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The BOLD signal not only reflects changes in local neural activity, but also exhibits variability from
physiological processes like cardiac rhythms and breathing. We investigated how both of these physiological
sources are reflected in the pulse oximetry (PO) signal, a direct measure of blood oxygenation, and how this
information can be used to account for different types of noise in the BOLD response. Measures of heart rate,
respiration and POwere simultaneously recordedwhile neurologically healthy participants performed an eye-
movement task in a 3TMRI. PO exhibited power in frequencies that matched those found in the independently
recorded cardiac and respiration signals. Using the phasic and aphasic properties of these signals as nuisance
regressors, we found that the different frequency components of the PO signal could be used to identify
different types of physiological artifacts in the BOLD response. A comparison of different physiological noise
models found that a simple, down-sampled version of the PO signal improves the estimation of task-relevant
statistics nearly aswell asmore established noisemodels thatmay run the risk of over-parameterization. These
findings suggest that the PO signal captures multiple sources of physiological noise in the BOLD response and
provides a simple and efficient way of modeling these noise sources in subsequent analysis.
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Introduction

The blood oxygenation level dependent (BOLD) response in
functional MRI (fMRI) is a powerful, albeit indirect, method for
measuring task-related changes in neural activity (Logothetis et al.,
2001). Unfortunately the BOLD signal is inherently variable (Aguirre
et al., 1998a,b), with a major component of this variance arising from
non-neural, physiological processes. In fact, depending on the
acquisition parameters, physiological noise can account for 20–70%
of the variance observed in fMRI data collected at 3T (Triantafyllou et
al., 2005). Twomajor sources of physiological noise in the BOLD signal
are artifacts induced by respiration cycles and contractions of the
heart. These events can corrupt the task-related BOLD signal through
B0 field modulations, T1 inflow and pulsatile motion, and direct
modulation of blood oxygenation itself (Glover et al., 2000; Lund et al.,
2006; Birn et al., 2008; Brooks et al., 2008; Chang and Glover, 2009a).

Most researchers choose to ignore the influence of these secondary,
physiological processes because it is assumed that they are not time-
locked to task events or because the frequency of physiological
processes is generally higher than that of task-related BOLD responses.
Unfortunately, there are several ways by which these processes can
correlate with, or at least influence the interpretation of, task-related
changes in the BOLD signal. For example, systematic heart rate changes
are known to occur in many motor control tasks (Jennings et al., 2002)
as well as during feedback processing in cognitive tasks (Crone et al.,
2006). This can result in the interpretationof neural changes in theBOLD
signal that are, in fact, caused by secondary physiological processes
induced by the task itself. Even if these signals are not directly time-
locked to the task of interest, there are several ways by which
physiological events can influence the estimation of task-related
activity. First, the time of slice acquisition (TR) aliases the higher
frequency physiological signals, resulting in lower frequency fluctua-
tions that can sometimesmatch thoseof task-related events (Lundet al.,
2006). Second, spontaneousfluctuations in respiration rate have a long-
lasting effect on the BOLD signal (Birn et al., 2008). A portion of this
influence is related to a high degree of correlation between respiration
rate and changes in end-tidal carbon dioxide, a strong vasodilator
(Chang and Glover, 2009b).

Accounting for the quasi-periodic fluctuations of cardiac and
respiration cycles has been shown to improve the detection of
underlying neural dynamics (Glover et al., 2000; Deckers et al., 2006;
Harvey et al., 2008; Chang and Glover, 2009a). Similarly, accounting for
aperiodic variations in both breathing volume (Birn et al., 2006, 2008)
and heart rate (Chang et al., 2009) also accounts for a significant portion
of physiological noise in the BOLD response. With increased interest in
cognitive states that do not have easily discernible onsets, for example
resting-state network activity, distinguishing relevant neural patterns
from physiological noise becomes evenmore important (Shmueli et al.,

http://dx.doi.org/10.1016/j.neuroimage.2010.11.090
mailto:timothyv@pitt.edu
http://dx.doi.org/10.1016/j.neuroimage.2010.11.090
http://www.sciencedirect.com/science/journal/10538119


1634 T.D. Verstynen, V. Deshpande / NeuroImage 55 (2011) 1633–1644
2007; Chang and Glover, 2009a). Accounting for these physiological
artifacts can also be critical whenmaking comparisons of BOLD changes
across populationswithdifferentdegreesof cardiovascular integrity. For
example, the ability to detect intracerebral blood vessels reduces with
age (Bullitt et al., 2010), resulting in significant changes in evoked BOLD
responses (Huettel et al., 2001). These changesmakecomparisonsof the
degree of task-related activation between aging cohorts problematic.

Typical measures of cardiac and respiration signals, such as
electrocardiography (ECG) and pneumatic belts, can be useful in
accounting for physiological artifacts in the analysis of functional brain
imaging data. These, however, are indirectmeasures of themechanical
events thatmediate fluctuations in the BOLD signal. Often there can be
great variability across individuals in how these events map onto
changes in global blood pressure and oxygenation. In contrast, pulse-
oximetry (PO), through the use of a photoplethysmograph, provides a
direct assessment of changes in global blood oxygenation by
measuring the absorption of infrared light transmission through
blood infused tissue (Mannheimer, 2007). Greater light absorption
reflects a greater density of oxygenated hemoglobin in the underlying
vessels. Being a direct measure of fluctuations in blood oxygenation,
PO likely capturesmultiple components of the physiological noise that
is reflected in the BOLD response, making it a particularly appealing
method for optimizing the analysis of brain imaging data.

PO is particularly appealing over ECG because it affords a more
flexible means of application. Obtaining a clean PO signal only
requires a certain degree of skin translucency for recording. This can
be found on many body surfaces (e.g., finger pad, ear lobe, etc.)
making PO a viable alternative for individuals where ECG, or even
pneumatic belts, may not be easily adapted or cleanly recorded (e.g.,
infants, elderly, high magnetic fields, etc.). Indeed, for this reason
many researchers have generally adopted the photoplethysmograph
as an alternative to MR-compatible ECG recordings of heart rate
(Glover et al., 2000; Birn et al., 2006, 2008; Chang and Glover, 2009a,
b; Chang et al., 2009). It is not yet clear whether PO could also
supplement mechanical measures of respiration by extracting the low
frequency changes in global blood oxygenation induced by breathing.

Given that both the BOLD and PO signals reflect changes in blood
oxygenation, we set out to evaluate the full utility of using the spectral
information contained in the PO signal to characterize and remove
physiological artifacts from the BOLD response.We begin by confirming
that PO captures both the low and high frequency fluctuations induced
from respiration and cardiac events respectively (Nilsson et al., 2007).
These filtered components are then used to produce physiological noise
models of both cardiac and respiration artifacts (Glover et al., 2000; Birn
et al., 2006, 2008; Chang and Glover, 2009a,b; Chang et al., 2009) and
compared against similar models generated using the independently
recordedmeasures of heart rate (ECG) and breathing (pneumatic belt).
Finally, we evaluate how using novel physiological noise model, simply
consisting of a down-sampled version of the raw PO amplitude, can
improve the detection of task-related BOLD activity compared to more
established phasic and variation models of physiological noise.

Materials and methods

Participants

Ten healthy, right-handed participants took part in this study
(5 male, age range: 22–32 years). All procedures were approved by
the Committee for Human Research at the University of California, San
Francisco.

Task

Participants performed a block-designed saccadic eye-movement
paradigm. Participantswere instructed tomaintainfixationon a centrally
presented cross (white symbol on a black background). During each
block of trials, participants were presentedwith 5movement trials (each
trial having a 2 s duration). Trials began with the presentation of a red
target at a randomly selected position about the fixation cross (5 visual
degree distance). Participants were instructed to plan, but not execute, a
saccade to the target. After 500 ms, the target color changed to green,
instructing the participant to execute the saccade to the target and
remain fixated on it. After 750 ms, the target disappeared and
participants were instructed to return their gaze to the fixation cross.
The next target would appear after a fixed 750 ms delay. Each block of
trials lasted 10 s, with a 10 s inter-block interval during which
participants maintained fixation. All participants received twelve blocks
of trials resulting in a 4 min and 2 s total testing duration.

Physiological recording

All physiological recording was performed using the integrated
Siemens Physiological Monitoring Unit. During scanning, heart rate was
monitored using dermal electrodes placed over the chest (400 Hz
sampling rate), that recorded the changes in electrical signal across the
heart during each beat. Respiration was recorded using a pneumatic belt
placed across the abdomen, just beneath the diaphragm (50 Hz sampling
rate). Finally, PO was recorded using a photoplethysmograph with an
infra-red emitter placed under the pad of the left index finger (50 Hz
sampling). Participants were instructed to keep this hand still during the
task in order to maintain a consistent signal throughout the scan. All
signals were transmitted wirelessly from the scanning bed to the control
room. Recording was automatically time-locked to the beginning of the
first volume acquisition.

Physiological signal analysis

Processing of all physiology data was performed using the PhLEM
Toolbox (http://sites.google.com/site/phlemtoolbox/). For the ECG
data, the time series was band-pass filtered (0.6–2.0 Hz; Butterworth
filter) to remove gradient artifacts from the data. Data from the
pneumatic belt was up-sampled to the faster recording rate of the ECG
signal using a cubic spline interpolation and then low pass filtered
with a Gaussian kernel (500 ms FWHM). Finally, the PO data was
similarly up-sampled to the recording rate of the ECG signal. No
smoothing or filtering was performed on the PO signal prior to
estimating relevant physiological regressors. For estimating phase
regressors, the high frequency information in the PO signal was band-
pass filtered at the same frequencies as the ECG signal (0.6–2.0 Hz;
Butterworth filter). Low frequency PO phase information was filtered
using a Gaussian smoothing kernel with a 400 ms FWHM.

Two types of physiological-noise regressors were generated for
this study. First we estimated the dominant phase of quasi-periodic
fluctuations induced by heart rate and respiration rate using the
RETROICOR algorithm (Fig. 1; Glover et al., 2000). For each signal type
(i.e., ECG, pneumatic belt, high frequency PO, low frequency PO)
individual events in the signal were identified using a peak detection
algorithm (peakdet function in Matlab; http://www.billauer.co.il/
peakdet.html) that locates local maxima in an oscillating signal
(vertical lines in Fig. 1A). In the ECG signal, these events reflected the
R component of the QRS complex. In the pneumatic belt signal, these
events corresponded to peak expansion of the diaphragm. For both
the high and low frequency filtered PO signals, event peaks indicated
individual maxima in local blood oxygenation. Once the time of events
in a signal was identified, a phase time estimate between each
successive event was determined by re-coding the signal between
events as one full phase cycle: i.e., recoding each event as being
equally spaced between zero and 2π. The cumulative summation of
this phase-time signal was taken beginning with the first even in the
series. This provides an estimate of the dominant Fourier series of the
signal. Doubling the phase time between successive events (i.e.,
increasing from 2π to 4π) provides an estimate of the next higher

http://sites.google.com/site/phlemtoolbox/
http://www.billauer.co.il/peakdet.html
http://www.billauer.co.il/peakdet.html


A)

B)

C)

Fig. 1. A) Schematic representation of the RETROICOR algorithm. Individual events in
the signal were identified using a peak detection procedure (vertical lines). B) Samples
between each event were recategorized to being between 0 and 2π. The cumulative
summed phase time served as an estimate of the primary Fourier series for the signal of
interest. The sine (gray lines) and cosine (black lines) of this phase were then
computed. C) These phase regressors were down-sampled to the TR interval and saved
as covariate regressor terms in the GLM.
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harmonic of the Fourier series. Fig. 1B shows the sine and cosine
components of these signals. Finally, in order to generate the covariate
regressors to include in the general linear model (GLM; see below),
the sine and cosine components of each dominant Fourier series were
then down-sampled to the sampling rate of the EPI sequence
(TR=0.5 Hz; Fig. 1C).
A)

B)

C)

Fig. 2. A) The respiration variance (RV) was calculated by taking the standard deviation of
successive TR (gray line). B) The respiration response function (RRF) was simulated using par
RRF to produce a model regressor. D) The heart-beat variation (HR; gray line) was calculated
line). E) The cardiac response function (CRF) was simulated according to Chang et al. (2009
In addition to these phasic signals, we also generated nuisance
regressors for variations in breathing rate/volume (RV; Birn et al., 2006,
2008) and heart rate (HR; Chang et al., 2009) to account for
physiological noise. RV was calculated by taking the standard deviation
of the respiration signal (both from the pneumatic belt and from the
low-pass filtered PO signal) between each successive TR. HR was
calculated by taking the average deviation in inter-event interval (i.e.,
ms between R-components of the QRS complex), per second, between
each TR. Each signal type was then z-score normalized (gray lines in
Figs. 2A and D). These variance signals were convolved with the
“respiration response function” (RRF; Birn et al., 2008, Eq. (3); Fig. 2B)
and “cardiac response function” (CRF; Chang et al., 2009, Eq. (5); Fig. 2E)
to createmodel respiration (RV+RRF)and cardiac (HR+CRF) variation
regressors respectively for the GLM (Figs. 2C and F).

fMRI acquisition

A single block of 121 functional images was acquired with a 3T
Siemens Tim Trio System (Siemens AG, Germany) using a gradient
echo-planar (EPI) pulse sequence (26 slices, 2.0×2.0×3.0 mm voxel
resolution, 128× 128 matrix, gap=0.45 mm, TR=2000 ms;
TE=32ms; FOV=250×100 mm). All images were acquired with a
Siemens 12-channel head-coil using a GRAPPA parallel imagingmethod
(acceleration factor=2). An online prospective motion correction
adjustment (PACE) was performed during acquisition to accommodate
small head movements (Thesen et al., 2000). Slice acquisition occurred
in the axial plane. At the end of the scanning session a high resolution
structural 3-D MPRAGE scan was acquired (1 mm3 voxel resolution;
240×256×160 matrix; TR=2300 ms; TE=2.96 ms).

fMRI data processing and analysis

All images were reconstructed from k-space using standard
Siemens software. Functional data were converted to Nifti format
and analyzed using SPM8 (Wellcome Institute of Cognitive Neurology,
London, UK). The EPI images for each subject were corrected for
differences in the slice acquisition time and realigned to the first
D)

E)

F)

the respiration signal (black line; either from the pneumatic belt or PO) between each
ameters derived elsewhere (Birn et al., 2008; Eq. (3)). C) The RVwas convolvedwith the
as the average deviation in inter-event interval for pulsations between each TR (black
) (Eq. (5)). F) The HR was then convolved with the CRF to produce a model regressor.
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image in the series. These images were then registered intoMNI space
by normalizing to the EPI MNI template using a 7×8×7 parameter
nonlinear transform (Ashburner et al., 1998) and smoothed using a
Gaussian kernel (4 mm FWHM).

Estimates of both task and physiology-related changes were
performed using a general linear model (GLM; Kiebel and Holmes,
2004). Baseline estimates of eye movement activation (Saccade – Rest)
were first determined by modeling task-related activity using a simple
model with 6 head motion regressors (x, y, z, pitch, roll, yaw) included
as covariates, but without physiological regressors. Areas with consis-
tent saccade-related activity across subjects were determined using a
whole-brain random effects analysis by performing a one-sample t-test
on the contrastmaps. Clusters of significantly active voxels (tN3.5)were
then segmented into 11 separate individual regions of interest (ROIs):
superior colliculus, putamen (left/right), bilateral calcarine fissure (i.e.,
V1), superior parietal lobule (SPL; left/right), dorsal lateral precentral
sulcus (dlPSC; left/right), dorsal medial precentral sulcus (dmPSC; left/
right) and bilateral medial superior frontal gyrus (mSFG). Subsequent
analysis of different model structures on task-relevant statistics was
performed with these ROIs. It should be noted that since the relevant
analysis involved looking at changes in the efficacy of first-level
parameter estimates on any task-related voxels, no secondary analysis
was performed. Therefore, the “double-dipping” problem (Kriegeskort
et al., 2009) does not apply to the analysis in this study.

Comparisons of physiological noise models

Within-model assessments
In order to directly compare how well the inclusion of each

physiologically-based regressor improves the estimation of task-
relevant statistics, we adopted a bootstrap permutation approach
(Manly, 1997) on data from the 11 ROIs described above. For each ROI,
we first extracted the average voxel time-series, mean subtracted the
data, and used an ordinary least squares fit to obtain regression
coefficients, βs, for the input parameters described in one of the three
design matrices shown in Fig. 3A. These are the design matrices used
to produce the maps in Figs. 7A–C (blue voxels). Next we performed a
t-contrast on the regression coefficient for the eye-movement task
regressor (βTask) as follows

TTask¼ βTask=SE βTaskð Þ:

Efficiently accounting for physiological noise should optimize the
estimate of task-related statistics better than what would be expected
Fig. 3. A) Design matrices from a single subject of the three GLM models being compared. T
expansion, along with the first-order Fourier series for the pneumatic belt data (see Glover et
vectors. The PO model includes only the pulse-oximetry data down sampled to the TR freq
where the physiology regressors are scrambled to reflect random regressor values. The me
curve between the mean of the simulated distribution (μSim) and the observed test statistics (
the Phase model shown in A.
simply using arbitrarily random regressors (i.e., chance). To test this
hypothesis, we randomly scrambled the image volume order, i.e., rows
in the design matrix, of each physiological term, i.e., relevant column,
and re-estimatedβTask andTTask. This processwas repeated10,000 times
for each subject andROI, using awith-replacement samplingmethod, in
order to generate a probability distribution reflecting the values
expected to be obtained by chance (Fig. 3B). This type of randomization
eliminates the precise temporal sequence of signal changes that
characterize the underlying physiological events. The area under
curve between the observed TTask and the mean of the simulated
distribution (μSim; see Equation in Fig. 3B) provides an estimate of the
percent change, either improvement (positive values) or impairment
(negative values), that the true physiological regressors provide
compared to chance. Finally, these estimates from each ROI were
compared across subjects using a one-sample t-test.

Between-model assessments
As a traditional goodness-of-fit comparison across models with

different numbers of regressors we first adopted a likelihood ratio test
(LRT; Stuart andOrd, 1987). In this test, thedifference in the log likelihood
of themodelwithmoreparameters, log p y jθModel1ð Þð Þ, and themodelwith
fewerparameters, log p y jθModel0ð Þð Þ, falls off according to aχ2 distribution.
The degrees-of-freedom of this distribution is the difference in the
number of parameters in eachmodel. For our comparisons, eachGLMthat
included one of the three physiological noise models (i.e., downsampled
PO, variation or phasic model), was compared against the standard GLM
model containingonly task andheadmotion regressors. A summaryof the
p-values observed from this test for all 11 ROIs is shown in Table 3.

As an alternative test of the goodness-of-fit that does not require
nested models, we utilized another permutation test approach. First, we
simulated the effect of adding randomparameters to a simpleGLMmodel
that only initially included task and head motion regressors. For this
analysis,we chose touse the residual squareerror (i.e., thedevianceof the
GLM for normally distributed data; Stuart andOrd, 1987) as ameasure of
goodness-of-fit. For each ROI, a Gaussianwhite noise regressor, μ=0 and
σ=1, was added to the design matrix and the model parameters refit
using an ordinary least squares fit method (glmfit in Matlab). The
difference between the residual sums-of-squares (RSS) error of this
model and the original model was then calculated. This simulation was
repeated 2000 times for each ROI and for up to 20 Gaussian noise
parameters. The result of these simulations is shown in Fig. 9A.

These simulations were then used to normalize the goodness-of-fit
for each of three different physiological noise models (see Results,
Improving detection of task-relevant responses section). For each ROI
he Phase model has the principle Fourier series of the ECG signal as well as one phase
al., 2000). The variation model includes both the convolved RV+RRF and the HR+CRF

uency. B) Histogram of the contrast values (movement–rest) for the simulated models
asure of improvement or impairment was estimated by measuring the area under the
tObserved). Dashed line shows the real contrast value from the unscrambled model (from
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Fig. 4. The time-locked, unfiltered time series for the three signals from a representative participant.
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and noise model type, we calculated the distance, as a z-score,
between the observed RSS from the physiological noisemodel and the
distribution of RSSs obtained using a Gaussianwhite noisemodel with
the same number of parameters. These z-scores were averaged across
subjects to produce a mean normalized change in the goodness-of-fit
per ROI. The difference in the normalized goodness-of-fit between the
different physiological noise models was then determined using
paired-sample t-tests on the z-scored data across subjects.

Since the BOLD signal has an autoregressive structure to it (Biswal
et al., 1995), this bootstrap analysis was repeated using nuisance
regressors that were temporally correlated (i.e., non-white noise). For
this analysis, an auto-correlative structure was added to the noise
model terms by simulating an ARMA(1,1) process using the armax
function in Matlab with the parameters A=[1 −0.5], B=[0 0.2] and
C=[1 0.6] (Brockwell and Davis, 2002). The resulting time series had
an average lag−1 autocorrelation of r=0.5. All other analysis
procedures were kept the same.

Results

Comparison of physiological signals

We were able to reliably record from all three signal sources in all
participants. An example of the unfiltered time series for each signal
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type is shown in Fig. 4. To determine the optimal bandwidth of
information in each signal, we performed a power spectral density
analysis on each time series using the Welch method (pwelch in
MATLAB). Each signal was then normalized to the peak power spectral
density of the time series and averaged across subjects. Fig. 5A
confirms that the PO signal contains multiple peaks that overlap with
the low frequency respiration cycles (0.2–0.5 Hz) and high frequency
cardiac cycles (1–1.5 Hz and 2–3 Hz). The spectral analysis of the ECG
signal reveals significant power across a broader range of frequencies;
however much of this has to do with the complexity of the cardiac
waveform itself (inset Fig. 5B; Hara et al., 1999). Nonetheless, the high
frequency peak in the PO signal (0.6–2.0 Hz) corresponds to a normal
resting heart rate of 45 to 90 bpm, confirming that this frequency
band contains information reflecting the cardiac component of
oscillations in global blood oxygenation.

Given the differences in the nature of each signal type (i.e.,
mechanical events vs. oxygenated hemoglobin content), there should
be a phase lag between peaks in the ECG/pneumatic belt data and
phases in the components of the PO signal. To measure this we filtered
the PO signal to isolate the individual high and low frequency
components thought to reflect cardiac and respiration events. Each of
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Fig. 6. A) A comparison of estimated physiological artifacts shown as the mean extra sums of squares (ESS) accounted for by the physiological noise terms across all subjects. For the
Phase model voxels are thresholded for ESS at 10 and for the Variation model, voxels are threshold at 5. Voxels with physiological artifacts are generally clustered in regions with
large vascular structures. Green areas reflect overlap of artifacts estimated from the indirect, mechanical recordings (ECG and pneumatic belt; yellow voxels) and the PO signal (cyan
voxels), with ESS values both greater than threshold. B) An example of the correlation of log F-values for a different subject. The mean correlations, averaged across subjects, are
shown in Table 1.
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QRS complex, the high frequency PO signal is phase shifted about 180°
from the peak of each cardiac event (Fig. 5B). Thus, the high frequency
peaks in PO signal that reflect the cardiac component (see peaks in
Fig. 5A) occur in between each ventricular contraction. The low
frequency component of the PO signal consistently peaked just before
the point ofmaximumdiaphragmexpansion,meaning that this signal is
almost completely phase shifted from the point of the previous peak
inhalation (Fig. 5C). Therefore, it appears that changes in blood
oxygenation at distal vasculature lag behind the mechanical events
that trigger them. It remains unclear how similar this lag at finger
vasculature systems is to the lags that occur in neural vasculature. Given
the difference in arterial distances (Fischer et al., 2010), it is presumed
that this lag at thefinger vasculature is longer than lags thatwould occur
in the brain.We explore this further in the Time locking of the PO signal
section below.

This analysis confirms that the PO signal reflects both cardiac and
respiration components of blood oxygenation modulation (see also
Nilsson et al., 2007). Using spectral filtering, it was possible to isolate
these components, which appeared to be shifted from the time of the
mechanical events that cause them. This allows for the possibility of
using the different spectral components of the PO signal to identify
both cardiac and respiration artifacts in the BOLD signal.

Artifact identification in the BOLD signal

Using data from a blocked eye movement task (see Methods, Task
section) we set out to see how these measures of cardiac and
respiration processes can capture physiological artifacts in the BOLD
signal. Artifacts were determined by generating two different classes
of noise models using each recording method: a phasic RETROICOR
model (Glover et al., 2000; see Methods, Physiological signal analysis
section) and a physiological variation model for heart rate (HR+CRF;
Chang et al., 2009) and breathing (RV+RRF; Birn et al., 2008). Fig. 6A
shows the distribution of artifacts identified from each physiological
Table 1
Correlations between log-valued artifact estimates (mean+/−standard deviation).

ECG

RESP

RESP

PO-high

PO-high

PO-low

PO-low

ECG

Phase regressors Variat
noise model and signal type. For this analysis, each model was
computed separately. The models generated using the filtered PO
signal (cyan voxels) appeared to capture a slightly larger distribution
of cardiac artifacts across the brain than artifacts identified using the
ECG signal (yellow voxels). Yet, the cardiac phase regressors from
both ECG and high frequency PO signals were also able to pick up a
significant amount of overlapping artifacts (indicated as green
voxels), particularly in areas of large vasculature (for example voxels
in the Circle of Willis). For respiration artifacts, the data from the
pneumatic belt was able to detect a broader distribution of artifacts,
particularly in cortical gray matter, than the low frequency filtered PO
data. As with the cardiac artifacts, there was still a significant amount
of overlap between respiration artifacts identified using the different
signal types, particularly in subcortical areas regions with larger
vasculature.

Toquantify the consistency of artifact detectionbetween these signal
types,we looked at the voxel-by-voxel correlation of log-transformed F-
values (Fig. 6B) using a Spearman rank order correlation test. Mean
results across subjects are summarized in Table 1, with comparisons of
interest highlighted in gray. Phasic model artifacts that were calculated
using the high frequency PO signalwere primarily correlatedwith those
that were estimated using the ECG signal. Similarly the low frequency
PO componentwas primarily correlatedwith the pneumatic belt signal.
Artifacts from the variation model showed a similar pattern of
correlation, i.e., the strongest correlations occurred between ECG and
high frequency PO signals and pneumatic belt with low frequency PO
signals; however these correlations are weaker than those observed
with the phasic physiological noise model.

The correlation analysis in Table 1 illustrates how changes in the
magnitude of F-statistics compare across signal type and physiological
noise model. For mapping the distribution of voxels that are
significantly influenced by physiological signals, it is in some ways
more appropriate to identify voxels whose contrast statistic surpasses
a given significance threshold. Therefore, we also looked at the
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Table 2
Overlap of statistically significant physiological voxels (pb0.05, mean+/−standard deviation).
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overlap of significantly “active” voxels, i.e., those voxels exhibiting
statistically significant physiological noise. For each regressor type
(phasic vs. variation), we identified all voxels with F-contrasts
reflecting pb0.05 from both the PO and non-PO signals and then
calculated the percent overlap between each set of voxels. This
analysis is shown in Table 2. As with the changes in artifact
magnitude, we found that the percentage of overlapping physiolog-
ically significant voxels was strongest between ECG and high
frequency PO signals and between pneumatic belt and low frequency
PO signals. Again, this effect was strongest for phasic noise regressors
than for variation noise regressors.

Our analysis has replicated the observation that, using models of
both the phasic and variance properties of physiological processes, it
is possible to capture the major noise components in the BOLD
response (Hu et al., 1995; Glover et al., 2000; Birn et al., 2006; Deckers
et al., 2006; Birn et al., 2008; Harvey et al., 2008; Chang and Glover,
2009a,b; Chang et al., 2009). As expected, the different frequency
components of the PO signal provided qualitatively similar estimates
of physiological artifacts as the more indirect, mechanical measures.
This further supports the notion that PO signal contains relevant
information about the two major physiological noise sources in the
BOLD response. In this way, the slow and fast modulations of PO
amplitude capture the convolved modulations in global blood
oxygenation induced by respiration and cardiac processes. This,
along with the fact that both the BOLD and PO signals are direct
measures of regional blood oxygenation, suggests that the moment-
by-moment oscillations of the PO signal may also be reflected in the
dynamicmodulations of the BOLD signal. If true, then simply using the
raw PO signal as a model of physiological noise may improve
estimates of task-related activity better than what is expected by
chance and possibly as efficiently as existing physiological noise
models.

Improving detection of task-relevant responses

For most researchers, the utility of accounting for physiological
noise is that it allows for a more optimal estimation of task-related
parameters (Harvey et al., 2008; Chang and Glover, 2009a). When
using a physiological noise model that accounts for the phasic
properties of both cardiac and respiration signals (blue voxels,
Fig. 7A), we see a reduction in the number of task-related voxels
(tN3.5) in ventral areas that express more physiological artifacts (see
Fig. 6A). In contrast, motor planning areas (e.g., parietal motor
planning regions) exhibit an increase in the number of task-related
voxels when the phasic physiological noise terms are included.
Including the phasic noise model in the GLM reduced the residual
mean square error of the model fit, averaged across all voxels in the
brain, from 1.03+/−0.06 (mean+/−standard error of the mean) to
0.93+/−0.04. This change was consistent across subjects when
tested using a 1-sample t-test (t(9)=4.86, pb0.001).

A similar pattern of changes in task-related voxels is observed
when using a full variation regressionmodel (RV+RRF and HR+CRF;
Fig. 7B). In this case, including the variation model reduced the
residual mean square error only slightly to 1.02+/−0.05. While this
reduction in variance did change the pattern of significantly active
voxels, the overall change in residual error from the simple GLM
model was not consistent across subjects (t(9)=0.77, p=0.23).

If the raw PO signal contains the combined information of cardiac
and respiration processes, then presumably including it as a nuisance
regressor it should produce a similar pattern of task-related voxels as
the larger phasic and variation models. Indeed, with this novel
physiological noise model we observed a pattern of task-related
voxels that resembled those found with the more traditional noise
models (Fig. 7C). The down-sampled PO model reduced the residual
mean square error across voxels to 0.99+/−0.05, which was a
consistent change observed in all subjects (t(9)=3.77, p=0.002).

At first glance the change in the distribution of task-relevant
voxels would suggest that all three models improve the estimation of
task-related BOLD responses in roughly equivalent ways. However, in
every comparison, the models that included noise regressors have
more parameters than the simple model that does not include these
terms. Therefore the change in the distribution of task-related voxels
may simply reflect over-parameterization (McCullagh and Nelder,
1989). To illustrate this point, we performed the same comparison but
with a Gaussian white noise term instead of a regressor linked to any
physiological process (Fig. 7D). As expected, random white noise
model produced patterns of activation nearly identical to those seen
using the physiologically-based regressors. This is particularly true
when compared to the down-sampled PO model that has the same
number of model terms. The random white noise model even
reduced the mean residual error across voxels to 1.00+/−0.06,
which is a significant reduction from the simple GLM across all
subjects (t(9)=2.76, p=0.01). It should be emphasized, that these
effects are observed even though this model does not directly map on
to any physiological processes. Thus, the distribution of task-related
voxels that we modeled cannot differentiate optimal noise fitting
from simple over-parameterization.

To get a sense of how including each noise model improves the
overall GLM fit, we first used the traditional likelihood ratio test (LRT;
Stuart and Ord, 1987) to compare the goodness-of-fits across model
types. Each LRT compared the residual squared-error for a model that
includes physiological terms against a baseline model with only task
and head-motion terms. The difference in residual error should fall off
with the difference in number of model terms according to a χ2

distribution. Table 3 shows the mean (+/−standard error) p-value
across subjects for a set of LRTs using data from 11 different task
relevant ROIs (see Methods, Physiological signal analysis and
Comparisons of physiological noise models sections). For this
comparison we tested the different physiological noise models
shown in Figs. 7A–C: the phase regressor model using data from the
ECG and pneumatic belt inputs (Phasemodel; see Harvey et al., 2008),
the variation model using data from the same signal sources
(Variation model), and the model using the down-sampled PO signal
(PO Model). Using this approach, none of the physiological noise
terms significantly improved the residual variance over the simpler
model with fewer terms.

However, this null result is in some ways expected and
uninformative. It is well known that the LRT can be insensitive to



Fig. 7. Changes in task-related voxels (tN3.5) from amodel with no physiological noise regressors (red voxels) to amodel that includes these regressors (blue voxels) for all subjects.
A) A full model of heart-rate phase (plus 1 phase expansion) and respiration phase regressors using data from the ECG and pneumatic belt. B) A full variation model (RV+RRF and
HR+CRF) using data from the ECG and pneumatic belt. C) A model using the down-sampled PO signal as a regressor. D) A model using a single white-noise vector as a nuisance
regressor.
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small differences in model size (i.e., number of parameters) when the
sample size is small (Lehmann, 2004; Geweke and Singleton, 1980).
The 121 samples used to fit each model did not allow for sufficient
Table 3
LRT p-values across ROIs (μ+/−SEM).

Region of interest PO model Variation model Phase model

Left dmPSC 0.64+/−0.07 0.88+/−0.04 0.97+/−0.01
Right dmPSC 0.59+/−0.06 0.80+/−0.07 0.93+/−0.04
Left dIPSC 0.60+/−0.10 0.72+/−0.10 0.82+/−0.07
Right dIPSC 0.60+/−0.08 0.68+/−0.10 0.77+/−0.10
mSFG 0.68+/−0.09 0.72+/−0.12 0.82+/−0.08
Left SPL 0.78+/−0.06 0.88+/−0.06 0.88+/−0.06
Right SPL 0.68+/−0.07 0.77+/−0.06 0.86+/−0.06
V1 0.63+/−0.09 0.79+/−0.07 0.88+/−0.06
Sup. colliculus 0.45+/−0.12 0.53+/−0.12 0.51+/−0.12
Left putamen 0.61+/−0.07 0.79+/−0.07 0.97+/−0.01
Right putamen 0.70+/−0.06 0.81+/−0.08 0.96+/−0.01
sensitivity to detect small differences in fits, particularly with such a
restricted range of degrees-of-freedom (ranging from 1 to 5 in the
tests shown in Table 3). Indeed, this might be a reason why the LRT
has not been used in previous studies of physiological noise, where
investigators instead adopted other means of comparing across
models (Birn et al., 2006, 2008; Chang et al., 2009; Chang and Glover,
2009a; Glover et al., 2000). Permutation test approaches have
sometimes been shown to be more sensitive to differences of model
fits than closed-form, asymptotic model selection tests similar to the
LRT (Zhao et al., 2010; Preacher and Hayes, 2008). These approaches
use sampling-with-replacement permutation techniques to generate
a hypothetical null distribution using the observed data itself.

We devised two types of bootstrap tests. The first was a within-
model test designed to determine how well each physiological noise
model influenced the estimation of task-related statistics compared to
what would be expected by chance. This analysis was performed on
data from the same ROIs and noise models shown in Table 3. All
models exhibited positive percent change values (Figs. 8A and B),



A) B)

Fig. 8. A) Group permutation test results compared across all 11 ROIs for the full Phase model and the down-sampled PO (see Fig. 3A). Assessment of within-region significance was
determined using a 1-sample t-test across all subjects. All regions had a statistically significant shift (see Results, Improving detection of task-relevant responses section). Subcortical ROIs
are highlighted. The unlabeled datapoint near the left putamen is the left dorsalmedial precentral sulcus (dmPCS). B) Similar comparison as inA for the full variationmodel (RV+RRF and
HR+CRF) versus the down-sampled PO model. As with A, the data point outside the cortical ROI cluster is for the dmPCS ROI.
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indicating that the inclusion of physiological noise terms improved
the overall estimates of task-related activity better than chance. This
was significant across subjects in every cortical ROI (all psb0.011,
minimum t(9)=4.23). While the effect was somewhat weaker in the
three subcortical ROIs, all three were nonetheless significant across
subjects according to 1-sample t-tests (all psb0.0156, minimum t(9)=
2.55).

More importantly, there was a strong correlation between the
established physiological noise models and the down-sampled PO
model (Fig. 8; r=0.96 and r=0.74 for the phasic and variation
models respectively). Yet despite such strong correlations, the overall
effect size is much larger for the phasic and variation models than for
the PO model. This difference in magnitude, however, may again be
explained by over-parameterization. For example, the phasic model
includes 6 physiological regressors while the PO model has only a
single physiological term.

To illustrate this effect further, we conducted a simulation where a
series of arbitrary white noise regressors were added to a GLM that
initially only included task and head motion parameters. For this
simulation, we looked at how the residual sums of squares (RSS)
changed with the inclusion of each additional random noise term. As
is shown in Fig. 9A, the RSS of any GLM drops linearly with the
inclusion of each random regressor. Thus it can be problematic to
compare the goodness-of-fit of a model with 6 physiological
parameters to a model with only 1 or 2 physiological terms.

Therefore we used a second permutation approach to compare the
goodness-of-fit across model types. This evaluation reflects an
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Fig. 9. A) Change in the residual sums of squares (i.e., the model RSS) when Gaussian white n
of added model noise terms. Data shown as mean and standard deviation from a set of
physiological noise models normalized according to the distribution of changes expected fro
and standard error of the mean across subjects.
alternative to the LRT described above and shown in Table 3 (see
Methods, Comparisons of physiological noise models section). For this
analysis we calculated the change in RSS observed from each
physiological noise model with the change of RSS expected from a
distribution of simulated models with the same number of random
Gaussian noise parameters. The resulting z-score serves as a
transformation to normalize the size of the model fits across noise
models with different numbers of parameters. We specifically chose
white noise regressors because they should have none of the temporal
or spectral structure qualities of actual physiological noise. Therefore,
the improvement introduced by these regressors (see Fig. 9A) should
be purely due to chance, as opposed to capturing any part of the
physiological noise structure that is also contained in the physiology
regressors.

Similar to our observations using the within-model bootstrap
comparison, the down-sampled PO and the phasic noise models in
this test were both significantly better at reducing residual error than
comparable random white noise models (PO: t(9)=2.50, p=0.017;
Phasic: t(9)=4.45, p=0.001). The variation model was on average
better than including white noise regressors, but this did not reach
statistical significance (t(9)=1.42, p=0.095). Thus the improvement
in estimated task statistics we observed above (Fig. 8) reflects, in part,
a reduction in the overall residual squared error of each model.
Comparing between model types, we found that, after accounting for
the differences in the number of model parameters, there was not a
significant difference in goodness-of-fit between the down-sampled
PO model and the variation noise model (t(9)=0.49, p=0.32).
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Table 4
Correlation between regression vectors.
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The phasic model was slightly better than the down-sampled PO
model (t(9)=1.84, p=0.05) and variation noise model (t(9)=1.53,
p=0.08), but neither of these passed the significance threshold.

Since the BOLD signal is temporally correlated, i.e., it has an
autoregressive structure (Biswal et al., 1995), it is possible that using
simple white noise could artificially increase the chances of observing
significant effects. Therefore we re-ran the bootstrap simulations using
an auto-correlated noise model. This yielded nearly identical results as
the white noise model: down-sampled PO z=−0.93+/−0.40
(standard error), variation model z=−0.42+/−0.33, and phasic
model z=−1.56+/−0.38. Similar to our previous analysis, we did
not observe a significant difference in goodness-of-fit between the
down-sampled PO and either the variation noise model (t(9)=0.99,
p=0.71) or the phasic model (t(9)=1.69, p=0.06); however, the
phasic model still performed slightly better than the variation model
(t(9)=2.09, p=0.03). The similarities in outcomes suggest that white
noise models work equally as well as temporally correlated, non-white
noise for these types of bootstrap model selection tests.

These results confirm that the dynamic fluctuations of the PO signal
itself can serve as another model of physiological noise in the BOLD
response. Unfortunately our results cannot determine whether the PO
model can be used to replace or simply supplement the phasic or the
variation physiological noise models. However, knowing when to
include a given noise model as a nuisance regressor necessitates some
understanding of its collinearity with other noise models and
components of the GLM. Table 41 shows the average cross correlation
between all regression vectors used in this study, including movement
values for head translation (x, y, and z) and rotation (pitch, roll, and
yaw). Correlations between regressors generated with data from ECG/
pneumatic-belt and PO component signals are highlighted for
reference. While somewhat small, these are some of the strongest
correlations observed.We also found negative correlations between the
sine components of the respiration phase (both from the pneumatic
1 Standard deviations were excluded from Table 3 for the sake of clarity.
belt and low frequency PO) and the x-component of head movements.
This is consistent with the assumption that a portion of the respiration
artifact is due to subtle changes in head position. Most importantly,
however, none of the physiological regressors demonstrated a
significant correlation with the eye movement task itself. This table
can be used as a guide for future models that optimally combine
different noise types into the GLM.

To summarize, our analysis presents an alternative form of
physiological noise modeling for fMRI analysis where the fluctuation
patterns of the PO signal itself can be used to improve the estimates of
task-relevant BOLD responses. Utilizing a permutation test approach,
we were able to confirm that this change is greater than what is
expected by chance. The overall effect of including the simple down-
sampled PO amplitude regressor was smaller than the improvement
observed using a more standard phase or variation model; however,
after accounting for differences in the number of model parameters,
we found that it performed comparably as well as the variation and
phasic noise models.

Time locking of the PO signal

As stated above, PO measures the fluctuations in blood oxygen-
ation at local vasculature near the recording site. Differences in
arterial distance between the index finger and brain vasculature will
mean that the signal recorded at the finger may not be time-locked to
the pattern observed in the brain (see Nilsson et al., 2007). To
estimate this lag difference, we looked at how shifting the PO signal
forward and backward in time, before down-sampling, affects the
estimate of task-related BOLD response (i.e., T-contrast) in each ROI.

Fig. 10A shows the results of this temporal lag analysis for a single
ROI, averaged across all subjects. Shifting the PO signal forward
and backward in time resulted in a systematic change in estimated
t-values. As expected, there is significant variability across subjects,
resulting in large error bars; however, this is not surprising given
that individual differences in arterial distances would change the
relative optimal shift value for different brain regions. Averaging the
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Fig. 10. A) Changes in estimated task statistic in a single ROI, when the PO vector is
shifted in time before downsampling. Error bars reflect standard deviation. B) Mean
and standard error of shift affects on estimated task statistics across all 11 ROIs. Peak
changes in t-values occurred when the PO vector was shifted 340 ms back in time.
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mean subject response across all 11 ROIs, we see a consistent
pattern emerge where shifting the PO signal back 340 ms produces
the greatest improvement in task-related t-values (Fig. 10B).

There are many potential sources of this phase misalignment.
Sensor placement site (e.g., finger, ear-lobe, etc.), signal recording
onset relative to scanning onset, and individual variability in vascular
systems will determine the precise optimal shift required to best
account for physiological noise. Nonetheless, this analysis suggests
that physiological fluctuations in the brain generally happen earlier
than those observed in distal limbs. In cases where this ambiguity in
phase alignment is significant, a more optimal regression model
would include a basis set of shifted signals at different lags in order to
account for many possible phase lags between the PO signal and BOLD
fluctuations.

Discussion

Our results demonstrate that the PO signal captures multiple
sources of noise in the BOLD signal. Low frequency components of the
PO signal reflect slow changes in oxygenation and small head
movements related to breathing. Higher frequency PO components
reflect mechanical pulsations related to contractions of the heart
muscle and fast local changes in oxygenated blood as a result of these
blood pressure changes. Each component can be used to identify
different types of physiological noise in the BOLD response. This
indicates that the PO signal itself captures the combined dynamics of
respiration and cardiac processes and might be useful as an
alternative model of physiological noise. Indeed, after accounting for
differences in the number of model terms, a down-sampled version of
the PO signal improves the estimation of task-relevant BOLD
responses comparably as well as other noise models that run the
risk of over-parameterization (McCullagh and Nelder, 1989).

In our analysis, the down-sampled PO model most closely
correlated with the phasic noise model than with the variation
nuisance regressors. This was a little surprising since the RETROICOR
model generally accounts secondary, non-BOLD perturbations such as
magnetic field modulations induced by respiration and T1 inflow/
pulsatile motion from cardiac rhythms (Glover et al., 2000), whereas
the variation and PO models should both reflect modulations of the
BOLD signal itself. This difference may be due to the fact that the
variation model captures slow variations in the BOLD signal that
happen several seconds after the mechanical events that induce them
(Birn et al., 2008; Chang et al., 2009). The simple PO model in its
current form does not capture these slower components. However, it
should be noted that the variation in pulse height of the raw PO signal
has recently been shown to account for physiological noise in the
BOLD signal without necessitating a secondary convolution term (Van
Houdt et al., 2010). It is the goal of future work to identify any
potential impulse response functions that better map PO fluctuations
to BOLD modulations.

Before using the down-sampled PO model to account for
physiological noise, either as an independent regressor or in
conjunction with other physiological noise models, some caution
should be takenwith regard to the nature of the signal being recorded.
Some photoplethysmograph systems high-pass filter and rescale/
threshold PO data during the recording process. This filtering can
attenuate or even eliminate the low-frequency respiration compo-
nents of the PO signal, as well as the structure of pulsation variability.
Analysis of the spectral power of the PO signal should reveal the
characteristic respiration and heart-beat peaks shown in Fig. 5.
Otherwise independent measures of respiration should be taken in
order to capture both the high and low-frequency components of
physiological noise. Also, many systems do not precisely time-lock
physiological recording to scan onset. This variable lag between
physiological signal and scan acquisition may significantly impact the
effectiveness of using a physiological nuisance regressor. As men-
tioned above (Time locking of the PO signal section), the introduction
of a basis set of shifted regressor values could be one option for
compensating for these effects. However, such models may also run
the risk of over-parameterization. Thus, with large datasets, likelihood
ratio tests (Stuart and Ord, 1987) can be used to perform optimal
model selection. Otherwise, bootstrap permutation approaches,
similar to what we used here, should be considered to determine
whether the inclusion of any set of nuisance regressors significantly
improves the overall model fit of the data.

Finally these problems in physiological signal integrity can be
exacerbated by certain preprocessing steps commonly used in fMRI.
For example, many researchers apply slice-time correction to
functional data. This interpolates voxel values tomore closely emulate
the same point in time. The time-scale of this temporal correction can
corrupt the phasic properties of underlying physiological signals in
the BOLD response and reduce the power of any nuisance regressor.
Also, many analysis packages high-pass filter data (either the
functional data itself or the design matrix). In much the same way
that high-pass filtering reduces the sensitivity of the PO signal to
respiration artifacts, this filtering of the functional time-series can
impair the ability to capture the lower frequency respiration noise
components. Therefore, careful consideration of signal recording and
preprocessing steps should be taken when applying physiological
noise correction in GLM analysis.
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