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Being overweight or obese is associated with reduced white matter integrity throughout the brain. It is not yet
clear which physiological systems mediate the association between inter-individual variation in adiposity and
whitematter.We testedwhether composite indicators of cardiovascular, lipid, glucose, and inflammatory factors
would mediate the adiposity-related variation in white matter microstructure, measured with diffusion tensor
imaging on a group of neurologically healthy adults (N = 155). A composite factor representing adiposity (com-
prised of bodymass index andwaist circumference)was associatedwith smaller fractional anisotropy and great-
er radial diffusivity throughout the brain, a pattern previously linked to myelin structure changes in non-human
animal models. A similar global negative association was found for factors representing inflammation and, to a
lesser extent, glucose regulation. In contrast, factors for blood pressure and dyslipidemia had positive associa-
tions with white matter in isolated brain regions. Taken together, these competing influences on the diffusion
signal were significant mediators linking adiposity to white matter and explained up to fifty-percent of the
adiposity–whitematter variance. These results provide the first evidence for contrasting physiological pathways,
a globally distributed immunity-linked negative component and a more localized vascular-linked positive
component, that associate adiposity to individual differences in the microstructure of white matter tracts in
otherwise healthy adults.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Adiposity, a condition of excessive fat accumulation in the body, has
emerged as a growing public health problem in theUnited States (Odgen
and Carroll, 2010) and an emerging concern globally (Kelly et al., 2008).
Increased accumulation of adipose tissue in the periphery of the body
confers risk for changes in severalmetabolic and cardiovascular systems,
including elevated blood pressure, dyslipidemia, insulin resistance, and
systemic inflammation (Bastard et al., 2006; Johnson et al., 2012)—core
features of themetabolic syndrome (Marsland et al., 2010). Yet elevated
adiposity is also associated with impairments in cognitive function
(Brogan et al., 2010, 2011; Brown and Thore, 2011; Horstmann et al.,
2011; Nederkoorn et al., 2006; Yaffe, 2007; Yates et al., 2012) and with
changes in both the structure and function of the central nervous
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system (Cazettes et al., 2011; García-García et al., 2012; Gianaros et al.,
in press; Haltia et al., 2007; Hendrick et al., 2011; Kullmann et al.,
2011; Mueller et al., 2011; Portet et al., 2012; Segura et al., 2010; Stice
et al., 2008; Verstynen et al., 2012; Walther et al., 2010; Yau et al.,
2012). In particular, adiposity has been inversely related to multiple
measures of whitematter microstructure, as revealed by diffusion imag-
ing methods (Gianaros et al., in press; Mueller et al., 2011; Stanek et al.,
2011; Verstynen et al., 2012; Xu et al., 2011; Yau et al., 2012). Further
evidence suggests that adiposity and obesity are associatedwith altered
functional connectivity across brain regions (García-García et al., 2012;
Kullmann et al., 2011), pointing to connectivity as a plausible neural
basis for the altered cognitive function that occurs with elevated
obesity.

While inherent differences in brain morphology and function may
drive behaviors that increase adiposity, it is also possible that the
adiposity-related alterations in peripheral physiological systems may
lead to unfavorable changes in neural connectivity. In support of this
hypothesis, many of the peripheral metabolic and vascular changes as-
sociatedwith increased adiposity have been linked, either directly or in-
directly, to changes in measures of neural integrity (Fung et al., 2012;
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Szczepanska-Sadowska et al., 2010; Thaler et al., 2012; Watson and
Craft, 2006; Yates et al., 2012).

Accordingly, we set out to test the hypothesis that variation in
obesity-linked physiological pathways mediates the relationship be-
tween adiposity and neural connectivity, measured at the level of
whitemattermicrostructure. Applyingwhole-brainmediation analyses
on diffusion imaging measures of white matter microstructure, in a
large sample of neurologically healthy adults, we evaluated two predic-
tions. Based on prior findings (Gianaros et al., in press; Verstynen et al.,
2012), we predicted that adiposity (body mass index, BMI, and waist
circumference) would relate to lower fractional anisotropy (FA) scores
through an increase in radial diffusivity (RD). Second, we testedwheth-
er adiposity–whitematter relationships would be differentiallymediat-
ed by variation in blood pressure (BP), dyslipidemia (circulating
triglycerides and high-density lipoproteins), inflammation (C-reactive
protein, CRP, and interleukin (IL)-6), and/or glucose control (fasting
glucose and adiponectin). Characterizing such mediating pathways
would provide novel insights into the mechanisms by which increased
adiposity might influence neurocognitive health.
Materials & methods

Participants

Participants were 155 community-dwelling adults (78 men, 77
women; mean age = 40.7 ± 6.2 SD, range = 30–50 years) who
were recruited via mass mailings to residents of Allegheny County,
Pennsylvania (U.S.A.). All participants were screened for pre-existing
health conditions. See Supplementary materials (Section 1.1) for a
list of these criteria. Informed consent was obtained with approval of
the University of Pittsburgh Institutional Review Board. The ethnicity
of the sample was Caucasian (70.3%), African American (21.9%), Asian
(5.8%), andmultiracial/other (1.9%). Results of different analyses testing
non-overlapping hypotheses on this diffusion imaging data set in rela-
tion to socioeconomic status have been reported elsewhere (Gianaros
et al., in press).

Assessment of anthropometric and physiological variables

The primary measures collected for this study were:

(i) Waist circumference (an anthropometric indicator of relative
adiposity, measured at end-expiration to the nearest 1/2 in.
with a tape measure centered at the umbilicus) (M = 35.64,
SD = 5.17 in., range = 25–48 in.).

(ii) Body mass index (BMI; weight in lb/(height in in.2); M = 27.15,
SD = 4.82, range = 18.5–42.3). Therewere 58 lean participants
(BMI b 25), 57 overweight participants (25 b BMI b 30) and 40
obese participants (BMI > 30).

(iii) Seated, resting blood pressure (BP) wasmeasured from the non-
dominant arm with an oscillometric device (Critikon Dinamap
8100, Johnson & Johnson, Tampa, FL). Participants provided 3
BP measures taken 2 min apart after a ~20 min acclimation pe-
riod, with the average of the last 2 of the 3 BP readings serving
as the resting systolic (SBP) and diastolic (DBP) blood pressures
(SBP, M = 121.44, STD = 9.48; DBP, M = 73.25, STD = 8.80).

(iv) Following an overnight fast, blood was drawn prior to magnetic
resonance imaging (MRI) scanning. Serum was analyzed using a
Synchron CX chemistry analyzer (Beckman-Coulter, Brea, CA)
using reagents for glucose, triglyceride, high-density lipoprotein
(HDL) and total cholesterol. Prior to analysis, measures of glucose
(M = 88.21, STD = 12.81) and triglycerides (M = 81.07.10,
STD = 16.49) were natural log transformed because of a skewed
distribution. HDL measures (M = 49.88, STD = 16.48) were not
transformed.
(v) Circulating levels of high-sensitivity CRP in mg/dL, were
assayed on a SYNCHRON LX System (Beckman Coulter, Inc.,
Brea, California, with precision values of 5.0%CV within-run and
7.5%CV total for serum assays) in the Clinical Services Laboratory
of the Department of Psychiatry at the University of Pittsburgh.
Prior to analyses, CRP values (M = 0.28, SD = 0.47, range =
0.02 to 3.7) were natural log transformed because of a skewed
distribution.

(vi) Interleukin-6 (IL-6) levels in pg/mL were determined using a
high sensitivity quantitative sandwich enzyme immunoassay
kit (R & D Systems). IL-6 levels were extrapolated from a stan-
dard curve with linear regression from a log-linear curve. All
sampleswere run in duplicate and the average coefficient of var-
iation (CV) between samples was b10%. Prior to analysis, IL-6
values (M = 1.79, STD = 1.84) were natural log transformed.

(vii) Adiponectin was measured using a radioimmunoassay proce-
dure developed by Linco Research, Inc (see Supplementary ma-
terials, Section 1.2 for more information). Prior to analysis,
adiponectin values (M = 12.61, STD = 7.03) were natural log
transformed to adjust for skew.

Skew for each variable was determined using a QQ plot and signif-
icant skew determined when the r-squared comparison against a
Gaussian distribution was less than 0.90.
Diffusion tensor imaging

All imaging was performed on a 3 Tesla Trio TIM whole-body MRI
scanner (Siemens, Erlangen, Germany), equipped with a 12-channel
phased-array head coil. Diffusion tensor imaging (DTI) was performed
using a pair of pulsed-gradient, spin-echo sequences with a single-
shot echo-planar imaging (EPI) readout. A parallel imaging algorithm
(generalized auto-calibrating partial-parallel acquisition; GRAPPA)
was applied during diffusion imaging to reduce echo-planar distortion.
DTI parameters were: time-to-repetition (TR) = 5800 ms; time-to-
inversion (TI) = 2500 ms; time-to-echo (TE) = 91 ms; flip angle =
90°; pixel size = 2 × 2 mm; resolution = 128 × 128 (with field-
of-view [FOV] = 256 × 256 mm); 43 slices of 3 mm thickness with
no gap; and total imaging time = 6 min and 19 s. Diffusion-
sensitizing gradient encoding was applied in 30 uniform angular direc-
tionswith a diffusionweighting of b = 1000 s/mm2. A reference image
with no diffusion gradient (b = 0) was also acquired. The acquisition
sequence was repeated twice to improve the DTI signal-to-noise ratio.

All DTI data were processed using the FSL Diffusion Toolbox (v2.0;
http://www.fmrib.ox.ac.uk/fsl/fdt/index.html), which encompassed
the following steps: correction for motion and eddy current distor-
tions by affine registration to the reference image, removal of skull
and non-brain tissue, and calculation of diffusion parameters by fitting
the diffusion images to a diffusion tensor model. The voxel-wise eigen-
values λ1, λ2, λ3 and the eigenvectors of the diffusion tensor were com-
puted from each participant's image. λ1 corresponds to the largest
eigenvalue reflecting water diffusivity parallel to the principle fiber di-
rection (axial diffusivity, AD), and λ2 and λ3 correspond to perpendicu-
lar water diffusivity (radial diffusivity, RD). A weighted ratio of the
standard deviation of these eigenvalues over the mean produces an es-
timate of fractional anisotropy (FA) in the voxel. FA is a common white
matter measure derived from DTI, and it represents the ‘shape’ of the
underlying water diffusion in each voxel. As barriers, like axons,
neurofilaments, and myelin, restrict water movement water diffusion
becomes more anisotropic (Hagmann et al., 2006). Hence, an FA value
of 0 indicates perfectly spherical diffusion (i.e., no barriers), whereas
an FA value of 1 indicates water that moves in a perfect line as
constrained by surrounding barriers. In thisway, larger FA values are as-
sumed to reflect a greater ‘integrity’ of the barriers constraining the di-
rectional diffusion of water, although the direct relationship between
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FA and underlying axonal integrity is still ambiguous (see Jones et al.,
2013).

All FA images were normalized to the 1 × 1 × 1 mm MNI152 ste-
reotaxic space via the FSL FA template (FMRIB58_FA). This was done
by combining two transformations: (i) a nonlinear registration of
each participant's FA image to the FMRIB59_FA template, and (ii) an
affine transformation of the template to MNI152 space. These non-
linear and linear normalization parameters were then applied to the
axial and radial diffusivity maps.

Analysis was performed both using a whole-brain cluster analysis
and an isolated region of interest (ROI) approach. To determine the
spatial distribution of FA associations, we identified clusters of voxels
using an edge-based connectivity approach (Thurfjell et al., 1992).
We corrected for multiple comparisons using a false-discovery-rate
(Genovese et al., 2002) at the voxel-level-threshold of 0.05 and isolated
consistent clusters at a spatial extent threshold of k ≥ 20 contiguous
voxels. ROIs were defined using an established atlas of a priori, anatom-
ically defined white matter regions of interest (Mori et al., 2008). This
atlas identifies 48 segments of core white matter pathways in both
hemispheres. A list of the ROIs is shown in the Inline Supplementary
Table S1.

Inline Supplementary Table S1 can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2013.04.075.

Indirect pathway analysis

Mediation analyses were performed by a regression approach
with permutation based confidence interval estimation (Preacher
and Hayes, 2008) using the Bootstrap Regression Analysis of
Voxelwise Observations (BRAVO) toolbox (https://sites.google.com/
site/bravotoolbox). Given previously reported effect sizes (Gianaros et
al., in press; Mueller et al., 2011; Verstynen et al., 2012), our sample
size afforded enough statistical power to apply a multiple mediator
analysis to isolate indirect pathways linking changes in adiposity to var-
iation in whitematter microstructure (Mackinnon et al., 2002). All vari-
ables were z-scored prior to analysis, permitting a comparison of effect
sizes across mediation models. Total path effects (c paths) were
modeled using ordinary least squares regressions of FA values on each
component variable, after controlling for age, sex and education (i.e.,
by a similar model as in Eq. (3) below, but without mediation terms).
Direct path effects (c′ paths) were modeled as the association of a
given the Adiposity latent variable with FA values, after controlling for
age, sex, education andmediator variables corresponding to the indirect
paths. Indirect path effects were modeled as the product of the associa-
tion of the Adiposity latent variable (a paths) with the mediating vari-
ables and the associations of the mediating variables with FA values
(b paths). All potential mediating pathways were evaluated simulta-
neously in a single regressionmodel (i.e., multiple mediator modeling).

The parameters a, b and c′were determined by the following ordi-
nary least squares regression models

M ¼ aXAdiposity þ ϕ1CAge þ ϕ2CSex þ ϕ3CEducation þ η ð1Þ

YFA ¼ c′XAdiposity þ bM þ ϕ1CAge þ ϕ2CSex þ ϕ3CEducation þ η ð2Þ

where YFA is the n × 1 vector of FA values, n is the number of subjects
with viable FA images (N = 145, see below) and η reflects noise in
the model. M is the n × m vector of mediator variables, where m is
the number of mediating factors being evaluated. When m > 1, M is
a matrix and thus the first equation is a multivariate regression prob-
lem wherein b becomes a 1 × m vector instead of a scalar value. The
vectors CAge, CSex and CEducation are nuisance covariates, with effect
sizes f1, f2 and f3 respectively, and η is the residual error in each
model. The strength of the indirect pathway is determined as the
product of the a and b coefficients (i.e., a ∗ b).
A permutation approach was used to evaluate the statistical
confidence and significance of the direct and indirect pathways at
each voxel (Preacher and Hayes, 2008). For each iteration of the
algorithm, the values in the variable vectors (XAdiposity, YFA, and M)
were scrambled independently. The values for a, b, c′ and a ∗ b
from these permuted models were stored in a separate matrix, and
this process was repeated for 500 iterations per voxel. The signifi-
cance of the direct and indirect paths was determined from the
distribution of bootstrapped values using a bias-corrected and accel-
erated method (Diciccio and Efron, 1996) at a one-tailed criterion of
0.025.

In order to estimate the probability of observing spurious signifi-
cant pathways (i.e., Type-I error rate), we ran a set of simulated me-
diation models where the dependent and mediator variables were
random noise vectors. For the total pathway analysis, we generated
an n × 1 random independent vector (Xsim), where n is the number
of subjects, that was drawn from a standard normal distribution and
was selected so as not to be correlated with any of the components
(maximum allowed r = 0.025). We then used this Xsim variable to re-
gress on whole-brain FA maps as described above, including control-
ling for age, sex and education. For the mediation pathway analysis,
the dependent variable was left as the XAdiposity and an n × 4 matrix,
Msim, was generated from a standard normal distribution to replace
the mediating factors. As with Xsim, each column inMsim was selected
so as to not be correlated with any of the potential mediators. Both
the simulated total pathway and mediation pathway analyses were
repeated 20 times in order to generate 95% confidence intervals of
the whole-brain distribution of model parameters (c, c′, a, b, &
a * b) based on chance. The confidence interval range was adjusted
to account for multiple comparisons such that

95%CI ¼ μ �Φ 1−α1=n
� �

σ� ffiffi
n

p ð3Þ

where μ is the mean correlation across voxels for the random noise
model, σ is the variance, n is the number of comparisons in the set
(i.e., 5 for total pathway comparisons, 4 for mediation pathways)
and a = 0.05. This adjusted interval provides a chance detection
rate for the whole-brain analyses.

For these analyses, white matter voxels were selected from the raw
DTI images by identifying voxels with FA values greater than 0.3 to in-
crease the likelihood of excluding gray matter voxels, and only data
from the smoothed FAmaps were used for mediation regression analy-
ses (4 mm full-width half-maximum smoothing kernel). This smooth-
ing kernel was used in order to accommodate for coregistration errors
in the FA normalization process as well as meet the assumptions of
Gaussian noise in the spatial statistical analysis. Processing and analysis
were performed iteratively for each white matter voxel and began by
extracting FA values for each participant.

Finally, to quantify chance expectation in both the total and media-
tion pathway analysis, we modeled a set of simulated experiments
where the inputs and mediators are random noise terms (i.e., null-
effect simulations). All confidence intervals of chance detection rates
were adjusted for multiple comparisons (Supplementary methods,
Section 1.3).

Results

Adiposity-linked physiological pathways

Given the large number of anthropometric and physiological mea-
sures collected, we first applied a latent variable analysis to derive a
smaller number of five composite factors: Adiposity, BP, Dyslipidemia,
Inflammation, and Glucose regulation. Each latent variable was created
using principal component analysis (PCA; princomp.m in Matlab) to iso-
late the dominant source of shared variance between the component

http://dx.doi.org/10.1016/j.neuroimage.2013.04.075
http://dx.doi.org/10.1016/j.neuroimage.2013.04.075
https://sites.google.com/site/bravotoolbox
https://sites.google.com/site/bravotoolbox


Table 1
Correlations between the PCA component factors. Asterisks indicate p b 0.025 (*) or
p b 0.001 (**), determined using a bootstrap permutation test.

BP Dyslipidemia Inflammation Glucose

Adiposity 0.43** 0.56** 0.51** 0.35**
BP 0.36** 0.26** 0.21*
Dyslipidemia 0.28** 0.52**
Inflammation 0.18*
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variables. This orthogonalizes the variance from the component vari-
ables but allows for comparison of relationships between PCA-derived
components. The Adiposity component was generated using BMI and
waist circumference, and accounted for 91.02% of the shared variance
between BMI and waist circumference. While BMI and waist circumfer-
ence are indirectmeasures of adiposity, this PCA-derived Adiposity com-
ponent identifies the shared variance between these two measures that
reflects adiposity-related, unhealthyweight gain. Remaining component
measures were ordered so that they positively correlated with the Adi-
posity component. The BP component was generated using systolic BP
and diastolic BP and accounted for 86.02% of the shared variance. The
Dyslipidemia component was generated from the high-density lipopro-
tein and log transformed triglyceride variables, which explained 75.59%
of the shared variance. The Inflammation componentwas a composite of
the log-transformed versions of the CRP and IL-6 variables and explained
77.38% of the shared variance. Finally the Glucose component was gen-
erated from the log transform of the fasting glucose and adiponectin
measures, with 65.14% of the shared variance explained by the principal
component.

Higher scores on the Adiposity factor were associatedwith older age
(r = 0.32, p = 0.035) and fewer years of education (r = −0.20, p =
0.007). Using a logistic regression model, we failed to detect a signifi-
cant relationship between Adiposity and gender (β = −0.02, p =
0.21). Table 1 shows the correlations between each of the component
variables. Adipositywas significantly correlatedwith all four physiolog-
ical factors. Within the potential mediators, we found moderate and
positive correlations. Of these inter-variable correlations, only the cor-
relation between the inflammation and glucose components failed to
pass significance threshold based on a Bonferroni correction for 6 com-
parisons (corrected p = 0.0085).
Fig. 1. Global distributions of the regression coefficients showing the relationship between
distributions show the observed values. Gray distributions show the estimated null distribut
cumulative distribution function.
Adiposity and white matter microstructure

Our analysis focused on the whole-brain pattern of anthropometric
and physiological system effects in the brain. Therefore the distribution
of voxel coefficients across the entire brainwas used as our keymeasure
of interest, rather than focusing on specific clusters of regions. Similar to
previous reports (Gianaros et al., in press; Verstynen et al., 2012), there
was a predominantly negative Adiposity–FA association across the
white matter voxels, after controlling for age, sex and education. This
effect is expressed as a leftward shift in distribution of correlations
across all white matter voxels, compared to the expectations of chance
generated using the bootstrap test (Fig. 1a). As a measure of this global
effect, we computed the percentage of significant (p b 0.025) positive
and negative voxels (Table 2). Consistent with previous observations
(Gianaros et al., in press; Mueller et al., 2011; Stanek et al., 2011;
Verstynen et al., 2012; Xu et al., 2011; Yau et al., 2012), we found
more voxels with significant negative Adiposity–FA correlations than
would be expected by chance (1925 voxels versus 1832 upper bound
expected from the randomized simulations). Only the radial diffusivity
(RD) component of the diffusion signal correlated with differences in
the Adiposity variable in these negative voxels (Table 2). Interestingly,
there were fewer voxels with positive associations than would be pre-
dicted by chance, consistent with a global negative shift in FA values
with higher levels of adiposity. Aswith the negatively associated voxels,
in positively associated voxels only RDwas correlated with the Adipos-
ity factor.

Voxels with significant Adiposity correlations were generally clus-
tered in well-defined, and often, bilateral regions (Fig. 2a). Of the 48 a
priori white matter ROIs tested (see Materials & methods), 6 had
more significant negative voxels than expected by chance: the genu of
the corpus callosum, the left inferior cerebellar peduncle, the left and
right superior cerebellar peduncle, and the left and right anterior seg-
ments of the corona radiata (Inline Supplementary Table S1).

Physiology-white matter relationships

Unlike Adiposity, the BP latent variable did not show a global shift in
the distribution of BP–FA correlations (Fig. 1b). While the mode of this
distribution overlapped zero, we found slightly more positive voxels
than expected by chance (1640 voxels); however, the rate of significant
each latent variable and fractional anisotropy (FA) across all white matter voxels. Black
ion determined from bootstrapped simulations. PDF, probability density function; CDF,



Table 2
Global white matter associations. Asterisks indicate where the percentage of significant FA associations falls outside the bounds of the 95% confidence interval (CI) estimated from
the random simulations (bounds shown in column section labels). Relations to axial (AD) and radial (RD) diffusivity for the voxels with significant FA associations are shown in the
adjacent columns.

Positive effects (95% CI = 0.86%–2.70%) Negative effects (95% CI = 1.08%–3.36%)

% Sig. AD Cxy p value RD Cxy p value % Sig AD Cxy p value RD Cxy p value

Adiposity 0.53* −0.04 0.652 −0.34 0.000 3.53* −0.16 0.052 0.25 0.008
BP 3.01* 0.18 0.026 −0.31 0.000 1.56 −0.16 0.050 0.23 0.002
Dyslipidemia 5.51* 0.10 0.236 −0.31 0.000 1.38 −0.17 0.028 0.21 0.024
Inflammation 0.27* 0.11 0.238 −0.31 0.000 13.54* −0.18 0.066 0.24 0.010
Glucose 1.64 0.36 0.000 −0.20 0.058 6.55* −0.09 0.392 0.38 0.002
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negative voxels fell within the 95% confidence interval of chance
(Table 2).Within the positive clusters, both the axial and radial compo-
nents of diffusivity correlated with BP (Table 2). These clusters were
distributed across whitematter voxels, with the largest found bilateral-
ly in the internal and external capsules (Fig. 2b). Out of 48 ROIs, 19 had
more significant positive voxels than expected by chance (based on the
95% confidence interval from random model simulations) (Inline Sup-
plementary Table S1).

The Dyslipidemia factor had similar white matter effects as BP. The
overall distribution of Dyslipidemia–FA associations had a mean near
zero and overlapped with the distribution of chance estimated from
the bootstrap simulations (Fig. 1c). However, therewas a slightly longer
tail on the positive end of the distribution, with more significant posi-
tive voxels than expected by chance (3007 voxels; Table 2). Unlike BP,
however, only the radial component of the diffusivity signal correlated
with the Dyslipidemia factor in these positive voxels (Table 2). The
positively associated voxels were distributed throughout the brain,
but heavily clustered in regions containing corona radiata projections
(Fig. 2c). Far more ROIs showed significant positive associations with
Dyslipidemia, 30/48, than were found with BP (Inline Supplementary
Table S1).

The Inflammation factor had a similar association towhitematter as
Adiposity, with the distribution of FA correlations being shifted in a neg-
ative direction (Fig. 1d). Inflammation had the largest rate of significant
voxels out of all the components tested, with over 13% (7385 voxels) of
the white matter voxels having a significant negative association with
Inflammation (Table 2), over four times the upper bound of the adjust-
ed 95% confidence interval of chance (3.36% of voxels). In these voxels
with negative associations, Inflammation was also associated with a
change in the radial, but not axial, component of the diffusion signal.
Aswith Adiposity, the detection rate of negative Inflammation–FA asso-
ciations fell below the lower bound of the confidence interval from
chance, consistent with a global shift in FA with increased Inflamma-
tion. The clusters of negative voxels were distributed throughout the
brain (Fig. 2d), with 37 out of 48 ROIs showing significant negative as-
sociations with Inflammation (Inline Supplementary Table S1).

The Glucose regulation factor showed a similar, albeit weaker, neg-
ative association with FA as Inflammation (Fig. 1e). Nearly twice as
many voxels had significant negative associations (3574 voxels) than
expected by chance from the random simulations (Table 2). In these
negative voxels, only changes in radial diffusivity correlated with the
Glucose factor. Similar to Inflammation, the significant clusters were
distributed throughout most of the white matter voxels (Fig. 2e), with
33/48 ROIs showing more significant negative voxels than expected
by chance (Inline Supplementary Table S1). While there were a few
dense clusters of significant positive FA associations, particularly in
the corona radiata, the overall number of voxels with significant posi-
tive associations was not outside the confidence intervals of chance.

In general there was a modest degree of overlap of the expression
of the anthropometric and physiological effects on FA. These are sum-
marized in the Supplementary Materials (Supplementary Results,
Section 2.1).
Mediating pathways between adiposity and white matter

To determine indirect mediating pathways between Adiposity and
whitematter (i.e., Adiposity to physiological system to FA), we adopted
a permutation analysis approach (Preacher and Hayes, 2008). Our first
goal was to determine the chance detection rates in a set of 20 simulat-
ed experiments where the mediating variables had no correlation with
Adiposity or the four physiological factors (see Materials & methods).
Out of 80 simulated indirect pathways, the upper bound of the 95% con-
fidence interval for detecting a spuriously significant voxel was 26.28%,
after a Bonferroni correction for multiple comparisons.

All four physiological factors hadmore voxelswith significant indirect
pathways than would be expected by chance (Fig. 3a). The largest num-
ber of indirect pathway voxels was the Inflammation factor, followed by
the Dyslipidemia, BP, and Glucose factors. In general, clusters of signifi-
cant voxels were distributed throughout the white matter voxels in re-
gions similar to those found in the original physiology–FA regressions
(see Fig. 4). Fig. 5 shows histograms of the indirect pathways for all
four physiological factors. Subset histograms show thedistribution of sta-
tistically significant positive (red) andnegative (blue) voxels. Both the BP
and Dyslipidemia factors had a higher ratio of positive effects, with an
overall global shift in the distribution of coefficients in a positive direc-
tion. There were 50% more positive voxels in the BP distribution
(33.82% positive vs. 22.47% negative) and 245%more in the Dyslipidemia
distribution (55.57% positive vs. 16.12% negative). In contrast, Inflamma-
tion had a very strong negative shift in the indirect pathway (a ∗ b) coef-
ficients, with nearly six times asmany negative voxels (69.04% of voxels)
as positive (10.95%). Finally, the Glucose regulation factor had a fairly
equal distribution of positive (28.11%) and negative (23.98%) effects.

These indirect pathways can only be considered statisticalmediators
when both the indirect pathway and the original physiological–FA ef-
fects are both significant in the same voxel (given that Adiposity is
also correlated with each physiological factor). Based on the random
simulation models, there is a chance of seeing this happen spuriously
in a maximum of 2.3% of white matter voxels. We found much higher
detection rates for all four physiological factors. Inflammation had the
greatest detection rates with 13.8% of all white matter voxels being sig-
nificant, followed by the Glucose (6.7%), Dyslipidemia (6.5%) and BP
(4.4%) factors. The location of thesemediating voxels overlapped nearly
perfectly with the location of the original correlation results for each
physiological pathway (see Fig. 2): BP (96.6% overlap), Dyslipidemia
(94.7%), Inflammation (99.9%) and Glucose (82.4%).

The Inflammation effects are especially interesting in their spatial
similarity to the original Adiposity effects. A vast majority (97%) of the
voxels with significant Inflammation–FA relationships (Fig. 2d) were
also mediators for Adiposity–FA effects. We elaborate on the relevance
of this overlap in the Discussion.

Competing influences on white matter

The direction of the relationships between each physiological factor
and FA suggests that they exert competing effects on the underlying



Fig. 2. The spatial distribution of positive (red voxels) and negative (blue voxels) associations between each latent variable and FA. Clusters are thresholded to a minimum of 20
connected voxels and a cluster-wise false discovery rate of 0.05. The z-plane coordinates of each slice, in MNI space, are presented at the bottom. A) Adiposity; B) BP, Blood Pressure
factor; C) Dyslp, Dyslipidemia factor; D) Inflam, Inflammation factor; E) Gluc, Glucose regulation factor.

134 T.D. Verstynen et al. / NeuroImage 79 (2013) 129–137
white matter signal, with some relating to higher FA and others (i.e., In-
flammation) lower FA. Since Adiposity is positively correlated with all
the physiological variables, it suggests that the original regression results
between Adiposity and FA, called the total pathway, may be weaker due
to these competing influences on FA. By including these indirect
pathways in the mediation model, we can control for these counter-
manding effects in the estimate of the direct (c′) pathway, which is the
Fig. 3. A) Illustration of the indirect pathway analysis for all four factors tested. Percentages
and depicted by the weight of the arrows. Light gray arrows show average positive effects
confidence interval is 26.54%. The mean and standard deviation for the indirect pathway coe
of voxels with significant Adiposity–FA associations. Error bars show 95% confidence interva
model (*) and the direct pathway model (Δ) after accounting for the indirect physiological
relationship between Adiposity and FA after controlling for the physio-
logicalmediators. Consistentwith this interpretation,wedetectednearly
eight times as many significant positive c′ voxels (4.01%; 95% CI UB =
1.03%) and fifty percent more negative voxels (5.31%; 95% CI UB =
3.98%) than were detected in the original total (c) pathway analysis.

Because controlling for the underlying physiological factors im-
proved detection of significant Adiposity–FA relationships, we next
show the number of voxels with statistically significant (p b 0.025) indirect pathways,
, while dark gray shows average negative effects. The upper bound of the chance 95%
fficients is shown adjacent to each pathway label. Same factor labels as Fig. 2. B) Percent
l from 20 random simulations, followed by the detection rate for the original regression
pathways.

image of Fig.�2
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Fig. 4. Distribution of indirect pathways coefficients. Dashed lines on the color bars show the median coefficient values for significant positive and negative effects. Labeling con-
ventions are the same as Fig. 2.
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determined how influential each indirect pathwaywas on the change in
the Adiposity–FA coefficients.We calculated the difference between the
total (c) and direct (c′) Adiposity–FA pathways. This vector of difference
scores was then subjected to a regression analysis where the indirect
pathway coefficients for each physiological variable were included as
independent variables. Accounting for all indirect pathways explained
49.69% of the variance in the change in Adiposity–FA relationship across
all whitematter voxels. Follow up analyses for each pathway separately
revealed that BP regulation explained the most variance (12.58%), fol-
lowed by Dyslipidemia (7.93%), Inflammation (6.59%) and Glucose
(1.71%).
Discussion

In a healthy cross-sectional sample of adults, we confirmed that
higher levels of adiposity associate with a global decrease in FA through-
out the brain that appears to occur predominantly through an increase in
radial diffusivity (Gianaros et al., in press; Mueller et al., 2011; Stanek et
al., 2011; Verstynen et al., 2012; Xu et al., 2011; Yau et al., 2012).We also
report the novel finding that four simultaneously measured physiologi-
cal systems associatedwith increased adiposity showed amixture of nu-
merically positive and negative influences on the white mater signal,
with much stronger effect sizes than the anthropometric adiposity mea-
sure. The latent variables reflecting systemic inflammation and glucose
regulation most strongly resembled the pattern of effects seen with the
adiposity factor. In contrast, the latent variables for blood pressure and
dyslipidemia were strongly and positively correlated with FA, but this
Fig. 5. Distributions of indirect pathway coefficients across all white matter voxels. Black
distributions show across all voxels. Blue distributions show voxels with significant
(p b 0.025, bootstrapped) negative effects, while red distributions show significant posi-
tive effects.
effect was isolated in specific clusters rather than globally expressed
throughout the brain.

More importantly, here we report for the first time that several pe-
ripheral physiological systems serve as mediating pathways for the re-
lationship between elevated adiposity and white matter structure.
There were significantly more voxels with indirect pathways than pre-
dicted by chance for all four physiological systems. However, rather
than being uniformly expressed, we find that the physiological media-
tors may interact in opposing ways. Consistent with this interpretation,
we found that: (a) the extent and direction of total physiological effects
on FA across the white matter voxels varied, (b) accounting for physio-
logical factors in the mediation model resulted in more significant Adi-
posity–FA relationships than expected by chance, and (c) including all
four mediating pathways accounted for nearly 50% of the change be-
tween the total and direct Adiposity–FA pathways.

Our results highlight two possible neurobiological routes by which
variation in physiological systems may influence the morphology of
the underlying white matter pathways. First, there is a strong global
negative pattern that is distributed throughout the white matter
voxels and loads heavily onto systemic inflammation (see also
Gianaros et al., in press) and partially onto glucose regulation. Factors
linked to this global signal change are correlated with changes in the
radial diffusivity component of the DTI signal, resembling patterns
seen in the diffusion signal of animal models of demylenation (Budde
et al., 2009; Song et al., 2005). Physiologically this pattern may reflect
a common peripheralmolecular system that adversely impacts the cen-
tral nervous system (for full review, see (Rosano et al. (2012). Central
adipose tissue, particularly white adipose tissue, is a source of pro-
inflammatory cytokines, such as IL-6, IL-1β, and tumor necrosis factor
(TNF)-α. In the periphery, these cytokines stimulate production of
CRP and fibrinogen. In animal models, over expression of TNF-α with
obesity is linked to increased insulin resistance (Barzilay et al., 2001;
Hotamisligil et al., 1993), which is one possible mechanism that ex-
plains why obese animals with elevated circulating CRP levels have a
two-fold increase for developing Type-II diabetes (Uysal et al., 1997).
In the central nervous system, both the pro-inflammatory cytokines
and insulin are believed to influence cell integrity by introducing a
local inflammatory response in the microglia (Rosano et al., 2012). In
this way, the global negative signal change may reflect a distributed,
immunity-linked influence on myelin morphology itself, which may
have secondary implications for neural function.

The second pattern reflects localized variation in the diffusion signal
linked to vascular physiological factors, including blood pressure,
dyslipidemia, and, to a smaller extent, insulin systems. This local signal
change ismanifested as an increase in FA,with non-specific associations
to both axial and radial diffusivity. At this point, it is difficult to interpret
the neurobiological implications of this pattern of results. In animal
models, vascular insults, such as microscopic ischemic damage from la-
cunar strokes, correlate with changes in both the axial and radial diffu-
sivity components (Boretius et al., 2012; Wang et al., 2008); however,
the direction of these changes is opposite to what we detected here
(i.e., FA and axial diffusivity decrease, radial diffusivity increases).

image of Fig.�4
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Also, the positive FA associations with BP, dyslipidemia, and glucose
control all fall in roughly the same area of the white matter (see
Figs. 2b, c, and e), along the corona radiata near the intersection of sev-
eral crossing pathways. Given the fiber crossings in this area, it is possi-
ble that underlying axonal integrity is reducing with these factors, but
the simplicity of the single tensor model cannot adequately capture
the nature of these changes. Future studies with more sophisticated
models of the underlying diffusion patterns, such as orientation distri-
bution functions (Wedeen et al., 2005), may be able to better resolve
this odd pattern of FA associations.

When interpreting the underlying differences in white matter mor-
phology, it is important to keep inmind that our sample was a generally
healthy segment of the population. Thus the patterns we tested reflects
natural, sub-clinical variation in white matter microstructure, rather
than pathological white matter damage, and are not confounded by sec-
ondary factors related to pathological disease states. Thebimodal pattern
of global inflammation-linked drops in FA and localized vascular-linked
increases in FA is in agreementwith the recent prediction that bothmet-
abolic and cardiovascular systems may influence the central nervous
system through mechanisms that depend on neurovascular integrity
(Fung et al., 2012). Although, it should be pointed out that 50% of thevar-
iance in the adiposity–FA relationship is yet unaccounted for, suggesting
additionalmediatingmechanismsmay yet account for obesity andwhite
matter relationships. Nonetheless, understanding the functional implica-
tions of these different associations should be a goal of future work.

Finally, the inherent limitations of a cross-sectional design restrict
our ability to infer the directionality of these anthropometric, physio-
logical and white matter relationships. In humans this can be achieved
through longitudinal studies using targeted interventions for obesity,
such as exercise or pharmacological studies, where direct changes in
peripheral mechanisms can be mapped to changes in white matter ar-
chitecture and subsequent cognitive and behavioral outcomes.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2013.04.075.
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