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Resting-State Functional Connectivity Does Not Predict Individual
Differences in Perceived Psychological Stress Among

Midlife Adults: Evidence From a Preregistered
Cross-Validation Study
Chrystal Spencer, MS, Javier Rasero, PhD, Rebecca G. Reed, PhD,
Timothy D. Verstynen, PhD, and Peter J. Gianaros, PhD
Objective: It is theorized that appraisals of perceived psychological
stress are represented in the brain. However, a neural signature that re-
liably predicts perceived stress has yet to be fully characterized. Ac-
cordingly, the present preregistered study tested whether whole-brain
resting-state functional connectivity patterns predict individual differ-
ences in perceived stress.
Methods: Participants (N = 417; 53% female; 24.2% non-White; aged
30–54 years) completed the 10-item Perceived Stress Scale and under-
went a 5-minute resting-state functional magnetic resonance imaging
scan. Functional connectivity (FC) was computed between areas dis-
tributed across the brain. In total, 19,900 functional connections
(edges) were retained for analyses. Cross-validated and multivariate
machine learning methods were implemented. Using this approach,
two penalized regression models with cross-validation—elastic net
and ridge—were conducted to predict perceived stress from the edges.
Results: Across the elastic net and ridge regression models, whole-
brain resting-state FC patterns failed to predict individual differences
in perceived stress. However, in exploratory analyses, they successfully
generalized in cross-validation to predict age for both models (elastic
net: r = 0.193, p < .0001, 95% CI = 0.099–0.284, RMSE = 6.661,
MAE = 5.715, R2 = 0.037; ridge: r = 0.197, p < .0001, 95%
CI = 0.103–0.287), RMSE = 6.613, MAE = 5.8140, R2 = 0.039).
Conclusion: These results suggest that resting-state FC patterns may
not reliably predict individual differences in self-reported perceived
stress among midlife adults.
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INTRODUCTION
According to the stage model of stress and disease (1),

events and contexts that are appraised as stressful, that is,
threatening and taxing to one’s ability to cope (2), lead to affec-
tive, behavioral, and physiological responses that may culmi-
nate in increased risk for physical disease (3). Taken together,
these responses are thought to comprise major dimensions of
states of psychological stress. Psychological stress itself is typ-
ically assessed by self-report inventories (e.g., Perceived Stress
Scale; PSS) (4). Not all individuals, however, appraise the
same events or contexts similarly, and hence, there is wide var-
iation across individuals on these measures of perceived psy-
chological stress (hereafter “perceived stress”). Importantly,
these individual differences in perceived stress are associated
with commensurate variation in biological and behavioral risk
factors for disease (e.g., inflammation, health-damaging cop-
ing behaviors, etc.), as well as clinical conditions and outcomes
(e.g., cardiovascular, cerebrovascular, and metabolic diseases)
(5–13). A long-standing yet untested assumption of models
of psychological stress and physical health is that the brain gen-
erates stress appraisals and bodily states, which are linked to
downstream influences on health (1). However, a neural signa-
ture that reliably predicts perceived stress has yet to be fully
characterized. As such, the goal of the present study was to
identify brain systems and functional neural metrics that may
relate reliably to individual differences in perceived stress.

It is likely that perceived stress is represented in the brain
by activity betweenmultiple prefrontal and medial temporal re-
gions that are involved in the affective, behavioral, and physio-
logical dimensions of the stress response (14,15), including the
ventromedial prefrontal cortex (vmPFC), anterior insula (AI),
anterior cingulate cortex (ACC), amygdala, and hippocampus.
Several of these regions are components of anatomically and
functionally interconnected brain systems that are implicated
in neuroendocrine, visceromotor, and behavioral phenomena
(15–22), including processes relevant to perceived stress. Most
of the existing evidence from the human neuroimaging litera-
ture suggests that acute stress engages these regions. Specifi-
cally, activity in the vmPFC, AI, and ACC has been associated
with measures of stressor-evoked cardiovascular reactivity,
l Science and Medicine • Volume 87, Number 2, February/March 2025
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including heart rate, blood pressure, and cardiac output
(23–30). Individual differences in these metrics have been as-
sociated with volumetric alterations in the amygdala and hip-
pocampus (31,32). Acute stress also appears to modulate the
functional connectivity (FC) patterns of these brain systems
(27,33–37). Further, there is mounting evidence showing that
chronic stress similarly relates to modulations in the structure
(38,39) and resting-state FC patterns (40–47) of these brain re-
gions, suggesting that theymay also be involved in the process-
ing of stressors in a more chronic, ambient context. In a similar
vein, these brain systems have been implicated in stress-
related psychopathology, such as posttraumatic stress disorder
and mood disorders (48–62).

Although they contribute greatly to our understanding of
the neural bases of stress, these and other brain-wide associa-
tion studies have analytical and inferential limitations (14) that
preclude inferences about reliable functional neural correlates
of individual differences in perceived stress. Amajor drawback
is that in using the standard mass-univariate analytic approach,
many of them inaccurately assume that the neural effects of
stress are localized to one or a few brain regions and thus treat
them as independent observations in statistical models. Testing
such inferences requires multiple comparisons correction,
which can be problematic if sample sizes are inadequate and
assumptions about independence are incorrect (63). It is more
plausible that psychological phenomena, including psycholog-
ical stress, are encoded in multiple distributed brain systems,
rather than one or a few select brain regions (64–69). Accord-
ingly, the primary prediction tested here is that FC patterns
across the brain will predict individual differences in perceived
stress. Examining this question requires a more robust analytic
approach, namely, multivariate predictive modeling (70,71),
which would be more suitable for characterizing a neural sig-
nature comprised of functional connections across the brain
that reliably predict perceived stress. Only one study to date
has directly addressed the question tested in the present study
using such an approach. Liu and colleagues showed that
among college-aged adults, individual differences in perceived
stress during the COVID-19 pandemic were predicted by
resting-state FC patterns between brain systems related to
stress processing (72).

The present preregistered study has similarly aimed to de-
termine whether individual differences in perceived stress are
reliably predicted by whole-brain resting-state FC patterns in
a sample of over 400 midlife adults. To achieve this, we used
a multivariate machine learning approach, which combined
predictor dimensionality reduction, penalized regression, and
cross-validation. In the predictive model, all functional connec-
tions, or edges, in the whole-brain resting-state patterns were
used to predict individual differences in perceived stress. Using
nested cross-validation and accounting for correlated variation
across functional brain connections, the model was iteratively
trained and tested using subsets of study participants. Criti-
cally, testing was always done on an out-of-sample subset not
used for training, which allowed us to evaluate the model’s pre-
dictive ability and to determine whether it is generalizable, that
is, whether it could be used to predict outcomes on novel
datasets (73). This approach is in line with current best prac-
tices in multivariate brain-wide association studies (74) and
can help to address power issues, namely, in-sample effect size
© 2025 Society for Biopsychosocial Science and Medicine
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inflation and lack of replicability, in samples of moderate sizes
(n = 75–500 subjects) (75).

METHODS

Participants
Participants were recruited as part of two projects: the

Pittsburgh Imaging Project (PIP; n = 331, age 30–51 years)
and Phase II of the Adult Health and Behavior project (AHAB;
n = 107, age 30–54 years). Eligibility was based on the follow-
ing exclusion criteria: history of chronic medical illness (e.g.,
diabetes, cancer, emphysema, rheumatological conditions,
etc.), cardiovascular or cerebrovascular disease, or psychiatric
or neurological disorder; use of medications with known car-
diovascular or autonomic effects; use of psychotropic medica-
tions; presence of standard MRI contraindications (i.e., claus-
trophobia, presence of metal in or on the body/history of metal
exposure); pregnancy; consumption of ≥5 servings of alcohol
3 or more times/week; treatment for hypertension, or having
a resting blood pressure greater than 140/60mmHg; left-hand-
edness; and color-blindness. Given that the functional mag-
netic resonance imaging (fMRI) data acquisition protocol
was identical for both studies, PIP and AHAB participants
were combined to maximize statistical power. To retain as
much of the full sample as possible, missing values on vari-
ables of interest (<1% missingness across variables) were me-
dian imputed. Twenty-one participants with mean framewise
displacement (FWD; a measure of head motion over time dur-
ing fMRI data acquisition) of ≥0.5 mm were excluded from
the analyses. The final analytic sample was 417 participants.
As noted above, coupled with a robust cross-validation
method, this moderately sized sample is sufficient for
obtaining unbiased effect sizes (75).

Procedure
All participants provided written informed consent, and

experiments were conducted in accordance with protocols ap-
proved by the University of Pittsburgh Institutional Review
Board. Before access to the datawas granted, the study hypoth-
eses and analytic plan were preregistered through the Open
Science Framework in adherence to their disclosure require-
ments. Data collection for variables of interest in the current
study was completed between 2008 and 2011. Participants
completed a series of visits that included anthropometric and
psychophysiological measurements; questionnaires related to
their medical and demographic history, psychosocial character-
istics (e.g., PSS), and intellectual ability; and an MRI scan.
Due to variability in participant scheduling, the PSS and MRI
scan were completed on separate visits for the AHAB cohort,
whereas most participants in the PIP cohort completed these
assessments during the same visit. On average, the time be-
tween measures across the two cohorts was 4 days (SD =
11.72; range, 0–80 days).

Perceived Stress
Perceived stress was assessed using the 10-item Perceived

Stress Scale (PSS-10). This scale offers a global measure of the
extent to which a person appraises their life events over the last
month as stressful. An example item is, “In the last month, how
139
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often have you been upset because of something that happened
unexpectedly?” For each item, participants rate the frequency
with which they have experienced the feeling or thought de-
scribed on a scale from 0 (Never) to 4 (Very Often). It has both
high internal reliability (α = .85 in PIP, α = .89 in AHAB) and
high test-retest reliability (intraclass correlation > 0.70) (76).
The PSS has been shown to be a better predictor of health out-
comes (e.g., life event scores, depressive and physical symp-
tomatology, anxiety, health behaviors) than more specific life
event scales (4). The highest score on the PSS-10 is 40, and
higher scores indicate higher levels of perceived stress.

fMRI Acquisition and Preprocessing
fMRI data for both PIP and AHAB were acquired by the

same scanner, specifically a 3T Trio TIM whole-body MRI
system (Siemens, Erlangen, Germany), equipped with a 12-
channel phased-array head coil. Participants laid in the scanner
for 5 minutes with their eyes open (a commonly used scanning
duration that has been shown to yield stable functional connec-
tivity metrics (77,78)), whereas blood-oxygen level-dependent
(BOLD) images with a gradient-echo EPI sequence were ac-
quiredusing the followingparameters: TR=2000milliseconds,
TE = 28 milliseconds, flip angle = 90 degrees, field of
view = 205� 205 mm2, matrix size = 64� 64 mm2, 39 slices,
and 3-mm isotropic voxels. Slices were obtained using an inter-
leaved sequence in the inferior-to-superior direction, yielding
150 total BOLD images. The first three images were dis-
carded to allow for magnetic equilibration. T1-weighted 3D
magnetization-prepared rapid gradient echo neuroanatomical
images were acquired over a duration of 7 minutes 17 seconds
with the following parameters: FOV = 256� 208mm2, matrix
size = 256 � 208 mm2, and TR = 2100 milliseconds.

The following preprocessing procedures, adapted from a
separate analysis project previously carried out in PIP (79),
were similarly applied to both PIP and AHAB cohorts.
Resting-state BOLD data were preprocessed using the CONN
toolbox (80) following a standard fMRI preprocessing pipe-
line, with steps including realignment using a six-parameter
rigid-body transformation, co-registration to the T1-weighted
structural image, and normalization to MNI space. Addition-
ally, to further reduce noise in the data, the following additional
preprocessing steps were implemented: temporal bandpass fil-
tering (0.009Hz < f < 0.08Hz), spatial smoothing of functional
images using a 6-mm full-width-at-half-maximum Gaussian
kernel, and regression of motion and physiological noise in a
model including regressors derived from the six parameters
from the realignment step and regressors for CSF, white matter,
and global brain signal (81).

Functional Connectivity Computation
The denoised data were then segmented. In the original

preregistration, we proposed to use a whole-brain fMRI
parcellation comprising 268 regions to compute FC (82). How-
ever, in preliminary analyses, several FC values could not be
computed due to poor coverage in the cerebellum within our
data. As such, we revised the preregistration, and segmentation
of the denoised data was instead based on a 200-region whole-
brain fMRI parcellation (83). Resting-state derived atlases are
preferred over the standard anatomical atlases (e.g., AAL).
140
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First, the anatomical/cytoarchitectural homogeneity of regions
as defined by standard atlases does not necessarily extend to
patterns of connectivity. Different subregions of a given struc-
ture may be networked with distinctly different regions, and
thus may be implicated in different cognitive functions (83).
Thus, atlases like the AAL may not be suitable for resting-
state FC analyses.

Functional connectivity was computed in the CONN tool-
box using the ROI-to-ROI approach. For each pair of parcels,
bivariate Pearson correlation coefficients were computed for
the BOLD timeseries. These coefficients were then trans-
formed using Fisher Z transformation. The upper triangle of
the resulting connectivity matrix, which was retained for anal-
yses, consisted of 19,900 correlations (edges) per participant.
Machine Learning Analyses
All statistical analyses were performed using R Statistical

Software v3.1.0 (84), utilizing the caret (v6.0.94) (85), glmnet
(v4.1.8) (86), and BayesFactor (v0.9.12.4.7) (87) packages.We
used a multivariate penalized regression approach to test
whether perceived stress was predicted by whole-brain rest-
ing-state FC patterns. In this analysis, all 19,900 edges were
the multivariate predictor variables, and the PSS score was
the outcome variable. First, to reduce the dimensionality of
the input data and address concerns of multicollinearity, princi-
pal components analysis was applied to the normalized and
scaled edges. This operation transformed the input features
(i.e., the edges) to the principal component space whose di-
mensionality was n − 1, with n being the number of partici-
pants within a given training set split. Next, perceived stress
was regressed onto the principal components using penalized
regression models. Our primary model was the elastic net
model because it combines the penalty terms of the Least Ab-
solute Shrinkage and Selection Operator (LASSO) (L1) and
ridge (L2) regression models. Briefly, when applied, these
penalties shrink high variance beta coefficients to or toward
zero, respectively. These effects are modulated by two hyper-
parameters: a shrinkage parameter lambda (λ), which determines
how much penalization is applied (ranges from 0 to ∞), and a
mixing parameter alpha (α), which determines the ratio of L1
and L2 penalties (α = 0 for ridge [L2], α = 1 for LASSO
[L1], 0 < α < 1 for elastic net). We also ran ridge regression
as our secondary model, given its treatment of multicollinear-
ity, as it reconciles correlated predictors by shrinking them near
each other rather than removing one of them from the model
(88). LASSO regression, on the other hand, proved to be too
stringent in this analysis context, removing too many features
and thus preventing the model from converging (results not re-
ported here) (89).

Nested k-fold cross-validation was implemented, where
the model’s predictive ability was assessed within the outer
loop and the model hyperparameters were optimized within
the inner loop (90). In the outer loop, 10-fold cross-validation
was implemented, such that the dataset was partitioned into
10 nonoverlapping subsets of equal size. At each fold, all but
one of these subsets were used for model training (training
set), and the held-out subset was used for model testing (i.e.,
testing set). Then, the training set was passed to the inner loop
for hyperparameter tuning, where a range of λ and α values
© 2025 Society for Biopsychosocial Science and Medicine
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TABLE 1. Analytic Sample Characteristics—N = 417 (95%)

Characteristics
AHAB

(N = 106)
PIP

(N = 311)
Overall
(N = 417)

Female (%) 62.3 49.8 53
Race (%)
White 83 73.3 75.8
Black 12.3 20.6 18.5
Asian 4.7 4.2 4.3
Native American 0 1 .7
Bi/Multiracial 0 1 .7
Other 0 0 0

Age (y) 41.9 (7.99) 40.8 (6.23) 41 (6.73)
PSS score (out of 40) 13.7 (6.08) 13.8 (5.99) 13.8 (6.00)
Framewise displacement (mm) 0.16 (0.08) 0.17 (0.09) 0.17 (0.08)

AHAB = Adult Health and Behavior study; PIP = Pittsburgh Imaging Project;

PSS = Perceived Stress Scale.

Values reflect mean (standard deviation), unless otherwise noted.
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were tested via grid search to find the optimal parameters—
namely, those values that minimize the prediction error. Within
this inner loop, five-fold cross-validation was implemented
with the same data partitioning process described above. For
the elastic net model, a range of 100 λ values from 0 to 100
and α values 0, .5, and 1 were tested. For the ridge model, a
range of 100 λ values from 0 to 25 were tested and αwas fixed
at 0. The hyperparameter tuning process was repeated three
times to test the reliability of the resulting model performance
metrics. These optimized hyperparameters were then used to
train the model and generate predictions in the held-out testing
set from the outer loop.

The final predictive performance of each model
concatenated across the outer folds was summarized by multi-
ple metrics, per recommendations on best practices for
reporting predictive modeling results (74). The differences be-
tween predicted and observed PSS scores were summarized by
the root mean squared error (RMSE) and mean absolute error
(MAE) values. The proportion of variance in the predicted
values explained by the observed values was summarized by
the coefficient of determination (R2), which was computed
using the sums of squares formula. The association between
predicted and observed PSS scores was summarized by the
Pearson correlation coefficient, along with the corresponding
p value and 95% CI. To facilitate interpretations of results that
did not reach statistical significance by conventional standards,
Bayes factors (BF) were computed. BF10 and BF01 values
quantify the evidence in favor of the alternative and null hy-
potheses, respectively. Code for analysis and results for all
models are available upon request.

In addition to those that were preregistered, we also con-
ducted several exploratory analyses using the same approach
described above. We stratified the sample by sex and cohort
to test for differential predictive relationships based on these
variables. We also tested the predictive models within two sub-
sets of participants: a) those who completed the PSS and MRI
within a month of each other (i.e., a time difference of 31 days
or less; N = 403), given that the PSS is anchored over the past
month and the wide variability in time between measures in
this sample; and b) those with “high” levels of perceived stress,
defined as having a PSS score comparable to that observed in
Liu et al. (72) (i.e., a PSS score of 21.5 or higher; N = 50). Fi-
nally, as a pipeline check, we tested whether age was predicted
bywhole-brain resting-state FC patterns, as this has been found
previously (91–93), by replacing age as the outcome variable in
the predictive models.
RESULTS

Sample Characteristics and Associations Among
Model Variables

Table 1 outlines characteristics of the analytic sample
(n = 417). Participants were a mean age of 41 years, 53% fe-
male, and 24.2% non-White. This sample had relatively low
perceived stress (mean = 13.8; SD = 6.0) but showed adequate
variability (observed range: 0–32). Participants with FWD
outlier values reported, on average, higher perceived stress
than those included in the analyses (17.8 versus 13.8, t
(436) = 2.86, p = .009), but they did not differ on age. Partici-
© 2025 Society for Biopsychosocial Science and Medicine
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pants in PIP and AHAB did not differ on age, perceived stress,
or FWD. Age was correlated with FWD (r = 0.12, p = .019),
but not perceived stress. Female participants were slightly older
than male participants (mean age = 42.00 versus 40.01 years), t
(411) = −2.997, p = .003), but there were no sex differences in
PSS score or FWD.

Predictive Modeling Results
Using a cross-validated penalized regression approach, we

found that the models predicting perceived stress performed
poorly. As depicted in Figure 1, nested cross-validation showed
that perceived stress predicted by whole-brain resting-state FC
patterns was not significantly correlated with observed PSS
scores: elastic net: r = −.035, p = .479, 95% CI = −0.131 to
0.061,RMSE=6.441,MAE=5.095,R2 = 0.001,BF10= 0.147,
BF01 = 6.819; ridge: r = −0.046, p = .346, 95% CI = −0.142 to
0.050,RMSE=6.049,MAE=4.810,R2 = 0.002,BF10= 0.178,
BF01 = 5.637. These results do not appear to differ by sex (Fig-
ures S1 and S2 in the Supplemental Digital Content, http://
links.lww.com/PSYMED/B55), cohort (Figures S3 and S4 in
the Supplement), time between assessments, or stress level.
However, the results of the pipeline check showed that the pos-
itive association between age predicted by whole-brain resting-
state FC patterns and observed age was significant: elastic net:
r = 0.193, p < .0001, 95% CI = 0.099 to 0.284,
RMSE = 6.661 years, MAE = 5.715 years, R2 = 0.037,
BF10 = 268.360, BF01 = 0.004; ridge: r = 0.197, p < .0001,
95% CI = 0.103 to 0.287, RMSE = 6.613 years,
MAE = 5.814 years, R2 = 0.039, BF10 = 363.460,
BF01 = 0.003 (Figure 2).
DISCUSSION
In the present study, we were unable to demonstrate that

individual differences in perceived stress can be reliably pre-
dicted by whole-brain resting-state FC patterns. Cross-
validated multivariate penalized regression models performed
poorly, and predicted values did not significantly associate
with observed values (Figure 1). However, these models did
141
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FIGURE 1. Relationship between observed and predicted PSS score for two multivariate penalized regression models—(A) elastic net and (B) ridge.
Blue solid line and shading represent the lines of best fit and the corresponding 95% confidence interval, respectively. Marginal histograms reflect
frequency distributions for observed (on x axis) and predicted (on y axis) PSS score.
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successfully predict age in this sample (Figure 2). Our results
suggest that the functional neural correlates of perceived stress
may not be reliably characterized by patterns of resting-state
FC. Below, we speculate about potential explanations for these
findings, including differences in how resting-state FC and
perceived stress are operationalized and measured; methodo-
logical differences from previous work; robustness of the sta-
tistical approach; and low statistical power.

Although existing evidence demonstrates that resting-
state FC and perceived stress, as measured in the present study,
both exhibit reliable individual differences, it could be that they
are conceptually distinct from one another and thus may not be
meaningfully relatable to each other in this context. Perceived
stress, for example, is thought to reflect a cumulative “cognitive
average” of stress appraisals over the last month. Resting-state
FC, on the other hand, is thought to reflect spontaneously
FIGURE 2. Relationship between observed and predicted age for twomultiva
solid line and shading represent the lines of best fit and the corresponding 9
frequency distributions for observed (on x axis) and predicted (on y axis) age
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evoked intrinsic brain activity that may be context independent
of fluctuating stress appraisals over the past month. Thus,
resting-state FC could be capturing underlying at-the-moment
processes that may be unrelated to those presumably reflected
in the month-aggregated PSS score, and may therefore not be
the best measure for modeling individual differences in per-
ceived stress. This may especially be the case given that these
measureswere obtained, on average, amonth apart in the present
study (see the Procedures section in Methods). As such, future
studies might reconcile these conceptual and operational differ-
ences by using an adapted protocol that is in line with the so-
called third-wave of human neuroimaging research, which com-
bines the flexibility afforded by resting-state paradigms with the
structure of task-based paradigms to improve the interpretability
of our results and deepen our understanding of brain-phenotype
relationships (94). In this vein, rather than completing an
riate penalized regressionmodels—(A) elastic net and (B) ridge. The blue
5% confidence interval, respectively. Marginal histograms reflect
.
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unstructured resting-state scan, participants could instead re-
ceive instructions that mirror the items on the PSS (e.g., “During
this resting period, think about how unpredictable, uncontrollable,
or overloading your life experiences over the last month have
been.”). This instructionmanipulationmay evoke the same cogni-
tions and engage the relevant appraisal processes that are presum-
ably at play during the completion of the PSS. Such an approach
involving contemporaneous measurement of appraisal-related
cognitions and brain activity would enable a more direct compar-
ison of the two and contribute toward amore precise characteriza-
tion of the functional neural correlates of perceived stress.

The null findings observed here (which are confirmed by
the BF10 values within the range of 1/10–1/3, suggesting mod-
erate evidence in favor of the null hypothesis (95)) could be
due to methodological differences between our study and the
existing literature. First, Liu and colleagues used a sample of
college-aged adults newly experiencing a novel global pan-
demic (mean age = 19.14 years across the three datasets)
(72), whereas our sample consisted of midlife adults studied
prior to this historical epoch (mean age = 41 years). Thus, it
may be that the association between perceived stress and
resting-state FC is an age-dependent effect or one that is depen-
dent on ambient levels of commonly experienced psychologi-
cal stress (i.e., state-dependent). Moreover, perceived stress ap-
pears to decrease with age normatively, with self-reported
levels peaking in young adulthood and gradually decreasing
into midlife (96,97). This developmental change is reflected
in the perceived stress levels observed across the two studies;
the college-aged sample in Liu et al. had moderately high
levels of perceived stress (mean PSS score = 21.7 across three
datasets) (72), whereas our sample of midlife adults had rela-
tively lower levels of perceived stress (mean PSS score =
13.8). Additionally, age-related changes in resting-state FC dy-
namics are characterized by reduced connectivity within large-
scale networks (including the default mode and salience net-
works) and enhanced connectivity between them (98–100).
Differences in the resting-state scan protocols between studies
may also account for the discrepancy in results; although Liu
et al. had an 8-minute, eyes-closed resting-state scan, our pro-
tocol included a 5-minute, eyes-open resting-state scan (72).
There is evidence suggesting that both scan length and eye
state can influence the connectivity measures obtained. Specif-
ically, the reliability of FC measures is improved with scans of
moderate length (~12 minutes) and eyes-open protocols, com-
pared to shorter scans (~5 minutes) (101) and eyes-closed pro-
tocols (102,103), respectively. An additional complication with
eyes-closed protocols is that they increase the likelihood that
participants will fall asleep, which can confound resting-state
activity patterns observed. As such, although Liu et al. had a
more optimal scan length, our use of an eyes-open scan proto-
col yielded data that may be more reliable.

Furthermore, differences in statistical approach, coupled
with low statistical power, may also explain the failure to repli-
cate the previously published effect. Liu and colleagues used
leave-one-out cross-validation, whereas we used nested k-fold
cross-validation (72). In leave-one-out cross-validation, the
model is trained on all but one datapoint in the sample, which
is retained for subsequent model testing. Though this approach
is exhaustive, using almost the entire sample to train the model
and thus producing unbiased estimates, the variance between
© 2025 Society for Biopsychosocial Science and Medicine
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the resulting model predictions tends to be high, increasing
the risk of overfitting (104). Conversely, nested k-fold cross-
validation (described above) attempts to rectify this bias-
variance tradeoff by separating the model tuning and model
testing processes (90,105). Thus, it may be the more robust ap-
proach to using resting-state FC to model individual differ-
ences, as demonstrated by the model’s successful prediction
of age in our exploratory analyses (Figure 2). Additionally,
though the sample size in Liu et al. was double that of the pres-
ent study (n = 817 versus n = 417), it may be the case that both
studies are underpowered to detect a replicable effect. By some
accounts, multivariate brain-wide association studies require
large sample sizes, possibly upward of 1000 participants, to
yield replicable results, although some show replicable effects
in small to moderate samples (e.g., n = 75–500) (63,75,106).
Nevertheless, the utilization of cross-validation methods in
the present study ensures that the effect sizes observed are un-
likely to be biased.

The existing literature on the neural bases of psychological
stress is extensive (23–47) but is characterized by inherent
analytic and inferential limitations that accompany the mass-
univariate analytic approach (14,63). By comparison, there
few studies using predictive modeling to characterize the func-
tional neural correlates of psychological stress (72). None of
the present findings suggest that there is a cross-validated predic-
tive signature of perceived stress that accounts for correlated var-
iation in the functionality of distributed brain systems. As such,
the results of past studies should be interpreted with caution.

In conclusion, our results suggest that whole-brain rest-
ing-state FC patterns do not reliably predict individual differ-
ences in perceived stress. It remains unclear whether these re-
sults are due to inconsistencies between studies with respect
to measurement of model variables, lifespan considerations,
methodological approaches, or low statistical power. Future
studies using different imaging assessment methods or possi-
bly different markers of chronic psychological stress are war-
ranted to better understand the role of the brain in linking stress
and physical health outcomes.
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