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ABSTRACT

It is commonplace in neuroscience to assume that if two tasks activate the same brain areas in the same14

way, then they are recruiting the same underlying networks. Yet computational theory has shown that the15

same pattern of activity can emerge from many different underlying network representations. Here we16

evaluated whether similarity in activation necessarily implies similarity in network architecture by17

comparing region-wise activation patterns and functional correlation profiles from a large sample of18

healthy subjects (N=242) that performed two executive control tasks known to recruit nearly identical19

brain areas, the color-word Stroop task and the Multi-Source Interference Task (MSIT). Using a measure20

of instantaneous functional correlations, based on edge time series, we estimated the task-related21
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networks that differed between incongruent and congruent conditions. We found that the two tasks were22

much more different in their network profiles than in their evoked activity patterns at different analytical23

levels, as well as for a wide range of methodological pipelines. Our results reject the notion that having24

the same activation patterns means two tasks engage the same underlying representations, suggesting that25

task representations should be independently evaluated at both node and edge (connectivity) levels.26

AUTHOR SUMMARY

As a dynamical system, the brain can encode information at the module (e.g., brain regions) or the27

network level (e.g., connections between brain regions). This means that two tasks can produce the same28

pattern of activation, but differ in their network profile. Here we tested this using two tasks with largely29

similar cognitive requirements. Despite producing nearly identical macroscopic activation patterns, the30

two tasks produced more different different functional network profiles. These findings confirm prior31

theoretical work that similarity in task activation does not imply the same similarity in underlying32

network states.33

INTRODUCTION

The idea of a modular mind (Fodor, 1983), where cognition arises from the interplay between34

specialized, domain-specific units that represent fundamental cognitive processes, has dominated the35

cognitive neuroscientific view of the brain since its inception (e.g., Posner, Petersen, Fox, and Raichle36

(1988)). Here the cognitive ”modules” are mapped to unique brain areas that execute specific processes37

(e.g., detecting specific sound frequencies, estimating value, contracting specific muscle groups)38

(Feinberg & Farah, 2006). Over the last four decades, this modular view of the brain has largely been39

justified by empirical observations using non-invasive brain imaging methods, like positron emission40

tomography and functional MRI (fMRI), where experiments and analytical methods were explicitly41

designed to isolate clusters of regions aligned to certain functional domains, such as vision (e.g., Bihan et42

al. (1993)), control (e.g., Porro et al. (1996)), language (e.g., Binder et al. (1997)), or affect (e.g., Anders,43

Lotze, Erb, Grodd, and Birbaumer (2004)).44
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As a consequence of this early modularist perspective, as well as limitations of early brain imaging45

technology, a large part of early cognitive neuroscience focused on what was happening at these modules46

themselves. Many inferences focused on which regions were activated (or deactivated) by specific task47

conditions. This often led to the implicit assumption that if the same brain regions were activated by two48

different tasks, then the tasks relied on the same brain networks and, thus, the same underlying cognitive49

processes. Yet, with the rise of the dynamical systems perspective of the brain (Gelder, 1995; Kelso,50

1995), it became increasingly clear that understanding the modules is not enough. In order to understand51

how tasks are internally represented one must understand the interactions between modules as well. This52

dynamical systems perspective has gained ground over the past decade in systems neuroscience, where53

multi-unit recording studies have shown that task representations emerge as a low-dimensional manifold54

of population activity, both within and between brain areas (Churchland et al., 2012; Oby et al., 2019;55

Russo et al., 2020; Sadtler et al., 2014). This observation at the microscale level extends to observations56

of macroscopic brain dynamics as well (e.g., Ejaz, Hamada, and Diedrichsen (2015); Kriegeskorte et al.57

(2008)). With the rise of connectomics Behrens and Sporns (2012), the idea of the brain as a dynamical58

network Sporns (2013), where information is also encoded between units (Bertolero, Yeo, & D’Esposito,59

2015; Crossley et al., 2013; Yeo et al., 2014), has proven to be incredibly useful at explaining both60

underlying representations and brain-behavior relationships.61

One interesting consequence of this network-level perspective is the decoupling of activation patterns62

from underlying network states: two tasks can produce the same patterns of activity in the same brain63

regions, but have fundamentally different underlying network profiles. Indeed, Prinz and colleagues64

(2004) illustrated this using a simple three unit computational model of stomatogastric ganglia in lobsters65

(Prinz, Bucher, & Marder, 2004). Simply by varying the relative connection weights between the three66

units, the authors showed how multiple underlying network states can be realized as identical patterns of67

activity at the units themselves. Here we test the predictions of Prinz and colleagues (2004), at the68

macroscopic level, by measuring blood oxygen level-dependent (BOLD) dynamics elicited during two69

response conflict tasks, the color-word Stroop task (Stroop, 1935) and the Multi-Source Interference Task70

(MSIT) (Bush & Shin, 2006). This develops on previous work exploring the relationship between task71

activation and functional correlations (Alnæs et al., 2015; Chan, Alhazmi, Park, Savalia, & Wig, 2017;72

Gratton, Laumann, Gordon, Adeyemo, & Petersen, 2016; Krienen, Yeo, & Buckner, 2014; Newton,73
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Morgan, Rogers, & Gore, 2010; Spadone et al., 2015), but concentrating on these two tasks because they74

share common computational demands and have overlapping topologies of evoked responses (Sheu,75

Jennings, & Gianaros, 2012). In a sample of neurologically healthy adults (N=242), we first computed76

instantaneous functional correlation graphs, using a novel approach that temporally unwraps Pearson77

correlations to generate time series along edges, representing the inter-node BOLD signal co-fluctuations78

(Zamani Esfahlani et al., 2020). Then, by means of a general linear model (GLM), we assessed the79

task-based contributions to the edge time series, quantifying the amount of out-of-sample variability that80

they contained. We then compared the degree of between-task similarity at the regional activation and81

connectomic levels.82

RESULTS

Group-level activation patterns83

We begin by replicating an exhaustively reported effect (see Sheu et al. (2012) and references in), namely84

that the Stroop task and MSIT, both effortful cognitive control tasks, have largely overlapping spatial85

patterns of evoked activity across the brain, particularly the neocortex (see contrasts maps in Fig. 1A and86

B). Here such similarity was quantified by a Spearman’s correlation coefficient, ρ, between87

un-thresholded incongruent-vs-congruent t-stat maps calculated at the region-level (voxel-wise88

estimations with the same region-size spatial smoothing yielded similar values), and a Dice similarity89

coefficient (DSC), from binarizing these maps as to whether their t-stats rejected or not the null90

hypothesis at α = 0.05 after family-wise (Holm–Bonferroni) error correction. For our group-level91

activation patterns, the former, ρ, was equal to 0.87, and the latter, DSC, was equal to 0.85. As shown in92

Fig. 1A and B, increases in brain activity in incongruent trials, with respect to congruent trials, were93

located in areas typically engaged during the processing of conflictual information and response94

inhibition, such as the anterior cingulate cortex, anterior insula, parietal cortex, basal ganglia, thalamus,95

and cerebellum. In contrast, de-activations took place in areas within the ventromedial prefrontal cortex,96

perigenual anterior cingulate cortex, posterior cingulate cortex, and precuneus, which all comprise the97

default-mode network. As a consequence, these results show that similar cognitive contexts evoke similar98

patterns of activity across the brain. Nevertheless, both tasks also exhibited substantial differences in the99

magnitude of their evoked responses, particularly in areas such as the dorsal and medial prefrontal cortex,100
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Figure 1. Group-level activation maps. For both Stroop task (A) and MSIT (B), the group-level incongruent-vs-congruent t-stat maps, at the voxel level

for aesthetic reasons. Thus, red colors display higher BOLD activity during incongruent trials compared to congruent trials, whereas blue colors represent the

other way around. C) Using a paired t-test at α = 0.05 (false-discovery rate corrected), between-task differences in activation patterns at the region level.

Red colors indicate greater incongruent-vs-congruent values in Stroop than MSIT, and blue colors the opposite. Bigger points correspond to bigger differences

between both tasks. D) The actual correlation comparing the group-level incongruent-vs-congruent t-stat maps of both tasks. Here, ranks are displayed instead

of the actual values, given that the similarity between spatial maps was measured by the Spearman’s correlation. Red and blue colors correspond to the same

points displayed in (C), whereas gray-colored points represent those for which the evoked magnitude response did not significantly differ between the two

tasks.
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post- and precentral gyrus, and the precuneus (see Fig. 1C). As expected, some of these regions were also101

the most influential in the spatial correlation between the contrast maps of both tasks (those points further102

away from the line in Fig. 1D).103

Exploration of co-fluctuating hemodynamics112

For illustrative purposes, we examined the task-related effects on the inter-region co-fluctuations by113

computing the root sum of squares (RSS) across edges at each time frame. It is important to clarify that,114

for this calculation, parcellated BOLD time series prior to edge time series formation included all task115

events, in contrast to subsequent analyses. As shown in Fig. 2A and B, during both tasks moments of116

high co-fluctuations tended to be synchronized across subjects, concentrated mostly around the rest117

periods separating congruent and incongruent block conditions. In both the congruent and incongruent118

blocks, there appeared to be a consistent reduction in global functional connectivity, with sporadic and119
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Figure 2. Analysis of the root sum of squares time series. For each subject, the root sum of squares of the edge time series that include the task effects for

Stroop task (A), MSIT (B) and resting-state acquisition (C). Their power spectrum (in arbitrary units) using a periodogram (D), averaged across subjects.

122

123

inconsistent periods of brief synchronous activity that qualitatively appear more frequent during120

incongruent blocks.121

In contrast to the task patterns, for the resting-state run, where no external stimulus was presented, we124

did not see evidence of between-subject synchronization of high amplitude co-fluctuations (Fig. 2C).125

Though the overall presence of these brief co-fluctuations appears to be qualitatively more frequent in the126

resting-state run than during either of the two tasks. These results were further confirmed by inspecting127
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the subject-averaged power spectrum of the RSS for the three tasks (Fig. 2D). For both Stroop and MSIT,128

there was an overall increase in power at frequencies consistent with task onsets and offsets.129

Group-level functional correlations130

We estimated task-related functional correlations using a GLM on the edge time series. Three coefficients131

(i.e., intercept, congruent, and incongruent) for both Stroop task and MSIT were estimated for each edge,132

while for resting state a single coefficient per edge was obtained (i.e., intercept only). The resulting133

group-level network profiles are displayed in Fig. 3, where the t-stats for each of these coefficients were134

converted to correlations using the transformation r2 = t2

t2+N−1
, with N being the number of subjects.135

The first thing to note is that, after accounting for condition effects during the two tasks, we were able141

to recover the intrinsic brain networks observed during resting state. The intercept profiles for both142

Stroop and MSIT had a high degree of similarity to the resting state profile (r = 0.85 and r = 0.86143

respectively), as well as a high degree of similarity to each other (r = 0.94).144

On the other hand, a largely different profile emerged during congruent and incongruent conditions in145

both tasks. These networks showed much lower overall functional correlations, and a shift towards more146

negative correlations, than the intercept profiles. Despite this difference from the intrinsic networks, the147

condition-related profiles (i.e. congruent and incongruent) had a decent degree of within-task similarity148

(r = 0.72 for Stroop and r = 0.75 for MSIT), demonstrating that both conditions recruit largely149

consistent networks overall. Less similarity was observed between-task profiles, whether it be using150

within-condition comparisons (r = 0.54 for congruent; r = 0.83 for incongruent), or between-condition151

comparisons (Stroop congruent-MSIT incongruent r = 0.39, Stroop incongruent and MSIT congruent152

r = 0.31).153

Taken together, these results confirm that our method was able to reliably characterize both task and154

intrinsic (resting) networks, at the group level, using the edge time series.155

Network profile differences between task conditions156

The network profiles that emerged as a consequence of conflict processing were quantified at the group157

level by contrasting subject-level functional correlations from both task conditions. The resulting158

incongruent-vs-congruent statistical maps for both tasks are displayed in Fig. 4 (left plots, panels A and159
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Figure 3. Functional correlation matrices at the group level. For Stroop task, MSIT and resting-state functional correlation matrices using the intercept,

congruent, and incongruent GLM estimations at the group level. Regions (i.e. the rows and columns) have been arranged based on their belonging to a major

intrinsic network system (see Methods). In the middle in the form of a graph, the Pearson’s correlation coefficients between the upper-triangular elements

of these matrices. MF: Medial-Frontal; FP: Frontoparietal; DM: Default-mode; SC: Subcortical-Cerebellum; MT: Motor; V1: Visual-1; V2: Visual-2; VA:

Visual-Association.

136

137

138

139

140

B), with 1284 (Stroop task) and 1042 (MSIT) edges that were significant at α = 0.05 after family-wise160

(Holm-Bonferroni procedure) error correction (red colors denote greater functional correlations during161
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incongruent trials than during congruent trials, and blue colors the opposite). In both cases, network162

differences were primarily associated with default-mode, frontoparietal, medial-frontal, and visual163

systems, as measured by the average significant edges per region found in those networks. Furthermore,164

inspecting the sign of these differences (Fig. 4, right side of panels A and B), increased functional165

correlations appeared to be dominated by edges connecting regions of distinct intrinsic major systems,166

particularly those between the default-mode and the frontoparietal and visual-association systems, and167

medial-frontal areas with the frontoparietal cortex. In contrast, significant decreases in functional168

correlations during incongruent trials appeared in regions of the same major system, especially those169

within the default-mode and medial frontal networks.170

However, despite the apparent qualitative similarity in network-level responses to congruent and179

incongruent conditions, the Stroop and MSIT also exhibited key differences. For example, concentrating180

on the 10% of edges with the largest absolute t-stat values (n=358), the Stroop task contained a181

significantly greater number of positive (i.e. increased functional correlation during incongruent trials) to182

negative (i.e. decreased functional correlation during incongruent trials) edges than the MSIT (Fisher183

exact’s test, odds ratio = 4.10, p = 1.17× 10−14). On the other hand, a paired-sample t-test performed on184

individual edges revealed that these between-task network differences spanned the entire brain (see Fig.185

4C), though they prominently expressed in the dorsolateral prefrontal and posterior parietal cortex, both186

responsible for executive function, as well as in the posterior cingulate cortex, that is strongly implicated187

during control processes, and the primary visual cortex. As a consequence, these results suggest that the188

Stroop task and MSIT have substantial differences in their network profiles.189

Comparison of similarities in activation patterns and network profiles between tasks190

We have previously shown that both Stroop and MSIT elicit largely overlapping patterns of brain191

activation (ρ = 0.87, DSC = 0.85; see also Sheu et al. (2012)). In contrast, estimated edge-wise192

responses suggest that both tasks appeared to differ at the network level. Is the lower similarity of193

network profiles between-task really that different than the similarity in activation patterns? The194

between-task similarity in incongruent-vs-congruent network profiles was equal to ρ = 0.65 and195

DSC = 0.42 at α = 0.05, after family-wise (Holm-Bonferroni) correction, which indeed constitutes a196

considerable reduction with respect to the aforementioned similarity rates from activation patterns.197
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Figure 4. Group-level incongruent-vs-congruent functional correlation differences. For Stroop task (A) and MSIT (B), on the top side and from outer

to inner circular, plots display each region arranged and colored according to the major functional system, their incongruent-vs-congruent activity at the node

level, their degree from the incongruent-vs-congruent significant edges, and finally the t-stat of these edges (red: incongruent > congruent, blue: incongruent <

congruent). At both node and edge levels, only significant results (at α = 0.05, Bonferroni corrected) are shown. On the bottom side the number of significant

edges within and between major functional connectivity networks, normalized by the total number of edges in each case. (C) Using the significant edges

from a paired t-test at α = 0.05 (false-discovery rate corrected), between-task differences in incongruent-vs-congruent functional correlations shown in region

degree (inner brain plot), and with the edge t-stats to regions of each major functional system (outer brain plots). MF: Medial-Frontal; FP: Frontoparietal; DM:

Default-mode; SC: Subcortical-Cerebellum; MT: Motor; V1: Visual-1; V2: Visual-2; VA: Visual-Association.
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177

178

Furthermore, this reduction became even more evident as the number of subjects decreased (Fig. 5A),198

suggesting that this does not reflect an issue with statistical power in our sample. Also, this effect is199

largely insensitive to using Spearman’s ρ as a similarity measure since the same effect was observed200

using Dice similarity coefficients at different thresholds (see Fig. 5B).201
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Figure 5. Between-task similarity of activation patterns and network profiles. A) Spearman’s correlations between tasks from the group-level t-stat

incongruent-vs-congruent maps for both brain activation (blue line) and task-based functional correlations (FC, orange line), varying the number of subjects

used for their estimation. Each curve represents the average similarity and the gray area is the standard deviation after repeating 10 times the estimation

procedure to consider different subjects. B) Same as A) but using the dice similarity coefficient. Statistical maps were binarized according to whether each

t-stat was significant or not under several thresholds α. C) Distribution of Spearman’s correlations ρ between MSIT and Stroop functional correlation profiles

from 10000 subsamples that each randomly selected a subset of edges equal to the number of regions (268). The red cross displays the correlation using the

full profiles (i.e. 35778 edges). D) Region-wise similarity between tasks, using the whole-brain incongruent-vs-congruent network profile of each region. E)

These similarity rates per region (y-axis) are plotted versus their activation levels, measured as the average of both tasks’ incongruent-vs-congruent absolute

Cohen’s d at the group level. F) For each subject (a dot in the figure), the Spearman’s correlation between the incongruent-vs-congruent β map of each task for

both brain activation (blue points) and task-based functional correlations (orange points). A paired t-test then quantified the statistical difference between both

distributions.
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In order to show that this reduction in similarity scores between the incongruent-vs-congruent213

functional correlation graphs was not due to correlating a larger number of features from the edges214

(268×267
2

= 35778 edges) than in the activation maps (only 268 components, since these were also215

considered at the region-level), we repeated this calculation taking subsamples (number of216

subsamples=10000) that randomly selected 268 edges in the functional correlation profiles. Across all217

subsets, we found similar between-task Spearman’s correlation values (0.65± 0.04, see Fig. 5C) as the218

one using the full network.219

Along similar lines, we explored how the similarity of network profiles was expressed across the brain220

by correlating, for each region, the whole-brain incongruent-vs-congruent functional correlation profile221

(a vector of 267 t-stat values, i.e, we do not consider the diagonal terms in the functional correlation222

profiles) at the group level of both tasks (see Fig. 5D). This analysis showed that there are certain regions,223

particularly in the superior medial and dorsolateral-frontal gyrus, the precuneus, and the anterior lobe of224

the cerebellum, that exhibit comparable, and sometimes even greater, similarity values than that from225

activation patterns. While regions with the largest between-task similarities in activation did tend to have226

higher degrees of between-task similarity in network profiles (Fig. 5E), this association was fairly weak227

(ρ = 0.256), suggesting that our main conclusion would also be reached if one focused exclusively on the228

sub-network typically engaged during both Stroop and MSIT.229

Since the previous calculation concentrated exclusively on group-level patterns, we also tested whether230

the same qualitative findings were present at the within-subject level. Specifically, for each individual we231

correlated, between tasks, the incongruent-vs-congruent activation maps and functional correlation232

graphs, using in both cases the β estimations (see the sample distributions in Fig. 5F). The reason for233

using the β estimations here instead of the t-stat values is that temporal autocorrelations in the time series234

produced a different number of degrees of freedom across nodes and edges in both tasks, in contrast to235

the group level, where the degrees of freedom always remained the same (N − 1, with N the number of236

subjects). A paired t-test showed that, as found before with the group-level maps, between-task similarity237

rates of brain activation maps (< ρ >= 0.314, 95% CI [0.292, 0.335]) were higher than those from238

task-based network differences (< ρ >= 0.038, 95% CI [0.031 0.045]; Cohen’s d = 1.584, p < 0.001).239

The preceding analysis shows how two tasks with similar activation patterns may not have as similar240

network profiles. One likely explanation for this could be that the correlation ceiling for the former241
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measure (activation) is simply higher than the ceiling for the latter (connectivity), but two individuals242

more similar in activation patterns may also be more similar in their functional network architecture. In243

order to rule this out, we conducted, for each task separately, a Mantel test on the upper triangular terms244

of the distance matrices dactij and dconnij . This directly tests whether similarity in activation patterns245

correlates with similarity in network profile at the pairwise subject level. For consistency with the246

previous analyses, we adopted a Spearman’s correlation-based metric, i.e. dij = 1− ρij , for defining the247

distance between any pair of subjects i and j. We found that these two matrices were not significantly248

correlated in either of the two tasks (Stroop: r = 0.005, 95% CI [-0.123, 0.159]; MSIT: r = 0.072, 95%249

CI [-0.055, 0.204]). Confidence intervals were calculated using 100,000 resamples without replacement250

and a subsampling ratio of 0.135, following the indications in Balakrishnan, Choe, Singh, Vettel, and251

Verstynen (2018). These results suggest that the observed difference in similarity rates between252

activation patterns and network profiles exists beyond any ceiling effect and is persistent even in253

within-subject comparisons.254

We ran several follow-up tests to examine the robustness of all these findings with respect to changes in255

the analytical pipeline. First, we investigated whether the reduction in between-task similarity in network256

profiles, compared with evoked responses, was not due to removing the task stimuli prior to calculating257

the edge time series. Supplementary Fig. 1A shows a mild increase at the subject level when tasks effects258

are maintained (< ρ >= 0.080, 95% CI [0.071, 0.088]) and it is still significantly lower with respect to259

activation patterns (Cohen’s d = −1.535, p < 0.001). Moreover, a similar finding was observed (see260

Supplementary Fig. 1, panel B) when we concentrated exclusively on the regions with the greatest task261

activation responses (group-level incongruent-vs-congruent absolute Cohen’s d’s larger than 0.8 in both262

tasks). Thus the choice of how we regress out task effects prior to building the edges-time series does not263

drive our primary effect of differences in similarity profiles between activation and network profiles.264

Subsequently, we tested whether including in our parcellation specific brain structures that are known265

to be noisier or more susceptible to signal loss, namely the cerebellum and subcortex, might have driven266

our findings. In order to achieve this, we repeated the subject-level similarity analysis using a Craddock267

atlas (Craddock, James, Holtzheimer, Hu, & Mayberg, 2011), consisting of 200 regions that did not268

include the cerebellum, and the Schaefer atlas (Schaefer et al., 2017), comprising 200 cortical regions.269

Additionally, we considered a combination of 10 ICA-based major areas from Smith et al. (2009), and 7270
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bilateral subcortical regions from the Harvard-Oxford atlas (thalamus, caudate, putamen, pallidum,271

hippocampus, amygdala and accumbens). This customized atlas was included to intentionally test a272

parcellation that yields a smaller number of edges than the number of nodes in the Shen atlas (268273

regions). We found, again, that the choice to use the Shen atlas was not decisive in our primary effect of274

the differences between activation and network profile similarities (see Supplementary Fig. 1, panel C).275

Likewise, we wondered whether the reduction in similarity between Stroop and MSIT task-dependent276

network profiles was influenced by the edge time series approach itself. We tested this possibility by277

replicating our analyses using a generalized Psychophysiological Interaction (PPI) model, which is a278

standard and common framework for assessing task-modulated functional connectivity (see Materials &279

Methods for details on this model). As Supplementary Fig. 1D illustrates, these PPI-based network280

profiles also showed a reduced similarity between tasks (ρ = 0.550, DSC = 0.357 at α = 0.05 after281

family-wise error correction) compared to what is observed in the brain activation patterns. In addition,282

albeit small differences existed, particularly within the motor system, both approaches (edge time series283

and PPI) appeared to yield fairly similar incongruent-vs-congruent contrast network profiles in both tasks284

(ρ = 0.743 for Stroop, ρ = 0.786 for MSIT).285

A compact summary of the between-task activation and network profile similarity values covering286

debatable methodological choices can be found in Supplementary Fig. 2. These comprised how287

aggressively task stimuli were removed before computing the edge time series, the hemodynamic288

response function model, whether global signal regression was performed, whether time series at the289

node and edge level were standardized in the GLM, and whether prewhitening was applied. We can see290

that our findings at both the group and single-subject levels were consistent across all the different291

methodological setups. This notably included global signal regression, a step that is still controversial in292

task-effect estimations (Liu, Nalci, & Falahpour, 2017).293

Finally, one may argue that the observed differences in between-task similarity degrees are simply a294

consequence of functional connectivity being inherently noisier than activation measures. Indeed, the295

signal-to-noise ratio (SNR), defined for our contrast-of-interest as SNR=
(

|βinc−βcon|
σ(inc−con)

)
and calculated as296

the median value across nodes/edges, is weak for connectivity (group-level SNRstroop = 0.09,297

SNRmsit = 0.081) and small-to-medium for activation (group-level SNRstroop = 0.38, SNRmsit = 0.406).298

As a consequence, we reran our analysis concentrating exclusively on those nodes and edges with at least299
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a medium SNR at the group level in both tasks (SNR>0.5). We found that even in this (stringent)300

scenario with balanced signal-to-noise ranges there remain substantial differences in between-task301

similarity values at both the group (activation: ρ = 0.911, connectivity: ρ = 0.775) and subject level302

(activation: < ρ >= 0.547, 95% CI [0.524, 0.574], connectivity: < ρ >= 0.301, 95% CI [0.27, 0.333];303

activation vs connectivity Cohen’s d = 0.819, p < 0.001). Thus, signal-to-noise does not appear to be a304

mediating factor in this effect.305

DISCUSSION

Here we set out to validate previous computational modeling work showing that similarity in patterns of306

activation do not imply similarity in underlying network states (Goldman, Golowasch, Marder, & Abbott,307

2001; Golowasch, Abbott, & Marder, 1999; Prinz et al., 2004; Roffman, Norris, & Calabrese, 2012).308

Using a GLM framework on instantaneous functional correlation estimates (Faskowitz, Esfahlani, Jo,309

Sporns, & Betzel, 2020; Zamani Esfahlani et al., 2020), we were able to successfully separate task-free310

(intrinsic) from task-dependent network contributions, in line with the extensive evidence that task311

functional correlations are jointly shaped by both intrinsic and evoked network architectures (Cole,312

Bassett, Power, Braver, & Petersen, 2014). Subsequently, we showed how our two tasks shared a large313

degree of similarity in activation topology (nodes), but substantially less similarity in network profiles314

(edges). This difference in task effects at the nodes and edges was confirmed at both group and subject315

levels, and using two different measures commonly employed for representational similarity analyses.316

Likewise, this difference between activation and network profiles was replicated after keeping task effects317

in the edge time series, employing different parcellations, using a different method for estimating318

task-related functional connectivity (i.e., PPI), exploring a wide array of methodological choices (e.g.319

including or excluding the brain global signal as a covariate), and balancing signal-to-noise differences.320

Taken together, these results highlight how similarity in activation does not necessarily imply similarity321

in underlying network profile, reflecting the fact that the underlying cognitive processes manifest at both322

the node (voxel or region) and edge (connectivity) levels.323

As pointed out by Prinz and colleagues (2004), the multiple realizability problem of many network324

states leading to the same activation pattern poses a challenge when interpreting subject-to-subject325

differences (Prinz et al., 2004) (see also Krakauer, Ghazanfar, Gomez-Marin, MacIver, and Poeppel326
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(2017)). Indeed, over the past 10 years there has been both increased interest in, and increased pushback327

against, using task-related fMRI as a means of predicting individual differences in healthy (Gianaros et328

al., 2020, 2022; Greene, Gao, Scheinost, & Constable, 2018; Jiang et al., 2020; Rosenberg et al., 2015;329

Tetereva, Li, Deng, Stringaris, & Pat, 2022; Wager et al., 2013) and pathological populations (Andersen,330

Rayens, Liu, & Smith, 2012; Costafreda et al., 2011; Hart et al., 2014; Just, Cherkassky, Buchweitz,331

Keller, & Mitchell, 2014; Koch et al., 2015; Mourão-Miranda et al., 2011; Yoon et al., 2012). A332

fundamental assumption of the statistical tools used in these studies is that if two people are similar in333

their brain activation they will also be similar in the outcome measure being predicted. Our results show334

how this fundamental assumption may not always hold: two people may produce the same pattern of335

task-related activation, but rely on fundamentally different network-level representations. Indeed, this336

may help to explain why the effect sizes of brain phenotype studies are so low compared to what would337

be needed to produce medical-grade diagnostic tools (Marek et al., 2022).338

It is worth pointing out that while network profiles do differ more between tasks than activation339

patterns, we still observed a modest degree of similarity in network profiles across tasks. This is not340

surprising given the existence of a core functional architecture shared between even markedly different341

task states (Krienen et al., 2014). In our case, the greatest similarities were found in networks that are342

reliably associated with sensory processing and motor planning. While motor planning constraints were343

identical across tasks (i.e., both involved button presses with the same hand and fingers), the visual344

stimuli were quite different (see Fig. 6). This suggests that the between-task dissimilarities in network345

profiles reflect differences in how sensory information is used during action selection, after sensory346

representations are formed, rather than simple bottom-up effects driven by the stimulus differences347

between the Stroop task and MSIT. Adding to the other between-task topological differences that we348

observed, involving mainly regions of the default-mode and executive networks, this appears to suggest349

that greater deviations take place in subnetworks largely associated with higher-level cognitive functions.350

One natural follow-up question is how the edge time series responses compare to other approaches for351

addressing task-based networks like PPI. We have shown that, even though PPI arrives at the same352

conclusion as the edge time series method, the network profiles obtained from both approaches were not353

perfectly identical. While the edge time series straightforwardly represents measures of (instantaneous)354

functional correlations, PPI was designed to assess effective connectivity (K. Friston et al., 1997;355
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K. J. Friston, 2011). Thus, in order to enable the comparison between both approaches in our study, PPI356

estimates were symmetrized, so we speculate that part of these differences may come from this operation.357

A full comparison with other common methods for task-related networks, such as correlational PPI358

(Fornito, Harrison, Zalesky, & Simons, 2012) or beta series correlations (Rissman, Gazzaley, &359

D’Esposito, 2004), could yield both interesting differences and show areas of robustness in network360

profiles. However, this is well beyond the scope of the current project.361

While our findings here provide strong evidence in support of the idea that similarity in activation does362

not imply similarity in network state, it is worth noting some significant limitations. First, all our363

analyses have been performed at the macroscopic level. As mentioned above, even though evidence364

suggests that a similar behavior is expected at smaller network scales, future studies should test this ex365

profeso. On a related point, since the correlation matrices become computationally intractable at the366

voxel level, and in order to maintain both activation and network measures with the same spatial367

resolution, we opted to perform all analyses at the region level, using a predefined parcellation template.368

This obviously introduces some degree of anatomically bounded spatial smoothing in the data, which369

may be contributing to inflating the similarities in both task-related activation and network profiles370

between tasks. Smoothing would be problematic if we were interested in null hypothesis tests on spatial371

patterns (Markello & Misic, 2021), however, the analysis used here does not rely on such spatial372

hypothesis testing. Thus, this region-level approach does not invalidate the main conclusions of our study373

that similarity in the topology of activation patterns does not perfectly associate with similarity in374

network architecture.375

Finally, one might question whether the BOLD time series first needed to be deconvolved with the376

hemodynamic response function prior to estimating the edge time series. It has been argued that377

deconvolution in block-design tasks, like our Stroop task and MSIT, may not be necessary (Di & Biswal,378

2017; Di, Zhang, & Biswal, 2020). However, it is important to point out that while changing the choices379

in the preprocessing and analysis steps may lead to nuanced differences in certain aspects of our results,380

none of these potential limitations would likely change the primary conclusion we have drawn from our381

observations.382

Regardless of these limitations, our results clearly illustrate that important aspects of task383

representations are encoded in the associations between regions, which are unique to and complement384
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information reflected in the spatial topology of activation (Chan et al., 2017; Gratton et al., 2016).385

Indeed, our findings bolster previous work looking at informational connectivity (Coutanche &386

Thompson-Schill, 2013), which highlights the information value of associations between regions in387

understanding task representations. This poses significant challenges for interpreting individual388

differences based on activation patterns alone. Further work should dig deeper into the high-dimensional389

relationships between localized activation and global connectivity dynamics when trying to understand390

the nature of representations in the brain.391

MATERIALS AND METHODS

Participants392

We analyzed task and resting-state fMRI data from the Pittsburgh Imaging Project (PIP), which is a393

registry of behavioral, biological, and neural correlates of cardiovascular disease risk among otherwise394

healthy community-dwelling adults (aged 30–54 years). Details of this project can be found in the395

supplementary material of Gianaros et al. (2020). We selected a subset of 242 subjects (female=119,396

mean age=40± 6 years, min age=30 years, max age=51 years) that had full temporal and spatial397

coverage and exhibited low average motion (mean framewise displacement, estimated using the method398

in Power, Barnes, Snyder, Schlaggar, and Petersen (2012), lower than 0.35 mm) across the three fMRI399

acquisitions used in our study.400

MRI Data Acquisition401

MRI data were acquired on a 3 Tesla Trio TIM whole-body scanner (Siemens, Erlangen, Germany),402

equipped with a 12-channel head coil. Functional blood-oxygen-level–dependent (BOLD) images were403

acquired from a T2∗-weighted gradient echo-planar imaging sequence (repetition time=2000 ms, echo404

time=28 ms; field of view=205× 205 mm (matrix size=64× 64), slice thickness=3 mm (no gap); and flip405

angle=90°). For anatomical coregistration of the fMRI images, a high-resolution T1-weighted image per406

subject was also acquired (MPRAGE, repetition time = 2100 ms, echo time=3.29 ms, inversion407

time=1100 ms, flip angle=8º, field of view=256 mm × 208 mm (matrix size: 256× 208), slice408

thickness=1 mm with no gap).409

Tasks410
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We used two tasks that involved processing conflicting information and response inhibition. Both tasks411

consisted of 4 blocks that defined a congruent information condition, interleaved with 4 blocks of trials412

where the participant received incongruent information. Both task conditions had a duration of 52-60413

secs and were preceded by a variable 10-17 sec fixation block. In total, each task had a duration of 9 min414

and 20 secs.415

In the color-word Stroop task, participants had to select 1 of 4 identifier words using a response glove416

(e.g., thumb button 1 = identifier word on the far left, etc.), such that its name indicates the color of target417

words located in the center of a screen. During the congruent trials, the four identifier words were all in418

the same color as the target words. Instead, in incongruent trials, identifier words had all different colors,419

and the option to select was in a color incongruent with the target words. This kind of task usually evokes420

a brain response that activates regions in the anterior insula, parietal cortex, basal ganglia, thalamus, and421

cerebellum; while deactivating areas that belong to the so-called ‘default-mode network’ (see Fig. 6A, B422

and C).423

In the MSIT, which corresponded here to a modification from the original task version (Bush & Shin,427

2006), participants had to select 1 of 3 numbers such that it differed from the other 2 by pressing buttons428

on the glove, where each button matched a number on the screen (thumb button 1 = number 1, etc.).429

During congruent trials, the targets’ position matched that on the glove, whereas during incongruent trials430

this position did not match the glove’s button location. This task elicits a brain pattern response that is431

largely similar to that in the Stroop task (see Fig. 6D, E and F and Sheu et al. (2012) for more details on432

the MSIT and the Stroop task).433

In incongruent conditions of both tasks, accuracy was titrated to ∼ 60% by altering intertrial intervals,434

i.e. consecutive accurate choices led to shortened intertrial intervals. To control for motor response435

differences between conditions in both tasks, the number of trials in the congruent condition was yoked436

to the number completed in the incongruent condition. Yoking was implemented by (1) administering an437

incongruent block first and (2) presenting congruent condition trials at the mean intertrial interval of the438

preceding incongruent block.439

Finally, we also used a five-minute resting-state scan, during which the participants were told to keep440

their eyes open.441
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Figure 6. Stroop task and MSIT paradigms and their brain response. For both Stroop task and MSIT, illustration of incongruent (A, D) and congruent

trials (B, E). Trials consisted of blocks of 52-60 s duration, interleaved with a 10-17 s fixation block. Contrasting brain activity between incongruent and

congruent conditions gives rise to a similar brain response (C, F).

424

425

426

Preprocessing442

Data were preprocessed using fMRIprep (Esteban et al., 2018), a standard toolbox for fMRI data443

preprocessing that provides stability to variations in scan acquisition protocols, a minimal user444

manipulation, and easily interpretable, comprehensive output results reporting. First, anatomical data445

preprocessing was performed, including bias-field correction, skull-stripping, brain extraction and tissue446

segmentation, and surface reconstruction. It was then followed by functional data preprocessing, which447

included reference image estimation, head-motion parameters estimation, slice time correction,448

susceptibility distortion correction via a nonlinear registration (“Fieldmap-less” option of the toolbox),449

spatial normalization and confounds estimation.450
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Functional Correlation (Edge) analysis451

We estimated task-based functional correlations using the edge, or co-fluctuation, time series proposed in452

(Faskowitz et al., 2020; Zamani Esfahlani et al., 2020). One of the advantages of using this edge time453

series measure is that the procedure for estimating patterns of task-based functional correlation is by454

nature the same as that in GLM-based activation analyses but simply changing the outcome variable. A455

sketch of this full estimation procedure can be found in Fig. 7. We first (step A) reduced the spatial456

resolution of the preprocessed time series by computing the voxel-wise average signal within each region457

(ROI) in a 268-parcel atlas (Shen, Tokoglu, Papademetris, & Constable, 2013). Following Finn et al.458

(2015), each of these regions was also identified to a specific intrinsic functional connectivity network:459

Motor, Visual-1, Visual-2, Visual-Association, Medial-Frontal, Frontoparietal, Default-mode and460

Subcortical-Cerebellum. Then, let x⃗i ≡ {xi(1), . . . , xi(T )} be the time series of T scans (the full-scan461

sequence) for a given parcel i in such atlas. Each of these parcellated time series were subsequently (step462

B) denoised by means of a linear regression model, in a single step that prevents artifacts from being463

reintroduced in the data (Lindquist, Geuter, Wager, & Caffo, 2019), in order to remove effects from464

motion (24 parameters which included 3 translations, 3 rotations, their derivatives and the square of all465

these terms), the average white-matter signal, the average CSF signal, the average brain signal, periodic466

oscillations greater than 187 s (5 cosine terms) and task activations (24 terms). This last set of regressors467

consisted of 12 finite impulse response (FIR) terms per task condition (congruent and incongruent) to468

flexibly model a hemodynamic response function (HRF) of about 24s to external stimuli and that was469

included so as to avoid systematic inflation of functional correlations produced by task activations (Cole470

et al., 2019). The resulting denoised ROI time series were standardized (step C), i.e. z⃗i = x⃗i−µ
σ

, and then471

used to generate the edge time series r⃗ij (step D) as the component-wise product between pairs of472

standardized time series, i.e. r⃗ij = {zi(1) · zj(1), . . . , zi(T ) · zj(T )}. At this point, if we summed these473

components up and divided by T − 1, we would obtain the Pearson correlation coefficient that usually474

represents the static functional connectivity between BOLD time series - that is, each edge time series475

can be interpreted as a temporal decomposition of a functional connection (correlation) into its framewise476

contributions. Instead, we continued working on these edge time series as response variables in a general477

linear model (step E) in order to estimate intrinsic and task-dependent functional correlation profiles. To478

this end, the input design matrix included an intercept term and a set of regressors for each task condition479
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(congruent and incongruent), which comprised a boxcar function convolved with the usual double480

gamma hemodynamic response function and its temporal and dispersion derivatives. Although it is not481

clear that the usual hemodynamic response function also takes place in the edge time series, we decided482

to assume it for pipeline compatibility with the activation (node) analysis (see next subsection).483

Nevertheless, it is important to note that we repeated the same analytical pipeline considering just boxcar484

regressors (i.e. without including the hemodynamic response convolution), and found no substantial485

changes in the functional correlation profiles. Due to the considerable duration of each task condition, the486

effects triggered by the convolution with the hemodynamic response function, which mainly happen at487

the beginning and end of each task block, are dampened when averaging across all time points.488

Prior to any statistical analysis, time series on both sides of the regression model were prewhitened493

through a first-order autoregressive model in order to account for the temporal autocorrelations. As494

aforementioned, we assumed this standard procedure for dealing with temporal autocorrelations in order495

to have the same statistical pipeline as that in the activation analysis (see next subsection). Future studies496

should investigate the most appropriate procedure for accounting for autocorrelations using edge time497

series. After this first-level estimation, task-based network changes were computed as contrasts of498

parameters and subsequently used to assess edge-wise group-level effects by means of a one-sample499

t-test. Statistical inference at a usual 0.05 significance level was finally performed, after correcting the500

family-wise error (Holm-Bonferroni procedure) due to multiple testing. All these statistical analyses of501

the edge time series were carried out using Nilearn 0.7 (Abraham et al., 2014).502

Activation (Node) analysis503

We also analyzed the preprocessed BOLD images at the node level, which involved estimating brain504

activation changes during the different task conditions. Such analyses are usually carried out at the voxel505

level. However, in order to keep the same resolution as that of the edge-level results, brain activations506

were estimated at the region-level using the same parcellated BOLD time series.507

For this analysis, we employed again a GLM with the parcellated BOLD time series as response508

variables and a design matrix that included the same set of task regressors used in the edge-wise analyses,509

as well as the same covariates that were regressed out prior to this, i.e. the 24 motion parameters510

(K. J. Friston, Williams, Howard, Frackowiak, & Turner, 1996), the cosine terms to account for511
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Figure 7. Estimation of intrinsic and task-related functional correlations. For a given pair of regions in the Shen atlas (consisting of 268 regions),

the average signal within them was first computed (A). The time series were then denoised (B) and standardized (C). Subsequently, they were multiplied

component-wise (D). Finally, the resulting temporal profile was regressed onto a design matrix to model intrinsic (intercept term) and task-related functional

correlations (E).

489

490

491

492

oscillation effects greater than 187s, the average signal within white-matter tissue, the average signal512

within CSF tissue, and the average signal within the whole brain. We considered this last regressor, not513

common in brain activation analyses, for consistency again with the edge-level analyses (see previous514

section). Group-level effects were similarly assessed using a one-sample t-test.515
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Generalized Psychophysiological Interaction516

As a part of our sanity check pipeline, we compared the functional correlation analysis using the

aforementioned edge time series approach with a model of Generalized Psychophysiological Interactions

(PPI), which is a standard approach for estimating task-dependent functional connectivity changes

(McLaren, Ries, Xu, & Johnson, 2012) and is based on a general linear model of task-moderated

temporal association between pairs of brain units. Specifically, for a given pair of BOLD time series x⃗i

and x⃗j , such a model includes one of them as the response variable and as inputs the other BOLD time

series, the group of task regressors, the interaction terms between these task regressors and the input

BOLD time series, and the possible confounders to consider in the model. In our case, the generalized

PPI model can be written as follows:

x⃗i = α + βbck
ij · x⃗j + βtask × T + βppi

ij × Ii + βcov × C + ϵ⃗ , (1)

where T is a matrix whose columns are the HRF convolved box-car congruent and incongruent time517

profiles and their derivatives and dispersion terms, Ii the matrix with the PPI terms from each condition,518

i.e. the interaction term between each task condition’s time profile and the input time series x⃗i, and C a519

matrix with the different covariates to include in this model, which in our case comprised the 24 motion520

parameters, the average white-matter signal, the average CSF signal, the average brain signal and cosine521

expansion for a 187 sec high-pass filtering. Once all the parameters in this model were estimated,522

task-based functional connectivity changes were evaluated by contrasting the incongruent and congruent523

PPI estimations, and their effect at the group level was assessed using a one-sample t-test. In this way, a524

matrix of estimated task-based functional connectivity changes can be constructed. However, since a PPI525

model yields non-symmetrical matrices, we symmetrized them by averaging their corresponding upper526

and lower triangular elements as done in Di, Reynolds, and Biswal (2017), which enabled direct527

comparison with the functional connectivity profiles obtained from the edge time series approach.528

CODE AND DATA AVAILABILITY

The code used to generate all the analyses and results can be found in529

https://github.com/CoAxLab/cofluctuating-task-connectivity.530
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