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Being overweight or obese is associated with reduced white matter integrity 

throughout the brain. It is not yet clear which physiological systems mediate the 

association between inter-individual variation in adiposity and white matter.  We 

tested whether composite indicators of cardiovascular, lipid, glucose, and 

inflammatory factors would mediate the adiposity-related variation in white matter 

microstructure, measured with diffusion tensor imaging on a group of 

neurologically healthy adults (N=155).  A composite factor representing adiposity 

(comprised of body mass index and waist circumference) was negatively 

associated fractional anisotropy, and increased radial diffusivity, throughout the 

brain, a pattern linked to myelin structure changes in non-human animal models.  

A similar global negative association was found for factors representing 

inflammation and, to a lesser extent, glucose regulation.  In contrast, factors for 

blood pressure and dyslipidemia had positive associations with white matter in 

isolated brain regions.  Taken together, these competing influences on the 

diffusion signal were significant mediators linking adiposity to white matter and 

explained up to fifty-percent of the adiposity-white matter variance. These results 

provide the first evidence for contrasting physiological pathways, a globally 

distributed immunity-linked negative component and a more localized vascular-

linked positive component, that associate adiposity to individual differences in the 

microstructure of white matter tracts in otherwise healthy adults.  
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Adiposity, a condition of excessive fat accumulation in the body, has emerged as 

a growing public health problem in the United States (Odgen and Carroll 2010) 

and an emerging concern globally (Kelly et al. 2008). Increased accumulation of 

adipose tissue in the periphery of the body confers risk for changes in several 

metabolic and cardiovascular systems, including elevated blood pressure, 

dyslipidemia, insulin resistance, and systemic inflammation (Bastard et al. 2006; 

Johnson et al. 2012)—core features of the metabolic syndrome (Marsland et al. 

2010).  Yet elevated adiposity is also associated with impairments in cognitive 

function (Nederkoorn et al. 2006; Yaffe 2007; Brogan et al. 2010, 2011; Brown 

and Thore 2011; Horstmann et al. 2011; Yates et al. 2012) and with changes in 

both the structure and function of the central nervous system (Haltia et al. 2007; 

Stice et al. 2008; Walther et al. 2010; Segura et al. 2010; Cazettes et al. 2011; 

Hendrick et al. 2011; Kullmann et al. 2011; Mueller et al. 2011; García-García et 

al. 2012; Verstynen et al. 2012; Yau et al. 2012; Gianaros et al. in press; Portet 

et al. 2012). In particular, adiposity has been inversely related to multiple 

measures of white matter microstructure, as revealed by diffusion imaging 

methods (Mueller et al. 2011; Stanek et al. 2011; Xu et al. 2011; Gianaros et al. 

in press; Verstynen et al. 2012; Yau et al. 2012). Further evidence suggests 

adiposity and obesity are associated with altered functional connectivity across 

brain regions (Kullmann et al. 2011; García-García et al. 2012), pointing to neural 

connectivity as a possible neural basis for the altered cognitive function that 

occurs with elevated obesity.  
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 While inherent differences in brain morphology and function may drive 

behaviors that increase adiposity, it is also possible that the adiposity-related 

alterations in peripheral physiological systems may lead to unfavorable changes 

in neural connectivity.  In support of this hypothesis, many of the peripheral 

metabolic and vascular changes associated with increased adiposity have been 

linked, either directly or indirectly, to changes in measures of neural integrity 

(Watson and Craft 2006; Szczepanska-Sadowska et al. 2010; Fung et al. 2012; 

Thaler et al. 2012; Yates et al. 2012).   

 Accordingly, we set out to test the hypothesis that variation in obesity-

linked physiological pathways mediates the relationship between adiposity and 

neural connectivity, measured at the level of white matter microstructure. 

Applying whole-brain mediation analyses on diffusion imaging measures of white 

matter microstructure, in a large sample of neurologically healthy adults, we 

evaluated two predictions. Based on prior findings (Gianaros et al. in press; 

Verstynen et al. 2012), we predicted that adiposity (body mass index, BMI, and 

waist circumference) would relate to lower fractional anisotropy (FA) scores 

through an increase in radial diffusivity (RD). Second, we tested whether 

adiposity-white matter relationships would be differentially mediated by variation 

in blood pressure (BP), dyslipidemia (circulating triglycerides and high-density 

lipoproteins), inflammation (C-reactive protein, CRP, and interleukin (IL)-6), 

and/or glucose control (fasting glucose and adiponectin). Characterizing such 

mediating pathways would provide novel insights into the mechanisms by which 

increased adiposity might influence neurocognitive health. 
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Materials & Methods	
  

Participants.	
  Participants were 155 community-dwelling adults (78 men, 77 

women; mean age = 40.7 ± 6.2 SD, range = 30-50 years) who were recruited via 

mass mailings to residents of Allegheny County, Pennsylvania (U.S.A.). All 

participants were screened for pre-existing health conditions.  See 

Supplementary Materials (Section 1.1) for a list of these criteria.  Informed 

consent was obtained with approval of the University of Pittsburgh Institutional 

Review Board.  The ethnicity of the sample was Caucasian (70.3%), African 

American (21.9%), Asian (5.8%), and multiracial/other (1.9%). Results of different 

analyses testing non-overlapping hypotheses on this diffusion imaging data set in 

relation to socioeconomic status have been reported elsewhere (Gianaros et al. 

in press).	
  

	
  

Assessment of anthropometric and physiological variables.	
  The primary 

measures collected for this study were:	
  

(i)   Waist circumference (an anthropometric indicator of relative adiposity, 

measured at end-expiration to the nearest 1/2in with a tape measure 

centered at the umbilicus) (M = 35.64, SD = 5.17 inches, range = 25-

48 inches). 	
  

(ii)   Body mass index (BMI; weight in lbs/(height in inches2); M = 27.15, SD 

= 4.82, range = 18.5 – 42.3). There were 58 lean participants (BMI < 

25), 57 overweight participants (25<BMI<30) and 40 obese participants 

(BMI>30). 	
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(iii) Seated, resting blood pressure (BP) was measured from the non-

dominant arm with an oscillometric device (Critikon Dinamap 8100, 

Johnson & Johnson, Tampa, FL). Participants provided 3 BP 

measures taken 2 min apart after a ~20 min acclimation period, with 

the average of the last 2 of the 3 BP readings serving as the resting 

systolic (SBP) and diastolic (DBP) blood pressures (SBP, M = 121.44, 

STD = 9.48; DBP, M = 73.25, STD = 8.80).	
  

(iv)  Following an overnight fast, blood was drawn prior to magnetic 

resonance imaging (MRI) scanning. Serum was analyzed using a 

Synchron CX chemistry analyzer (Beckman-Coulter, Brea, CA) using 

reagents for glucose, triglyceride, high-density lipoprotein (HDL) and 

total cholesterol. Prior to analysis, measures of glucose (M = 88.21, 

STD=12.81) and triglycerides (M = 81.07.10, STD= 16.49) were natural 

log transformed because of a skewed distribution. HDL measures (M = 

49.88, STD = 16.48) were not transformed.	
  

(v)  Circulating levels of high-sensitivity CRP in mg/dL, were assayed on a 

SYNCHRON LX System (Beckman Coulter, Inc., Brea, California, with 

precision values of 5.0 %CV within-run and 7.5 %CV total for serum 

assays) in the Clinical Services Laboratory of the Department of 

Psychiatry at the University of Pittsburgh. Prior to analyses, CRP 

values (M = 0.28, SD = 0.47, range = 0.02 to 3.7) were natural log 

transformed because of a skewed distribution. 	
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(vi) Interleukin-6 (IL-6) levels in pg/mL were determined using a high 

sensitivity quantitative sandwich enzyme immunoassay kit (R & D 

Systems). IL-6 levels were extrapolated from a standard curve with 

linear regression from a log-linear curve. All samples were run in 

duplicate and the average coefficient of variation (CV) between 

samples was < 10%. Prior to analysis, IL-6 values (M = 1.79, STD = 

1.84) were natural log transformed. 

(vii) Adiponectin was measured using a radioimmunoassay procedure 

developed by Linco Research, Inc (see Supplementary Materials, 

Section 1.2 for more information).  Prior to analysis, adiponectin values 

(M=12.61, STD = 7.03) were natural log transformed to adjust for 

skew. 

Skew for each variable was determined using a QQ plot and significant skew 

determined when the r-squared comparison against a Gaussian distribution was 

less than 0.90.	
  

	
  

Diffusion tensor imaging.	
  MRI was performed on a 3 Tesla Trio TIM whole-body 

MRI scanner (Siemens, Erlangen, Germany), equipped with a 12-channel 

phased-array head coil. Diffusion tensor imaging (DTI) was performed using a 

pair of pulsed-gradient, spin-echo sequences with a single-shot echo-planar 

imaging (EPI) readout. A parallel imaging algorithm (generalized auto-calibrating 

partial-parallel acquisition; GRAPPA) was applied during diffusion imaging to 

reduce echo-planar distortion. DTI parameters were: time-to-repetition 
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(TR)=5800ms; time-to-inversion (TI)=2500ms; time-to-echo (TE)=91ms; flip angle 

(FA)=90°; pixel size=2 x 2mm; resolution = 128 x 128 (with field-of-view 

[FOV]=256 x 256mm); 43 slices of 3mm thickness with no gap; and total imaging 

time=6 min and 19 sec. Diffusion-sensitizing gradient encoding was applied in 30 

uniform angular directions with a diffusion weighting of b=1000s/mm2. A 

reference image with no diffusion gradient (b=0) was also acquired. The 

acquisition sequence was repeated twice to improve the DTI signal-to-noise ratio.	
  

 All DTI data were processed using the FSL Diffusion Toolbox (v2.0; 

http://www.fmrib.ox.ac.uk/fsl/fdt/index.html), which encompassed the following 

steps: correction for motion and eddy current distortions by affine registration to 

the reference image, removal of skull and non-brain tissue, and calculation of 

diffusion parameters by fitting the diffusion images to a diffusion tensor model. 

The voxel-wise eigenvalues λ1, λ2, λ3 and the eigenvectors of the diffusion tensor 

were computed from each participant’s image. λ1 corresponds to the largest 

eigenvalue reflecting water diffusivity parallel to the principle fiber direction (axial 

diffusivity, AD), and λ2 and λ3 correspond to perpendicular water diffusivity (radial 

diffusivity, RD).  A weighted ratio of the standard deviation of these eigenvalues 

over the mean produces an estimate of fractional anisotropy (FA) in the voxel. FA 

is a common white matter measure derived from DTI, and it represents the 

‘shape’ of the underlying water diffusion in each voxel. As barriers, like axons, 

neurofilaments, and myelin, restrict water movement water diffusion becomes 

more anisotropic (Hagmann et al. 2006). Hence, an FA value of 0 indicates 

perfectly spherical diffusion (i.e., no barriers), whereas an FA value of 1 indicates 
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water that moves in a perfect line as constrained by surrounding barriers. In this 

way, larger FA values are assumed to reflect a greater ‘integrity’ of the barriers 

constraining the directional diffusion of water, although the direct relationship 

between FA and underlying axonal integrity is still ambiguous (see (Jones et al. 

2013)). 

 All FA images were normalized to the 1x1x1mm MNI152 stereotaxic 

space via the FSL FA template (FMRIB58_FA). This was done by combining two 

transformations: (i) a nonlinear registration of each participant’s FA image to the 

FMRIB59_FA template, and (ii) an affine transformation of the template to 

MNI152 space. These non-linear and linear normalization parameters were then 

applied to the axial and radial diffusivity maps as well. 

 Analysis was performed both using a whole brain cluster analysis and an 

isolated region of interest (ROI) approach. To determine the spatial distribution of 

FA associations, we identified clusters of voxels using an edge-based 

connectivity approach (Thurfjell et al. 1992). We corrected for multiple 

comparisons using a false-discovery-rate (Genovese et al. 2002) at the voxel-

level-threshold of 0.05 and isolated consistent clusters at a spatial an extent 

threshold of k ≥ 20 contiguous voxels.	
  ROIs were defined using an established 

atlas of a priori, anatomically defined white matter regions of interest (Mori et al. 

2008).  This atlas identifies 48 segments of core white matter pathways in both 

hemispheres. A list of the ROIs is shown in Supplementary Table 1. 

Insert Inline Supplementary Table 1 Here	
  

	
  



 
 
Pathways from adiposity to white matter microstructure	
  

Indirect pathway analysis.	
  Mediation analyses were performed by a regression 

approach with permutation based confidence interval estimation approach 

(Preacher and Hayes 2008) using the Bootstrap Regression Analysis of 

Voxelwise Observations (BRAVO) toolbox 

(https://sites.google.com/site/bravotoolbox).  Given previously reported effect 

sizes (Mueller et al. 2011; Gianaros et al. in press; Verstynen et al. 2012), our 

sample size afforded enough statistical power to apply a multiple mediator 

analysis to isolate indirect pathways linking changes in adiposity to variation in 

white matter microstructure (Mackinnon et al. 2002).  All variables were z-scored 

prior to analysis, permitting a comparison of effect sizes across mediation 

models. Total path effects (c paths) were modeled using ordinary least squares 

regressions of FA values on each component variable, after controlling for age, 

sex and education (i.e., by a similar model as in Equation 3 below, but without 

mediation terms). Direct path effects (c’ paths) were modeled as the association 

of a given the Adiposity latent variable with FA values, after controlling for age, 

sex, education and mediator variables corresponding to the indirect paths. 

Indirect path effects were modeled as the product of the association of the 

Adiposity latent variable (a paths) with the mediating variables and the 

associations of the mediating variables with FA values (b paths). All potential 

mediating pathways were evaluated simultaneously in a single regression model 

(i.e., multiple mediator modeling).   

 The parameters a, b and c’ were determined by the following ordinary 

least squares regression models	
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M = aXAdiposity + !1CAge + !2CSex + !3CEducation +"   (eq. 1)	
  

YFA = c 'XAdiposity + bM + !1CAge + !2CSex + !3CEducation +"  (eq. 2)	
  

where YFA is the nx1 vector of FA values, n is the number of subjects with viable 

FA images (N = 145, see below) and η reflects noise in the model.  M is the nxm 

vector of mediator variables, where m is the number of mediating factors being 

evaluated. When m>1, M is a matrix and thus the first equation is a multivariate 

regression problem wherein b becomes a 1xm vector instead of a scalar value. 

The vectors CAge, CSex and CEducation are nuisance covariates, with effect sizes f1, 

f2 and f3 respectively, and h is the residual error in each model. The strength of 

the indirect pathway is determined as the product of the a and b coefficients (i.e., 

a*b).	
  

A bootstrap permutation test approach was used to evaluate the statistical 

confidence and significance of the direct and indirect pathways at each voxel 

(Preacher and Hayes 2008). For each iteration of the algorithm, the values in the 

variable vectors (XAdiposity, YFA, and M) were scrambled independently. The 

values for a, b, c’ and a*b from these permuted models were stored in a separate 

matrix, and this process was repeated for 500 iterations per voxel. The 

significance of the direct and indirect paths was determined from the distribution 

of bootstrapped values using a bias-corrected and accelerated method (Diciccio 

and Efron 1996) at a one-tailed criterion of a of 0.025. 	
  

In order to estimate the probability of observing spurious significant 

pathways (i.e., Type-I error rate), we ran a set of simulated mediation models 

where the dependent and mediator variables were random noise vectors. For the 
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total pathway analysis, we generated an nx1 random independent vector (Xsim), 

where n is the number of subjects, that was drawn from a standard normal 

distribution and was selected so as not to be correlated with any of the 

components (maximum allowed r = 0.025).  We then used this Xsim variable to 

regress on whole-brain FA maps as described above, including controlling for 

age, sex and education.  For the mediation pathway analysis, the dependent 

variable was left as the XAdiposity and an nx4 matrix, Msim, was generated from a 

standard normal distribution to replace the mediating factors.  As with Xsim, each 

column in Msim was selected so as to not be correlated with any of the potential 

mediators. Both the simulated total pathway and mediation pathway analyses 

were repeated 20 times in order to generate 95% confidence intervals of the 

whole-brain distribution of model parameters (c, c’, a, b, & a*b) based on chance.  

The confidence interval range was adjusted to account for multiple comparisons 

such that 	
  

95% CI = µ ±!(1"#1/n )$
n  (eq. 3)	
  

where µ is the mean correlation across voxels for the random noise model, σ is 

the variance, n is the number of comparisons in the set (i.e., 5 for total pathway 

comparisons, 4 for mediation pathways) and a = 0.05.  This adjusted interval 

provides a chance detection rate for the whole-brain analyses. 

 For these analyses, white matter voxels were selected from the raw DTI 

images by identifying voxels with FA values greater than 0.3 to increase the 

likelihood of excluding gray matter voxels, and only data from the smoothed FA 

maps were used for mediation regression analyses (4mm full-width half-
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maximum smoothing kernel). This smoothing kernel was used in order to 

accommodate for coregistration errors in the FA normalization process as well as 

meet the assumptions of Gaussian noise in the spatial statistical analysis. 

Processing and analysis were performed iteratively for each white matter voxel 

and began by extracting FA values for each participant. 	
  

 Finally, to quantify chance expectation in both the total and mediation 

pathway analysis, we modeled a set of simulated experiments where the inputs 

and mediators are random noise terms (i.e., null-effect simulations).  All 

confidence intervals of chance detection rates were adjusted for multiple 

comparisons (Supplementary Methods, Section 1.3).   

 

Results 	
  

Adiposity-linked physiological pathways	
  

Given the large number of anthropometric and physiological measures collected, 

we first applied a latent variable analysis to derive a smaller number of five 

composite variables: Adiposity, BP, Dyslipidemia, Inflammation, and Glucose 

regulation.  Each latent variable was created using principal component analysis 

(PCA; princomp.m in Matlab) to isolate the dominant source of shared variance 

between the component variables.  This orthogonalizes the variance from the 

component variables but allows for comparison of relationships between PCA-

derived components. The Adiposity component was generated using BMI and 

waist circumference, and accounted for 91.02% of the shared variance between 

BMI and waist circumference.  While BMI and waist circumference are indirect 
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measures of adiposity, this PCA-derived Adiposity component identifies the 

shared variance between these two measures that reflects adiposity related 

unhealthy weight gain.  Remaining component measures were ordered so that 

they positively correlated with the Adiposity component.  The BP component was 

generated using systolic BP and diastolic BP and accounted for 86.02% of the 

shared variance.  The Dyslipidemia component was generated from the high-

density lipoprotein and log transformed triglyceride variables, which explained 

75.59% of the shared variance.  The Inflammation component was a composite 

of the log-transformed versions of the CRP and IL-6 variables and explained 

77.38% of the shared variance.  Finally the Glucose component was generated 

from the log transform of the fasting glucose and adiponectin measures, with 

65.14% of the shared variance explained by the principal component. 	
   

 Higher scores on the Adiposity factor were associated with older age (r = 

0.32, p = 0.035) and fewer years of education (r = -0.20, p = 0.007).  Using a 

logistic regression model, we failed to detect a significant relationship between 

Adiposity and gender (β = -0.02, p = 0.21). Table 1 shows the correlations 

between each of the component variables. Adiposity was significantly correlated 

with all four physiological factors. Within the potential mediators, we found 

moderate and positive correlations.  Of these inter-variable correlations, only the 

correlation between the inflammation and glucose components failed to pass 

significance threshold based on a Bonferroni correction for 6 comparisons 

(corrected p = 0.0085).	
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Adiposity and white matter microstructure	
  

Our analysis focused on the whole-brain pattern of anthropometric and 

physiological system effects in the brain.  Therefore the distribution of voxel 

coefficients across the entire brain was used as our key measure of interest, 

rather than focusing on specific clusters of regions. Similar to previous reports 

(Gianaros et al. in press; Verstynen et al. 2012), there was a predominantly 

negative Adiposity-FA association across the white matter voxels, after 

controlling for age, sex and education. This effect is expressed as a leftward shift 

in distribution of correlations across all white matter voxels, compared to the 

expectations of chance generated using the bootstrap test (Figure 1a). As a 

measure of this global effect, we computed the percentage of significant (p < 

0.025) positive and negative voxels (Table 2).  Consistent with previous 

observations (Mueller et al. 2011; Stanek et al. 2011; Xu et al. 2011; Gianaros et 

al. in press; Verstynen et al. 2012; Yau et al. 2012), we found more voxels with 

significant negative Adiposity-FA correlations than would be expected by chance 

(1,925 voxels versus 1,832 upper bound expected from the randomized 

simulations).  Only the radial diffusivity (RD) component of the diffusion signal 

correlated with differences in the Adiposity variable in these negative voxels 

(Table 2). Interestingly, there were fewer voxels with positive associations than 

would be predicted by chance, consistent with a global negative shift in FA 

values with higher levels of adiposity. As with the negatively associated voxels, in 

positively associated voxels only RD was correlated with the Adiposity factor.  
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 Voxels with significant Adiposity correlations voxels were generally 

clustered in well-defined, and often, bilateral regions (Figure 2a).  Of the 48 a 

priori white matter ROIs tested (see Experimental Procedures), 6 had more 

significant negative voxels than expected by chance: the genu of the corpus 

callosum, the left inferior cerebellar peduncle, the left and right superior 

cerebellar peduncle, and the left and right anterior segments of the corona 

radiata (Supplementary Table 1).	
  

 

Physiology white matter relationships 

Unlike Adiposity, the BP latent variable did not show a global shift in the 

distribution of BP-FA correlations (Figure 1b). While the mode of this distribution 

overlapped zero, we found slightly more positive voxels than expected by chance 

(1,640 voxels); however, the rate of significant negative voxels fell within the 95% 

confidence interval of chance (Table 2). Within the positive clusters, both the 

axial and radial components of diffusivity correlated with BP (Table 2). These 

clusters were distributed across white matter voxels, with the largest found 

bilaterally in the internal and external capsules (Figure 2b).  Out of 48 ROIs, 19 

had more significant positive voxels than expected by chance (based on the 95% 

confidence interval from random model simulations) (Supplementary Table 1). 

 The Dyslipidemia factor had similar white matter effects as BP.  The 

overall distribution of Dyslipidemia-FA associations had a mean near zero and 

overlapped with the distribution of chance estimated from the bootstrap 

simulations (Figure 1c).  However, there was a slightly longer tail on the positive 
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end of the distribution, with more significant positive voxels than expected by 

chance (3,007 voxels; Table 2).  Unlike BP, however, only the radial component 

of the diffusivity signal correlated with the Dyslipidemia factor in these positive 

voxels (Table 2).  The positively associated voxels were distributed throughout 

the brain, but heavily clustered in regions containing corona radiata projections 

(Figure 2c).  Far more ROIs showed significant positive associations with 

Dyslipidemia, 30/48, than were found with BP (Supplementary Table 1). 	
  

 The Inflammation factor had a similar association to white matter as 

Adiposity, with the distribution of FA correlations being shifted in a negative 

direction (Figure 1d). Inflammation had the largest rate of significant voxels out of 

all the components tested, with over 13% (7,385 voxels) of the white matter 

voxels having a significant negative association with Inflammation (Table 2), over 

four times the upper bound of the adjusted 95% confidence interval of chance 

(3.36% of voxels).  In these voxels with negative associations, Inflammation was 

also associated with a change in the radial, but not axial, component of the 

diffusion signal.  As with Adiposity, the detection rate of negative Inflammation-

FA associations fell below the lower bound of the confidence interval from 

chance, consistent with a global shift in FA with increased Inflammation.  The 

clusters of negative voxels were distributed throughout the brain (Figure 2d), with 

37 out of 48 ROIs showing significant negative associations with Inflammation 

(Supplementary Table 1).	
  

 The Glucose regulation factor showed a similar, albeit weaker, negative 

association with FA as Inflammation (Figure 1e).  Nearly twice as many voxels 
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had significant negative associations (3,574 voxels) than expected by chance 

from the random simulations (Table 2). In these negative voxels, only changes in 

radial diffusivity correlated with the Glucose factor.  Similar to Inflammation, the 

significant clusters were distributed throughout most of the white matter voxels 

(Figure 2e), with 33/48 ROIs showing more significant negative voxels than 

expected by chance (Supplementary Table 1).  While there were a few dense 

clusters of significant positive FA associations, particularly in the corona radiata, 

the overall number of voxels with significant positive associations was not outside 

the confidence intervals of chance. 	
  

	
   In general there was a modest degree of overlap of the expression of the 

anthropometric and physiological effects on FA.  These are summarized in the 

Supplementary Materials (Supplementary Results, Section 2.1).  	
  

	
  

Mediating pathways between adiposity and white matter	
  

To determine indirect mediating pathways between Adiposity and white matter 

(i.e., Adiposity to physiological system to FA), we adopted a permutation analysis 

approach (Preacher and Hayes 2008). Our first goal was to determine the 

chance detection rates in a set of 20 simulated experiments where the mediating 

variables had no correlation with Adiposity or the four physiological factors (see 

Experimental Procedures).  Out of 80 simulated indirect pathways, the upper 

bound of the 95% confidence interval for detecting a spuriously significant voxel 

was 26.28%, after a Bonferroni correction for multiple comparisons. 



 
 
Pathways from adiposity to white matter microstructure	
  

 All four physiological factors had more voxels with significant indirect 

pathways than would be expected by chance (Figure 3a).  The largest number of 

indirect pathway voxels was the Inflammation factor, followed by the 

Dyslipidemia, BP, and Glucose factors. In general, clusters of significant voxels 

were distributed throughout the white matter voxels in regions similar to those 

found in the original physiology-FA regressions (see Figure 4). Figure 5 shows 

histograms of the indirect pathways for all four physiological factors.  Subset 

histograms show the distribution of statistically significant positive (red) and 

negative (blue) voxels.  Both the BP and Dyslipidemia factors had a higher ratio 

of positive effects, with an overall global shift in the distribution of coefficients in a 

positive direction.  There were 50% more positive voxels in the BP distribution 

(33.82% positive vs. 22.47% negative) and 245% more in the Dyslipidemia 

distribution (55.57% positive vs. 16.12% negative).  In contrast, Inflammation had 

a very strong negative shift in the indirect pathway (a*b) coefficients, with nearly 

six times as many negative voxels (69.04% of voxels) as positive (10.95%).  

Finally, the Glucose regulation factor had a fairly equal distribution of positive 

(28.11%) and negative (23.98%) effects.  

 These indirect pathways can only be considered statistical mediators 

when both the indirect pathway and the original physiological-FA effects are both 

significant in the same voxel (given that Adiposity is also correlated with each 

physiological factor). Based on the random simulation models, there is a 95% 

chance of seeing this happen spuriously in a maximum of 2.3% of white matter 

voxels.  We found much higher detection rates for all four physiological factors.  
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Inflammation had the greatest detection rates with 13.8% of all white matter 

voxels being significant, followed by the Glucose (6.7%), Dyslipidemia (6.5%) 

and BP (4.4%) factors. The location of these mediating voxels overlapped nearly 

perfectly with the location of the original correlation results for each physiological 

pathway (see Figure 2): BP (96.6% overlap), Dyslipidemia (94.7%), Inflammation 

(99.9%) and Glucose (82.4%).   

 The Inflammation effects are especially interesting in their spatial similarity 

to the original Adiposity effects.  A vast majority (97%) of the voxels with 

significant Inflammation-FA relationships (Figure 2d) were also mediators for 

Adiposity-FA effects. We elaborate on the relevance of this overlap in the 

Discussion. 

 

Competing influences on white matter. 

The direction of the relationships between each physiological factor and FA 

suggests that they exert competing effects on the underlying white matter signal, 

with some relating to higher FA and others (i.e., Inflammation) lower FA. Since 

Adiposity is positively correlated with all the physiological variables, it suggests 

that the original regression results between Adiposity and FA, called the total 

pathway, may be weaker due to these competing influence on FA. By including 

these indirect pathways in the mediation model, we can control for these 

countermanding effects in the estimate of the direct (c’) pathway, which is the 

relationship between Adiposity and FA after controlling for the physiological 

mediators. Consistent with this interpretation, we detected nearly eight times as 
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many significant positive c’ voxels (4.01%; 95% CI UB = 1.03%) and fifty percent 

more negative voxels (5.31%; 95% CI UB = 3.98%) than were detected in the 

original total (c) pathway analysis.  	
  

 Because controlling for the underlying physiological factors improved 

detection of significant Adiposity-FA relationships, we next determined how 

influential each indirect pathway was on the change in the Adiposity-FA 

coefficients.  We calculated the difference between the total (c) and direct (c') 

Adiposity-FA pathways.  This vector of difference scores was then subjected to a 

regression analysis where the indirect pathway coefficients for each physiological 

variable were included as independent variables.  Accounting for all indirect 

pathways explained 49.69% of the variance in the change in Adiposity-FA 

relationship across all white matter voxels.  Follow up analyses for each pathway 

separately revealed that BP regulation explained the most variance (12.58%), 

followed by Dyslipidemia (7.93%), Inflammation (6.59%) and Glucose (1.71%).  

  

Discussion 

In a healthy cross-sectional sample of adults, we confirmed that higher levels of 

adiposity associate with a global decrease in FA throughout the brain that 

appears to occur predominantly through an increase in radial diffusivity (Mueller 

et al. 2011; Stanek et al. 2011; Xu et al. 2011; Gianaros et al. in press; Verstynen 

et al. 2012; Yau et al. 2012). We also report the novel finding that four 

simultaneously measured physiological systems associated with increased 

adiposity showed a mixture of numerically positive and negative influences on 
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the white mater signal, with much stronger effect sizes than the anthropometric 

adiposity measure. The latent variables reflecting systemic inflammation and 

glucose regulation most strongly resembled the pattern of effects seen with the 

adiposity factor. In contrast, the latent variables for blood pressure and 

dyslipidemia were strongly and positively correlated with FA, but this effect was 

isolated in specific clusters rather than globally expressed throughout white 

matter. 

 More importantly, here we report for the first time that several peripheral 

physiological systems serve as mediating pathways for the relationship between 

elevated adiposity and white matter structure.  There were significantly more 

voxels with indirect pathways than predicted by chance for all four physiological 

systems. However, rather than being uniformly expressed, we find that the 

physiological mediators may interact in opposing ways.  Consistent with this 

interpretation, we found that: (a) the extent and direction of total physiological 

effects on FA across the white matter voxels varied, (b) accounting for 

physiological factors in the mediation model resulted in more significant 

Adiposity-FA relationships than expected by chance, and (c) including all four 

mediating pathways accounted for nearly 50% of the change between the total 

and direct Adiposity-FA pathways. 

 Our results highlight two possible neurobiological routes by which variation 

in physiological systems may influence the morphology of the underlying white 

matter pathways.  First, there is a strong global negative pattern that is 

distributed throughout the white matter voxels and loads heavily onto systemic 
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inflammation (see also (Gianaros et al. in press)) and partially onto glucose 

regulation. Factors linked to to this global signal change are correlated with 

changes in the radial diffusivity component of the DTI signal, resembling patterns 

seen in the diffusion signal of animal models of demylenation (Song et al. 2005; 

Budde et al. 2009). Physiologically this pattern may reflect a common peripheral 

molecular system that adversely impacts the central nervous system (for full 

review, see (Rosano et al. 2012)). Central adipose tissue, particularly white 

adipose tissue, is a source of pro-inflammatory cytokines, such as IL-6, IL-1β, 

and tumor necrosis factor (TNF)-α. In the periphery, these cytokines stimulate 

production of CRP and fibrinogen.  In animal models, over expression of TNF-α 

with obesity is linked to increased insulin resistance (Hotamisligil et al. 1993; 

Barzilay et al. 2001), which is one possible mechanism that explains why obese 

animals with elevated circulating CRP levels have a two-fold increase for 

developing Type-II diabetes (Uysal et al. 1997).  In the central nervous system, 

both the pro-inflammatory cytokines and insulin are believed to influence cell 

integrity by introducing a local inflammatory response in the microglia (Rosano et 

al. 2012).  In this way, the global negative signal change may reflect a 

distributed, immunity-linked influence on myelin morphology itself, which may 

have secondary implications for neural function. 

 The second pattern reflects localized variation in the diffusion signal linked 

to vascular physiological factors, including blood pressure, dyslipidemia, and, to 

a smaller extent, insulin systems. This local signal change is manifested as an 

increase in FA, with non-specific associations to both axial and radial diffusivity. 
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At this point, it is difficult to interpret the neurobiological implications of this 

pattern of results.  In animal models, vascular insults, such as microscopic 

ischemic damage from lacunar strokes, correlate with changes in both the axial 

and radial diffusivity components (Wang et al. 2008; Boretius et al. 2012); 

however, the direction of these changes is opposite to what we detected here 

(i.e., FA and axial diffusivity decrease, radial diffusivity increases).  Also, the 

positive FA associations with BP, dyslipidemia, and glucose control all fall in 

roughly the same area of the white matter (see Figure 2b, c, and e), along the 

corona radiata near the intersection of several crossing pathways.  Given the 

fiber crossings in this area, it is possible that underlying axonal integrity is 

reducing with these factors, but the simplicity of the single tensor model cannot 

adequately capture the nature of these changes.  Future studies with more 

sophisticated models of the underlying diffusion patterns, such as orientation 

distribution functions (Wedeen et al. 2005), may be able to better resolve this odd 

pattern of FA associations. 

 When interpreting the underlying differences in white matter morphology, it 

is important to keep in mind that our sample was a generally healthy segment of 

the population.  Thus the patterns we observed reflect natural, sub-clinical 

variation in white matter microstructure, rather than pathological white matter 

damage, and are not confounded by secondary factors related to pathological 

disease states. The bimodal pattern of global inflammation-linked drops in FA 

and localized vascular-linked increases in FA is in agreement with the recent 

prediction that both metabolic and cardiovascular systems may influence the 
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central nervous system through mechanisms that depend on neurovascular 

integrity and are independent of neurovascular integrity (Fung et al. 2012). 

Although, it should be pointed out that 50% of the variance in the adiposity-FA 

relationship is yet unaccounted for, suggesting additional mediating mechanisms 

may yet account for obesity and white matter relationships. Nonetheless, 

understanding the functional implications of these different associations should 

be a goal of future work.   

 Finally, the inherent limitations of a cross-sectional design restrict our 

ability to infer the directionality of these anthropometric, physiological and white 

matter relationships.  In humans this can be achieved through longitudinal 

studies using targeted interventions for obesity, such as exercise or 

pharmacological studies, where direct changes in peripheral mechanisms can be 

mapped to changes in white matter architecture and subsequent cognitive and 

behavioral outcomes. 
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Table 1. Correlations between the PCA component factors.  Asterisks indicate 

p<0.025 (*) or p<0.001 (**), determined using a bootstrap permutation test. 

 
 BP Dyslipidemia Inflammation Glucose 

Adiposity 0.43** 0.56** 0.51** 0.35** 

BP  0.36** 0.26** 0.21* 
Dyslipidemia   0.28** 0.52** 

Inflammation    0.18* 
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Table 2. Global white matter associations.  Asterisks indicate where the 

percentage of significant FA associations. falls outside the bounds of the 95% 

confidence interval (CI) estimated from the random simulations (bounds shown in 

column section labels). Relations to axial (AD) and radial (RD) diffusivity for the 

voxels with significant FA associations are shown in the adjacent columns.  

 

	
  

 

Positive Effects (95% CI = 0.86% - 

2.70%) 

 

Negative Effects (95% CI =1.08% - 

3.36%) 

 
% 
Sig. 

AD 
Cxy 

p 
value 

RD 
Cxy p value % Sig 

AD 
Cxy 

p 
value 

RD 
Cxy 

p 
value 

Adiposity 0.53* -0.04 0.652 -0.34 0.000 3.53* -0.16 0.052 0.25 0.008 

BP 3.01* 0.18 0.026 -0.31 0.000 1.56 -0.16 0.050 0.23 0.002 

Dyslipidemia 5.51* 0.10 0.236 -0.31 0.000 1.38 -0.17 0.028 0.21 0.024 

Inflammation 0.27* 0.11 0.238 -0.31 0.000 13.54* -0.18 0.066 0.24 0.010 

Glucose 1.64 0.36 0.000 -0.20 0.058 6.55* -0.09 0.392 0.38 0.002 
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Figure 1. Global distributions of the regression coefficients showing the 

relationship between each latent variable and fractional anisotropy (FA) across 

all white matter voxels. Black distributions show the observed values.  Grey 

distributions show the estimated null distribution determined from bootstrapped 

simulations. PDF, probability density function; CDF, cumulative distribution 

function. 
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Figure 2. The spatial distribution of positive (red voxels) and negative (blue 

voxels) associations between each latent variable and FA.  Clusters are 

thresholded to a minimum of 20 connected voxels and a cluster-wise false 

discovery rate of 0.05.  The z-plane coordinates of each slice, in MNI space, are 

presented at the bottom. A) Adiposity; B) BP, Blood Pressure factor; C) Dyslp, 

Dyslipidemia factor; D) Inflam, Inflammation factor; E) Glucos, Glucose regulation 

factor. 
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Figure 3. A) Illustration of the indirect pathway analysis for all four factors tested.  

Percentages show the number of voxels with statistically significant (p < 0.025) 

indirect pathways, and depicted by the weight of the arrows. Light gray arrows 

show average positive effects, while dark gray shows average negative effects.  

The upper bound of the chance 95% confidence interval is 26.54%.  The mean 

and standard deviation for the indirect pathway coefficients is shown adjacent to 

each pathway label. Same factor labels as Figure 2. B) Percent of voxels with 

significant Adiposity-FA associations.  Error bars show 95% confidence interval 

from 20 random simulations, followed by the detection rate for the original 

regression model (*) and the direct pathway model (Δ) after accounting for the 

indirect physiological pathways. 
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Figure 4. Distribution of indirect pathways coefficients.  Dashed lines on the color 

bars show the median coefficient values for significant positive and negative 

effects. Labeling conventions are the same as Figure 2.  
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Figure 5.  Distributions of indirect pathway coefficients across all white matter 

voxels.  Black distributions show across all voxels.  Blue distributions show 

voxels with significant (p<0.025, bootstrapped) negative effects, while red 

distributions show significant positive effects. 

 


