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Abstract 

The unique architecture of the human connectome is defined initially by genetics and 

subsequently sculpted over time with experience. Thus similarities in predisposition and 

experience that lead to similarities in social, biological, and cognitive attributes should also be 

reflected in the local architecture of white matter fascicles. Here we employ a method known as 

local connectome fingerprinting that uses diffusion MRI to measure the fiber-wise characteristics 

of macroscopic white matter pathways throughout the brain. This fingerprinting approach was 

applied to a large sample (N=841) of subjects from the Human Connectome Project, revealing a 

reliable degree of between-subject correlation in the local connectome fingerprints, with a 

relatively complex, low-dimensional substructure. Using a cross-validated, high-dimensional 

regression analysis approach, we derived local connectome phenotype (LCP) maps that could 

reliably predict 14 out of 36 subject attributes measured, including a large set of health and 

cognitive measures. These LCP maps were highly specific to the attribute being predicted but 

also sensitive to correlations between attributes. Collectively, these results indicate the 

sensitivity of the local connectome to predict both individualized and shared structural variability 

between subjects related to genetic and experiential factors. 
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Author Summary 

The local connectome is the pattern of fiber systems (i.e., number of fibers, orientation, and 

size) within a voxel, and reflects the characteristics of white matter fascicles distributed 

throughout the brain. Here we show how variability in the local connectome is correlated in a 

principled way across individuals. This inter-subject correlation is reliable enough that unique 

phenotype maps can be learned to predict between-subject variability in a range of social, 

health, and cognitive attributes. This work shows, for the first time, how the local connectome 

has both the sensitivity and specificity to be used as a phenotypic marker for subject-specific 

attributes.  
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Introduction 

The unique pattern of connections among the billions of neurons in the brain is termed the 

connectome (Sporns, Tononi, & Kotter, 2005) this pattern encapsulates a fundamental 

constraint on neural computation and cognition (Gu et al., 2015; Thivierge & Marcus, 2007). 

This connective architecture is initially structured by genetics and then sculpted by experience 

over time (Kochunov, Fu, et al., 2016; Kochunov, Thompson, et al., 2016; F.-C. Yeh, Vettel, et 

al., 2016). Recent advancements in neuroimaging techniques, particularly diffusion MRI (dMRI), 

have opened the door to mapping the macroscopic-level properties of the structural connectome 

in vivo (see Le Bihan & Johansen-Berg, 2012).  As a result, a growing body of research has 

focused on quantifying how variability in structural connectivity associates with individual 

differences in functional properties of brain networks (Muldoon et al., 2016; Passingham, 

Stephan, & Kötter, 2002), as well as associating with differences in social (Gianaros, Marsland, 

Sheu, Erickson, & Verstynen, 2013; Molesworth, Sheu, Cohen, Gianaros, & Verstynen, 2015), 

biological (Arfanakis et al., 2013; Miralbell et al., 2012; Verstynen et al., 2013), and cognitive 

(Muraskin et al., 2016; Verstynen, 2014; Ystad et al., 2011) attributes. 

 DMRI works by measuring the microscopic diffusion pattern of water trapped in white 

matter, allowing for a full characterization of its characteristics, such as axonal fiber direction 

and integrity (for review see Jbabdi, Sotiropoulos, Haber, Van Essen, & Behrens, 2015; Le 

Bihan & Johansen-Berg, 2012). Previous studies have used dMRI to map the global properties 

of the macroscopic connectome by determining end-to-end connectivity between brain regions 

(P Hagmann et al., 2010; Patric Hagmann et al., 2008, 2010; Sporns, 2014). The resulting 

connectivity estimates can then be summarized, often using graph theoretic techniques that are 

then associated with variability across individuals (Bullmore & Sporns, 2009; Rubinov & Sporns, 

2010). While dMRI acquisition and reconstruction approaches have improved substantially in 

recent years  (Fan et al., 2016; D C Van Essen et al., 2012), the reliability and validity of many 

popular fiber tractography algorithms have come into question (Daducci, Dal Palú, Descoteaux, 
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& Thiran, 2016; Reveley et al., 2015; Thomas et al., 2014). As a result, the reliability of 

subsequent inter-region connectivity estimates may be negatively impacted.   

Instead of mapping end-to-end connectivity between regions, we recently introduced the 

concept of the local connectome as an alternative measure of structural connectivity that 

doesn’t rely on fiber tracking (F.-C. Yeh, Badre, & Verstynen, 2016). The local connectome is 

defined as the pattern of fiber systems (i.e., number of fibers, orientation, and size) within a 

voxel, as well as immediate connectivity between adjacent voxels, and can be quantified by 

measuring the fiber-wise density of microscopic water diffusion within a voxel. This voxel-wise 

measure shares many similarities with the concept a “fixel” proposed by others (Raffelt et al., 

2015). The complete collection of these multi-fiber diffusion density measurements within all 

white matter voxels, termed the local connectome fingerprint, provides a high-dimensional 

feature vector that can describe the unique configuration of the structural connectome (F.-C. 

Yeh, Vettel, et al., 2016). In this way, the local connectome fingerprint provides a diffusion-

informed measure along the fascicles that supports inter-regional communication, rather than 

determining the start and end positions of a particular fiber bundle.  

We recently showed that the local connectome fingerprint is highly specific to an 

individual, affording near-perfect accuracy on within-versus-between subject classification tests 

among hundreds of participants (F.-C. Yeh, Badre, et al., 2016). Importantly, this demonstrated 

that a large portion of an individual’s local connectome is driven by experience. Whole-

fingerprint distance tests revealed only a 12.51% similarity between monozygotic twins, relative 

to almost no similarity between genetically unrelated individuals. In addition, within-subject 

uniqueness showed substantial plasticity, changing at a rate of approximately 12.79% every 100 

days (F.-C. Yeh, Vettel, et al., 2016). Thus the unique architecture of the local connectome 

appears to be initially defined by genetics and then subsequently sculpted over time with 

experience. 
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The plasticity of the local white matter architecture suggests that it is important to 

consider how whole-fingerprint uniqueness may mask more subtle similarities arising from 

common experiences.  If experience, including common social or environmental factors, is a 

major force impacting the structural connectome, then common experiences between 

individuals may also lead to increased similarity in their local connectomes. In addition, since 

the white matter is a fundamental constraint on cognition, similarities in local connectomes are 

expected to associate with similarities in cognitive function. Thus, we hypothesized that shared 

variability in certain social, biological, or cognitive attributes can be predicted from the local 

connectome fingerprints.  

To test this, we reconstructed multi-shell dMRI data from the Human Connectome 

Project (HCP) to produce individual local connectome fingerprints from 841 subjects. A set of 36 

subject-level attributes was used for predictive modeling, including many social, biological, and 

cognitive factors. A model between each fiber in the local connectome fingerprint and a target 

attribute was learned using a cross-validated, sparse version of principal component regression. 

The predictive utility of each attribute map, termed a local connectome phenotype (LCP), was 

evaluated by predicting a given attribute in an independent data set. Our results show that 

specific characteristics of the local connectome are sensitive to shared variability across 

individuals, as well as being highly reliable within an individual (F.-C. Yeh, Vettel, et al., 2016), 

confirming its utility for understanding how network organization reflects genetic and experiential 

factors.  

 

Materials and Methods 

Participants 

We used publicly available dMRI data from the S900 (2015) release of the Human Connectome 

Project (HCP; (David C. Van Essen et al., 2013)), acquired by Washington University in St. 

Louis and the University of Minnesota. Out of the 900 participants released, 841 genetically 
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unrelated participants (370 male, ages 22-37, mean age 28.76) had viable dMRI datasets. Our 

analysis was restricted to this subsample. All data collection procedures were approved by the 

institutional review boards at Washington University in St. Louis and the University of 

Minnesota. The post hoc data analysis was approved as exempt by the institutional review 

board at CMU, in accordance with 45 CFR 46.101(b)(4) (IRB Protocol Number: HS14-139). 

 

Diffusion MRI Acquisition 

The dMRI data were acquired on a Siemens 3T Skyra scanner using a 2D spin-echo single-shot 

multiband EPI sequence with a multi-band factor of 3 and monopolar gradient pulse.  The 

spatial resolution was 1.25 mm isotropic (TR = 5500 ms, TE = 89.50 ms). The b-values were 

1000, 2000, and 3000 s/mm2. The total number of diffusion sampling directions was 90 for each 

of the three shells in addition to 6 b0 images. The total scanning time was approximately 55 

minutes. 

Local Connectome Fingerprint Reconstruction  

An outline of the pipeline for generating local connectome fingerprints is shown in the top panel 

of Figure 1. The dMRI data for each subject was reconstructed in a common stereotaxic space 

using q-space diffeomorphic reconstruction (QSDR) (F. C. Yeh & Tseng, 2011), a nonlinear 

registration approach that directly reconstructs water diffusion density patterns into a common 

stereotaxic space at 1 mm resolution. 

  A publicly available atlas of axonal direction in each voxel was derived from the HCP 

dataset. This atlas is publicly available (http://dsi-studio.labsolver.org).  A spin distribution 

function (SDF) sampling framework was used to provide a consistent set of directions 𝑢 to 

sample the magnitude of SDFs along axonal directions in the cerebral white matter. Since each 

voxel may have more than one axonal direction, multiple measurements were extracted from 

the SDF for voxels that contained crossing fibers, while a single measurement was extracted for 

voxels with fibers in a single direction. The appropriate number of density measurements from 
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each voxel was sampled by the left-posterior-superior voxel order and compiled into a sequence 

of scalar values. Gray matter was excluded using the ICBM-152 white matter mask (MacConnell 

Brain Imaging Centre, McGill University, Canada). The cerebellum was also excluded due to 

different slice coverage in cerebellum across participants. Since the density measurement has 

arbitrary units, the local connectome fingerprint was scaled to make the variance equal to 1 (F.-

C. Yeh, Vettel, et al., 2016). 

  The local connectome fingerprint construction was conducted using DSI Studio 

(http://dsi-studio.labsolver.org), an open-source diffusion MRI analysis tool for connectome 

analysis. The source code, documentation, and local connectome fingerprint data are publicly 

available on the same website. 

Figure 1. Data analysis pipeline. dMRI from the HCP dataset were preprocessed 

consistent with previous research investigating the local connectome fingerprint (top panel) 

and included registration via QSDR and estimation of SDF using an axonal directional atlas 

derived from the HCP dataset. Once fingerprints were estimated for each individual, the 

pipeline consisted of four major steps: 1) a PCA-based dimensionality reduction, 2) a 

LASSO model based on the lower-dimensional components of the local connectome 
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fingerprint, 3) local connectome phenotype estimation from projection of the contributing 

components of the LASSO model, and 4) prediction on the held-out dataset. 

Response Variables 

A total of 36 response variables across social, health, and cognitive factors were selected from 

the public and restricted data sets released as part of the HCP. Each variable is summarized 

below, but additional details can be found in the HCP Data Dictionary 

(https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-

+500+Subject+Release). 

 Demographic and social factors included age (years), gender, race (restricted to white 

and black subsets of total population), ethnicity (Hispanic vs. non-Hispanic), handedness, 

income (from the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA) scale), 

education (SSAGA), and relationship status (SSAGA).  

Health factors included height (inches), weight (pounds), body mass index, two 

hematocrit samples, blood pressure (diastolic and systolic), hemoglobin A1c, and sleep quality 

(Pittsburgh Sleep Quality Index).  

Cognitive measures included eleven tests that sampled a broad spectrum of domains: 

(1) the NIH Picture Sequence Memory Test assessed episodic memory performance, (2) NIH 

Dimensional Change Card Sort tested executive function and cognitive flexibility, (3) NIH 

Flanker Inhibitory Control and Attention Test evaluated executive function and inhibition control, 

(4) Penn Progressive Matrices examined fluid intelligence and was measured using three 

performance metrics (number of correct responses, total skipped items, and median reaction 

time for correct responses), (5) NIH Oral Reading Recognition Test assessed language and 

reading performance, (6) NIH Picture Vocabulary Test examined language skills indexed by 

vocabulary comprehension, (7) NIH Pattern Comparison Processing Speed Test evaluated 

processing speed, (8) Delay Discounting tested self-regulation and impulsivity control using two 
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different financial incentives (Area Under the Curve (AUC) for discounting of $200, AUC for 

discounting of $40,000), (9) Variable Short Penn Line Orientation assessed spatial orientation 

performance and was measured using three metrics (total number correct, median reaction time 

divided by expected number of clicks for correct, total positions off for all trials), (10) Penn Word 

Memory Test evaluated verbal episodic memory using two performance metrics (total number of 

correct responses, median reaction time for correct responses), and (11) the NIH List Sorting 

Task tested working memory performance. 

 

LASSO Principal Components Regression (LASSO-PCR).  

The primary goal of our analysis pipeline was to identify specific patterns of variability in the 

local connectome that reliably predict individual differences in a specific attribute. These unique 

patterns would reflect a local connectome phenotype for that attribute. The LASSO-PCR 

pipeline used to generate local connectome phenotype (LCP) maps is illustrated in the lower 

panel of Figure 1. This process relied on a 5-fold cross-validation scheme in which a unique 

20% of the participants were assigned to each of five subsamples.  For each cross-validation 

fold, we trained models using 80% of the participants in order to make predictions on the held-

out 20% of participants.  The analysis pipeline consisted of four major steps. 

Step 1: Dimensionality Reduction. The matrix of local connectome fingerprints (841 

participants x 433,386 features) contains many more features than participants (𝑝 >> 𝑁), 

thereby posing a problem for fitting virtually any type of model. To efficiently develop and 

evaluate predictive models in a cross-validation framework, on each fold we first performed an 

economical singular value decomposition (SVD) on the matrix of training subjects' local 

connectome fingerprints (Wall, Andreas, and Rocha, n.d.) :  

𝑋 = 𝑈𝑆𝑉!     (Eq. 1)   

where 𝑋 is an 𝑛×𝑝 matrix containing local connectome fingerprints for n participants in the cross 

validation fold (~673 subjects × 433,386 elements per fingerprint), 𝑉! is an 𝑛×𝑝 matrix with row 
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vectors representing the orthogonal principal axes of 𝑋, and the matrix product 𝑈𝑆 is an 𝑛×

𝑛matrix with rows corresponding to the principal components required to reproduce the original 

matrix 𝑋 when multiplied by the principal axes matrix 𝑉!.  

Step 2: LASSO Model. To reduce the chance of overfitting and improve the 

generalizability of the model for a novel test set, we employed LASSO regression, a technique 

that penalizes the multivariate linear model for excessive complexity (i.e., number and 

magnitude of nonzero coefficients) (Tibshirani, 2011). The penalty in this approach arises from 

the L1 sparsity constraint in the fitting process, and this combined method, known was LASSO-

PCR, has been used successfully in similar high-dimensional prediction models from 

neuroimaging data sets (Wager et al., 2013; Wager, Atlas, Leotti, & Rilling, 2011).  In short, the 

LASSO-PCR approach identifies a sparse set of components that reliably associate individual 

response variables (see Figure 1) and takes the following form:  

𝛽 = 𝑎𝑟𝑔 𝑚𝑖𝑛!{||𝑦 − 𝑍𝛽||! + 𝜆||𝛽||}                             (Eq. 2) 

where 𝑍 = 𝑈𝑆 as defined above.  Using a cross-validation approach, we estimated the optimal 𝜆 

parameter and associated 𝛽 coefficients using the “glmnet” package in R (Friedman & Hastie, 

2009).  For each response-specific regression model, the model inputs included the principal 

components estimated from Eq. 1, i.e., 𝑈𝑆 (see Figure 2), and intracranial volume (ICV).  For 

continuous variables, e.g., reaction times, a linear regression LASSO was used. For binarized 

categorical variables, e.g., gender, a logistic regression variant of LASSO was used.  Finally, 

the LASSO-produced 𝛽 vector was truncated (𝛽∗) to exclude ICV and thereby restrict 

interpretation to the relationship between the response variables and the principal components.   

The inclusion of ICV while building a model serves to restrict any predictive power of a 

model to only the local connectome fingerprint and not to head size, which is a common 

adjustment used when attempting to understand structural differences between individuals or 

groups to reduce the possibility of type-I errors (O’Brien et al., 2011).  Our LASSO-PCR 
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procedure considers ICV in every model, and in some cases, ICV is deemed a significant 

contributor to variance in the response variable.  In other cases, ICV is assigned a regression 

coefficient of zero.  Regardless of the coefficient assigned to ICV, we ultimately want to make 

predictions without any knowledge of ICV by excluding the ICV coefficient and associated 

participant measurements from the model prediction step.  While the quality of the resulting 

predictions (Step 4 below) may be negatively impacted by removing ICV as a potentially 

significant predictor in a model, controlling for ICV in this manner ensures that any observed 

correlation is not related to intracranial volume. 

Step 3: Local Connectome Phenotype Map. For each response variable, we expect 𝛽∗ to 

contain non-zero weights on a subset of the orthogonal principal components (𝑈𝑆, or 

equivalently, 𝑋𝑉), and these weights were used to construct a local connectome phenotype 

map, defined as the weighted influence of each fiber in the local connectome on the modeled 

response variable. To convert the regression coefficients into the dimensions of the local 

connectome, the sparse vector of regression coefficients 𝛽∗ was multiplied by the principal axes 

matrix 𝑉 to produce a weighted linear combination of the principal axes deemed relevant to a 

particular subject attribute. 

 
!̂w =V β̂ *                                                           (Eq. 3) 

This linear combination of principal axes, 𝑤, represents a 𝑝 ×1 vector reflecting the white matter 

substructure of the local connectome fingerprint vector relevant to a particular observed 

response.  We refer to the vector 𝑤 as the local connectome phenotype for the associated 

response variable.  

Step 4: Prediction. Finally, we use the reconstructed local connectome phenotype map 

to predict a variety of social, biological, and cognitive responses for participants in the test set.   

Ultimately, we sought a model that predicted a response variable  𝑦!  for subject i in the test set 

such that 𝑦! = 𝑥!𝑤 where 𝑤 is the response-related local connectome phenotype and 𝑥! is the 
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individual participant's local connectome fingerprint.  A prediction was generated for all 

participants in the hold out set on each validation fold. Once predictions for all participants were 

generated for a given response variable, the performance of the model was evaluated as either 

percent correct (categorical variables) or as a correlation between predicted and observed 

values (continuous variables). 

 

Results 

Covariance Structure and Dimensionality of Local Connectome Fingerprints 

Inter-voxel white matter architecture, reflected in the local connectome fingerprint, has been 

shown to be unique to an individual and sculpted by both genetic predisposition and experience 

(F.-C. Yeh, Vettel, et al., 2016); however, it is not yet clear whether the local connectome also 

exhibits reliable patterns of shared variability across individuals. To illustrate this, Figure 2A 

shows three exemplar fingerprints from separate subjects in the sample. These exemplars 

reveal the sensitivity of the method to capture both common and unique patterns of variability. 

For example, the highest peaks in the three fingerprints are similar in terms of their size and 

location.  This pattern appears to exist across subjects and is generally expressed in the mean 

fingerprint (Fig. 2C). However, there are also clear differences between participants. For 

example, consider the sharpness and location of the rightmost peaks in the three exemplar 

fingerprints in Figure 2A.  This uniqueness supports our previous work highlighting single 

subject classification from the fingerprint across varying temporal intervals (F.-C. Yeh, Vettel, et 

al., 2016). 
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Figure 2. Lower dimensional structure of the local connectome fingerprints. (A) Three 

individual local connectome fingerprints, from three separate subjects, show coarse 

commonalities and unique patterns of variability when connection density is reshaped in a 

left-posterior-superior vector. (B) Cumulative summation of variance explained from each 

component, sorted by the amount of variance explained by each component. Dotted lines 

indicate the number of components (697) needed to explain 90% of the variability in the 

fingerprint dataset. (C) Mean fingerprint across participants (blue, left) and linear 

summation of principal components that explain 90% of the variance (red, right). 

 In order to explicitly test for covariance across participants, we looked at the distribution 

of pairwise correlations between fingerprints. The histogram in Figure 3 shows the total 

distribution of pairwise inter-subject correlations, revealing a tight spread of correlations such 

that the middle 95% of the distribution lies between 0.32 and 0.50.  This confirms that inter-

subject correlations are substantially lower, averaging a correlation of 0.42 across all pairs of 

841 HCP participants, than intra-subject correlations, found to be well above 0.90 (F.-C. Yeh, 
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Vettel, et al., 2016). Thus the local connectome fingerprint exhibits a moderate but reliable 

covariance structure across participants, indicating its utility to examine shared structural 

variability across subjects that capture similarity in social, health, and cognitive factors. 

 

 

Figure 3. Correlations between fingerprints. The matrix of between-subject correlations in 

local connectome fingerprints, sorted by participant index is shown on the right. The 

distribution (inset) is the histogram of the upper triangle of the correlation matrix and the 

best fit kernel density estimate (red line). 

A major challenge to examining the predictive value of the local connectome for group 

similarity is the dimensionality of the fingerprint itself (841 participants x 433,386 elements). It 

contains many more features than subjects (𝑝 >> 𝑁), posing a strong risk of overfitting.  We 

employed a dimensionality reduction routine that isolates independent principal components 

from the entire local connectome fingerprint matrix to decompose the variance within the set of 

fingerprints.  This analysis found that the dimensionality of the local connectome fingerprint 

matrix was still relatively high and complex, requiring 697 of 841 components to explain 90% of 

the variance (Figure 2B). While it appears that many components are required to meaningfully 

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/122945doi: bioRxiv preprint first posted online Mar. 31, 2017; 

http://dx.doi.org/10.1101/122945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Powell et al., Local Connectome Phenotypes, 16 

explain fingerprint variance, the pattern of the mean fingerprint could be successfully recovered 

by a linear combination of the principal components (Figure 2C), confirming that this lower 

dimensional projection is adequate to represent the much larger dimensional fingerprint. 

 

Predicting Inter-Subject Variability  

After identifying a covariance structure in the group fingerprint matrix, we fit regression models 

to test how well the fingerprints could predict participant attributes, including social, biological, 

and cognitive factors. Although we used the principal components as predictor variables, the 

underlying dimensionality of the local connectome fingerprint matrix (697 components for 90% 

variance) is still quite high relative to the sample size (841 participants). Therefore, we applied 

an L1 sparsity constraint (i.e., LASSO) in the fitting process of a principal components 

regression (LASSO-PCR), as this approach identifies a sparse set of components that reliably 

predict individual response variables (see Figure 1).  

Table 1 shows the logistic LASSO-PCR results for the four binary categorical participant 

attributes: gender, race, ethnicity, and relationship status. Although statistically significant fits 

were observed for both race and relationship status at both the training and testing stages, none 

of the models outperformed chance on the hold out classification tests. A possible explanation 

may be the saturation effects in the base rate probabilities.  For example, the ethnicity response 

variable has a base rate of 90.5% non-Hispanic participants, meaning that a model that chooses 

non-Hispanic for every sample will have a classification accuracy of ~90%.  

 

Table 1. Logistic LASSO-PCR results for the four categorical attributes. 
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 In contrast to the binary participant attributes, we observed many reliable prediction 

models with the continuous variables. Table 2 (third column) shows the training results for the 

corresponding linear models. As expected, nearly all models were statistically significant at the 

training stage, even after adjusting for multiple comparisons. Only two variables, the Pittsburgh 

Sleep Quality Index and systolic blood pressure, were not significant at the training stage, 

largely because the LASSO model did not contain any non-zero coefficients.  

 

Table 2. Linear LASSO-PCR results for the thirty-two continuous attributes. 
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To complement the model training results, we examined the predictive performance of 

the model on an independent, hold-out test sample. This was done by projecting the regression 

weights in component space back into local connectome space in order to provide a weight map 

for each fiber in the local connectome to the target response variable. These maps reflect the 

local connectome phenotype for that attribute and were multiplied against a full local 

connectome fingerprint for each participant in the hold-out set to generate a prediction for that 

participant (see bottom panel, Figure 1).  

We assessed the generalizability of 32 continuous response models in a cross-validation 

paradigm and, as shown in Table 2 (column 4), 14 (44%) of these attributes were significant 

predictors after correcting for multiple comparisons. These factors included years of education, 

measures of body type (height, weight, BMI), physiology (hematocrit samples, blood pressure 

measures), and several cognitive measures including episodic memory (NIH Picture Sequence 

Memory Test), fluid intelligence (Penn Progressive Matrices: Number of Correct Responses & 

Total Skipped Items), self-regulation (Delay Discounting: Area Under the Curve for Discounting 

of $40,000), spatial orientation (Variable Short Penn Line Orientation: Total Number Correct), 

and working memory (NIH List Sorting Working Memory Test). 

 

Specificity of Phenotypes to Response Variables  

Some of the significant models for the hold-out test set evaluation reflect correlated response 

variables (e.g., two hematocrit samples) or response variables generated from other response 

variables (e.g., BMI is calculated from height and weight). It should be noted, however, that a 

large portion of the significant test predictions came from largely independent attributes. The 

ability to predict some of the correlated participant attributes raises the possibility that a local 

connectome phenotype map learned for one attribute may not be unique to the attribute being 

modeled, but instead might reflect one or a few generalized maps that explain variance 

expressed across multiple attributes. Therefore, in our final analysis, we examined the 
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specificity of a local connectome phenotype map by considering whether or not the predictive 

maps were unique for each participant attribute being predicted. In other words, we tested 

whether a single map could capture a generalized predictive relationship for multiple, response 

variables, indicating that the models themselves may lack specificity. If so, any given model may 

perform suitably well at predicting any participant attribute (e.g., BMI), even if derived from 

training on a different participant factor (e.g., years of education completed).  

To explicitly test this, we looked at the correlation between the 14 significant phenotype 

maps from the hold-out test shown in Table 2. This correlation is shown in Figure 4. There were 

four clusters of moderately correlated models. Three of these clusters of associations are not 

surprising. For example, BMI is calculated from height and weight, the mean hematocrit sample 

is calculated from the two hematocrit samples, and people with more correct responses skipped 

fewer items in the Penn. Progressive Matrices test. Only the correlation between the 

phenotypes for the Variable Short Penn Line Orientation task and the NIH List Sorting Working 

Memory Test was unexpected. We elaborate on this association in the discussion section. 
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Figure 4. Local connectome phenotypes. Matrix inset is a correlation matrix displaying the 

similarity between phenotypes of the local connectome.  Example phenotype maps are 

shown around the correlation matrix, representing the areas of the local connectome that 

are most predictive of the labeled response variable.  

While it is perhaps not surprising that phenotypes for correlated response variables are 

themselves correlated, the majority (91%) of phenotype maps were uncorrelated. We visualized 

the uniqueness of these phenotype maps by projecting the local connectome phenotypes into 

voxel space. A subset of these maps is shown in Figure 4. Visual inspection of these six 

example phenotype maps reveals large heterogeneity between models. For instance, strong 

positive loadings are observed in portions of the splenium of the corpus callosum and frontal 

association fiber systems for the Picture Sequence Memory Task, while these same regions 
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load negatively for the Variable Short Penn Line Orientation test and NIH List Sorting Working 

Memory Test. Bilateral corona radiata pathways appear to negatively load for the Penn 

Progressive Matrices and Variable Short Penn Line Orientation test, but not for any of the other 

attributes. These qualitative comparisons, along with the direct correlation tests, confirm that the 

phenotype maps for predicting inter-subject variability are highly specific to the variable being 

modeled.  

 

Discussion 

Our analysis revealed, for the first time, that the local connectome fingerprint exhibits a 

moderate, but reliable, correlation between participants that can be leveraged to predict at the 

level of the individual along dimensions of social, biological, and cognitive attributes. Although 

the between-subject correlation is much smaller than the within-participant correlation reported 

previously (F.-C. Yeh, Vettel, et al., 2016), it was robust enough to capture inter-subject 

similarities. Much to our surprise, the lower dimensional structure of this inter-subject covariance 

was still relatively complex, with hundreds of principal components required to explain most of 

the variance in the sample. Using a cross-validation regression approach that is optimized for 

ultra-high dimensional data sets, we show how patterns of variability in the local connectome 

not only correlated with nearly all participant-level social, health, and cognitive attributes  (i.e., 

strong and significant training accuracy) but could also independently predict variability in 

almost half of the features tested (i.e., hold-out test accuracy). Finally, we were able to show 

how the local connectome phenotype maps for individual attributes were highly specific to the 

variable being modeled. This suggests that there is not some unique, generalizable feature of 

local white matter that predicts inter-subject variability, but instead there are highly specific 

patterns that predict variance in specific inter-subject attributes. Taken together, the current 

results confirm our hypothesis that shared variability across participants is reflected in the local 

connectome itself. This opens the door for leveraging the local connectome fingerprint, along 
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with functional measures of connectomic architecture (Shen et al., 2017), as a reliable marker 

for individual differences in behavior. 

The current findings clearly show how it is possible to recover a portion of variability in 

social, biological, or cognitive attributes from the white matter signal itself. The novelty of this 

predictive approach opens the door to a new way of assessing brain-behavior links that moves 

beyond association testing. By building a reliable phenotype map that predicts a portion of 

behavioral variability, we highlight that neuroimaging tools have both the sensitivity and 

specificity to describe individual differences in features of interest. For example, in our study, 

structural similarity in the local connectome fingerprint reliably predicted five of the tested 

cognitive performance measurements, including a list sorting task that captures individual 

variability in working memory performance (R C Gur et al., 2001; Ruben C Gur et al., 2010). The 

associated local connectome phenotype for working memory identified portions of what appear 

to be frontoparietal pathways (Figure 4). Our results nicely complement a recent study of 

working memory that focused on direct and indirect connectivity in the frontoparietal networks 

(Ekman, Fiebach, Melzer, Tittgemeyer, & Derrfuss, 2016). In their work, the authors found that 

the network centrality of focal structural connections in the frontal, temporal, and parietal 

cortices could predict individual differences in working memory capacity using linear regression. 

When considered in the context of the current study, our findings augment previous correlative 

findings between frontoparietal regions and working memory capacity (Bender, Prindle, 

Brandmaier, & Raz, 2016; Klingberg, 2006; Nagy, Westerberg, & Klingberg, 2004; Takeuchi et 

al., 2010) by showing that the integrity of the pathway of these white matter fascicles reliably 

predicts working memory performance.  

The existence of reliable and predictive inter-subject covariance patterns in the white 

matter fascicles of the human brain begs the question of mechanism: are these similarities 

genetically determined, experientially sculpted, or developed through gene-by-environment 

interactions? Emergent findings in genetics are suggesting that at least a portion of macroscopic 
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white matter structure is guided by genetics (Kochunov, Fu, et al., 2016; Kochunov, Thompson, 

et al., 2016; F.-C. Yeh, Vettel, et al., 2016).. For example, recent work by Kochunov and 

colleagues (2016a) examined a heritability relationship between whole-brain fractional 

anisotropy (FA) and information processing speed in two interesting participant populations, the 

HCP twins cohort and an Old Order Amish cohort. The cohorts both had well-characterized 

genetic properties, but they differed in the amount of experiential variability since the Amish 

have more high environmental homogeneity compared to the urban/suburban HCP cohort. 

Kochunov and colleagues (2016a) argued that the replication of the genetic contribution to 

processing speed and FA of cerebral white matter despite the experiential variability in the 

cohorts suggested a strong phenotypic association for the trait. Our analysis would be able to 

pick up such genetically mediated brain-behavior phenotypes. 

 While genetics may contribute to white matter architecture, overwhelming evidence 

suggests that experience sculpts these pathways over time. For example, variability in the white 

matter signal has been shown to covary with several social (Gianaros et al., 2013; Molesworth 

et al., 2015), biological (Arfanakis et al., 2013; Miralbell et al., 2012; Verstynen et al., 2013), and 

cognitive (Muraskin et al., 2016; Verstynen, 2014; Ystad et al., 2011) attributes. In many cases, 

it is difficult to extract or identify specific pathways or systems that link white matter pathways to 

these shared experiential factors. However, several intervention studies have targeted more 

specific experience-white matter associations. For example, prolonged training on a variety of 

tasks has been shown to induce changes in the diffusion MRI signal (Blumenfeld-Katzir, 

Pasternak, Dagan, & Assaf, 2011; Sampaio-Baptista et al., 2013; Scholz, Klein, Behrens, & 

Johansen-Berg, 2009; Steele, Scholz, Douaud, Johansen-Berg, & Penhune, 2012). In some 

cases, the particular change in the diffusion signal is consistent with alterations in the underlying 

myelin (Sampaio-Baptista et al., 2013), for which there is emerging support from validation 

studies in non-human animal models (Budde, Janes, Gold, Turtzo, & Frank, 2011; Budde, Xie, 

Cross, & Song, 2009; Klawiter et al., 2011). One consistency in these reports of training-induced 
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plasticity in white matter pathways is that the effects are task-specific (i.e., training in a specific 

task appears to impact specific white matter fascicles). This specificity of experiential factors on 

white matter pathways is necessary in order to be able to build reliable prediction models from 

the diffusion MRI signal.  

Our previous work showed that the local connectome fingerprint reflects both genetic 

and experiential factors that contribute to between-subject variability in white matter architecture 

(F.-C. Yeh, Vettel, et al., 2016). We found that monozygotic twins expressed a modest degree 

of similarity in their local connectome fingerprints, with ~12% of the local connectome pattern 

being similar between monozygotic twins. This similarity was much higher than what was 

detected in siblings or dizygotic twins; however, genetic similarities overall seemed to contribute 

very little to similarities in the local connectome. In contrast, most of the structure in the local 

connectome fingerprint appeared to be driven by experience. By comparing changes in the 

fingerprint over time, average intra-subject similarity changed linearly with time. While it can be 

argued that part of this change simply reflects aspects of the normal aging process (Simmonds, 

Hallquist, Asato, & Luna, 2014; Westlye et al., 2010), we should point out that the intra-subject 

changes seen in our previous study happen at a much faster rate than typical age-related 

changes in white matter pathways (i.e., days and weeks vs. years, respectively). Thus we 

expect that much of this plasticity is likely due to experiential factors.  

 One of the strengths of the local connectome fingerprint approach used here is that it 

does not rely on fiber tracking algorithms. Recent evidence indicates a false positive bias when 

mapping white matter pathways (Daducci et al., 2016; Reveley et al., 2015; Thomas et al., 

2014).  This is due in large part to the difficulty that tracking algorithms have when distinguishing 

between a crossing and turning fiber pathway. Our approach does not rely on a deterministic or 

probabilistic tracking algorithm; instead, we analyze the entire set of reconstructed fibers 

throughout the brain as a unitary data object. This eliminates the false positive identification of 

white matter fascicles by not attempting fascicular classification at all. However, without tracking 
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along pathways we cannot say whether specific pathways positively or negatively predict a 

specific response variable. In the future, exploration of the local connectome phenotype maps 

with careful pathway labeling, e.g., expert-vetted fiber labeling, can identify general regions that 

positively or negatively contribute to the prediction. 

 Another limitation of the approach used here arises from the fact that, by necessity, the 

local connectome fingerprints must be computed from a common, atlas-defined space.  The 

nonlinear transformations required in order to transform brains of various shapes and sizes into 

a stereotaxic space through the QSDR procedure invariably introduce a degree of noise in the 

SDFs.  The number and orientation of fibers in each voxel determine the local connectome 

fingerprint, and these measurements could possibly be distorted during QSDR.  Such a 

transformation is unavoidable because the dimensionality of each fingerprint must be identical, 

and each element of a fingerprint must represent the same brain micro-region as the 

corresponding element in any other fingerprint. Only with this common, atlas-aligned 

representation of the local connectome fingerprint can we apply LASSO-PCR to explore 

common substructures.  The potential price for this convenience is an introduction of noise in 

the local connectome fingerprint itself, likely increasing the possibility of a false-negative error, 

e.g., failing to recognize a true phenotypic relationship.   

 Despite these limitations, the current work clearly shows that the local connectome 

fingerprint reliably reflects shared variance between individuals in the macroscopic white matter 

pathways of the brain. For the first time, we not only show how global white matter structure 

associates with different participant features, but we also show how the entire local connectome 

itself can predict a portion of the variability in independent samples. While the overall variance 

explained by the local connectome fingerprint may at first seem small, it is consistent or even 

stronger than effect sizes of genetic risk scores used in behavioral medicine (Plomin, DeFries, 

Knopik, & Neiderhiser, 2016). Thus our local connectome phenotyping approach may also be 

predictive of not only normal, but also pathological variability (see also Yeh et al., 2013). Future 
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work in clinical populations should focus on applying this approach to generate diagnostic local 

connectome phenotypes for neurological and psychiatric disorders, thereby leveraging the full 

potential of this approach.  
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