, t} is modified as 564

x← (x− x̄)∆x

where x̄ refers to the mean of x over the different tuned networks and ∆x is the centered difference 565

formula to compute the change in the reaction time relative to the change in x, that is 566

∆x =
RT (x+ h)−RT (x− h)

2h
,

where h = 0.1 and RT (y) is the mean reaction time obtained after running the HDDM 105 times 567

with input variable y and fixed values of the components in {a, v, z, t} \ y. 568

To determine the optimal number of clusters into which to split the data, we subject the 569

data to K-means clustering for each K ∈ [1, 10] ⊂ N. In each case, we compute the mean of the 570

silhouette coefficients over samples. The silhouette coefficient is a measure of the proximity of 571

each cluster point to neighboring cluster points. This coefficient is calculated as (b−a)/max{a, b} 572

where a denotes the mean distance between points within a cluster and b is the distance between 573

a data point and the nearest cluster to which it does not belong. This calculation yields a value 574

lying in [−1, 1], where a value close to 1 indicates that the specific sample is not close to the 575

neighboring clusters and hence it has been assigned to the correct cluster, a value close to 0 576

indicates that the specific sample is very close to or on the boundary defining the different clusters, 577

and negative values close to −1 indicate that the specific sample could be wrongly assigned. 578

Hence, higher values of the mean silhouette coefficient indicate a better clustering performance. 579

We compute the silhouette coefficient using the Silhouette score function in the sklearn package 580

in Python. 581
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The rest of the parameters used in the K-means clustering process are standard values of 582

the KMeans function in the sklearn package in Python. That is, 10 repetitions of the K-means 583

algorithm are run using different centroid seeds, with a maximum of 300 iterations per run. To 584

check for convergence of the method, the Frobenius norm of the difference in the cluster centers of 585

two consecutive iterations is evaluated by the KMeans function itself against a relative tolerance 586

of 10−4. The K-means problem is solved using Elkan’s algorithm with precomputed distances, 0 587

verbosity mode and “None” as the random state. 588
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A Supporting information 738

A.1 Supplementary figures 739

Fig S1. Firing rate histograms across tuned networks. Each panel depicts, for each
neuronal population, the histogram of the mean firing rates from stimulus to decision across the
300 different tuned networks.

A.2 Supplementary tables 740
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Fig S2. 3-means clustering results. The first row shows the two main clusters of DDM
parameter sets obtained after applying K-means clustering with K = 3. The third cluster
consisting of just a few points with high a values is not shown here. The next four rows present
the histograms of the DDM parameters a, ν, z and t, respectively, corresponding to the cluster at
the top of each column. The bottom row represents the reaction time histograms for each cluster.
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Fig S3. Canonical loadings obtained after applying the CCA to the pair W,R.
Relation between the different synaptic weights and the firing rate of each population in the
CBGT network. Panels A, B and C stand for the first, second and third components of the CCA.
1st column subpanels correspond to the weight difference between channels. 2nd column
subpanels correspond to the overall weights across the two channels. The color-coded loadings of
the weights are quite weak overall. The 3rd column subpanels show the channels’ overall activity
while those in the 4th column depict the difference in activity between the A and B channels.
The color-coded loadings of the firing rates are localized in in each component.

External External Num. of ext.
Population Receptor frequency efficacy connections

CxI AMPA 1.05 1.2 640
Cx AMPA 2.2 2.0 800

dSPN AMPA 1.3 4.0 800
iSPN AMPA 1.3 4.0 800
FSI AMPA 3.6 1.55 800
GPi AMPA 0.8 5.9 800
GPe GABA 2.0 2.0 2000

AMPA 4.0 2.0 800
STN AMPA 4.45 1.65 800
Th AMPA 2.2 2.5 800

Table 4. External current parameters used to simulate the external input arriving
at the various CBGT populations. From the first column to the last, we specify the
receiving population, the receptor type of the external current, the frequency of the external
input, the efficacy of the specific external connection, and, finally, the number of external
connections projecting to the population. The time decay constant is τ = 2ms for the AMPA
receptor and τ = 5ms for the GABA receptor.
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