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BACKGROUND: Cardiovascular responses to psychological stressors have been separately associated with preclinical ath-
erosclerosis and hemodynamic brain activity patterns across different studies and cohorts; however, what has not been 
established is whether cardiovascular stress responses reliably link indicators of stressor-evoked brain activity and preclinical 
atherosclerosis that have been measured in the same individuals. Accordingly, the present study used cross-validation and 
predictive modeling to test for the first time whether stressor-evoked systolic blood pressure responses statistically mediated 
the association between concurrently measured brain activity and a vascular marker of preclinical atherosclerosis in the ca-
rotid arteries.

METHODS AND RESULTS: Six hundred twenty-four midlife adults (aged 28–56 years, 54.97% women) from 2 different cohorts 
underwent 2 information-conflict functional magnetic resonance imaging tasks, with concurrent systolic blood pressure 
measures collected. Carotid artery intima-media thickness was measured by ultrasonography. A mediation framework that 
included harmonization, cross-validation, and penalized principal component regression was then used. Brain areas where 
functional magnetic resonance imaging activity exhibited reliable direct and indirect effects were identified through boot-
strapping. Sensitivity analysis further tested the robustness of findings after accounting for prevailing levels of cardiovascular 
disease risk and brain imaging data quality. Task-averaged patterns of functional magnetic resonance imaging activity across 
distributed brain areas exhibited a generalizable association with carotid artery intima-media thickness, which was reliably 
mediated by an area under the curve measure of aggregate systolic blood pressure reactivity. Importantly, this effect held in 
sensitivity analyses. Implicated brain areas in this mediation included the ventromedial prefrontal cortex, anterior cingulate 
cortex, insula, and amygdala.

CONCLUSIONS: These novel findings support a link between stressor-evoked brain activity and preclinical atherosclerosis, 
which is accounted for by individual differences in corresponding levels of stressor-evoked cardiovascular reactivity.

Key Words: cardiovascular reactivity ■ carotid artery intima-media thickness ■ functional magnetic resonance imaging ■ mediation 
■ psychological stress

Acute psychological stressors, defined in a stress 
typology framework1,2 as short-term demands 
that are appraised as taxing or exceeding one’s 

coping resources,3 typically raise blood pressure (BP) 
and alter other parameters of cardiovascular physi-
ology in most people.4–7 There are wide and stable 
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(phenotypic) differences across people, however, in 
the magnitude, patterning, duration, and direction of 
stressor-evoked cardiovascular, particularly BP, reac-
tions.8 According to several conceptual frameworks on 
psychological stress, BP reactions to acute stressors 
arise from predictive processes that are instantiated in 
brain systems for visceral control, which are thought 
to adjust cardiovascular physiology to meet the antici-
pated metabolic demands that are necessary to cope 
with acute stressors.9–12 Notably, some people have a 
trait-like phenotype to exhibit larger than average rises 
in BP that may exceed the metabolic demands of a 
stressor.9 When assessed by standard stressor batter-
ies and testing paradigms, the magnitude of stressor-
evoked BP reactions generalizes from the laboratory to 
predict those measured in daily life via ambulatory BP 
monitoring.8,13 The latter evidence has been interpreted 
to support the possibility that a phenotype to repeat-
edly express large-magnitude stressor-evoked BP re-
actions over the life course may confer cardiovascular 
risk via their cumulative pathophysiological effects on 
the vasculature.

In the context of cardiovascular health, for example, 
epidemiological evidence demonstrates that greater 
stressor-evoked BP reactivity predicts vascular pathol-
ogy14,15 and early death,16 consistent with the interpre-
tation that large BP reactions to acute stressors may 
eventuate in vascular risk, reflected by arterial changes 

and dysfunction.17–24 These pathogenic effects may 
result from repeated pressor influences that injure the 
endothelial layer of blood vessels via turbulent (nonlam-
inar) blood flow and shear stress.6,25 At the vascular 
level, such injury may increase the permeability of the 
endothelium to lipoproteins, promote the release of 
mitogenic substances, contribute to the proliferation 
of intimal smooth muscle cells, and disrupt the lipid 
metabolism of endothelial cells.26–28 The effects of a 
phenotype to exhibit large-magnitude stressor-evoked 
BP reactivity may thus manifest as endothelial damage 
and dysfunction, as well as a hypertrophy or thickening 
of arteries and other blood vessels.6,29 Consistent with 
these interpretations, exaggerated stressor-evoked BP 
reactivity predicts end points of the latter pathologi-
cal changes, including hypertension and a surrogate 
marker of preclinical vascular disease, namely, carotid 
artery thickening.16,30,31

In parallel to the latter epidemiological findings on 
preclinical vascular disease, human brain imaging 
studies have identified functional patterns of neural 
activity that predict individual differences in stressor-
evoked BP reactivity, particularly patterns that have 
been localized to what have been termed visceral con-
trol circuits.9

Visceral control circuits encompass evolution-
arily conserved networks of brain areas spanning the 
medial prefrontal cortex, anterior cingulate, insula, 
hippocampus, amygdala, thalamus, hypothalamus, 
periaqueductal gray, and brainstem cell groups. These 
circuits control and coordinate autonomic, neuroen-
docrine, hemodynamic, and immune activity across 
a range of behavioral states that affect cardiovascular 
physiology and pathophysiology, especially in relation 
to stressful and emotional experiences that may confer 
cardiovascular risk. In these regards, visceral control 
circuits are brain systems that may orchestrate psy-
chological appraisal processes of stressors that are 
calibrated with peripheral physiology to support adap-
tive action and stressor coping behaviors. Accordingly, 
visceral control circuits are hypothesized to be capable 
of mechanistically orchestrating behavioral influences 
on cardiovascular risk via several peripheral physiolog-
ical mechanisms,6,32 including central neural control 
over peripheral autonomic and neuroendocrine deter-
minants of acute stressor-evoked BP reactivity.9 For 
example, preclinical animal evidence indicates that vis-
ceral control circuits are capable of gating or modifying 
the baroreflex, which may proximally contribute to the 
magnitude of stressor-evoked rises in BP.9

What has not yet been firmly established, however, 
is the extent to which stressor-evoked BP reactivity 
per se statistically explains the possible association 
of functional activity within visceral control circuits 
and established subclinical markers of cardiovascular 
risk, particularly carotid artery thickening. Therefore, 

CLINICAL PERSPECTIVE

What Is New?
•	 Using neuroimaging, blood pressure moni-

toring, mental stress testing, and machine-
learning methods in midlife adults, brain 
patterns were identified that predicted subclini-
cal atherosclerosis.

•	 The links between brain patterns and subclini-
cal atherosclerosis were explained by stress-
related blood pressure.

What Are the Clinical Implications?
•	 Mental stress contributes to risk for cardiovas-

cular disease. Neuroimaging may aid in identify-
ing and intervening on the brain–body pathways 
that contribute to this stress-related risk.

Nonstandard Abbreviations and Acronyms

MSIT	 multisource interference task
NOAH	 Neurobiology of Adult Health
PIP	 Pittsburgh Imaging Project
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the present study used a predictive machine-learning 
approach to test the hypothesis that multivariate fea-
tures of stressor-evoked activity within visceral con-
trol circuits of the brain are associated with carotid 
artery thickening in part via stressor-evoked BP reac-
tivity within a statistical mediation model. Participants 
from 2 cohort studies of the neural correlates of 
stress physiology and cardiovascular risk (total n=624 
midlife adults; aged 28–56 years [54.97% women]) 
completed a battery of psychological stress tasks de-
signed to measure reliable individual differences (phe-
notypes) in self-reported and cardiovascular reactivity 
to acute stressors while hemodynamic responses in 
the brain were monitored using functional magnetic 
resonance imaging (fMRI).33–36 For completeness of 
reporting, prediction models tested a range of differ-
ent measures of cardiovascular stress reactivity and 
physiology.

METHODS
Participants
Cross-sectional data used herein were from midlife and 
community-dwelling adults who participated in 2 dif-
ferent studies with harmonized data collection proto-
cols. The first was the Pittsburgh Imaging Project (PIP), 
which included 325 individuals (aged 30–51 years, 163 
women and 162 men, 226 identifying as White,79 iden-
tifying as Black, 15 identifying as Asian, 3 identifying 
as multiracial, and 2 reporting other racial identities). In 
the PIP cohort, 79.26% reported never having smoked, 
16.06% reported being former smokers, and 4.68% 
reported being current smokers. The second cohort 
was comprised of participants in the Neurobiology of 
Adult Health (NOAH) study, which included 299 indi-
viduals (aged 28–56 years, 180 women and 110 men, 
1 identifying as neither woman nor man, 254 identify-
ing as White, 18 identifying as Black, 19 identifying as 
Asian, 7 identifying as multiracial, and 1 reporting as 
another racial identity). In the NOAH cohort, 63.08% 
reported never having smoked, 20% reported being 
former smokers, and 16.92% reported being current 
smokers. Informed consent was obtained from all par-
ticipants, and approval was granted by the University of 
Pittsburgh Human Research Protection Office for PIP 
(protocol ID: 07110287) and NOAH (19030012).

Recruitment methods and related methodological 
details for the PIP cohort have been published.34,37 
Exclusionary criteria for the PIP cohort included: aged 
<30 or >50 years; metallic or other implants unsafe for 
MRI; pregnancy; any self-reported history of cardio-
vascular disease (CVD); any self-reported history of 
a neurological disorder; current treatment for or self-
reported diagnoses by a health care professional of a 

psychiatric condition; consuming alcohol equaling or 
exceeding 5 servings ≥3 times/week; regular use of 
over-the-counter or prescribed medications with auto-
nomic, cardiovascular, or neuroendocrine effects, in-
cluding daily use of corticosteroid inhalers; any current 
treatment for hypertension or having a resting BP ex-
ceeding 140/90 mm Hg; use of any psychotropic medi-
cations (eg, antidepressants); history of metal exposure 
(eg, welding); and color blindness.

Recruitment methods for the NOAH cohort involved 
(1) mass electronic and print mailings to residents of 
Allegheny County, Pennsylvania; (2) radio, electronic (eg, 
Craigslist), and print advertisements in public places (eg, 
Port Authority Buses, local newspapers, community and 
park announcement boards); and (3) direct solicitation from 
the participant registries of the University of Pittsburgh’s 
Clinical and Translational Science Institute Pitt+Me 
Registry and University Center for Social and Urban 
Research Regional Research Registry. Exclusionary crite-
ria for the NOAH cohort included: aged <28 or >56 years; 
self-reported use of medications with central or peripheral 
autonomic effects on ≥1 occasion in the 14 days before 
testing (including antihypertensive or cardiac medications, 
antipsychotic medications, protease inhibitors or other 
anti-HIV medications, insulin, chemotherapy agents, im-
munosuppressants, prescription weight-loss medica-
tions, and ephedrine); regular use (ie, use on ≥7 days in the 
14 days before testing) of antianxiety medications, sleep 
medications, asthma medications and allergy inhalants, 
antidepressant medications, glucocorticoids, medical 
marijuana, more than 2 non-insulin medications for dia-
betes; consuming ≥35 alcoholic drinks in the past 7 days; 
consuming ≥6 alcoholic drinks on ≥3 occasions in the past 
7 days; use of illicit drugs on ≥7 days in the past 2 weeks; 
major medical conditions, including CVD, severe hyper-
tension (systolic blood pressure [SBP]>160 or diastolic 
blood pressure [DBP] >100 mm Hg); cancer (treatment in 
past 12 months, except for nonmelanoma skin cancer), 
liver disease, chronic kidney disease, and type 1diabetes; 
self-reported history of a major neurological disorder or 
brain injury resulting in ongoing symptoms or cognitive 
impairment (eg, multiple sclerosis, cerebral palsy, major 
head injury); history of schizophrenia or bipolar disorder; 
lung disease requiring regular or ongoing drug treatment; 
weight loss surgery within the past 5 years; for women, 
pregnancy; regular use of an assistive walking device; 
nonfluency in English; visual impairments affecting com-
prehension of printed text or text on a computer screen; 
color blindness; contraindications for magnetic resonance 
imaging; night shift employment on a frequent basis (op-
erationally defined as working half or more of employment 
hours in a full workday between midnight and 8 am, and 
this occurring >12 times during the past year); and lack of 
reliable access to a telephone throughout the day (home, 
work, or cell phone).
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Cardiovascular Risk Factors
At the time of initial testing, participants in both studies 
underwent assessments of seated resting blood pres-
sure, waist circumference, and body mass index, as 
well as fasting glucose and lipid levels. Following guide-
lines of the American Heart Association, seated resting 
blood pressures (BPs) were obtained with an oscillo-
metric device (PIP: Critikon Dinamap 8100, Johnson 
& Johnson, Tampa, FL; NOAH: Omron IntelliSense 
BP Monitor, model HEM-907XL, Omron Healthcare). 
A total of 3 BPs were taken after an acclimation pe-
riod, with the average of the last 2 of the 3 BPs being 
used to compute resting SBP and DBP. Participants’ 
waist circumference was measured at the level of the 
umbilicus to the nearest half centimeter at end expira-
tion. Height was measured by a vertical-mounted sta-
diometer (with shoes off), and weight was measured in 
kilograms.

Similarly, at the time of initial testing, participants 
underwent fasting phlebotomy for the assessment 
of glucose, insulin, total cholesterol, triglycerides, and 
high-density lipoprotein cholesterol. If participants were 
unable to comply with prephlebotomy instructions, they 
were rescheduled. Along with other demographic and 
anthropometric variables, these measures were used to 
describe and characterize the study sample and to de-
rive the 10-year atherosclerotic cardiovascular disease 
(ASCVD) risk score.38 To this end, the following variables 
were entered into the Cardiovascular Risk computa-
tional package (version 1.1.1; https://​github.​com/​vcast​
ro/​CVrisk), which was implemented in R statistical soft-
ware39: age, sex at birth, race, cholesterol, high-density 
lipoproteins, SBP, smoking status, use of BP-lowering 
medication, and diabetes status. In the present study 
and in line with the preregistered analysis plan, race was 
used in the calculation of 10-year ASCVD risk scores 
per its formulation by Goff et  al40; however, race was 
construed herein as a social construct and included to 
account for the potential influence of inequalities in ex-
posures to systemic racism and discrimination, as well 
as inequalities in access to opportunities among those 
who do not identify as White.41,42 Additional 10-year 
ASCVD risk scores that include only age, sex at birth, 
cholesterol, high-density lipoproteins, SBP, smoking 
status, and diabetes status per the earlier formulation of 
D’agostino et al43 are publicly accessible for the present 
participants (see Preregistration and Availability of Code 
and Data below).

Carotid Artery Intima-Media Thickness by 
Ultrasonography
Participants in both cohorts underwent the same carotid 
artery ultrasonography protocol, which was performed 
by a registered vascular technologist in the laboratory 

of coauthor E.B.-M. Specifically, each participant laid 
supine with the head tilted at 45°, and, using an Acuson 
Antares scanner (Acuson-Siemens, Malvern, PA), the 
technologist performed scout views of the left and right 
carotid arteries in both the transverse and longitudinal 
planes. A region-of-interest encompassing the artery 
walls was identified for more focused B-mode imaging 
of 3 carotid areas: (1) the near and far walls of the dis-
tal common carotid artery (1 cm proximal to the carotid 
bulb, measured in duplicate on each side and averaged 
across images and sides); (2) the far wall of the carotid 
bulb (defined as the point where the near and far walls 
of the common carotid are no longer parallel and ex-
tending to the flow divider); and (3) the first centimeter 
of the internal carotid (defined distally from the edge 
of the flow divider). For the 3 carotid areas (common, 
bulb, and internal), an optimal image was digitized for 
later scoring with automated edge detection software 
(Artery Measurement System; Goteborg University, 
Gothenburg, Sweden). The software was used to 
draw 2 lines: 1 along the lumen–intima interface and 
1 along the media–adventitia interface. The distances 
between the line-identified interfaces were measured 
in 1 cm segments, generating 1 measurement (in mil-
limeters) for each pixel in each segment (approximately 
140 measurements total). As preregistered, the primary 
dependent (Y) variable in the present analyses cor-
responded to the mean average carotid artery intima 
media thickness (CA-IMT) averaged over the far walls of 
the carotid bulb and common carotid artery.

fMRI Stressor Task Battery
The tasks of this battery include a Stroop task and 
a multisource interference task (MSIT), each 9 min-
utes 20 seconds. Both entail processing conflictual 
information, receiving negative feedback, and mak-
ing time-pressured responses to unpredictable and 
uncontrollable stimuli that elicit subjective distress.36 
Briefly, subjects complete 4, 52- to 60-second blocks 
of trials in both tasks that define a congruent condi-
tion, which are interleaved with 4, 52- to 60-second 
blocks of trials defining an incongruent condition. 
Conditions are preceded by a 10- to 17-second fixa-
tion period. In the Stroop, subjects identify the color of 
target words in the center of a screen by selecting 1 
of 4 identifier words. Selections are made by pressing 
1 of 4 buttons on a glove, with each button match-
ing an identifier word on the screen (eg, thumb button 
1=identifier word on the left). During congruent Stroop 
trials: (1) targets are in colors congruent with the target 
words, and (2) identifiers are in the same colors as tar-
gets. During incongruent Stroop trials: (1) targets are 
in colors incongruent with the targets, and (2) identi-
fiers are in colors incongruent with the colors that the 
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identifiers name. In the MSIT, subjects in the NOAH 
study selected a number that differed from 4 others by 
pressing 1 of 4 buttons on the glove, with each but-
ton matching a number on the screen (thumb button 
1=number 1). During congruent MSIT trials, targets 
were in a position compatible with their position on 
the glove. During incongruent MSIT trials, targets were 
in a position incompatible with their glove position. In 
the PIP study, subjects were presented with 3-number 
stimuli and not 4 as in NOAH. One methodological 
difference is that although the PIP study used 0s in 
the MSIT to indicate an incompatible position in the 
congruent condition (eg, 1 0 0), NOAH used 1 number 
between 1 and 4 (eg, 1 2 2 2) during this condition. In 
incongruent conditions of both tasks in both cohorts, 
accuracy was held to ≈50% by adjusting intertrial in-
tervals. Thus, consecutive accurate performance in an 
incongruent condition prompted shorter intertrial inter-
vals. Conversely, less accurate performance length-
ened intertrial intervals. To control for motor response 
differences between conditions, the number of trials 
in the congruent condition was yoked to the number 
completed in the incongruent condition. To implement 
yoking, (1) an incongruent block is administered first, 
and (2) congruent condition trials appear at the mean 
intertrial interval of the preceding incongruent block.

Cardiovascular Reactivity
During fMRI testing, BP was measured using mag-
netic resonance imaging-compatible devices (PIP: 
Medrad Multigas 9500, Warrendale, PA/Leverkusen, 
Germany; NOAH: Tesla M3 Magnetic Resonance 
Imaging Patient Monitor by the Mammendorf Institute 
for Physiology and Medicine, Mammendorf, Germany). 
The average incongruent condition−minus−average 
baseline BP=difference was used to compute reactiv-
ity. Systolic SBP reactivity values, or ΔSBP, averaged 
across tasks to keep an analytical procedure compa-
rable to that with activation patterns (see following sub-
sections), were used as the primary mediator variable 
(M) in our study. In addition, we have previously shown 
that task-averaged reactivity scores from this stressor 
battery exhibit higher levels of test–retest reliability than 
those from individual tasks.36 Further analyses that 
were preregistered also considered other reactivity 
metrics, including (1) the area under the curve with re-
spect to ground, or SBP_AUCg; and (2) the area under 
the curve with respect to increase,44–46 or SBP_AUCi, 
conditional on these alternative metrics of reactivity ex-
hibiting statistical associations with CA-IMT. The area 
was calculated for the curve formed by the baseline 
SBP measure, defined as the average of the last 2 
SBP values taken inside the scanner before the onset 
of the tasks, and subsequent average SBP values for 
each condition (incongruent or congruent), following 

the order of the task sequence (see Figure  S1, and 
Figure S2 for DBP). For SBP_AUCg, the coordinate ori-
gin was set at 0, whereas for SBP_AUCi, it was set at 
the baseline. Unlike ΔSBP, both area under the curve 
measures incorporate SBP changes throughout the 
entire task. As a result, they are capable of capturing 
more information, such as subject habituation to the 
task and the total or aggregate load of BP through-
out the entire task as opposed to the average peak 
increase. Moreover, area under the curve measures 
have been shown to exhibit better phenotypic test–re-
test reliability compared with measures like ΔSBP.47

Magnetic Resonance Imaging Data 
Acquisition and Preprocessing
Imaging in the PIP cohort was conducted using a 
3T Trio TIM scanner (Siemens, Erlangen, Germany). 
Functional blood oxygen level dependent (BOLD) data 
for the Stroop and MSIT tasks were acquired with a 
gradient echo-planar imaging sequence by these pa-
rameters: time to repetition/time to echo=2000/28 ms; 
matrix resolution=64×64; field of view=205×250 mm; 
and flip angle=90°. Each volume was 3 mm in thick-
ness, with no gap (280 task volumes in total, exclud-
ing 4 discarded volumes). Before functional imaging, 
a T1-weighted magnetization prepared rapid gradient 
echo structural image was obtained by these parame-
ters: repetition time=2100 ms; inversion time=1100 ms; 
echo time=3.31 ms; flip angle=8°. There were 192 
sagittal slices (1-mm thick, no spaces between 
slices) having a matrix size of 256×208 pixels (field of 
view=256×208 mm).

In the NOAH study, imaging was conducted using 
a 3T PRISMA scanner (Siemens), which was equipped 
with a 64-channel head coil. Before functional im-
aging, a T1-weighted magnetization prepared rapid 
gradient echo structural image was obtained by 
these parameters: repetition time=2300 ms; inversion 
time=900 ms; echo time=1.99 ms; flip angle=9°. There 
were 176 sagittal slices (1-mm thick, no spaces be-
tween slices) having a matrix size=176×176 voxels (field 
of view=256×256 mm). Functional BOLD image acqui-
sition parameters for the Stroop and MSIT tasks were: 
matrix size=106×106 voxels (field of view=212×212 mm), 
repetition time=2000 ms, echo time=30 ms, and flip 
angle=79°. Sixty-nine slices per volume were collected 
along an anterior-to-posterior encoding direction. Each 
volume was 2 mm in thickness, with no gap (280 task 
volumes in total, excluding 4 discarded volumes).

Individual fMRI data for both cohorts and tasks un-
derwent the same preprocessing pipeline using sta-
tistical parametric mapping software (SPM12; http://​
www.​fil.​ion.​ucl.​ac.​uk/​spm). For spatial preprocessing, 
T1-weighted magnetization prepared rapid gradi-
ent echo images were classified into 6 tissue types. 
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Biased-corrected and deformation field maps were 
then computed. Functional images were realigned to 
the first image of the series by a 6-parameter rigid-
body transformation, using the reslice step to match 
the first image on a voxel-by-voxel basis. Before re-
alignment, slice-timing correction was applied to ac-
count for acquisition time variation. Realigned images 
were coregistered to each participant’s skull-stripped 
and biased-corrected magnetization prepared rapid 
gradient echo image. Coregistered images were nor-
malized to Montreal Neurological Institute space. In 
within-individual fMRI analyses, univariate general lin-
ear models were estimated to compute contrast maps 
used for prediction and mediation analysis described 
below in the analysis plan. Task blocks were modeled 
by rectangular waveforms convolved with the default 
hemodynamic response function in SPM12. These 
regressors modeled blocks (ie, fixation, incongruent 
condition, congruent condition). In each general linear 
model, the 6 realignment parameters from prepro-
cessing were included as nuisance regressors, and 
low-frequency artifacts were removed by a high-pass 
filter (187 seconds). To further remove artifact effects 
from fMRI data while keeping all time points, error vari-
ance was estimated and then weighted by restricted 
maximum likelihood estimation, as implemented in the 
RobustWLS toolbox version 4.0. In this approach, time 
points were inversely weighted according to the resid-
ual noise over the whole brain, so volumes with larger 
levels of residual noise had less contribution to the 
first-level estimations. Subsequently, each estimated 
task condition parameter was smoothed by a 6-mm 
full width at half maximum Gaussian kernel. Linear 
contrasts, computed as incongruent versus congruent 
condition effects and averaged across Stroop tasks 
and MSIT, constituted the independent variable (X) in 
our main analysis (see next section). This step of av-
eraging across both tasks was performed to maintain 
comparability with prior work,34 as well as to reduce 
measurement error and increase reliability as previ-
ously demonstrated for this stressor battery.36

Exclusion criteria of individual fMRI data included 
lack of spatial (brain) coverage, incomplete sequence 
acquisition, experimental error, equipment malfunction 
during participant testing, and lack of participant task 
comprehension after reviewing task performance and 
experimenter notes.

Statistical Analysis
A mediation framework was used to test the association 
between the task-averaged whole-brain fMRI incongru-
ent versus congruent activity maps (the multivariate 
independent variable, X) and CA-IMT (the univariate 
outcome variable, Y), mediated by task-averaged in-
scanner SBP reactivity (the univariate mediator, M). 

To accomplish this and following Baron and Kenny’s 
steps,48 the X-to-Y (total effect) or c path was first as-
sessed, that is, the relation between the task-averaged 
stressor-evoked fMRI activation patterns and the CA-
IMT. Next, the X-to-M or a path was estimated, that is, 
the effect of the task-averaged stressor-evoked fMRI 
activation patterns on task-averaged stressor-evoked 
SBP reactivity. Finally, the b and c′ paths were esti-
mated, which are defined as the amount of variabil-
ity of Y that M and X respectively explain when taken 
together in the same model ([X+M]-to-Y). As a result, 
statistical evidence for a c′ path indicates that X has a 
direct effect on Y. Similarly, statistical evidence for both 
a and b paths indicates that X has an effect on Y medi-
ated by M (indirect effect). To note, the whole mediation 
scenario was conducted separately for each potential 
mediator (ΔSBP, SBP_AUCg, and SBP_AUCi).

In the current modeling framework, the aforemen-
tioned mediation scenario was tested using a multi-
variate machine-learning approach, which typically 
outperforms univariate efforts by exhibiting a better abil-
ity to map complex associations, and a better test–re-
test reliability and internal consistency.49 Specifically, in 
each mediation step, a typical approach37,50–52 that uses 
a principal component analysis followed by penalized 
regression was adopted. A principal component analy-
sis was used to address the high degree of dimensional-
ity of our input data (ie., number of features much greater 
than the number of observations) and to account for the 
high degree of collinearity across voxels (exacerbated by 
spatial smoothing). Penalized regression was then used 
to find the most parsimonious version of the model pos-
sible. In our study, both L1 (also known as Lasso) and 
L2 (also known as Ridge) penalization techniques were 
separately tested. The exact form of these penalization 
terms, along with the quantitative steps involved in our 
predictive approach, are detailed in Data S1.

Following recommendations for best practice in 
prediction studies,53 the reliability of each effect was 
assessed using a nested k-fold cross-validation, con-
sisting of (1) an inner loop 5-fold cross-validation to 
optimize the predictive models, and (2) an outer loop 
10-fold cross-validation to determine the predictive 
generalizability of these models. This data splitting took 
place separately in each mediation analysis conducted 
and in a stratified fashion, so M and Y variables did 
not differ statistically between training and test sets. 
Stratification also took cohort information into account, 
ensuring that both studies were included during train-
ing and testing while maintaining the original proportion 
between them. The whole cross-validation procedure 
was also repeated with 5 different seeds to account for 
the variability when splitting the data.

The generalizability of each optimal predictive 
model (ie, X-to-Y, X-to-M and [X+M]-to-Y models) was 
evaluated by comparing predicted with observed 
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outcome variables in the test samples. Here, the simi-
larity between predicted and observed values was 
summarized by Pearson correlation coefficients and 
corresponding 95% bootstrapped CIs and P values. 
Following guidelines for predictive modeling,53 variance 
in observed values explained by predicted values (R2) 
was calculated by the sums-of-squares formulation. 
Furthermore, to estimate the generalizability of the me-
diation effect the following measure was adopted: 
R2

med
= R2

M→Y
−

(

R2

X+M→Y
− R2

X→Y

)

. This is based on 

the effect sizes of each individual model in the media-
tion analysis framework54 and therefore easily evalu-
ated out-of-sample. Finally, the evidence for each 
effect was quantified using Bayes factors, BF10, which 
reflect the ratio between the probability of the alterna-
tive (existence of a positive correlation between pre-
dicted and observed values) and the null hypotheses 
(absence of or negative correlation between predicted 
and observed values).

Individual features that reliably contributed to both 
direct effects (or c′ path) and indirect effects (ie, the 
products a×b) were determined by bootstrap resa-
mpling (5000 resamples), with corrections for a false 
discovery rate of 0.05.55 This analysis was performed 
on the principal component space to increase statisti-
cal power and included a transformation to encoding 
models to ensure a correct interpretation of the result-
ing weight maps.56 The details of this bootstrapping 
procedure can be found in Data S1.

Importantly, because of the use of 2 different co-
horts, harmonization techniques were applied with the 
aim of reducing the differences between NOAH and 
PIP. In particular, for neuroimaging data (X), ComBat 
was adopted, which is a Bayesian-based statistical 
method that has been shown to adjust for location 
and scale effects from different data sources.57 M and 
Y were similarly harmonized by standardizing them 
within cohorts.

Finally, it is important to note that each of the dif-
ferent steps that led to the final predictions (harmo-
nization, dimensionality reduction) were all part of the 
analytical pipeline and, more importantly, were em-
bedded within the cross-validation procedure, thus 
preventing any data leakage.

Ancillary Analysis
One fundamental difficulty in any mediation analysis 
is the violation of the sequential ignorability assump-
tions due to the existence of unobserved confounders 
causally affecting both the mediator and the outcome 
even after conditioning on the observed levels of the 
input (treatment variable) and pretreatment covari-
ates.58 For example, observed changes in cardiovas-
cular reactivity and preclinical atherosclerosis from 

neural responses to stress could be explained by 
prevailing levels of overall CVD risk of each individual 
in our study. To address this possibility, the 10-year 
ASCVD risk scores were used as control variables to 
examine the influence on predicted versus observed 
correlation values. This analysis was contingent on the 
existence of a significant correlation between ASCVD 
risk scores and CA-IMT, and for any of the cardiovas-
cular reactivity measures tested where such a signifi-
cant correlation also existed. Additionally, sensitivity 
analyses assessed the influence of functional brain 
imaging data quality by excluding subjects with exces-
sive head motion during any of the task acquisitions 
(average framewise displacement >0.5 mm using the 
formula in Power et al59). Last, in a deviation from the 
preregistered analytic plan, metrics of DBP reactivity 
were explored for an overall comparison to SBP reac-
tivity findings (Data S1).

Preregistration and Availability of Code 
and Data
Hypotheses and planned analyses were preregis-
tered at Open Science Framework (OSF) on June 1, 
2022 (https://​osf.​io/​j278q​). Source files and analysis 
scripts are available at GitHub (https://​github.​com/​
CoAxL​ab/​sbp-​imt-​media​tion). Data files, which in-
clude the activation patterns, mediator, outcome and 
confounder variables, along with the fitted predictive 
models, component loadings and false discovery rate-
corrected P values, can be found at Figshare (https://​
figsh​are.​com/s/​4e1fe​b883c​9ca6a​e7634​). Other data 
may be made available upon reasonable request via 
a University of Pittsburgh Data Use Agreement. To the 
authors’ awareness, this is the first study to investigate 
the cross-sectional association between stressor-
evoked brain activity patterns and CA-IMT mediated 
by changes in BP.

RESULTS
Sample Characteristics
Descriptive information for demographic and cardio-
vascular measures are summarized in Table 1. To note, 
using Cohen’s d and the log variability ratio (lnVR), 
statistical differences in the mean and standard de-
viation of PIP relative to NOAH were observed for the 
variables entering the mediation model, that is, CA-
IMT (d=0.36 [95% CI, 0.19–0.54]; lnVR=−0.20 [95% CI 
−0.37 to −0.04]), ΔSBP (d=0.22 [95% CI, 0.06–0.37]; 
lnVR=−0.16 [95% CI −0.32 to −0.01]), SBP_AUCg 
(d=0.65 [95% CI, 0.48–0.82]; lnVR=−0.17 [95% CI, 
−0.29 to −0.04]), SBP_AUCi (d=0.24, [95% CI, 0.08–
0.40]; lnVR=−0.19 [95% CI, −0.35 to −0.03]), as well as 
for our control variable, the ASCVD risk score (d=0.24 
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[95% CI, 0.08–0.38]; lnVR=0.34 [95% CI, 0.05–0.60]). 
These expected statistical differences were likely at-
tributable to interdevice variability and underscore the 
need for harmonizing these variables across cohorts.

Next, we assessed the associations between CA-
IMT, SBP reactivity metrics, and CVD risk factors. As 
shown in Figure 1, greater CVD risk (as per the 10-year 
ASCVD score) correlated positively with CA-IMT (PIP: 
r(300)=0.32, q<0.001; NOAH: r(283)=0.388, q<0.001), 
as well as positively with SBP_AUCg (PIP: r(296)=0.286, 
q<0.001; NOAH: r(251)=0.251, q<0.001). Similar find-
ings were observed for several other CVD risk factors; 
however, these associations did reliably replicate across 
the PIP and NOAH cohorts. Notably, SBP reactivity as 
indexed by ΔSBP did not appear to reliably correlate 
with the 10-year ASCVD risk factor (PIP: r(297)=−0.01, 
q=0.928; NOAH: r(245)=0.047, q=0.592). A similar situ-
ation was observed for SBP_AUCi (PIP: r(296)=−0.012, 
q=0.927; NOAH: r(251)=0.093, q=0.227). As a result, 
and following the preregistration plan, only compari-
sons of predicted versus observed values using SBP_
AUCg as a mediator between stressor-evoked fMRI 
activity and CA-IMT were retested while controlling for 
prevailing levels of CVD risk indexed by ASCVD. For 
completeness, pairwise correlations between all these 
variables using the combined sample (PIP+NOAH) can 
be found in Figure S3, with similar conclusions reached 
as per each study.

Main Effects of the Stressor-Evoked fMRI 
Tasks
Stressor-evoked activation patterns were calculated as 
contrasts in average brain activity between incongruent 
and congruent trial conditions in both the Stroop task 
and MSIT, and for each cohort (PIP and NOAH). Areas 
typically implicated in conflict processing were found to 
be engaged (see Figure 2). This mainly involved posi-
tive activation of the dorsomedial prefrontal cortex, an-
terior cingulate cortex, anterior insula, parietal cortex, 
basal ganglia, thalamus, and cerebellum, and the neg-
ative activation of areas included in the default-mode 
network, encompassing the ventromedial prefrontal 
cortex, perigenual anterior cingulate cortex, posterior 
cingulate cortex, and precuneus. Overall, there was a 
large voxel-wise spatial similarity in activation patterns 
(Pearson correlation r >0.8) between tasks in PIP, and 
between cohorts for the Stroop task. Spatial sim-
ilarity rates weakened when the activation pattern of 
MSIT in NOAH was evaluated, as a consequence of 
an overall decrease in observed effect sizes that par-
ticularly affected the lack of presence of significantly 
deactivated areas, that is, in the default-mode network 
(eg, the medial prefrontal and posterior cingulate cor-
tex; Figure S4). This finding can be further understood 
by comparing the participants’ behavior during MSIT 
across both cohorts. For example, a comparison can 
be made for the accuracy in correct responses of each 

Table 1.  Data Characteristics and Descriptive Statistics for the Continuous Variables in the Study

Characteristic

PIP (N=325, 163 women) NOAH (N=299, 180 women)

Mean [95% CI] SD Mean [95% CI] SD

Age, y 40.89 [40.21–41.60] ±6.24 42.31 [41.24–43.6] ±8.64

No. of school y completed 16.67 [16.33–17.04] ±3.31 17.63 [17.32–17.96] ±2.85

Weight, lb 174.13 [170.31–177.98] ±35.44 168.03 [164.26–172.29] ±37.99

Waist, in 38.04 [34.95–43.68] ±47.66 36.81 [36.16–37.43] ±5.56

Height, in 67.46 [67.04–67.88] ±3.71 66.84 [66.42–67.24] ±3.66

Glucose, mg/dL 88.15 [86.91–89.36] ±11.58 87.33 [86.40–88.34] ±8.51

Triglyceride, mg/dL 94.05 [87.68–100.75] ±57.46 97.88 [88.88–110.34] ±89.89

HDL, mg/dL 50.89 [49.16–52.72] ±16.17 57.74 [56.05–59.53] ±14.88

Insulin, μU/mL 8.92 [8.06–9.81] ±6.50 6.72 [6.04–7.38] ±6.01

BMI, kg/m2 26.88 [26.38–27.42] ±5.08 26.27 [25.59–26.87] ±5.35

CA-IMT, mm 0.64 [0.63–0.65] ±0.10 0.60 [0.59–0.62] ±0.13

Clinic SBP, mm Hg 121.01 [119.76–122.13] ±10.66 114.49 [112.85–116.05] ±13.49

ΔSBP, mm Hg 4.22 [3.57–4.83] ±5.75 2.84 [2.04–3.68] ±6.78

SBP_AUCg, mm Hg/s 1014.78 [1003.33–1025.46] ±100.20 943.60 [929.78–958.16] ±118.43

SBP_AUCi, mm Hg/s 27.85 [23.72–32.45] ±39.13 17.35 [11.60–23.38] ±47.41

ASCVD 10 y 1.90 [1.74–2.11] ±1.69 1.55 [1.42–1.69] ±1.20

Average coefficient of determination, R2, and 95% CI for each mediator variable (columns) and model path (rows). The mediation effect was calculated using 
the R2 values in each path as explained in the Methods section. ASCVD indicates atherosclerotic cardiovascular disease; AUCg, area under the curve with 
respect to ground; AUCi, area under the curve with respect to increase; BMI, body mass index, CA-IMT, carotid artery intima-media thickness; HDL, high-
density lipoprotein; NOAH, Neurobiology of Adult Health; PIP, Pittsburgh Imaging Project; and SBP, systolic blood pressure.
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participant based on their choices during the tasks (a 
word selection in Stroop, a number selection in MSIT). 
Given that they serve as a control condition, high av-
erage performance should be observed across the 
congruent trials relative to the more challenging in-
congruent trials. However, although PIP participants 
did show the expected high accuracy (percentage of 
correct responses) during the congruent (91.08±7.41%) 
compared with the incongruent (56.05±9.09%) con-
dition, this difference was considerably smaller for 
NOAH participants (congruent: 64.25±11.38%; incon-
gruent: 53.92±2.51%) as attributable to the difference 
in the task structure/design. Therefore, relative to PIP 
participants, those in the NOAH cohort performed ap-
proximately 27% less accurately on average during con-
gruent MSIT trials, resulting in similar decreased BOLD 
activity of the default-mode network relative to incon-
gruent trials and in contrast to what occurs in the PIP 
cohort. Combat harmonization of the task-averaged 
activation patterns across both cohorts reduced (but 

did not entirely eliminate) these spatial differences (see 
Figure S5).

Prediction of CA-IMT From Stressor-
Evoked Brain Activation Patterns and 
Mediated by Cardiovascular Reactivity
A mediation analysis using L2-penalized (ie, ridge) prin-
cipal component regressions tested the association 
between stressor-evoked brain activity (input variable; 
X) and CA-IMT (outcome variable; Y) mediated by sev-
eral cardiovascular reactivity measures: ΔSBP, SBP_
AUCg, and SBP_AUCi (mediator variable; M). Figure 3 
and Table 2 show that a significant association, in the 
holdout test sets, as indicated by the average coeffi-
cient of determination R2 and 95% CIs, was found in the 
X-to-Y path for the 3 mediators, as well as in the X-to-M 
path and the [X+M]-to-Y path. Prediction performances 
summarized by Pearson correlation coefficients can 
be found in Table  S1. In addition, predicted versus 

Figure 1.  Correlogram.
A correlogram involving the main variables in our mediation framework and several 
cardiovascular disease risk factors. Colors and annotations display the strength of 
their associations as measured by Pearson correlation coefficients. An X represents 
those associations whose P values after false discovery rate correction were above the 
significance level α=0.05. ascvd_10y indicates 10-year atherosclerosis cardiovascular 
disease risk score; AUCg, area under the curve with respect to the ground; AUCi, area 
under the curve with respect to increase; CA-IMT, carotid artery intima-media thickness; 
hdl, high-density lipoprotein; NOAH, Neurobiology of Adult Health; PIP, Pittsburgh 
Imaging Project; SBP, systolic blood pressure; and trigs, triglycerides.
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observed values across the different cross-validation 
repeats scatter plots are displayed in Figures S6, S7, 
and S8. As noted in the Methods section, the stratifi-
cation in M and Y within each mediation analysis led 
to different data partitions and therefore to slightly dif-
ferent prediction rates in the X-to-Y path, although this 
model did not involve the mediator. Nonetheless, they 
all remained within the same CIs.

The previous results showed a generalizable effect 
for each model that comprises our mediation analysis 
framework. However, as shown in Figure 3 and Table 2, 
only SBP_AUCg had a sizeable and reliable mediation 
effect (R2

med
= 0.073 [95% CI, 0.070–0.076]), whereas it 

was substantially smaller for ΔSBP (R2

med
= 0.005 [95% 

CI, 0.005–0.006]) and SBP_AUCi (R2

med
= 0.004 [95% CI, 

0.004–0.005]). This can be easily understood by the 
small variability explained by the latter 2 mediators in 
the M-to-Y path (ΔSBP: 0.009 [95% CI, 0.009–0.01]; 
SBP_AUCi: 0.008 [95% CI, 0.007–0.009]; see Figure 3 
and Table 2), and their lack of significant association 
with CA-IMT (see Figures S6 and S8), thereby violating 

the conditions necessary for mediation; additionally, 
R2

med
 is negative if R2

M→Y
= 0. As a consequence, we con-

cluded that ΔSBP and SBP_AUCi could not represent 
viable mediators, so further analyses concentrated ex-
clusively on SBP_AUCg in testing mediation effects be-
tween stressor-evoked brain activation and CA-IMT.

For completeness, we repeated the same analysis 
using L1-penalized (i.e., lasso) principal component re-
gressions and found similar results, although with an 
overall decrease in effect sizes (see Figures S9, S10, 
and S11). Thus, findings appear to not depend on the 
type of penalty applied in modeling.

After conducting bootstrapping (5000 resamples) 
and correcting for multiple testing using a false discov-
ery rate of 0.05, we identified 10 significant principal 
components for the indirect effects (i.e., a×b products), 
and no significant principal components for the di-
rect effects (c’ coefficients). In the mediation analysis 
context, this suggests that the association between 
stressor-evoked brain activation and CA-IMT appears 
to be fully mediated by SBP_AUCg.

Figure 2.  Main effects.
For each cohort (PIP and NOAH), the stressor-evoked brain activation patterns at the group level and in terms of the Cohen d effect 
size measure in both fMRI tasks (Stroop and MSIT). Only effects whose P value is <0.05 after false discovery rate correction and with 
a cluster size threshold of k>50 voxels are displayed. Orange colors represent greater average activity in the incongruent condition 
compared with the congruent condition, and blue colors represent the opposite. The arrows indicate the spatial similarity between 
activation patterns as measured by Pearson correlations. fMRI indicates functional magnetic resonance imaging; MSIT, multisource 
interference task; NOAH, Neurobiology of Adult Health; and PIP, Pittsburgh Imaging Project.
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When we transformed these 10 significant com-
ponents back to the voxel space, we found a (medi-
ated) positive association in areas involving particularly 
the insula, thalamus, ventromedial prefrontal cortex, 
anterior cingulate cortex, superior parietal lobe, and 
vermis (see encoding weight maps in Figure 4). Since 
the b coefficient was always positive, this means that 
SBP_AUCg increases as incongruency-related brain 
responses in these areas increase. Conversely, we 
observed a (mediated) negative association in the 
dorsomedial prefrontal cortex, angular gyrus, amyg-
dala, cerebellum, and brain stem. Therefore, when 
incongruency-related brain patterns increase in these 
areas, SBP_AUCg tends to decrease. Interestingly, 
there appeared to be a lateralization of the amyg-
dala, because positive associations take place in the 
left hemisphere and negative associations in the right 
hemisphere. The loadings for these 10 significant com-
ponents, ordered by importance and separated into 

positive and negative contributions to the indirect ef-
fects, can be found in Figure S12.

Finally, Figure  S13 displays the brain patterns of 
encoding weights from the X-to-M path for each me-
diator variable. We include them here for comparison, 
retaining all their principal components information. As 
expected, due to the high correlation between ΔSBP 
and SBP_AUCi (see Figure 1 for the correlation values in 
both cohorts), their weight maps in the X-to-M path also 
exhibit a large spatial similarity (r=0.96). In contrast, their 
spatial similarity with the weight map for SBP_AUCg 
substantially decreased (ΔSBP: r=0.42, SBP_AUCi: 
r=0.43). These differences appear to be triggered by an 
overall presence of negative associations in the dorso-
medial prefrontal cortex, anterior cingulate cortex and 
angular gyrus for SBP_AUCg, unlike ΔSBP and SBP_
AUCi where these associations are positive.

Ancillary Testing
We have shown that SBP_AUCg appears to significantly 
mediate an association between stressor-evoked 
brain activation and CA-IMT. In this scenario, a small 
deviation from the sequential ignorability assump-
tions could be observed, as measured by ρ=cor(εX->M, 
εXM->Y)=0.213, that is, the correlation between the er-
rors in the X-to-M path and the errors in the [X+M]-to-Y 
path.58 Here these errors were based on the out-of-
sample predictions and the reported value of ρ on the 
average over the different cross-validation runs. We 
next tested whether this mediation effect could be ex-
plained by prevailing levels of cardiovascular disease 
risk factors.

An overall decrease in explained variability was ob-
served after including the 10-year ASCVD risk score as 
a control variable in the scenario involving SBP_AUCg 
as a mediator. Nevertheless, associations remained 
significant for the X-to-M path (R2=0.022 [95% CI, 
0.014–0.022]) and the [X+M]-to-Y path (R2=0.039 [95% 
CI, 0.027–0.05]). Only for the X-to-Y path, 2 repetitions 
of the cross-validation procedure no longer yielded a 
significant correlation in observed versus predicted 
values. Altogether, a significant mediation effect was 
still observed (R2

med
= 0.046 [95% CI, 0.042–0.049]). 

Therefore, we can conclude that the prevailing values 

Figure 3.  Out-of-sample performances.
For each possible mediator variable (M), the out-of-sample 
performance using an L2-penalized principal component 
regression and applied to the different paths in the mediation 
analysis framework. Here, the input variable (X) is voxel-wise 
responses, and the output variable (Y) is CA-IMT. Each dot 
represents the coefficient of determination calculated from the 
observed vs predicted values generated from a particular run 
of the nested cross-validation procedure. In addition, bars and 
error bars display the average and the 95% CIs across these 
values. AUCg indicates area under the curve with respect to the 
ground; AUCi, area under the curve with respect to increase; CA-
IMT, carotid artery intima-media thickness; and SBP, systolic 
blood pressure.

Table 2.  Coefficients of Determination (R2)

Statistical Paths ΔSBP SBP_AUCg SBP_AUCi

X-to-Y path 0.02 [0.018–0.021] 0.025 [0.018–0.033] 0.029 [0.021–0.037]

X-to-M path 0.036 [0.029–0.044] 0.036 [0.028–0.043] 0.024 [0.02–0.028]

M-to-Y path 0.009 [0.009–0.01] 0.118 [0.118–0.119] 0.008 [0.007–0.009]

[X+M]-to-Y path 0.024 [0.023–0.026] 0.071 [0.06–0.081] 0.033 [0.025–0.041]

Mediation effect 0.005 [0.004–0.006] 0.073 [0.070–0.076] 0.004 [0.004–0.005]

AUCg, area under the curve with respect to ground; AUCi, area under the curve with respect to increase; and SBP, systolic blood pressure.
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of CVD risk factors do not drive this mediation effect 
between stressor-evoked brain activity and CA-IMT.

We performed a sensitivity analysis by concen-
trating exclusively on subjects with low in-scanner 
head motion, defined as having an average framew-
ise displacement <0.5 mm in both fMRI tasks. This 
resulted in the exclusion of 27 subjects (23 belonging 
to PIP, and 4 to NOAH). A mild improvement in perfor-
mance rates was overall observed (see Figure S14), 
although conclusions previously reached remained 
the same.

Last, in exploratory analyses that were not pre-
registered, we evaluated metrics of DBP reactivity as 
correlates of CA-IMT and possible mediators between 
stressor-evoked fMRI activity and CA-IMT. Here, we 
first observed that SBP and DBP reactivity metrics 
were moderately to highly correlated, with r values 
ranging from 0.63 to 0.83. DBP metrics also exhibited 
patterns of association with CA-IMT that were com-
parable to those for DBP reactivity, with DBP_AUCg 
exhibiting the highest correlation with CA-IMT rela-
tive to change and AUCi metrics (r values=0.04 and 
0.05, respectively). Finally, mediation tests confirmed 
that only DBP_AUCg exhibited a reliable indirect ef-
fect in the mediated association between stressor-
evoked fMRI activity and CA-IMT (see Figure S15 and 
Tables S2 and S3).

DISCUSSION
In this study we tested whether whole-brain hemody-
namic activity patterns, evoked by 2 aversive informa-
tion conflict tasks (Stroop and MSIT), were associated 
with CA-IMT, a vascular marker of preclinical athero-
sclerosis. We also tested whether this association was 
statistically mediated by 3 different measures of car-
diovascular, principally SBP, reactivity. To accomplish 
this, we used a mult-cohort data set comprising ≈600 
subjects and the combination of harmonization tech-
niques and penalized principal component regressions 
to estimate generalizable out-of-sample predictions 
from a repeated nested cross-validation procedure. 
Within a mediation analysis framework, we found that 
stressor-evoked brain activity patterns explained ≈2% 
of total variability of CA-IMT (the X-to-Y path). The same 
activation patterns were able to predict cardiovascular 
reactivity (the X-to-M path), with a variability between 
4% and 2% depending on the mediator variable. In ad-
dition, when brain activation patterns and cardiovascu-
lar reactivity were considered together (the [X+M]-to-Y 
path), prediction rates of CA-IMT increased, reaching 
the maximum explained variability (around 8%) for the 
case of SBP_AUCg as a mediator. Collectively, the pre-
sent findings suggest that the association between 
stressor-evoked brain activity and CA-IMT is likely to 

Figure 4.  Encoding weight maps of indirect effects.
For the scenario with SBP_AUCg as mediator, the encoding weight maps obtained from transforming back to voxel space those 
principal components whose a×b products were significant based on bootstrapping (5000 resamples) and after correcting for a false 
discovery rate of 0.05. Warm and cool colors represent a positive and negative mediated association between stressor-evoked brain 
activity and CA-IMT, respectively. For visualization purposes, only weights with |z|>1 after spatial standardization are displayed. AUCg 
indicates area under the curve with respect to the ground; CA-IMT, carotid artery intima-media thickness; L, left; R, right; and SBP, 
systolic blood pressure.
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be mediated most reliably by SBP_AUCg, and mainly 
via the activation of areas such as the insula, thalamus, 
ventromedial prefrontal cortex, and superior parietal 
lobe, and the deactivation in the dorsomedial prefrontal 
cortex, angular gyrus, amygdala, cerebellum, and brain 
stem. Importantly, the present results could not be ex-
plained by prevailing levels of cardiovascular disease 
risk or excessive head motion, suggesting that the ob-
served associations may not be artifactual. These novel 
findings are consistent with the possibility that part of 
the relationship between stressor-evoked brain activ-
ity and preclinical atherosclerosis may be accounted 
for by individual differences in corresponding levels of 
stressor-evoked cardiovascular reactivity.

Our study builds upon a growing body of evidence 
for the possible brain systems and physiological path-
ways that may link psychological stress to preclinical 
atherosclerosis and CVD risk. We previously showed, 
for example, that brain activity patterns evoked by 2 
different sets of unpleasant emotional stimuli were able 
to successfully predict individual differences of CA-
IMT, explaining 1% to 3% of interindividual variability.51 
Important brain regions for these predictions included 
the insula, hypothalamus, brainstem, and areas of 
the anterior cingulate and medial prefrontal cortices. 
Here, our brain activity patterns emerging from an 
fMRI stressor battery were able to explain a roughly 
similar variability of CA-IMT (≈2%) across individuals 
and particularly engaged similar brain areas. Thus, 
our results appear to agree with evidence of an inter-
dependence between executive functions, contextual 
appraisals, and affective processes,60–63 which here is 
also reflected in their similar relationship with preclinical 
atherosclerosis. It remains to be tested whether the in-
tegration across all these different task paradigms that 
engage such interdependent processes could boost 
the prediction of individual differences in cardiovascu-
lar disease risk, similar to what was found for blood 
pressure reactivity using the same 2 tasks used here.34 
Importantly, integrating patterns of fMRI activity across 
different task paradigms could be an alternative to 
combining different neuroimaging modalities, because 
the latter has not been shown to improve the predic-
tion of preclinical atherosclerosis.64

We also demonstrated that stressor-evoked brain 
activity relates to acute changes in SBP, which was 
consistent across the 3 cardiovascular reactivity mea-
sures that we tested. Our supplementary results using 
L1-penalized principal component regression and 
involving ΔSBP as the outcome variable (minimum 
r=0.206, maximum r=0.256; see Figure  S9) followed 
those previously reported using 1 of the cohorts in the 
data set,34 although with a slight reduction in prediction 
performance (but within the same levels of CIs). This is 
likely due to the increased sample size that tends to sta-
bilize effect sizes to their generalizable true value.65,66 

Nevertheless, the obtained prediction rates were still 
small. It has been argued that an explanation for such 
small effect sizes is that task-fMRI measures are not 
reliable enough.67 However, this argument is still in de-
bate.68 Here we used a sample size much larger than 
those previously reported,67 and used task-aggregated 
multivariate patterns that have been demonstrated to 
increase reliability for the prediction of individual differ-
ences.36 Therefore, albeit small, the observed general-
izable associations of stressor-evoked brain activation 
patterns with preclinical atherosclerosis and cardio-
vascular reactivity may be likely to approximate their 
true value. It is also important to note that peripheral 
blood pressure responses are not entirely determined 
by brain systems for visceral control: such responses 
are likely to be additionally influenced by variation in 
autonomic outflow, peripheral autonomic receptor 
density and sensitivity (eg, α- and β-adrenergic recep-
tor density and sensitivity), as well as other vascular 
determinants that could also account for non–brain-
related and unexplained variance in cardiovascular re-
activity across individuals.69

Notably, among the 3 cardiovascular reactivity mea-
sures tested, only SBP_AUCg appeared to mediate a 
reliable association between stressor-evoked brain ac-
tivity and CA-IMT. This also appeared to be the case 
in exploratory analyses using DBP reactivity metrics 
(Data S1). We speculate that this is due to this cardio-
vascular reactivity variable, namely SBP_AUCg, being 
the only one exhibiting a moderately sizable associa-
tion with CA-IMT, as shown by the results for the M-to-Y 
path in Figure 3. In our context, AUCg summarizes the 
total BP reactivity output under a series of events, here 
comprising BP throughout magnetic resonance imag-
ing testing, whereas AUCi is possibly more related to 
the sensitivity of the measure to variable changes and 
peak values over time.46 Because the latter involves BP 
changes with respect to the baseline in both incon-
gruent and congruent conditions, and considering that 
the time separation between successive BP events 
throughout the task sequences is always the same, it 
is not surprising that it almost perfectly correlates with 
ΔBP, which involves average changes with respect to 
the baseline only within the incongruent condition (for 
SBP, PIP: 0.98, NOAH: 0.96, see Figure 1). It might be 
the case that each area under the curve-based car-
diovascular reactivity measure corresponds to a par-
ticular feature of individual differences in preclinical 
atherosclerosis; for example overall intensity, as sim-
ilarly encoded by AUCg-based measures, appears to 
mostly correlate with cross-sectional values, whereas 
acute reactions, as similarly encoded by AUCi-based 
measures, appear to be more important in explaining 
longitudinal changes over time.70 By these and related 
considerations, it has been recommended to include 
all such metrics when analyzing data with repeated 
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measures of stress physiology.46 Nevertheless, in re-
gard to the variance in CA-IMT accounted for by re-
activity measures in preregistered analyses, such as 
ΔSBP (and SBP_AUCi in extent), which we found to 
exhibit an average R2=0.009 (95% CI, 0.009–0.01) (or 
r=0.097 [95% CI, 0.094–0.101]), it is important to high-
light that this closely compares to the meta-analytic 
effect size of the association of BP reactivity and CVD 
risk, r=0.096, reported previously.14 Although small in 
magnitude, our observed effect sizes thus appear to 
align with cumulative evidence and implicate additional 
biological pathways beyond cardiovascular reactivity 
(eg, inflammatory, neuroendocrine, mitochondrial) that 
may link stress-related brain functionality to CVD risk, 
as well as underscoring the need in the field for large 
sample sizes and cross-validation methods.

Furthermore, in our bootstrapping analysis applied to 
the scenario with SBP_AUCg as the mediator, we found 
that this mediation effect was observed along 10 principal 
components computed from multivariate brain activation 
patterns. Strikingly, the coefficients of each of these com-
ponents in the X-to-Y path, that is, the total effect (or c 
coefficients) did not show a statistical significance after 
correcting for multiple testing. Is it possible then that a 
mediation effect exists even in the absence of total ef-
fects? In the original casual step approach to mediation 
analysis, the first requirement for a possible mediation ef-
fect was that the X-to-Y path should be significant.48,71,72 
However, the necessity of this has been challenged over 
time.73,74 Looking into our case, each principal compo-
nent from the stressor-evoked brain activity patterns was 
a potential candidate for a mediating effect. We found that 
the estimated coefficients for these indirect effects (ie, the 
a×b products) had all roughly opposite signs, which is one 
of the possible explanations as to how a mediation effect 
in the absence of an overall association may occur.75 This 
might be due to the fact that principal component anal-
ysis basically finds orthogonal axes, and therefore their 
estimated coefficients also reflect this orthogonality in 
terms of exhibiting opposite signs in their association with 
the outcome variable, although we acknowledge that this 
assertion requires further exploration.

Also notable is the encoding weight pattern of the 
significant indirect effects, which included brain regions 
such as the ventromedial prefrontal cortex, anterior cin-
gulate cortex, insula, and amygdala. These areas are 
part of what has been termed a visceral control network, 
which is proposed to be involved in mediating psycho-
logical stress appraisals and simultaneously controlling 
cardiovascular physiology mechanistically via their influ-
ence over autonomic and related determinants of BP (eg, 
baroreflex suppression), with alterations in this network 
being hypothesized to influence risk for cardiovascular 
disease.9 These brain systems have also been recently 
described as belonging to an interoceptive-allostatic 
brain network for regulating peripheral physiology by 

predictive or anticipatory processes.76,77 Along similar 
lines, our results appear to provide evidence for a path-
way whereby increased brain activity in systems encom-
passed by these networks associates with larger rises in 
stressor-evoked systolic blood pressure and preclinical 
atherosclerosis across people. Interestingly, we also ob-
served a lateralization in the role of the amygdala, with 
increased activity in the left and right hemisphere to be 
positively and negatively associated with cardiovascular 
reactivity, respectively. Asymmetry in the activation of 
the amygdala has been exhaustively reported (see78 and 
references therein). We note further that several possible 
mechanistic pathways other than BP per se (eg, hema-
topoietic tissue activity, arterial inflammation) may also be 
involved in linking stress-related neural activity to CVD 
risk.79 For an updated summary of the possible neural 
mechanisms linking psychological stress to CVD risk, we 
refer readers to a recent comprehensive review.80

Finally, several limitations of our study should be 
noted. First, our cohorts (PIP and NOAH) included pre-
dominantly white individuals who were relatively well 
educated and free of major chronic illnesses and med-
ication regimens that could have confounded interpre-
tations of preclinical atherosclerosis and cardiovascular 
reactivity markers. As a result, whether our findings are 
relevant to demographically diverse individuals and clin-
ical populations is still unclear. Yet, we have made the 
multivariate predictive patterns reported here publicly 
available, so they could be eventually tested in other 
populations and used as predictors in tasks involving dif-
ferent clinical and preclinical outcomes. Second, our re-
sults were obtained from task-based activation metrics 
and therefore did not involve some of the methodolog-
ical and psychometric advantages that morphological, 
task-free (or resting state)-based measures could hold 
in the prediction of preclinical atherosclerosis, reactiv-
ity, and other cardiovascular disease risk factors.81–84 
Third, to quantify mediation effects in an out-of-sample 
framework, we resorted to a explained variance-based 
measure for mediation analysis, which has its own lim-
itations.85 Efforts to find the optimal measure of effect 
size for mediation analysis continues to be an active 
area of research.86 Fourth, the present study did not 
statistically test possible moderators of the mediated 
associations reported here (eg, moderating influences 
of sex at birth, gender, chronic psychosocial stress, so-
cioeconomic position, health status, etc.). For example, 
from a diathesis-stress perspective, it may be possible 
that higher levels of prevailing cardiovascular risk, as 
reflected in composite risk indicators,87 could plausibly 
increase vulnerability to stress-related neural and phys-
iological influences on preclinical vascular disease (see 
Spencer et al88). Future studies may explore moderated 
mediation if appropriate conditions (eg, enough statisti-
cal power) are met, and publicly available data from this 
report might facilitate initial exploratory testing. Last, 
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causal inferences from the present observations are 
precluded because they are cross-sectional. Preclinical 
vascular disease, as reflected in CA-IMT, may have 
central influences that manifest as alterations in cere-
bral blood flow or neural-hemodynamic coupling.89,90 
In these regards, BP and related indicators of preclin-
ical vascular disease are established risk factors for 
adverse central nervous system outcomes, including 
neurocognitive decline and neuropathology.91–95 Future 
longitudinal and interventional studies may thus help 
to adjudicate the temporal or causal relationships of 
stressor-evoked fMRI and BP reactivity to CA-IMT. In 
addition, the interpretation of the different causal ef-
fects may be influenced by deviations in the sequential 
ignorability assumptions. Statistically, we found these 
deviations to be small and attempted to control for con-
founding effects by accounting for prevailing levels of 
CVD risk as a plausible covariate. However, future re-
search should investigate the effects of other potential 
unmeasured confounders not included in our study.

Despite these limitations, the present findings provide 
novel cross-validated, predictive, and machine-learning 
evidence for the possible mediating role of stressor-
evoked cardiovascular reactivity in linking multivariate 
brain responses to acute psychological stressors and 
a vascular marker of preclinical atherosclerosis.diovas-
cular reactivity in linking multivariate brain responses to 
acute psychological stressors and a vascular marker of 
preclinical atherosclerosis.
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