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Abstract
The question of how cortico-basal ganglia-thalamic (CBGT) pathways use dopamin-
ergic feedback signals to modify future decisions has challenged computational neu-
roscientists for decades. Reviewing the literature on computational representations 
of dopaminergic corticostriatal plasticity, we show how the field is converging on a 
normative, synaptic-level learning algorithm that elegantly captures both neurophys-
iological properties of CBGT circuits and behavioral dynamics during reinforcement 
learning. Unfortunately, the computational studies that have led to this normative 
algorithmic model have all relied on simplified circuits that use abstracted action-
selection rules. As a result, the application of this corticostriatal plasticity algorithm 
to a full model of the CBGT pathways immediately fails because the spatiotemporal 
distance between integration (corticostriatal circuits), action selection (thalamocorti-
cal loops) and learning (nigrostriatal circuits) means that the network does not know 
which synapses should be reinforced to favor previously rewarding actions. We show 
how observations from neurophysiology, in particular the sustained activation of se-
lected action representations, can provide a simple means of resolving this credit as-
signment problem in models of CBGT learning. Using a biologically realistic spiking 
model of the full CBGT circuit, we demonstrate how this solution can allow a net-
work to learn to select optimal targets and to relearn action-outcome contingencies 
when the environment changes. This simple illustration highlights how the norma-
tive framework for corticostriatal plasticity can be expanded to capture macroscopic 
network dynamics during learning and decision-making.
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1 |  INTRODUCTION

Survival in dynamic natural environments requires that ani-
mals effectively use prior experiences to guide future action 
selection. For example, remembering which plants previously 
provided a tasty treat versus which plants induced gastroin-
testinal distress can have a substantial impact on an animal's 
survival. In the mammalian brain, this form of reinforcement 
learning (Sutton, Barto, & Book, 1998) is driven in large part 
by the neurochemical dopamine (Schultz, 1998, 2016; Schultz 
& Romo, 1990). Sensory events that happen immediately after 
an action (e.g., a sweet taste or a painful sensation) can affect 
the output of midbrain dopamine neurons that target cells in 
the striatum, the major recipient of cortical inputs to the basal 
ganglia, tuning the sensitivity of striatal neurons to descending 
cortical inputs (for review, see Peak, Hart, & Balleine, 2019; 
Surmeier et al., 2010). In turn, this dopamine-dependent corti-
costriatal plasticity is thought to impact how the basal ganglia 
modulate cortical activity during action selection via their in-
fluence on thalamocortical connections, closing the so-called 
cortico-basal ganglia-thalamic (CBGT) computational “loop” 
(Alexander, DeLong, & Strick, 1986; DeLong & Wichmann, 
2007; Parent & Hazrati, 1995).

The mainstream view of reward-related dopamine sig-
nals is that they shape corticostriatal synaptic plasticity in 
a way that promotes reward-inducing behaviors and sup-
presses non-rewarding actions (Mink, 1996), casting the cor-
ticostriatal synapses as a critical site for reward-dependent 
learning via synaptic plasticity. This elegant idea is consis-
tent with a wealth of data across species (Lee, Tai, Zador, 
& Wilbrecht, 2015; Smeets, Marin, & Gonzalez, 2000). The 
challenge that has long stymied neuroscientists, however, 
is the proverbial devil in the details. The mapping from ac-
tions to dopamine release to the actual dopamine signals 
that are received in the striatum is complicated and depends 
on factors relating to many aspects of experimental condi-
tions, including species involved, history preceding action 
performance, subject motivational state and measurement 
techniques. The transformation from dopamine signals to 
eventual modifications in behavior is even more opaque and 
difficult to elucidate because we lack a clear understanding 
of how the circuit-level properties of CBGT pathways map to 
behavior (but see Bogacz & Gurney, 2007; Dunovan, Vich, 
Clapp, Verstynen, & Rubin,  2019; Ratcli & Frank, 2012). 
This complexity provides a natural setting for the application 
of computational modeling, which can be used to instanti-
ate the known components of the system together with other 

more exploratory ideas, both to test the capacity of these net-
works for effective learning and action selection, and to gen-
erate associated predictions.

Here, we review the computational approaches that have 
been used to understand how dopamine signals implement 
reinforcement learning in CBGT pathways. We structure the 
review part of this work to highlight the progression toward 
current efforts to connect synaptic-level models of plasticity 
with circuit-level models of CBGT-dependent decision-mak-
ing and corresponding cognitive representations. We begin in 
Section 2 by providing a concise general description of the 
CBGT pathways, a brief introduction to ideas about evidence 
accumulation and an overview of the current understanding 
of corticostriatal plasticity. Next, in Section 3, we summarize 
previous computational models that describe how reward-re-
lated dopamine could influence corticostriatal synapses in a 
way that impacts future action selection. While these elegant 
synapse-level models are effective at capturing the nuanced 
dynamics of reinforcement learning, they rely on simple, ab-
stracted action-selection rules that ignore or oversimplify the 
credit assignment problem (i.e., knowing how to change only 
those synapses that lead to the decision despite the spatiotem-
poral distance between selection and subsequent feedback 
signals). We go on to show how insights from the electro-
physiology literature can provide essential clues as to how to 
resolve the credit assignment problem in CBGT pathways and 
present some proof-of-concept simulations to highlight how 
dopaminergic signals can implement reinforcement learning 
in a biologically plausible spiking model of CBGT circuits. 
Finally, we end by highlighting some open issues and future 
directions that the computational neuroscience literature can 
consider in order to bridge the gap between circuit properties 
of CBGT pathways and behavior.

2 |  CIRCUIT-LEVEL 
ARCHITECTURE OF CBGT 
PATHWAYS

The computational goal of the CBGT loops appears to be 
to integrate information from competing cortical sources in 
order to (a) bias downstream selection systems and (b) use 
feedback signals to promote learning that modifies this bias-
ing process in the future (Mink, 1996). The canonical model of 
how CBGT circuits (Figure 1) implement these computations 
relies on three structurally and functionally dissociable con-
trol pathways: the direct (facilitation), indirect (suppression) 
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and hyperdirect (braking) pathways. This model assumes 
that the basal ganglia is organized into multiple action chan-
nels (Bogacz, 2007; Bogacz & Gurney, 2007; Mink, 1996), 
with each channel containing a direct and an indirect path-
way. Activation of the direct pathway suppresses the basal 
ganglia output nuclei, here represented by the internal seg-
ment of the globus pallidus (GPi; the other major output nu-
cleus being the substantia nigra pars reticulata). The standard 
theory of these pathways (Nambu,  2004) states that as the 
GPi tonically inhibits the thalamus, activation of the direct 
pathway relieves the thalamus from this inhibition, allowing 
it to facilitate action execution by activating or otherwise pro-
moting specific action representations in cortical motor areas 
(Sauerbrie et al., 2020). This disinhibition of corticothalamic 
circuits is thought to be the basis for the selection of indi-
vidual actions. In contrast, activation of the indirect pathway 
inhibits the external segment of the globus pallidus (GPe), 
which in turn inhibits both the subthalamic nucleus (STN) 
and the GPi. The net effect of indirect pathway activation 
is therefore enhancement of GPi activity, leading to greater 
suppression of the thalamus and, as a result, of cortical motor 
areas. Empirical evidence showing that, in freely moving 
mice, the expression of individual actions coincides with 
co-activation of spatially clustered populations of direct and 
indirect medium spiny neurons (MSNs) (Klaus et al., 2017) 
supports the assumption of this channel-like architecture of 
CBGT pathways.

Mounting evidence also motivates some adjustments to 
the standard theory. Specifically, recent experiments have es-
tablished that both the direct pathway MSNs (dMSNs) and the 
indirect pathway MSNs (iMSNs) linked with a particular ac-
tion are co-activated during action selection (Cui et al., 2013; 
Parker et  al.,  2018; Tecuapetla, Jin, Lima, & Costa,  2016; 
Tecuapetla, Matias, Dugue, Mainen, & Costa,  2014). This 
simultaneous activation of dMSN and iMSN populations 
challenges the traditional model of a strict isomorphism 
between dMSN and iMSN activity and excitation and in-
hibition of actions, respectively (Mink,  1996). These em-
pirical observations, along with analysis of the topological 

organization of CBGT pathways, have led to more recent 
theoretical models proposing that, within an action channel, 
the dMSN and iMSNs work in a competitive manner to regu-
late the certainty of a given action decision (Bariselli, Fobbs, 
Creed, & Kravitz,  2018; Dunovan, Lynch, Molesworth, & 
Verstynen,  2015; Dunovan & Verstynen,  2016; Mikhael & 
Bogacz, 2016). This regulation may be circumvented by the 
hyperdirect pathway, which is activated by cortical input 
directly to the STN, yielding a strong, diffuse GPi activa-
tion. This signal can clear out any lingering activity from 
earlier processing before a subsequent action initiation, and 
it can act as a fast, reactive “brake” across action channels 
once progress toward action initiation is underway (Aron & 
Poldrack, 2006; Fife et al., 2017). It remains unclear whether 
hyperdirect pathways are specific to individual action chan-
nels or have a more distributed influence on action-selection 
processes.

A computational framework can provide a convenient ab-
straction from direct and indirect pathway neuronal activity 
into a precisely defined action-selection process. A useful 
way to think of decision-making is to envision the accumu-
lation of evidence for or against available options. From a 
modeling viewpoint, abstracted away from details of neuro-
nal implementation, this process can be represented either as 
a race among multiple evidence accumulators, each building 
toward a corresponding decision threshold, or as a compe-
tition among evidence streams, each vying to push a single 
evidence tracker toward a corresponding threshold. Both of 
these representations have been realized in many past works 
through the use of variants of a drift-diffusion model (DDM) 
in which evidence induces a drift, or directed movement, on 
an otherwise random walker in a spatial domain and deci-
sion thresholds are included as actual spatial boundaries of 
this domain (Ratcliff, 1978). Based on electrophysiological 
observations showing ramping activity in cortical sensory 
and motor planning areas, it was originally thought that 
the process of accumulation of evidence is implemented by 
cortical neurons (Gold & Shadlen, 2007), which pass their 
information on to striatal targets in the direct and indirect 

F I G U R E  1  Circuit-level architecture 
of the cortico-basal ganglia-thalamic 
loop highlighting the major pathways 
within a single action channel. dMSN, 
direct pathway striatal neurons; FSI, fast 
spiking interneuron; GPe, globus pallidus 
external segment; GPi, globus pallidus 
internal segment; iMSN, indirect pathway 
striatal neurons; SNc, substantia nigra pars 
compacta; STN, subthalamic nucleus; STR, 
striatum; wD, wI, corticostriatal synaptic 
weights
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pathways. However, this model of cortex as being critical 
for the process of evidence accumulation has recently come 
into question (Latimer, Yates, Meister, Huk, & Pillow, 2015), 
with some experimental evidence showing that disruption of 
cortical “accumulator” areas fails to disrupt the process of 
evidence integration (Katz, Yates, Pillow, & Huk, 2016; Li, 
Daie, Svoboda, & Druckmann, 2016). Populations of stria-
tal neurons also show anticipatory ramping preceding action 
selection (Lauwereyns, Watanabe, Coe, & Hikosaka, 2002) 
and, in contrast to cortical perturbations, inactivation of 
the dorsolateral striatum compromises perceptual discrimi-
nation by mice, impacting the rate of information accumu-
lation during decision processes (Yartsev, Hanks, Yoon, & 
Brody, 2018; however, see also Ding & Gold, 2013). Indeed, 
from a computational perspective, the architecture of CBGT 
pathways appears to be ideal for implementing an accumu-
lation-to-bound style decision process (Bogacz, Brown, 
Moehlis, Holmes, & Cohen, 2006; Bogacz & Larsen, 2011; 
Dunovan & Verstynen, 2016).

Once evidence accumulation leads to an action, learning 
from the consequences of that action modifies the subse-
quent accumulation of evidence. Learning within CBGT 
pathways requires dopaminergic feedback from projections 
from the substantia nigra pars compacta (SNc) to corti-
costriatal synapses (Hollerman & Schultz, 1998; Perrin 
& Venance, 2019; Schultz, 1998; Figure 1, inset). Due to 
the opposing effects of dopamine on the direct and indi-
rect pathways (Collins & Frank, 2014; Shan, Ge, Christie, 
& Balleine,  2014), these feedback signals are thought to 
reinforce rewarded actions while suppressing punished 
actions. The experimental literature has afforded several 
critical insights that have helped guide our understanding 
of the computational process of dopaminergic learning. 
First, there are phasic dopamine responses that correlate 
with post-action feedback signals in a way that resembles 
reward prediction errors (Schultz, Apicella, Scarnati, & 
Ljungberg,  1992; Schultz, Dayan, & Montague,  1997), 
such that the magnitude of evoked dopamine scales with 
properties of the received reinforcement signal relative to 
expectations (Fiorillo, Tobler, & Schultz,  2003; Tobler, 
Fiorillo, & Schultz, 2005). Second, the magnitude of dopa-
mine signals determines the degree of effective plasticity 
at corticostriatal synapses, modulating their sensitivity to 
cortical afferents (Hernández-López et al., 2000; Thurley, 
Senn, & Luscher, 2008). Third, the nature of phasic dopa-
mine-induced plasticity at corticostriatal synapses depends 
on the dopamine-receptor subtype involved and pre- and 
post-synaptic spike timing. The prevailing view (Shen, 
Flajolet, Greengard, & Surmeier,  2008) is that for D1-
receptor-expressing MSNs, primarily dMSNs, higher do-
pamine promotes greater long-term potentiation (LTP) and 
lower dopamine promotes greater long-term depression 
(LTD). This effect is believed to be inverted in D2-receptor 

MSNs, primarily iMSNs, for which high dopamine pro-
motes greater LTD and lower dopamine promotes greater 
LTP. It is important to note that this issue is not yet settled 
and that this relationship may vary across areas of the stria-
tum and may depend on other factors such as striatal up and 
down states (Calabresi, Picconi, Tozzi, & Filippo,  2007; 
Pennartz, Ameerun, Groenewegen, & Lopes da Silva, 1993; 
Rusu & Pennartz, 2020; Thomas, Malenka, & Bonci, 2000). 
Finally, plasticity at corticostriatal synapses involves pro-
cesses acting on multiple time scales. On short time scales 
(<100  ms), spike-timing-dependent plasticity (STDP) is 
observed (Fino, Glowinski, & Venance,  2005; Pawlak & 
Kerr, 2008), allowing for Hebbian learning. Whether or not 
STDP is expressed at corticostriatal synapses, however, is 
strictly determined by signals that happen at a much longer 
time scale (multiple seconds) (Fisher et al., 2017; Shindou, 
Shindou, Watanabe, & Wickens, 2019). Specifically, pha-
sic dopamine causes potentiation only at corticostriatal 
synapses that were active in an appropriate time window 
some seconds before dopamine release, as indicated by 
some form of tag or marker. Theoretically, by allowing 
only the synapses that were active at the approximate time 
of action selection to be modified, this “eligibility trace'” 
(Houk, Adams, & Barto,  1995; Miller, 1988; Sutton & 
Barto, 1998) is believed to resolve the credit assignment 
problem by effectively allowing plasticity to take into ac-
count activity that occurred in the past.

While these various empirical observations serve as the 
basis for our current theoretical understanding of how action 
selection, dopaminergic learning and evidence accumula-
tion are implemented in CBGT pathways, it is worth noting 
that theoretical models have also gone on to inform lines of 
empirical research. For example, the theoretical concepts of 
action channels (Bogacz,  2007; Bogacz & Gurney,  2007; 
Mink, 1996) and eligibility traces (Izhikevich, 2007b; Miller, 
1988) preceded and motivated the experimental research that 
is now used to support their existence (e.g., Klaus et al., 2017 
and Fisher et  al., 2017; Shindou et  al., 2019, respectively). 
Thus, the theoretical and empirical literatures on CBGT 
circuits have developed symbiotically over time, providing 
complementary insights into feedback learning and action 
selection.

3 |  MODELS OF LEARNING & 
ACTION SELECTION IN CBGT 
NETWORKS

One of our goals in this review is to provide a critical evalu-
ation of the current computational models of learning and ac-
tion selection in CBGT networks. To understand where the 
field is now, we must first survey where we have been over 
the past several decades. We identify several key conceptual 
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steps through which computational modeling progressed and 
the implications, or outcomes, that have arisen from those 
conceptual steps.

3.1 | Step 1: Early models of 
CBGT pathways

Many computational models have been developed over time 
to describe various aspects of action selection and reward-
based learning (Buede,  2013). Here, we focus on network 
models of the basal ganglia that combine both learning and 
action selection, with the goal of identifying common al-
gorithmic structures of learning as implemented in CBGT 
pathways.

Reinforcement learning in the basal ganglia, as mediated 
by dopamine, and temporal credit assignment have been 
a focus of computational models since the 1990s (Houk 
et al.,  1995). Indeed, Houk and his co-authors (1995) ini-
tially proposed many critical concepts for how basal ganglia 
pathways, including dopaminergic inputs, could resolve the 
credit assignment problem that have only recently been val-
idated by empirical work. Other early models of basal gan-
glia pathways that considered action-selection mechanisms 
did not include rewards based on chosen actions (see Beiser, 
Hua, & Houk, 1997; Gillies & Arbuthnott, 2000; Humphries, 
Stewart, & Gurney, 2006; Lo & Wang, 2006 and references 
therein). In some cases, dopamine was included as a param-
eter that could be hand tuned and affected the network's abil-
ity to make selections at all (Berns & Sejnowski, 1996, 1998; 
Gurney, Prescott, & Redgrave,  2001a, 2001b; Humphries 
et al., 2006; Sen-Bhattacharya et al., 2018), but learning dy-
namics were largely ignored. In contrast, the work of Frank 
(2005) is notable for combining hypotheses about action 
selection together with the mechanisms of reinforcement 
learning in basal ganglia pathways. This model separates 
striatal neurons into “Go” and “No-Go” populations, which 
map onto the D1/direct (selection) and D2/indirect (control) 
pathways, respectively. These pathways compete to control 
the activity downstream in the GPi, the level of which deter-
mines whether or not an action is selected. This model pro-
vided fundamental insights about the impacts of dopamine 
in the basal ganglia during reinforcement learning, suggest-
ing that phasic dopamine modulates the basal ganglia to 
facilitate (Go population) or suppress (No-Go population) 
the response to a particular stimulus. In subsequent work, 
this modeling framework was extended to incorporate a role 
for the STN in producing a general braking signal, transmit-
ted via a diffuse projection to the basal ganglia output layer 
(Frank,  2006). This function became especially important 
in high conflict scenarios (i.e., where the optimal decision 
is uncertain) featuring only subtle distinctions in the out-
comes associated with different actions. In these conditions, 

suppression of premature decisions was found to be needed 
to achieve optimal reward outcomes. Learning in these mod-
els relied on both Hebbian plasticity (implemented via the 
Oja rule (Oja, 1982)) and error-driven temporal-difference 
learning (Sutton, 1988) to modify synaptic weights. Model 
neuronal activity was determined by evaluating sigmoidal 
activation functions, and the issue of eligibility was not 
considered.

3.2 | Step 2: Linking the CBGT 
network with cognitive representations of 
action selection

Building off of Frank (2006), Ratcliff and Frank (2012) pro-
vided more support for a role of the STN in modulating an 
effective decision threshold. They used a rate-based CBGT 
network to generate synthetic choice and response times and 
subsequently fit a DDM to the simulated behavioral data. This 
fitting allowed for a direct estimate of the decision threshold 
that they could relate to network parameters. In their fits, the 
height of the decision threshold tracked with the level of STN 
activity, suggesting that the indirect pathway plays a crucial 
role in modulating the amount of evidence needed before an 
action can be selected.

Bogacz and Gurney (2007) employed a similar computa-
tional approach to study the role of the STN in decision-mak-
ing, albeit with the assumption that task proficiency had 
already been attained and hence without modeling of rein-
forcement learning. Using a firing rate model with an archi-
tecture developed previously (Gurney, Prescott, & Redgrave, 
2001a, 2001b), these authors showed, similarly to Ratcliff 
and Frank (2012), that if STN activity represents a decision 
threshold related to the level of conflict or similarity in the sa-
lience of available options, then the cortical-basal ganglia cir-
cuit can implement the multihypothesis sequential probability 
ratio test (Draglia, Tartakovsky, & Veeravalli, 1999), which 
is the asymptotically optimal statistical test for decision-mak-
ing. More specifically, this outcome emerges if the kth STN 
subpopulation expresses a firing rate exp(yk(t)) when given 
cortical input yk(t), and these subpopulation rates are summed 
and compressed logarithmically by local (i.e., GPe) inhibi-
tion to form a diffuse signal of size ln

�

∑N

K=1
exp (yk(t))

�

 that is 
sent to downstream basal ganglia output neurons, the output 
of which forms the basis for action selection. Subsequently, 
Bogacz and Larsen (2011) incorporated a simple form of re-
inforcement learning based on reward prediction error into 
this firing-rate-based decision-making framework, albeit 
only for weights onto direct pathway striatal neurons. This 
relatively simple form of plasticity allowed the network to 
adaptively bias its selection behavior toward more strongly 
reinforced options in a manner resembling how mammals 
adapt their selections over time.
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3.3 | Step 3: Dopamine-mediated plasticity, 
spike timing and synaptic eligibility

A key advance in the development of computational mod-
els in which feedback signals modulate action selection 
was the incorporation of more biologically detailed syn-
aptic plasticity mechanisms involving phasic dopamine 
release. Hong and Hikosaka (2011) developed a firing 
rate model that implemented saccades to visual stimuli 
and included different rules for dopamine-mediated plas-
ticity, involving different dopamine thresholds, in the di-
rect and indirect pathways, viewed as action-promoting 
and action-suppressing, respectively. In each pathway, 
the corticostriatal weight changes required an eligibility 
signal, with a growth rate proportional to the product of 
pre- and post-synaptic activity levels, and the presence of 
acetylcholine, assumed to be released when a visual stimu-
lus was present as well as at the start of each new block 
of task trials. The dopamine level in this model depends 
on the activity in the SNc and indicates the presence or 
absence of reward expectation; that is, dopamine is a pro-
spective reward signal rather than a retrospective response 
to a recent prior reward. It is important to point out that 
the Hong and Hikosaka model (Hong & Hikosaka, 2011) 
and most of the other models discussed so far have relied 
on rate-based networks, which track firing rates but not 
individual spikes. In a spiking network model, it becomes 
possible to add further biological realism associated with 
corticostriatal plasticity. Specifically, in spiking models, 
corticostriatal synaptic weights can evolve through STDP 
(Cui et al., 2015; Fino et al., 2005; Fino & Venance, 2010; 
Shen et  al.,  2008), in which the relative timing of corti-
cal and striatal spikes affects weight modifications. These 
models also allow for the inclusion of eligibility, such that 
only those striatal neurons that spike with appropriate tim-
ing relative to changes in dopamine levels are eligible for 
modification (Izhikevich, 2007a). Gurney, Humphries and 
Redgrave (2015) published a seminal spiking model of 
striatal populations that combines these elements. Without 
plasticity, action selection in their framework depends on 
the relative activity levels of D1 and D2 MSN subpopu-
lations corresponding to a channel for that action, which 
jointly determine the intensity of the basal ganglia outputs 
that control selection. Changes in corticostriatal synap-
tic weights are proportional to the product of a neuron-
specific eligibility term and a shared dopamine-dependent 
term. The former surges when an MSN fires and then de-
cays, with a maximal amplitude determined by the tim-
ing of the MSN spike relative to that of its cortical input 
source. To generate the dopamine-dependent contribution, 
the authors computed functions that interpolated results of 
STDP experiments done with fixed dopamine levels, with 
distinct rules for cortical inputs to D1 versus D2 MSNs. 

With the incorporation of this timing- and dopamine-de-
pendent plasticity, a model with spiking MSNs based on 
the Izhikevich framework (Humphries, Lepora, Wood, 
& Gurney,  2009; Izhikevich,  2002) and activity-based 
STN neurons, albeit lacking GPe neurons and the STN-
GPe loop, successfully learned to select an action channel 
driven by stronger cortical input. It is worth noting that 
these results were obtained under the assumption of a fixed 
peak phasic dopamine level that decayed gradually over 
successive trials; scaling of dopamine levels based on re-
ward predictions or value learning was not incorporated in 
these simulations.

More recently, Baladron, Nambu and Hamker (2019) 
adapted this spiking model into a more complete basal ganglia 
network. In their adaptation, corticostriatal synaptic weights 
obey a differential equation dw/dt  =  αE(t)⋅DA(t)  −  δXpre 
(t) where α denotes a learning rate, E(t) is a time-depen-
dent eligibility factor, DA(t) is a dopamine factor, δ is a 
decay rate, and Xpre (t) is zero except on time steps when the 
pre-synaptic neuron fires, in which case it is set to 1. The 
dopamine factor generally decays exponentially over time, 
except that when an action is rewarded, it jumps to a level 
Re−Nc∕60, where Nc denotes the number of consecutive pre-
vious rewarded trials, and when an action is not rewarded, it 
jumps to the level –R for a parameter R > 0. The eligibility 
trace is updated each time that the pre- or the post-synap-
tic neuron spikes, such that it increases (decreases) when 
a pre (post)-synpatic neuron spike is followed by a post 
(pre)-synpatic neuron spike and then decays toward zero 
exponentially. Upper and lower bounds are imposed to con-
strain weight changes, and the sign of each weight change 
depends on whether the post-synaptic neuron is a dMSN 
or an iMSN. The model is tuned such that after a few trials 
of learning, cortical activity largely drives a single striatal 
dMSN population linked to the rewarded action, and thus, 
eligibility is limited to this dMSN population. The model 
also includes STN and GPe populations as part of the in-
direct pathway as well as basal ganglia outputs targeting 
thalamic neurons. Finally, thalamic spikes drive a linear in-
tegrator toward an action-selection threshold. This model 
shows that under changes in reward scenarios, activity in 
the STN-GPe loop can promote exploration and learning of 
alternative responses. This increases the flexibility of the 
simulated behavior compared with earlier spiking network 
models of basal ganglia pathways.

3.4 | Outcome 1: Theories about 
exploitation versus exploration

The results of the simulations by Baladron et al. (2019) raise 
an interesting issue that is relevant to CBGT-dependent learn-
ing: Reward maximization requires managing the trade-off 
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between exploitation, or repeated selection of an action with 
a known outcome, and exploration, or variation in action 
choices that occurs to survey available reward opportunities 
(Baladron et al., 2019). Computational reasoning originally 
led to the proposal that certain forms of activity in the STN-
GPe loop of the indirect pathway would promote explora-
tion (Chakravarthy, Joseph, & Bapi, 2010), consistent with 
what Baladron et al. (2019) later found. This idea was first 
tested in a rate model (Kalva, Rengaswamy, Chakravarthy, 
& Gupte, 2012) and then in a spiking model, which yielded 
a link between dopamine-modulated STN-GPe synchrony 
and the tendency to explore available options (Mandali, 
Rengaswamy, Chakravarthy, & Moustafa, 2015). This rela-
tionship highlighted a potentially crucial role of the indirect 
pathway in the ability to modify the “greediness” (or bias 
toward exploitation) of action policies during learning. Yet, 
exploration may not be determined by indirect pathway ef-
ficacy alone. Humphries, Khamassi and Gurney (2012) used 
a rate model of basal ganglia pathways to evaluate the role 
of tonic dopamine in modulating the exploration–exploita-
tion trade-off. Under their model, it is assumed that tonic 
dopamine levels adjust striatal responsiveness to cortical 
input, the tendency to explore increases as dopamine levels 
decrease, and the ratio of indirect to direct pathway striatal 
activity correspondingly grows.

Exploration becomes particularly important for making 
effective decisions under conditions with reward variabil-
ity or risk. To consider risky scenarios, Balasubramani, 
Pragathi, Chakravarthy, Ravindran, and Moustafa (2014) 
implemented a risk function to describe a trade-off between 
the expected cumulative reward and the reward variance. 
According to their model, phasic dopamine signals tune ac-
tion values over time and interact with serotonin pathways 
that scale both risk estimation and the time scale of reward 
prediction errors. This simplified model of reinforcement 
learning did not model network dynamics per se, but pro-
vided an intuitive mechanism for how dopamine and sero-
tonin may work together to manage exploration under high 
variability or risk.

Later, Mikhael and Bogacz (2016) also considered 
both mean reward and reward variance more directly in 
the context of basal ganglia computations. This work was 
done using several highly reduced frameworks in which 
a “critic” component, representing action values, and an 
“actor” component, corresponding to tendency to choose 
an action, evolve over time based on reward prediction er-
rors. In some of their simulations, they used the opponent 
actor learning (OpAL) model, in which a dual actor sys-
tem, with distinct Go and No-Go components and tuning 
of their relative contributions by reward-related DA, re-
places the standard single actor (Collins & Frank, 2014). 
Interestingly, the authors show that in this setting, the mean 
reward is encoded in terms of the difference in weights of 

D1 and D2 striatal neurons and the sum of these weights 
scales with the spread of rewards. Moreover, a prediction 
of this model is that high tonic DA levels promote the 
seeking of more risky options, in contrast to previous work 
(Humphries et al., 2012).

Finally, a follow-up to this work by Bogacz (2017), also in 
the OpAL framework, explores the idea that activity in the BG 
allows the downstream thalamic neurons to evaluate the utility 
of each available option. This evaluation is done by comparing 
expected positive outcomes or rewards, scaled by motivational 
state, with negative aspects such as energy expenditure or risk 
associated with an action. In this theory, motivation depends 
on dopaminergic activity D as D/(1 − D), while positive and 
negative expectations are encoded in the synaptic weights 
of striatal Go and No-Go neurons, respectively. Importantly, 
however, no spike-timing aspects of plasticity or issues of syn-
aptic eligibility are involved in this model.

3.5 | Outcome 2: Upward mapping with DA-
mediated STDP

In the recent work, we have revisited the approach of 
linking from CBGT-based models to cognitive constructs 
relating to decision-making, now with the inclusion of do-
paminergic plasticity and eligibility (Dunovan et al., 2019; 
Vich, Dunovan, Verstynen, & Rubin,  2020). This effort 
built from previous work (Baladron et al., 2019; Gurney 
et al., 2015; Mikhael & Bogacz, 2016) to model corticos-
triatal synaptic plasticity based on DA-mediated STDP 
(Vich et al., 2020). As a first step, we modeled only the 
dynamics of dMSN and iMSN populations and their corti-
cal targets, using a simplified action-selection rule based 
on sequences of MSN spikes, with dMSNs and iMSNs 
promoting and blocking actions, respectively. In this 
model, each synaptic weight evolves according to the type 
of the MSN neuron involved in the synapse, taking into 
account that dMSN neurons are more responsive to pha-
sic changes in dopamine, while iMSN neurons are largely 
saturated by tonic dopamine (Dreyer, Herrik, Berg, & 
Hounsgaard,  2010; Gonon,  1997; Keeler, Pretsell, & 
Robbins, 2014; Richfield, Penney, & Young, 1989). The 
differential equations governing weight changes are simi-
lar to that discussed in Section 3.3, again including an eli-
giblity term, but with different dopamine dependence for 
dMSNs versus iMSNs (see Appendix S1 for more details; 
Tables 1 and 2). When an action is performed, the level of 
dopamine increases to a value DAinc(t) determined by the 
reward prediction error, while eligibility is determined by 
an STDP rule, following the Baladron et al. (2019) model. 
Using this learning scheme, we show that plasticity driven 
by phasic dopamine yields rapid action value learning 
and selection of rewarded actions, robustly across reward 
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scenarios. Most importantly, in this model the tendencies 
to select individual actions emerge largely through plas-
ticity-driven tuning of the relative balance of direct and 
indirect pathway corticostriatal synapse weights within an 
action channel. A greater efficacy of dMSNs over iMSNs, 
where both the dMSNs and iMSNs are part of the same 
action channel, promotes the selection of that action. In 
contrast, increasing the relative efficacy of iMSNs within 
a channel decreases the likelihood of selection of the cor-
responding action.

To understand how these changes in corticostriatal 
synapses affect more realistic action-selection behavior, 
we incorporated the relative balance of dMSN and iMSN 
corticostriatal weights obtained from these STDP simula-
tions into a full spiking CBGT network model (Dunovan 

Connection type
Connection 
probability

Synaptic 
conductance (nS) Topology Receptor(s)

Ctx-Ctx 0.13 0.0127 Diffuse AMPA

Ctx-Ctx 0.13 0.15 Diffuse NMDA

Ctx-CtxI 0.0725 0.013 Diffuse AMPA

Ctx-CtxI 0.0725 0.125 Diffuse NMDA

Ctx-FSI 0.45 0.132 Diffuse AMPA

Ctx-d/iMSN 0.45 0.1286 Focal AMPA

Ctx-d/iMSN 0.45 0.063 Focal NMDA

Ctx-Th 0.35 0.03 Diffuse AMPA, 
NMDA

CtxI-CtxI 1 1.075 Diffuse GABA

CtxI-Ctx 0.5 1.05 Diffuse GABA

dMSN-d/iMSN 0.135 0.28 Focal GABA

dMSN-GPi 0.57 1.1 Focal GABA

iMSN-iMSN 0.15 0.28 Focal GABA

iMSN-dMSN 0.135 0.28 Focal GABA

iMSN-GPe 0.74 1.65 Focal GABA

FSI-FSI 0.85 1.15 Diffuse GABA

FSI-dMSN 0.66 0.984 Diffuse GABA

FSI-iMSN 0.62 0.984 Diffuse GABA

GPe-GPe 0.02 1.5 Diffuse GABA

GPe-STN 0.02 0.4 Focal GABA

GPe-GPi 1 0.012 Focal GABA

STN-GPe 0.0485 0.07 Focal AMPA

STN-GPe 0.0485 4.01 Focal NMDA

STN-GPi 1 0.0324 Diffuse NMDA

GPi-Th 0.85 0.067 Focal GABA

Th-Ctx 0.25 0.02 Diffuse NMDA

Th-CtxI 0.25 0.015 Diffuse NMDA

Th-d/iMSN 0.45 0.255 Focal AMPA

Th-FSI 0.25 0.3 Diffuse AMPA

T A B L E  1  Connection parameters in 
network model

T A B L E  2  Learning parameters in network model

Parameters Value

τDOP 2

α 0.3

dMSN αw 55

iMSN αw −45

dPRE 0.8

dPOST 0.04

τE 15

τPRE 15

τPOST 6

wmax 0.2143

winit 0.1286
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et al., 2019). The accuracy levels and reaction times obtained 
from network simulations under different corticostriatal 
weight schemes were fit with a DDM to map upward from 
CBGT dynamics to cognitive decision-making parameters. 
Similar to both Ratcliff and Frank (2012) and Bogacz and 
Gurney (2007), we observed that the dynamics of the indi-
rect pathway tuned the decision threshold. Specifically, the 
firing rates of all iMSNs across all action channels associ-
ated with the trial-by-trial variation in the boundary height. 
In contrast, the rate of information accumulation (i.e., drift 
rate in the DDM) for an action correlated with the relative 
asymmetry of dMSN-to-iMSN competition across action 
channels. Specifically, as the firing rates of the dMSNs in-
creased over the rates of iMSNs in one channel, relative to 
the ratio in another channel, a larger drift rate was needed 
to fit network behavior. This work adds substantial nuance 
to our understanding of how feedback signals can change 
decision processes by showing that the difference in direct 
pathway activity between action channels controls the evi-
dence accumulation or drift rate, while the total activity in 
the indirect pathway across channels controls the decision 
threshold.

3.6 | Outcome 3: Normative algorithm for 
corticostriatal synaptic plasticity

When we look across the spiking models proposed thus far, a 
general form of corticostriatal plasticity dynamics emerges. We 
summarize the normative form of this plasticity in Algorithm 
1. The critical factors that contribute to this algorithm are the 
relative timing of cortical (pre-synaptic) and MSN (post-syn-
aptic) spikes, the type of dopamine receptors on post-synaptic 
cells, the existence of the eligibility trace, and the direction and 
magnitude of the phasic dopamine response following action 
selection. Even though these four factors collectively describe 
local plasticity at corticostriatal synapses, this process requires 
careful integration across distributed parts of the CBGT circuit, 
ranging from descending cortical projections into MSNs to the 
selection processes in thalamocortical pathways to ascending 
dopamine signals from the SNc. The spatial and temporal sepa-
ration of these processes represents a critical limitation in our 
understanding of corticostriatal plasticity: In a scenario with 
ongoing spiking activity, how do CBGT circuits know which 
populations to credit with a specific decision that contributed to 
a specific outcome?

Algorithm 1 Normative form of the plasticity algorithm for corticostriatal synapses. See Vich et al. (2020) for a specific 
implementation.
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A recent suggestion is that cholinergic signals (includ-
ing pauses) could impact dopamine release in a way that 
introduces spatiotemporal modulations and that could sup-
port credit assignment (Zhang, Fisher, Oswald, Wickens, & 
Reynolds,  2019). While intriguing, this idea nevertheless 
leaves open questions of how cholinergic interneuron activity 
patterns are controlled and exactly how the resulting signals 
interact with dopamine and reward. In the next section, we 
suggest an alternative mechanism that could potentially re-
solve the credit assignment problem without requiring partic-
ipation of additional striatal neuron populations.

4 |  LEARNING IN A FULL 
SPIKING CBGT NETWORK

4.1 | The credit assignment problem

Our analysis of the existing computational neuroscience liter-
ature (Section 3) highlights a critical gap at both the theoreti-
cal and empirical levels. While biologically inspired spiking 
models have elegantly captured the dynamics of dopamin-
ergic learning at corticostriatal synapses, these models have 
largely relied on either unrealistically sparse MSN firing or 
abstracted action-selection rules that compress the timing of 
the selection and feedback processes. As a result, they largely 
avoid the credit assignment problem.

Consider the simplified scenario shown in Figure  2 in 
which two dMSNs promote two different selection options 
(e.g., leftward, L-dMSN, or rightward, R-dMSN, move-
ments). For simplicity, let us suppose that the selection of an 
action emerges from increased firing of the corresponding 
dMSN over a prolonged time period. In our example, the left 

action is the selected option. Some time after selection, a re-
ward signal is delivered via the phasic dopamine response. 
Only those synapses that were active during the eligibility 
window (dashed box in Figure 2) are affected by the feed-
back signal, and the degree of the subsequent synaptic change 
depends on the overall activity of units in this eligibility 
window.

While the overall firing rate, across time, of the L-dMSN 
is much higher than that of the R-dMSN, this activity is 
not uniform. In this example, the spike that eventually trig-
gers the decision happens to occur after a brief window 
of relatively sparse L-dMSN firing. Because both dMSNs 
are active during the eligibility window, and in this case, 
the R-dMSN fires slightly more, both channels will be re-
warded, with greater reward accruing to the right channel, 
even though that channel was not selected. Moreover, at 
the level of the striatum, the network has no way to know 
when a decision has been made. Thus, there is no reason 
to exclude the spikes that occur in between the decision 
time and the time of reward delivery (shaded blue part of 
the eligibility window in Figure 2), even though they did 
not contribute to the selection of the implemented action. 
Thus, in this simple model, the network has trouble giving 
credit to the dMSN that actually contributed to the down-
stream decision.

A more realistic scenario would feature action selection 
by populations of neurons, rather than individual cells, with 
progressive changes in synaptic weights over multiple repe-
titions of evidence gathering, action selection and reward-re-
lated dopamine release. In theory, averaging over these 
multiple trials and neurons could bias credit assignment in 
favor of the appropriate dMSNs, even if the wrong ones get 
credit from time to time. In our simulations, this theoretical 
possibility does not necessarily materialize. For example, in 
some instances, problematic credit assignment on early tri-
als locks in sub-optimal selections, before superior options 
can be explored. Moreover, learning new behaviors after 
changes in action-outcome associations remains problematic, 
as a high level of activity in at least some of the neurons as-
sociated with previously rewarded actions occurs when the 
newly rewarded actions are selected. This erroneous credit 
assignment preserves behaviors that have become sub-op-
timal and prevents an efficient transition to newly advanta-
geous behaviors.

This credit assignment problem is exacerbated by sev-
eral factors in real CBGT pathways. First, both dMSNs and 
iMSNs fire during the deliberation and execution of actions 
(Cui et  al., 2013; Tecuapetla et  al., 2014, 2016). Indeed, if 
we suppose that R-iMSN activity is enhanced leading up to 
selection of a left action that elicits a reward, then eligibility 
of R-iMSNs will cause their synapses with cortex to be weak-
ened, which will counterproductively interfere with selection 
of the left action on subsequent trials.

F I G U R E  2  Schematic illustration of the credit assignment 
problem in a spiking neuronal network with the activity of distinct 
subpopulations of neurons representing evidence for two different 
options. The selection of one option (left movement) results from the 
relatively high firing rate of its subpopulation (L-dMSN) over a long 
time period, but that subpopulation need not fire more than the other 
in any constrained eligiblity time window preceding the decision point 
or reward delivery (shading denotes time period between the two). 
The units of time here are not specified because the possible effect 
being illustrated depends only on the duration of the eligibility window 
relative to the full decision process, not on absolute durations. Also, 
although only dMSNs are shown, iMSNs are also active during the 
same time period
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Second, the selection process happens much farther 
downstream in the thalamocortical pathways, often separated 
by hundreds of milliseconds or more from the dynamics in 
the striatum that contribute to the decision (see Figure  1). 
Finally, the duration of actual eligibility windows has not 
been pinned down precisely but seems to include spikes oc-
curring approximately 1  s, but not 2  s, before a positively 
conditioned cue (Fisher et al., 2017; Yagishita et al., 2014) 
or spikes occurring about 2 s, but not 4 s, before dopamine 
release (Shindou et al., 2019), both of which include spikes 
that are significantly separated in time from reward signals.

Put all together, the structure of current STDP models of 
corticostriatal plasticity, the complexity of the selection pro-
cess and the long time window between selection dynamics 
in the striatum and feedback signals all conspire to interfere 
with any simple translation of dopaminergic STDP models 
into spiking models of the entire CBGT circuit during natural 
decisions.

4.2 | Solving the credit assignment problem 
with sustained activity of selected channels

The structure of CBGT pathways, and in particular the dis-
tance between the dynamics of corticostriatal pathways that 
effectively drive the integration process and the thalamocor-
tical pathways that eventually trigger an action, suggests two 
possible options for resolving the credit assignment problem: 
fundamentally rethinking the structure of the learning algo-
rithm itself or rethinking the network dynamics involved in 
implementing the algorithm. The problem with the first op-
tion is that the algorithmic descriptions of STDP and dopa-
minergic learning have proven to be highly effective at both 
explaining and, in some cases, predicting empirical findings 
(see Section 3). Adding further complexity to these models 
risks reducing their extensibility.

So that leaves the option of rethinking the dynamics of 
network activity relevant for the action-selection process. 

Here, we can turn to the electrophysiological literature for 
some inspiration. In particular, it is useful to consider the 
seminal study by Cisek and Kalaska (2005) on movement 
representations across selection and execution stages of 
action decisions. In this study, the authors recorded from 
dorsal premotor (PMd) cortical neurons while monkeys de-
liberated and executed reaches to one of two spatially cued 
targets (Figure 3). At the beginning of each trial, a monkey 
was presented with a cue indicating two possible reach tar-
gets. Shortly after cue onset, the authors observed sustained 
activity in units that were directionally tuned to each of the 
corresponding movement directions. After a brief period of 
time, a new selection cue was presented indicating which of 
the two targets the monkey should reach for. Importantly, 
the monkey was trained not to make the reach upon percep-
tion of the selection cue, but to hold until a release cue was 
presented. Shortly after the selection cue appeared, the cor-
tical units representing the unselected action reduced their 
firing, while the units representing the cued movement di-
rection maintained sustained and even amplified activity 
until a short time after the release cue was delivered to signal 
that it was time to reach. This recruitment of multiple ac-
tion representations and maintenance of the selected action 
representation have been replicated in other cortical areas 
(Coallier, Michelet, & Kalaska, 2015; Klaes, Westendorff, 
Chakrabarti, & Gail, 2011; Pastor-Bernier & Cisek, 2011) 
and are supported by psychophysical experiments as well 
(Gallivan, Logan, Wolpert, & Flanagan, 2016; Gallivan, 
Stewart, Baugh, Wolpert, & Flanagan, 2017; McKinstry, 
Dale, & Spivey, 2008, though see also Dekleva, Kording, & 
Miller, 2018).

Although these findings were obtained in cortical motor 
planning neurons, their dynamics across the deliberation 
and maintenance stages of action selection provide a criti-
cal insight into how broader CBGT action channels (which 
include PMd cortical units) may function. Specifically, if 
representations of the selected action channel are maintained 
until or somewhat beyond movement onset, while unselected 

F I G U R E  3  Normalized firing rates of cells in the macaque PMd that are tuned to one of two visual targets of reaching movements. At 
the onset of the trial, the monkey is presented with a cue indicating that either target may be selected (Deliberation stage). During this window, 
units representing both targets are active. After a predetermined time, the monkey is cued as to which target should be selected, but not given an 
imperative signal to begin moving (Maintenance stage). After the arrival of the selection cue, the units for the selected action continue to fire at 
an increased rate, while units for the unselected action cease firing after a short time. The units representing the selected action continue firing 
until some time after the imperative cue (indicating the start of the Execution stage) is delivered. Figure reprinted with permission from Cisek and 
Kalaska (2005)
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channels return to baseline rates, then the eligibility for plas-
ticity when dopaminergic feedback signals arrive will be 
much stronger in selected channels than in unselected chan-
nels. Thus, sustained activation of selected action channels 
would effectively resolve the credit assignment problem in 
CBGT networks without reconfiguring the general form of 
corticostriatal plasticity (Algorithm 1).

To test this hypothesis, we modified a previously pub-
lished spiking network model of CBGT networks (Dunovan 
et al., 2019) (Figure 1) to have two novel properties: (a) a 
300-ms delay between selection at the thalamus (first unit 
to reach >30  Hz firing) and the dopamine response, de-
signed to mimic the delay between selection, execution and 
sensory signals of post-action feedback, and (b) a sustained 
activation of only those cortical populations represent-
ing the selected channel during the delay. Note that these 

populations project both to dMSNs and to iMSNs in that 
channel. Learning was implemented at the corticostriatal 
synapses to all MSN populations using the normative model 
of plasticity shown in Algorithm 1 (using the instantiation 
reported in Dunovan et al. (2019) and Vich et al. (2020)). 
The model is described in general terms in Appendix S1. 
All simulation code can be found at https://github.com/
CoAxL ab/Adapt iveCBGT.

Figure 4 shows the example network dynamics from a set 
of simulated trials where the network chooses between mov-
ing left (blue) and moving right (red). In this example sim-
ulation, left actions are always rewarded, while right actions 
are not. In all simulations, the sensory signals for left and 
right actions have the same signal-to-noise ratio; thus, any 
changes in behavior should be exclusively driven by feedback 
learning.

F I G U R E  4  An example of five simulated trials in a deterministic reward task (see main text). Only left actions are rewarded. Inset images 
show close up of dMSNs (D1, top), iMSNs (D2, middle) and thalamic units (bottom) for a single trial. D1, dMSNs; D2, iMSNs; Q value, value 
associated with each action; Th, Thalamus

https://github.com/CoAxLab/AdaptiveCBGT
https://github.com/CoAxLab/AdaptiveCBGT
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At the beginning of the example simulation, the network 
makes one left action (correct) and then one right action (in-
correct). The upper inset shows the increase in dMSN firing 
rates between cue onset and selection (~125  ms), which is 
determined by activity downstream in the thalamus (lower 
inset), on the second trial. As the incorrect direction was cho-
sen on that trial, there is no dopamine release and no cor-
ticostriatal synaptic weight changes. More generally, notice 
that when a dopamine burst appears in Figure 4, the corti-
costriatal synaptic weights (D1 weight, D2 weight) change 
only in the selected channel. This outcome indicates that 
the network has resolved the credit assignment problem. 
Based on the selection pattern over five trials (bottom row; 
Figure 4), it appears that the network quickly learns to select 
the appropriate action.

To test the limits and flexibility of this learning in the 
full spiking CBGT network model, we ran a set of 250 sim-
ulations where initially the left action was always rewarded, 
and then, after the 20th trial, the outcome contingencies 
switched, such that the right action was rewarded while the 
left action ceased to be rewarded. This switching experi-
ment allows us to evaluate not only the effective learning 
of the network but also its flexibility. Figure 5 shows the 
trialwise selection probabilities across all simulated runs, 
in cases with (blue) and without (orange) sustained cortical 
activity after selection. With the sustained activity, during 
the initial learning phase, the network quickly stabilizes to 
selecting the left action most of the time, asymptoting after 
8–10 trials. The reason that the selection probabilities do 

not asymptote closer to 100% has to do with firing rate vari-
ability at the thalamus, which has a nonzero intrinsic spike 
rate, and the intentional choice of a parameter scheme that 
does not allow the corticostriatal weights to diverge too far 
apart, which allows for flexibility. Indeed, in this parameter 
regime, after the outcome contingencies are switched (red 
dashed line), the network quickly relearns to prefer the right 
movement, stabilizing again after about 10–12 more trials. 
In contrast, without sustained activation, learning does not 
occur for these parameter values (orange trace; Figure 5). 
We tried multiple parameter schemes with this baseline 
network. For certain parameter schemes, partial learning 
could occur during the initial 20 trials; however, the net-
work could not adapt to the switching of outcomes (data 
not shown).

4.3 | Lessons learned and some implications

These proof-of-concept simulations highlight how the credit 
assignment problem during reinforcement learning can be 
easily resolved by adding a single, neurophysiologically 
supported assumption: sustained activation of selected ac-
tion channels, originating in cortex and propagating to the 
corresponding dMSN and iMSN populations. This phenom-
enon could manifest from many possible sources, including 
attentional mechanisms, working memory processes, or the 
overlap of selection, planning and execution representations 
in motor networks that would be engaged until the action is 
completed. We take no hard stance on the origins of this sus-
tained activation. Instead, we only highlight it as a simple 
potential mechanism for how normative STDP processes at 
the corticostriatal synapses (Algorithm 1) can implement ef-
fective learning in a spiking network with realistic striatal 
spiking dynamics.

In our past work, we observed that dopamine-depen-
dent corticostriatal plasticity, based on synaptic eligibility 
and relative cortical and striatal spike timing, leads to in-
creased activation of both dMSN and iMSN populations in 
the same channel, because of the commonality of their inputs 
(Dunovan et al., 2019). This co-activation has been observed 
experimentally and runs counter to classic theories of the 
basal ganglia's role in action selection (Gurney, Prescott, & 
Redgrave, 2001a; Kropotov & Etlinger, 1999; Mink, 1996). 
If iMSNs fire before a consistently selected and rewarded 
action, then the cortical synapses to those iMSNs should 
weaken. This means, however, that co-activation might be 
expected to diminish over time. It is not clear why such a re-
duction in activity has not been observed. Sustained cortical 
activation within a rewarded channel could be strong enough 
to maintain this co-activation even in the face of weakened 
cortico-iMSN synapses, and hence, this idea offers a potential 
explanation for yet another perplexing experimental finding.

F I G U R E  5  Mean selection probability on each trial across 
250 simulated runs of the adaptive network, with (blue) and without 
(orange) sustained cortical activity after selection. In both cases, 
initially only “left” actions are rewarded; after 20 selections, the 
outcomes are switched and only “right” actions are rewarded. The red 
dashed line marks the trial when reward contingencies are switched. 
The cloud around the mean line shows the trialwise 95% confidence 
intervals. Note that learning occurs only when the sustained activity is 
present
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5 |  FUTURE DIRECTIONS

Our review of the computational neuroscience literature 
shows an emerging general view of how dopamine-depend-
ent plasticity of corticostriatal synapses can alter the dy-
namics and output of CBGT circuits in a way that promotes 
the selection of rewarding actions (Algorithm 1). While the 
assumptions underlying these models are derived from ex-
perimental observations, models necessarily represent sim-
plifications of reality. A major issue that existing models 
have failed to address in a biologically plausible way is the 
credit assignment problem. That is, in a winner-take-all or 
sparse firing regime, only those neurons that drive a selected 
action are active before it occurs, and there is no difficulty in 
ensuring that reward signals only strengthen the synapses to 
these driver neurons. But biological details complicate this 
picture. In a setting in which decision-making follows after 
a temporally extended window of neuronal activity, dur-
ing which neurons promoting as well as neurons inhibiting 
multiple actions are all active at rates that may gradually in-
crease, credit assignment becomes messy and problematic. In 
Section 4, we propose and demonstrate computationally how 
the maintenance of activity associated with an action from se-
lection through execution and feedback, observed cortically 
(Cisek & Kalaska, 2005), can provide a simple solution to the 
credit assignment problem.

The idea that competing action representations are acti-
vated during motor planning under uncertainty and that the 
selected representation is maintained after the decision is im-
plemented is supported by both electrophysiological (Cisek 
& Kalaska,  2005; Coallier et  al.,  2015; Klaes et  al.,  2011; 
Pastor-Bernier & Cisek,  2011) and psychophysical data 
(Gallivan et al., 2016, 2017; McKinstry et al., 2008). Indeed, 
these findings have served as the basis for a growing com-
putational modeling literature on cortical motor planning 
(Christopoulos, Bonaiuto, & Andersen, 2015; Cisek, 2007). 
It is worth pointing out that the simultaneous activation of 
multiple action representations prior to selection is not al-
ways observed experimentally. For example, Dekleva et al. 
(2018) found that when fitting PMd neuron activity during 
a multi-choice task to a single-trial analysis model, the best 
fit model suggested the presence of only a single motor plan 
during deliberation (Dekleva et al., 2018). While the authors 
argue that this discrepancy is related to the difference be-
tween single-trial analysis and trial averaging, the differences 
in the results obtained by Dekleva et al. (2018) from those of 
previous studies could also be due to fundamental differences 
in task design, which may have promoted a single-target se-
lection strategy that reduced uncertainty as to the upcoming 
action choice. Importantly for the purposes of our model as 
presented here, the activity in these PMd neurons (a primary 
motor planning area) was sustained throughout the delibera-
tion, selection and execution stages of the trial.

While most of the evidence we used to justify sustained 
activation of selected actions comes from recordings in cor-
tical motor areas, it is not unexpected that such activation 
would propagate throughout the basal ganglia and thalamic 
nuclei connected to these cortical regions. For example, in 
settings where a cue signals an expectation of a reward, ac-
tivity in thalamus is known to keep ramping from cue until 
reward delivery (Komura et  al.,  2001). It is therefore rea-
sonable to conjecture that there may be similar ramping in 
thalamic neurons that project to the striatum and are asso-
ciated with an action channel, persisting from the selection 
of that action until reward delivery and dopamine release. 
Presumably, output from thalamic areas associated with the 
selected action to their targets in the striatum could therefore 
serve as an alternative source of a positive feedback signal to 
achieve credit assignment. Of course, full representation of 
credit assignment would also require characterizing the mi-
croscale processes that implement the tagging of synapses, 
corresponding to the eligibility trace E(t) in our model (Vich 
et al., 2020), but this aspect of the process is outside the scope 
of our current efforts and of the other models that we have 
reviewed.

It is also worth noting that the dynamics of dopamine in 
the proof-of-concept model presented here, as well the pre-
ceding modeling approaches that inspired it, remains rather 
simple and strongly connected to classic results on reward 
prediction error (Schultz, 1998; Schultz et al., 1992; Schultz 
& Romo, 1990). In reality, the dynamics of dopamine and 
its relation to feedback signals for learning are much more 
complicated. First, the dopamine signal comprises several 
components that may include a tonic level as well as mul-
tiple distinct phasic release events. Tonic dopamine may 
be a passive signal that must exceed a threshold to allow 
movement or may be linked to motivation, vigor and sati-
ety (Hamid et  al., 2016; Niv, Daw, Joel, & Dayan, 2007). 
Previous computational reinforcement learning models have 
included tonic dopamine by allowing it to control the learn-
ing rate (Beeler, Daw, Frazier, & Zhuang, 2010), MSN ex-
citability (Gurney et al., 2015; Humphries et al., 2012), or 
STN-GPe connectivity (Chakravarthy et al., 2010; Mandali 
et al., 2015), each of which is assumed by the authors to affect 
the exploration–exploitation trade-off. But these models do 
not include dynamic mechanisms for modulating tonic do-
pamine levels, instead treating it as a parameter that is tuned 
by hand. In addition to a post-reward component, phasic do-
pamine release may include an early generalized response 
associated with the expectation of any reward (Nomoto, 
Schultz, Watanabe, & Sakagami,  2010); a response, fol-
lowing a specific stimulus that signals an imminent reward, 
which scales with expected reward size (Alves da Silva, 
Tecuapetla, Paixão, & Costa, 2018; Cohen, Haesler, Vong, 
Lowell, & Uchida, 2012; Nomoto et al., 2010); or a response 
that occurs after movement but before reward delivery when 



2248 |   RUBIN et al.

reward is expected (Syed et  al.,  2016). It is highly likely 
that the details depend on species, on the specifics of the 
task and reward involved, on brain region and on exactly 
what is being measured. Some dopamine signals may be lo-
calized, with others more distributed (Berke,  2018). Even 
the classification of dopamine signals into distinct tonic and 
phasic components, while supported by prior experimen-
tal evidence (Floresco, West, Ash, Moore, & Grace, 2003; 
Goto, Otani, & Grace, 2007; Niv et al., 2007), has been re-
cently called into question (Berke, 2018; Hamid et al., 2016; 
Schultz, 2016). Thus, more nuanced modeling of dopamine 
dynamics, possibly including modulation of dopamine re-
lease by striatal cholinergic interneurons (Zhou, Liang, & 
Dani, 2001), will be an important direction for future work 
on corticostriatal plasticity and credit assignment.

Beyond adding more biological detail to future models, 
another natural step will be the consideration of additional re-
ward scenarios. Modeling and experiments on reinforcement 
learning and action selection often involve probabilistic para-
digms, in which different reward probabilities are linked with 
different actions (Dunovan et  al.,  2019; Frank et  al.,  2015; 
Vich et al., 2020), and it will be essential to confirm that the 
effectiveness of any solution to the credit assignment problem 
extends to such settings. The similarity of reward probabili-
ties across options gives a measure of conflict between these 
choices, while the frequency of changes in contingencies 
gives a measure of volatility inherent in the situation. It would 
be interesting to study how the CBGT network with corti-
costriatal plasticity can encode uncertainty and implement 
belief updating (Nassar, Wilson, Heasly, & Gold, 2010) as 
needed to handle conflict and volatility. Another form of con-
flict could be internal. Some studies have suggested that ex-
ploratory actions can occur when cortical signals override the 
basal ganglia selection mechanisms (Daw, O'Doherty, Dayan, 
Seymour, & Dolan, 2006; Wilson, Geana, White, Ludvig, & 
Cohen, 2014; Zajkowski, Kossut, & Wilson, 2017). In theory, 
sustained cortical activation resulting when a rewarding out-
come follows such a directed exploratory action could make 
that action more likely in the future. Hence, the framework 
that we suggest could be used to study how exploratory ac-
tions can become typical responses. Models linking spiking 
CBGT dynamics to features of the decision-making process 
and reinforcement learning will also provide a useful tool for 
generating predictions about changes in CBGT features un-
derlying altered behavior in pathological states accompanied 
by changes in action-selection tendencies (Frank, Scheres, & 
Sherman, 2007; Moustafa, Cohen, Sherman, & Frank, 2008; 
Wei, Rubin, & Wang, 2015).

Put all together, our review of the literature shows 
strong progress in understanding how CBGT pathways 
contribute to reinforcement learning. Historically, the 
observation that actions may be followed by striatal do-
pamine signals that scale with reward prediction error 

and that influence corticostriatal plasticity offered an el-
egant mechanism for learning to select rewarding actions. 
This framework proved to be appealing to computational 
modelers and has featured in theoretical work focusing 
on issues such as the exploitation–exploration trade-off, 
the changes in decision-making arising in basal ganglia 
pathologies and the roles of specific basal ganglia compo-
nents in the decision-making process. These studies led to 
the realization that effective learning requires a represen-
tation of synaptic eligibility to ensure that credit, in the 
form of synaptic plasticity, would be localized to those 
synapses actually involved in making selections that lead 
to rewards. We have shown how the field is collectively 
converging on a normative model of the synaptic-level 
plasticity mechanisms that implement reinforcement 
learning. Our simulations demonstrate that the experimen-
tal observation of sustained cortical activity correspond-
ing specifically to selected actions offers a parsimonious 
solution to the credit assignment problem that had been 
unresolved in previous modeling efforts. Moving forward, 
including this effect may allow future models of CBGT 
contributions to learning and decision-making to yield 
better predictions of behavioral or physiological effects 
and to refine our understanding of the fundamental under-
lying computations performed by CBGT pathways.
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