
OR I G I NA L A RT I C L E

NB
DT}

Combining imagination and heuristics to learn
strategies that generalize

Erik Peterson PhD1 | Necati AlpMüyesser BS2 |
Timothy Verstynen PhD1,3,4∗ | Kyle Dunovan PhD1

1Department of Psychology, Carnegie
Mellon University, Pittsburgh, PA, 15213,
USA
2Department ofMathematics, Carnegie
Mellon University, Pittsburgh, PA, 15213,
USA
3CarnegieMellon Neuroscience Institute,
CarnegieMellon University, Pittsburgh, PA,
15213, USA
4Biomedical Engineering, CarnegieMellon
University, Pittsburgh, PA, 15213, USA

Correspondence
Timothy Verstynen PhD&Kyle Dunovan
PhD, Department of Psychology, Carnegie
Mellon University, Pittsburgh, PA, 15213,
USA
Email: timothyv@andrew.cmu.edu,
dunovank@gmail.com

Funding information
The research was sponsored by
AFOSR/AFRL award FA9550-18-1-0251,
NSF CAREERAward 1351748, and a
contract with the Army Research
Laboratory and accomplished under
Cooperative Agreement Number
W911NF-10-2-0022.

Deep reinforcement learning can match or exceed human
performance in stable contexts, but with minor changes to
the environment artificial networks, unlike humans, often
cannot adapt. Humans rely on a combination of heuristics
to simplify computational load and imagination to extend
experiential learning to new and more challenging environ-
ments. Motivated by theories of the hierarchical organiza-
tion of the human prefrontal networks, we have developed
amodel of hierarchical reinforcement learning that combines
both heuristics and imagination into a “stumbler-strategist”
network. We test performanceof this networkusingWythoff’s
game, a gridworld environmentwith a known optimal strat-
egy. We show that a heuristic labeling of each position as
hot or cold, combined with imagined play, both accelerates
learning and promotes transfer to novel games, while also
improvingmodel interpretability.
K E YWORD S

strategy, reinforcement learning, heuristics, imagination, artificial
intelligence, hierarchical networks

1

ar
X

iv
:1

80
9.

03
40

6v
2

 [
cs

.A
I]

 1
1

Ju
n

20
20

2 PETERSON ET AL.

1 | INTRODUCTION

Deep reinforcement learning has shown that it can rival human performance on games of strategy like chess [1] and
Go [2], aswell as less structured environments like classic Atari games [3]. Unlike humans, however, these artificial net-
works are often unable to transfer performance to new situations, even in environmentswith relatively trivial changes
[4, 5]. Humans, on the other hand, exhibit transfer without much apparent effort. One part of this innate capacity
may come from our ability to imagine new environments and learn from them, a kind of counterfactual reasoning [6].
Human success at transferring skills from one context to another may also stem from our ability to develop and ex-
ploit simple heuristics [7, 8]. Here we combine these two features into a single artificial network, a novel variation of
hierarchical reinforcement learning we call the stumbler-strategist architecture.

Substantial evidence from cognitive science and neuroscience suggests that strategy learning often relies on a hi-
erarchical form of information processing, with action-value associations learned at lower levels of the hierarchy and
abstract predictions about the environment at higher levels [9, 10, 11, 12, 13, 14]. This ability appears to bemeditated,
at least in part, by the hierarchical organization of prefrontal cortico-basal ganglia-thalamic networks [15, 16, 17] that
are organized in such a way that anterior regions, reflecting more abstract task representations, have a stronger in-
fluence on more posterior regions, reflecting more concrete task goals, than vice versa [18]. The prefrontal networks
are also thought to have hierarchically organized error signals that facilitate learning complex and conditional rules
[19, 20], and more rostral areas (higher in the hierarchy) appear to be engaged during both rumination [21, 22] and
imaginative play [23, 24, 25], suggesting a common underlying computation [26]. Thanks to the phasic dopaminergic
signals frommidbrain regions [27, 28, 29] these pathways are also capable of learning action values, where rewarded
(or punished) actions become more (or less) likely to be executed in the future. This form of learning is analogous to
that enacted by deepQ-Learning networks (DQNs) that exhibit behavioral policies determined solely by the feedback
of previous actions.

Taking inspiration from the hierarchical organization of prefrontal cortico-basal ganglia-thalamic networks during
learning, we introduce two-layer stumbler-strategist networks (Figure 1), that combine imagination (i.e., internal explo-
rations of environments without directly interacting with the environment) and heuristic learning (i.e., a computation-
ally efficient, but not optimal, solution) in order to find generalizable strategies. Stumblers are reinforcement learning
agents that observe and act in the environment. Like any typical reinforcement learning system they only discover the
value of specific input-output associations, without appreciation for the organizing features of the game that govern
these associations [30]. The strategist layer only observes values learned by the stumblers, by sampling, aggregating,
and classifying information about the stumblers’ actions into one of two classes. They use the heuristic, “every state
is either cold or hot, good or bad”. The strategist layer never acts directly on the environment but when its confidence
is high, it can bias the stumbler’s actions. The top-down influence of the strategist is similar to hypothesized role of
rostral areas of the human prefrontal cortex [31, 32].

Learning between the layers happens over three stages. First, the stumbler plays the game and collects a set
of transitions (state, action, reward) and uses a Q-learning algorithm to learn action-value pairs. Second, the strate-
gist layer takes the current iteration of the stumbler and, from it, samples the expected value for every board posi-
tion. From the expected value maps it then applies the hot/cold heuristic (see Methods), and learns hot/cold maps by
stochastic gradient descent. Finally the current stumbler and strategist layer play a head-to-head game, but on a larger
game board than the one eitherwas trained on. As the strategist learns to extrapolate, or transfer, its hot/coldmaps to
new, never explicitly trained board positions, it will begin to win these head-to-head games. These victories (or losses)
are used to update our measure of confidence in the strategist layer, that we term its “influence” (Alg. 3.) Importantly,
during these sessions where the stumbler and strategist layers play together, learning in the stumbler layer is turned

PETERSON ET AL. 3

F IGURE 1 Diagram of the two-layer stumbler-strategist architecture. Stumblers are our name for reinforcement
learning agents, driven here by a version of theQ-learning rule and a ε-greedy action selection policy. As is typical for
such agents the stumblers interact directly with the game environment, learning the state-action values (Q (s, a)). The
strategist learns only with data extracted from the stumbler. To learn, the strategist first projectsQ (s, a) values
sampled from the stumbler into one of two classes {hot, cold} and tries to predict the appearance of these classes in a
new, larger, game board. If these predictions are successful, the influence of the strategist is incrementally increased
(Alg. 3).

off so that it is not affected by experience in the larger game space during the imaginative play.

Our key innovation is realizing that the simple heuristic used by the strategist-layer lets it accurately extrapolate
hot/cold values to new, more challenging, and never explicitly trained on board positions. We think of this as a strategic
imagination [33]. The strategist should succeed in extrapolating to new positions because it is asked only to predict a
simple binary heuristic, rather than the complex action-value space present in the stumbler (Figure 6).

To isolate strategy learning and transfer, we had our agents play an impartial combinatorial game calledWythoff’s
game [34]. Wythoff’s game is played on a two dimensional grid in which players alternate turns to move an object
that is initially placed randomly on the board. To win, players take turns moving the single game piece to the top-
left corner, by moving horizontally, vertically, or diagonally. Moves must be made “upward” toward the final winning
position, as shown in Figure 2a. Each player must move when it is their turn. The game ends when one player must
take the final position (i.e., top-left position). The player in this position wins the game. Despite their simplicity, these
“gridworld” environments can provide a challenging but controllable test-bed for transfer learning. In previous work,
two state-of-the-art deep reinforcement learning networks could not adapt to subtle differences in the training and
testing grid-world environments [35] suggesting they remain a challenge for deep learning paradigms to overcome.

Impartial games offer a unique advantage for testing heuristic strategies. The difference between an impartial
game, like Wythoff’s, and a strategy game like Go, is that an impartial game has a single ground truth solution. Every
position in an impartial game is either hot, meaning that there exists a winning strategy for the player about to make a
move, or cold, meaning that under optimal play, the player about tomake amovewill always lose. The optimal strategy
is always to move from a hot position to cold one. The distribution of hot and cold positions across the state space in
an impartial game usually comes with inherent mathematical structure: n = mφ ,m = nφ where φ is the golden ratio
andm and n are indices on the game board. This structure is visualized in Figure 2b. UsingWythoff’s game, as well as
similar impartial games, we explore here howour hierarchical network can learn the heuristic for solving the game and
how it can be transferred to different impartial combinatorial games that rely on the same optimal strategy.

4 PETERSON ET AL.

F IGURE 2 Wythoff’s game play. a. Valid moves inWythoff’s are same aQueen’s moves in chess. A piece (depicted
here as a black circle) can bemove laterally, vertically, or diagonally. The goal of the game it tomove the piece to the
origin of board, shown here as a blue square. b,Optimal play. Optimal moves are to “cold” positions (blue). Hot
positions are in red. No cold position is accessible from any other cold position, however the winning position is cold.
This means the optimal way to play is to alwaysmove to a cold position forcing your opponent tomove from a cold
position, fromwhich they cannot win.

2 | METHODS

We have designed a new two-level network architecture that combines traditional Q -learning, that we call a stum-
bler, with a new strategist. The strategist has two key elements: an experimenter provided heuristic, and a input
representation that allows the network to imagine, or extrapolate, the value of unseen board positions. These two
elements work in combination, and allow our network to directly transfer its knowledge to new, never before expe-
rienced, game boards, and rapidly learn new changes to the rules of the game. The heuristic, which projects Q (s, a)
values to {hot , col d } classes, is described in detail below. In this section we describe the learning algorithms in the
stumbler and strategists, as well as the the algorithmwe use to control howmuch influence the strategist has over the
stumbler. We conclude this section with a description of our approach to hyper-parameter tuning.

Code for all experiments is available at https://github.com/CoAxLab/azad

2.1 | Impartial games: Wythoff’s game, Nim, and Euclid

Wythoff’s game is played on a two dimensional grid in which players alternate turns to move an object that is initially
on the bottom-right corner towards the top-left corner. The player who gets to place the object in the top-left corner
terminates, and thereby wins the game. Every turn, the object can be moved horizontally, vertically, or diagonally
towards the top-left corner. The distance of each move is only constrained by the requirement that the player cannot
move off of the board.

In Wythoff’s game the states are all 2-dimensional non-negative integer coordinates. From coordinates (a, b),
player 1 (p1) and player 2 (p2) can access all states of the form (i , b), (a, j), and (a − k , b − k)where 0 < i < a , 0 < j < b ,
and 0 < k < min(a, b). Asmentioned above, every position in an impartial game is either hot or cold, indicatingwhether
p1 or p2 will win the game under optimal play. The partition of hot and cold positions in Wythoff’s game is deeply
embedded in properties of the Fibonacci string and the golden ratio [36].

The mathematical structure of Wythoff’s game manifests in a highly patterned separation of hot and cold posi-
tions. While we benchmark our strategist-stumbler networks on Wythoff’s game, we also later impose rule changes
to see howwell agents trained inWythoff’s game performed in other impartial games that can have a similar hot-cold
structure.

https://github.com/CoAxLab/azad

PETERSON ET AL. 5

Nim is an impartial game similar toWythoff’s butwherediagonalmoves are are disallowed. LikeWythoff’s though,
and unlike Euclid, as position in a valid direction is allowed. The simple removal of diagonal play profoundly alters
optimal play. The optimal way to play a 2d game of Nim is to move such that row and column indices are equal, which
amounts to moving to the diagonal positions (via up and left). This is profoundly different than the optimal play in
Wythoff’s, which centers around position that aremultiples of the golden ratio.

Euclid is an extension of Nimwhere a distance travelled in the horizontal or vertical direction has to be amultiple
of the minimum of the horizontal and vertical distance to the top-left corner. Valid positions are those that could be
obtained by taking differences between row m and column n when m and n are also multiples of greatest common
denominator ofm and n , (i.e, (m, n) if (GDC (m, n).

Note that previous work [37] studied Erdos-Selfridge-Spencer games which also have an optimal strategy. The
goals of our two papers are different though. Like Raghu et al (2017), we focus on studying transfer compared to an
optimal player, move-by-move. Unlike this previous study, we try and transfer learning to new environments, rather
than focusing only on transferring between changes in opponent strategy.

2.2 | A hot and cold heuristic

The explicit and very human heuristic used by the strategist is, “all positions are either good or bad”. To fit the game
good positions are hot and bad positions are cold. To classify every position on the board, first Q (s, a) values from the
stumbler are converted to expected values, whereV (s) = maxQ (s, a). AV (s) is classified as bad ifV (s) < Vbad and good
ifV (s) > Vgood, where the thresholdsVbad andVgood are hyperparameters of themodel.

2.3 | Network design

Stumbler learning is governed by Q-Learning, extended to allow for “top-down” strategist feedback and for mutual
action observations, where learning updates happen over player-opponent joint-action pairs. Here the stumbler was
implemented as a look-up table, defined by the Algorithm 25.

The strategist is a two-layer neural network, trained on input coordinates (i , j) and output values derived using
the hot-cold heuristic described in Section 2.1. Its behavior is governed by Algorithm 13. Learning in the full network
relied on error backpropagation with stochastic gradient descent, and a learning rate of αr . Training set batch sizes
were half the size of the dataset andwere sampled with replacement.

To judge how much influence the strategist should have over the the stumbler, the two layers play a single game
of Wythoff’s using a purely greedy strategy (see Algorithm 3). They play on a game board larger than the one the
stumbler was trained on. The intuition behind this approach is that if the strategist has useful transferable knowledge
it should soundly defeat the stumbler on this larger and newgame. Every time the strategistwins, it’s influence, I , over
the stumbler increases by αI . Every time the strategist looses its influence declines by the same amount.

The strategist does not have access to training data besides that provided by the stumbler layer. The strategist
learns to play only from the stumbler. The simple nature of what it learns (hot/cold) though lets it correctly infer play
on larger boards, as we’ll show. Optimal play in Wythoff’s is based on golden ratio positions for any board size. The
strategist learns this invariant strategy, learning in effect the golden ratio. We believe that learning this invariance
requires we simplify the learning problemwith a compatible heuristic.

In some runs (Figure 6) we replace the learned strategist with a perfect strategist with ideal hot/cold values hard-
coded into the network. This fixed optimal network served as an ideal oracle or reference to judge good learning
performance. Hard-coding in hot/cold values, shows us the maximum rate at which the strategist can improve perfor-

6 PETERSON ET AL.

Algorithm 1 Learning algorithm used by stumbler
1: procedure STUMBLE(Q)
2: n ← Learning episode
3: ε0 ←Max exploration-exploitation
4: γ ←Value bias
5: αs ← Stumbler learning rate
6: I ← Strategist influence
7: B ← Strategy bias, given Strategist
8: G ← InitializeWythoff’s game
9: s ←A position inG
10: whileG continues do
11: ε ← ε0logn+e .Anneal
12: act i on ← ε-greedy(Q (s, act i on) + I ∗ B(s), ε)
13: do act i on onG , update s
14: ifG ends then
15: r ewar d ← 1 .Winningmove
16: else .Opponent plays
17: do act i on onG , update s
18: ifG ends then
19: r ewar d ← −1 .Opponent wins
20: else
21: r ewar d ← 0

22: Q ′ ←maxQ-value from s′ . Joint-action update
23: Q (s, act i on) ← α(r ewar d + γQ ′ − Q (s, act i on))
24: I ← Influence(Stumbler, Strategist)
25: returnQ

PETERSON ET AL. 7

Algorithm 2 Learning algorithm used by the Strategist
1: procedure STRATEGIST(Stumbl er)
2: αr ← Strategist learning rate
3: nr ←Number of training episodes
4: n ← Episode counter
5: B ← Strategist bias
6: Q ←CompleteQ -table from Stumbl er
7: dat aset ← HotColdHeuristic(Q) . Seemain text
8: model ← initialized neural network with default settings
9: while n < nr do
10: t r ai nset ← sample(dat aset)
11: backpropagatemodel with t r ai nset through cost func
12: B ←model for all s
13: returnB

mance of the stumbler. The closer amodel is to this, the better.

2.4 | Network training and parameter tuning

All networks were trained on a fixed number episodes, which preliminary runs showed were well past the learning
plateau. The exception to this were DQN control experiments described in Figure 9. Stumbler-only training used this
iteration count directly. The stumbler-strategist network required a nesting of the training procedure, which worked
as follows. To begin training first the stumbler would play ns games and learn from the each game independently (Al-
gorithm 25). Then the strategist takes in the stumbler, extracts its value estimates, applies the heuristic (see A hot and
cold heuristic above) generating a dataset, and would train on nr samples of this dataset (Algorithm 13). Finally the in-
fluence of the strategist was estimated and applied downstream (Algorithm 3). This overall pattern then repeated for
n iterations, but the total number of training iterations n ∗ nr ∗ nr was constrained to be 75,000 episodes.

Overall, networkperformancewas robust to awide rangeof hyperparameter settings. Parameter tuningwasdone
via grid search, carried out piece-wise. First, the stumbler was tuned. Second, the strategist’s learning and heuristic
parameters were tuned. NextVhot andVcol d were optimized followed by the influence rate (αI). Finally, the depth and
unit number of the strategist was optimized. Each stage relied, in part, on the previous tuning stages. The stumbler
was implemented as simple one-hot look-up table, and so had no internal parameters. The optimal hyperparameter
configuration we arrives at is found in Table 1.

In tuning the stumbler we explored the parameter for the greediness of the selection policy, ε, from (0.1 − 1), αs
from (0.01, 1), and γ from (0.1 − 1). In taking 10 samples from each range and searching the full permutation space, we
sampled a 1000 hyperparameter combinations in tuning the stumbler. The stumbler-strategist tuning stage one ex-
plored learning rate αr and the training iteration numbers ns and nr , over the following respective ranges, (0.001-0.1),
(100,1000), and (100,1000) forming a 10x3x3 sampling space (Figure 3b). Stage two searchedVcol d andVhot from
(−1, 0) and (0, 1) forming a 10x10 sampling space. Stage three tuned the influence rate αI (0.01 − 1.0) over 20 sam-
ples. The final stage explored the depth and width of the two-layer strategist from nhidden1 from (15, 500) and nhidden2
from (0, 50), in 10x10 sampling space (not shown). As is clear in Figure 3, there is substantial degree of slackness or
robustness in parameter choices. As such we hand picked middle values from each “hot” region (Table 1). For more

8 PETERSON ET AL.

F IGURE 3 Hyperparameter tuning. a. Stumbler learning rate b. Epsilon c. Gamma d. Strategist learning rate e.
Stumbler iterations f. Strategy iterations g. Hot threshold h. Cold threshold i. Influence learning rate The red “x” in all
figures is the optimal or reference parameter value used in all models, unless noted otherwise. The search strategy
for these values is described in Parameter tuning. Reference values are in Table 1.

PETERSON ET AL. 9

Algorithm 3 Strategist influence algorithm
1: procedure INFLUENCE(Stumbl er , St r at eg i st)
2: αI ← Influence learning rate
3: I ← Influence
4: wi n ← Strategist score
5: G ← InitializeWythoff’s game
6: s ←A position inG
7: whileG continues do
8: act i on ← greedy(Stumbler(s))
9: do act i on onG , update s
10: ifG ends then
11: wi n ← 0

12: act i on ← greedy(Strategist(s))
13: do act i on onG , update s
14: ifG ends then
15: wi n ← 1

16: ifwi n > 0 then
17: I ← I + αI

18: else
19: I ← I − αI
20: I ← clip(I ,−1, 1) . I is limited
21: return I

information on the meaning of these parameters see Section 2.3. Note that temporal annealing of ε (Algorithm 25) is
required for convergence to optimal play.

2.5 | DeepQ-Learning Network (DQN)

We compared the performance of our stumbler-strategist network against several DQN [38?] baselines. In designing
these networks we searched both architectures and hyperparameters to identify a single model who performed best
(see Table 2). We then tested this network’s transfer performance measuring both optimal play and play against a
random opponent.

The network architectures fell into one of three classes – xy, hot, and conv. Thefirst xywas amultilayer perceptron
(MLP) whose input is a vector of game position and action, represented as a set of Cartesian coordinates. Its output
was a scalar, representing aQ-value estimate. Thiswas akin to our strategist’s representation. The second hotwas also
an MLP but it used a one-hot representation. Its input was a NxN vector, that was zeros except for a 1 placed in the
current board position. The output was aNxN vector, representing the value of all possible moves at that position. (Il-
legalmovesweremasked.) The third conv had the same input/output representation as hot, but featured convolutional
layers whose ability to learn local features could, in principle, allow the network to generalize to new board sizes and
rules. The convolutional networks featured some number of hidden convolutional layers, followed by a dense layer,
and a linear readout head. The hidden layers we considered for all these three classes are described in Table 2.

In tuning DQ networks we explored ε from ((0.1, 0.5), αs from (0.0025, 0.25), and g amma from (0.1, 0.5). We first

10 PETERSON ET AL.
TABLE 1 Network hyperparameters
Meaning Symbol Value

Stumbler learning rate αs 0.4
Strategist learning rate αr 0.025
Influence learning rate αI 0.2
Exploration-exploitation ε 0.4
Value bias γ 0.5
Stumbler iterations (strategist only) ns 500
Strategy iterations (strategist only) nr 500
Hot threshold Vhot 0.5
Cold threshold Vcol d -0.5
Influence (initial) I 0.0
Strategist bias (initial) B 0.0

conducted a grid search taking between 5 and 50 samples from each range, and searching its full permutation space.
We sampled a about 1250 hyperparameter combinations in tuning each DQN. Hyperparameter runs were indepen-
dently for the architectures. Like in the tabular stumbler, the exploration term ε was annealed during training. Fol-
lowing the grid search, we choose the twomost promising models based on optimal play score (xy1 and xy4) and used
these as the basis for population-based training, using the Optuna library [?]. The final best model, according to its
average optimal play score, we named optuna (Table.2).

3 | RESULTS

By design (Section 2.3), the strategist never directly observes or acts on the game during learning. Instead it tries
to extrapolate, or imagine, the {hot , col d } values on a larger game board that the stumbler never encounters. This
extrapolation is possiblebecause the complexQ (s, a)value structure is reduced toabinary {hot , col d } representation.
This, in turn, is based on the heuristic that each position can be exclusively either hot or cold. Our hope was that our
heuristic would naturally map onto the hot/cold board structure of Wythoff’s game (See the Section 2.1 above for
more).

Figure 4 shows how the two layers of the network value board positions at different stages of learning. Models
that are developed in the earlier stages of training remain mostly irrelevant to transfer, meaning that the estimation
of {hot , col d } spaces remains largely local to the area of the board that the stumbler interacts with. Soon after initial
training, models begin to meaningfully generalize, although still with low accuracy. Such models are crucial for the
learning process because they influence theway that the stumbler chooses to explore different action spaces. Without
such guidance, the stumbler explores actions without any overall purpose or insight (hence our label for this layer).
Yet, with the guidance from the strategist, the stumbler explores actions that would either contradict or confirm the
strategist’s imagined hypothesis about the nature of the learning environment that it cannot directly learn from. This
results in a network that eventually converges on the optimal strategy for identifying {hot , col d } spaces.

In order to evaluate how much of this performance actually depends on the strategist, we compared the per-

PETERSON ET AL. 11
TABLE 2 DQnetwork architectures
Name Type Hidden layers Features (layer1,layer2,..)
xy1 MLP 1 15
xy2 MLP 1 100
xy3 MLP 2 10,20
xy4 MLP 3 100,25,25
xy5 MLP 2 1000,2000
optuna MLP 3 10,11,13
hot1 MLP 1 15
hot2 MLP 1 100
hot3 MLP 2 10,20
hot4 MLP 3 100,25,25
hot5 MLP 2 1000,2000
conv1 Conv 5 (conv: 1-3, mlp 4-5) 8,16,16,5184,20
conv2 Conv 5 (conv: 1-3, mlp 4-5) 32,64,64,5184,512

formance of the stumbler alone to the stumbler-strategist network. We only evaluated performance within regions
where the stumbler has received feedback. Figure 5a shows the fraction of moves that were optimal for both net-
works during learning. Initial learning in the strategist-stumbler network is more than twice as fast as the stumbler
alone. Both networks eventually plateau at the same level of final performance, indicated by the overlapping curves
over the last few thousand games in Figure 5a. Thus having the strategist accelerates learning of the stumbler within
the confines of the original training space.

Wenext set out to see howwell the stumbler-strategist performs against the best possible agent. For thiswe com-
pared learning between the trained strategist-stumbler and a perfect oracle. Our perfect oracle agent here is a variant
of the strategist-stumbler where the optimal strategy for playingWythoff’s is hard coded into into the strategist. Fig-
ure 5b shows that the trained strategist-stumbler shows only a slightly lower performance during the early training
episodes when compared against the perfect oracle agent. Performance quickly converges between the two agents,
suggesting near-optimal accuracy in the trained full network.

To ensure that the observed performance of the stumbler-strategist network was not specific to a particular set
of parameters, we evaluated final optimal play performance over the last 100 episodes as parameters of the network
were independently perturbed. The performance of these perturbed networks was compared against a baseline run
using standard training parameters (Table 1.), but run with 20 different random seeds while parameter perturbations
used a fixed seed. Intuitively, if the performance variability due to parameter changes is similar to random behavioral
changes, then we can consider that parameter choice to be robust. Indeed, the variability in these perturbations was
highly similar to that seen in the baseline (random) condition (Figure 6a) suggesting our parameter selectionswere suf-
ficiently robust. Along with these parameter perturbations, we also considered two alternate heuristics: hot only or
cold only. Both of these approaches prevented the strategist from developing any significant influence over the stum-
bler, leading to no improvement in training performance (Figure 6b) compared to the stumbler alone. This confirms
that the improved performance of the full network is driven by a search for the optimal heuristic, as opposed to any

12 PETERSON ET AL.

F IGURE 4 Learning in three stages of training onWythoff’s game. The early models (exploration) will be largely
unsuccessful, while certain inaccurate transfers (exploitation) will supply reasonable strategies to the stumbler,
allowing the provision of useful datasets into the network that translate into accurate and general models
(imagination). In this example the stumbler trained on a 14 by 14 board for 2000 game-plays, across each strategist
time-step. The strategist learned to play on a 50 by 50 game board.

arbitrary heuristic.
So far we have shown that adding the strategist drives near optimal performance on never before seen game

boards with no additional training. We next wanted to show how the different parts of the network contribute to
the generalization across expanded task spaces (i.e., board sizes). For this we systematically increased the board size
from size that the stumblerwas originally trained on (15x15) up to 500x500 (in 50 unit increments), and evaluated the
performance of the different parts of the network independently. As one would expect from a tabular representation,
as soon as the board size increased beyond its direct experience, optimal play for the stumbler plummeted (Figure 7a),
quickly matching the performance of a random choice agent (i.e., an agent that simply guesses; Figure 7b). However
on the 15x15 board the stumbler model, with full access to theQ (s, a), outperforms the strategist, which can be seen
by comparing the first points in both curves in Figure 7a and in Figure 7c. The strategist on the other hand maintains
a high level of performance over the entire range of novel game boards showing it is necessary for generalization we
observe. To compare performance between layers, we had to temporarily lift the structure that only the stumbler can
interact with the board.

Up until this point we have studiedWythoff’s game. Next considered how the strategy learned inWythoff’s game
could transfer to different grid-world games. To do this we keep the game boards the same as our initial experiments
(Figures 5-6) but alter the rules of play in accordance with two other impartial games: Euclid’s game and Nim (see

PETERSON ET AL. 13

F IGURE 5 a. Learning optimal moves inWythoff’s gamewith (black) andwithout (gold) strategist. b. Learning
when a stumbler is biased by a perfect strategist’s (purple), compared to the learned strategist from a. (black). Error
bars denote 2 * standard error, andwere calculated from 20 unique random seeds.

Methods).
Having changed the rules of the game, we studied how a transferring a Wythoff-trained strategy layer, with re-

initialized stumbler, impacted learning (Figure 8). To measure only the benefits of transfer we quantified the ratio
of player-to-opponent wins with and without the pre-trained layer. Player models without the pre-trained layer also
featured a functioning strategist, though of course it began with a random initial configuration. In all cases and layers
learning was “on”. This means that the pre-trained layer could in princple change and relearn if needed.

In Euclid’s game, whose optimal play is a restricted subset of that of Wythoff’s, making it more difficult to learn,
strategy transfer not only leads to better performance but actually accelerates learning over a naive stumbler (Figure
8a.). In contrast, in the game of Nim, strategy transfer does not improve performance, as would be expected given the
different optimal strategies, however it also does not significantly hinder learning either. This may be due to the fact
that the influence algorithm we employ (Algorithm 3) quickly limits the range of bad strategies, leaving the network
able to re-train itself quickly in this context.

Finally, as a control experiment we trained a series of DQN networks [39] on Wythoff’s game (Figure 9). These
kinds of models have been described in detail elsewhere [38, 40]. In brief, DQN is the name typically given to a deep
neural network who’s loss function is based on the Q-learning algorithm, which we’ve described above. The deep net-
work tries to learn a latent state representation that can interpolate or generalize between board states. It might also
be able to learn to generalize optimal play in way that compares well to our approach.

To try and design a successful DQN model, we tried thirteen network architectures. These included both convo-
lutional (conv) networks [40] and two styles of MLP, hot and xy (see,Methods). None of these was able to learn to play
Wythoffs’ optimally (Figure 9a-c). Though all networks did learn aspects of the game, and could consistently defeat
a random player (Figure 9d-f). The best DQN network, when tested on new boards, defeated a random opponent 80-

14 PETERSON ET AL.

F IGURE 6 Control experiments. a. Hyper-parameter sensitivity. Baseline is 20 standard runs, randomly initialized,
using optimal hyperparameters (whose selection is describe in theMethods section). These optimal values are found
in Table 1. Epsilon (ε) is the exploration parameter in the standard ε-greedy algorithm (sampled here from 0.01 − 0.8).
Influence learning rate (αI) controls quickly the strategists bias effects the stumblers actions (0.01 − 0.4). Stumbler
learning rate is the stumblers learning rate (αs), which in typical Q-learning is often denoted by α (0.2 − 0.6). The
strategist learning rate (αr) controls in the the deep strategist (0.01 − 0.05; values larger than 0.08 lead to catastrophic
failure). The hot and cold threshold are the value thresholds,Vhot andVcold (sampled from 0.0 − 0.5 and −0.5 − 0
respectively). b. Effect of alternate heuristic choices. Our standard heuristic mapsQ (s, a) values to hot/cold classes.
Here we explored an alternate approachwhere the strategist predicts only hot or only cold, rather than both. c. Effect
of having no heuristic. In this model the strategist learned the expected value of positions, rather than hot/cold
classes. d. Effect of having a higher learning rates in a stumbler-only model. It could be the increases in learning
performance we observed in the previous figure were not due to hot/cold projection in the strategist layer, but came
indirectly with the strategist acting to simply increase the effective learning rate of the stumbler. We ruled this out by
choosing the largest rate possible (lr=1) for stumbler-only learning. Error bars denote 2 * standard error.

90% of the time (Figure 10b). However its already suboptimal play dropped to near zero (Figure 10a). This failure is
consistent with similar attempts at using DQNs in other gridworld games [35].

4 | DISCUSSION

The human prefrontal cortico-basal ganglia pathways are hierarchically organized such that contextual, strategic, and
value-based decisions are represented in more anterior regions, while basic action selection and motor control deci-
sions are represented in posterior prefrontal regions, near the motor cortex [16, 31, 32]. Here we took inspiration
[41] from these pathways, as well as their role in imaginative play, to innovate on traditional RL networks by adding
a “strategist” agent that imagines play in new and more challenging environments and guides a simple RL agent as it
learns. The strategist only succeeds in these new, harder, environments because it is learns to predict a simple, but
useful, heuristic: every state is good (i.e., hot) or bad (i.e., cold). The combined strategist-stumbler network was able
to generalize its learned strategy to changes in action space (i.e., larger game boards) and to different environments
where the ideal strategy follows the same heuristic (i.e., different impartial games). Most importantly, however, we
could query the strategist to explicitly recover the learned heuristic.

Heuristics offer an advantage for strategic learning because theymap complex contingencies to simple rules [42].
Heuristics arewidely used in human cognition [43], having been tunedbyevolution andexperience to supportmemory,
and transfer knowledge [8]. A heuristic is easier tomap between environmental states, as it is not dependent on a spe-

PETERSON ET AL. 15

F IGURE 7 Transfer performance on new larger game boards, with frozen layers. a.Optimal play observedwhen
the stumbler (goldenrod) and strategist (black) layers complete in several (1000) games ofWythoff’s. The x-axis
denotes increases in board size. Prior to this experiment, neither layer has experienced a board larger than 15x15 (for
the stumbler) or 50x50 (for the strategist. b. The strategist versus a random agent (blue) who’s choices were sampled
uniformly from the available actions at each position, and could not learn c. Fraction of the games won by the
strategist versus the stumbler (goldenrod) or the random player (blue). At each board size 1000 games were played,
each begunwith a unique random seed.

cific set of complex actions. Intuitively, heuristics also simplify imagining never before experienced outcomes. Though
not put to use here, heuristics also ease the transfer of knowledge between agents. For example, it is intuitively easier
to transfer knowledge between a student student and teacher, or to engage in cooperative inference, when using sim-
ple (appropriate) heuristics rather complex action-value tensors. In this way, exploring how humans and other animals
learn heuristics, including the underlying neural substrates, offers unique advantages to building artificial agents that
can effectively learn optimal strategies in more complex environments.

Moving from simple games, such asWythoff’s, to open-ended strategy games like Go or chess, and to even more
complex visual environments like classic Atari games, will require two further innovations. Gridworld games share
common coordinates. It is therefore simple tomove from smaller boards to larger andmore challenging boards by just
mapping between common coordinates. Using a stumbler-strategist network in visually complex environments, like
classic Atari games, requires solving this projection problem, which is nontrivial. There is room for optimism though.
The response in higher-level layers in DQNs, as well as the inner layers of variational autoencoders, track the percep-
tual similarity learned images [3]. Using these a strategists layer could observe not only values, but also the critical
perceptual relationships.

A critical innovation of the strategist-stumbler model is in its ability to identify the right heuristic. While there

16 PETERSON ET AL.

F IGURE 8 Rule transfer: learning with a pre-trained strategist. a. Player wins in Euclid’s game, with andwithout
strategy transfer. b. Player wins in Nim. In bothmodels only the player could benefit from a strategist. As with all
previous simulations, the opponent here was limited to traditionalQ-learning.

seems to be a clear advantages to using heuristics in general, here we studied only a single example (good/bad or
hot/cold). We would not expect our choice heuristic to always apply. There exists however a substantial literature in
game theory representing a large pool of possible heuristics and strategies [8, 44, 7, 45]. While thesewill certainly not
describe optimal performance in all situations, there are perhaps consistent moments to be found in complex games
where simple strategies, and matched counterfactual simulations, will allow for information to be efficiently trans-
ferred between environments. We believe using explicit and human inspired heuristics as “bottlenecks” to condition-
ally simplify complex problems has a general role to play. It can both enhance learning rates, and aide transfer.

Like the problemof reward shaping, putting heuristics towork in complex andmore open-ended games (like those
available in the OpenAI Gym ecosystem) is not simple. Specifically, there are probably parts of complex games that
can benefit from a heuristic bottleneck. But of course there other parts where it won’t help, and might make things
worse. Learning to automatically find both points is not simple and there is no reason to bother if the basic approach
does’twork in simpler cases likeWythoff’sfirst. The success of the strategist-stumbler network at learning theoptimal
heuristic and generalizing across environments provides a strong proof of concept. Heuristics help both learning and
transfer in artificial agents.

ACKNOWLEDGEMENTS

The views and conclusions contained in this document are those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. government.

REFERENCES

[1] Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A, et al. Mastering Chess and Shogi by Self-Play with a
General Reinforcement Learning Algorithm 2017;p. 1–19. http://arxiv.org/abs/1712.01815.

[2] Silver D, Huang A,Maddison CJ, Guez A, Sifre L, Van Den Driessche G, et al. Mastering the game of Gowith deep neural

http://arxiv.org/abs/1712.01815

PETERSON ET AL. 17

networks and tree search. Nature 2016;529(7587):484–489. http://dx.doi.org/10.1038/nature16961.
[3] Minh V. Human-level control through deep reinforcement learning. Nature 2015;518:529–533. http://dx.doi.

org/10.1038/nature14236.
[4] Zhang C, Vinyals O, Munos R, Bengio S. A Study on Overfitting in Deep Reinforcement Learning 2018;p. 1–25. http:

//arxiv.org/abs/1804.06893.
[5] Zhang A, Ballas N, Pineau J. A Dissection of Overfitting and Generalization in Continuous Reinforcement Learning

2018;http://arxiv.org/abs/1806.07937.
[6] Pearl J. Theoretical Impediments to Machine Learning With Seven Sparks from the Causal Revolution Scientific Back-

ground 2017;(September):1–8.
[7] Hart S. Adaptive heuristics. Econometrica 2005;73(5):1401–1430.
[8] Gigerenzer G. Work Why Heuristics. Perspectives on Psychological Science 2014;3(1):20–29. http://www.jstor.

org.jproxy.nuim.ie/stable/40212224.
[9] Doll BB, Simon DA, Daw ND. The ubiquity of model-based reinforcement learning. Current opinion in neurobiology

2012;22(6):1075–1081.
[10] Smittenaar P, FitzGerald TH, Romei V, Wright ND, Dolan RJ. Disruption of dorsolateral prefrontal cortex decreases

model-based in favor of model-free control in humans. Neuron 2013;80(4):914–919.
[11] Wunderlich K, Smittenaar P, Dolan RJ. Dopamine enhances model-based over model-free choice behavior. Neuron

2012;75(3):418–424.
[12] Doll BB, Duncan KD, Simon D, Shohamy D, Daw ND. Model-based choices involve prospective neural activity. Nature

Neuroscience 2015;18:1–9.
[13] Russek EM, Momennejad I, Botvinick MM, Gershman SJ, Daw ND. Predictive representations can link model-based

reinforcement learning tomodel-freemechanisms. PLOS Computational Biology 2017;13:9.
[14] O’Doherty JP, Cockburn J, PauliWM. Learning, reward, and decisionmaking. Annual review of psychology 2017;68:73–

100.
[15] FrankMJ, Badre D. Mechanisms of hierarchical reinforcement learning in corticostriatal circuits 1: Computational anal-

ysis. Cerebral Cortex 2012;22:509–526.
[16] Badre D, D’esposito M. Is the rostro-caudal axis of the frontal lobe hierarchical? Nature Reviews Neuroscience

2009;10(9):659–669.
[17] Koechlin E, Summerfield C. An information theoretical approach to prefrontal executive function. Trends in cognitive

sciences 2007;11(6):229–235.
[18] Verstynen TD, Badre D, Jarbo K, Schneider W. Microstructural organizational patterns in the human corticostriatal

system. Journal of neurophysiology 2012;107(11):2984–2995.
[19] AlexanderWH, Brown JW. Hierarchical error representation: a computational model of anterior cingulate and dorsolat-

eral prefrontal cortex. Neural computation 2015;27(11):2354–2410.
[20] Alexander WH, Brown JW. Frontal cortex function as derived from hierarchical predictive coding. Scientific reports

2018;8(1):3843.
[21] BratmanGN,Hamilton JP,HahnKS,DailyGC,Gross JJ. Nature experience reduces rumination and subgenual prefrontal

cortex activation. Proceedings of the national academy of sciences 2015;112(28):8567–8572.

http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
http://arxiv.org/abs/1804.06893
http://arxiv.org/abs/1804.06893
http://arxiv.org/abs/1806.07937
http://www.jstor.org.jproxy.nuim.ie/stable/40212224
http://www.jstor.org.jproxy.nuim.ie/stable/40212224

18 PETERSON ET AL.

[22] Kucyi A, Moayedi M, Weissman-Fogel I, Goldberg MB, Freeman BV, Tenenbaum HC, et al. Enhanced medial prefrontal-
defaultmode network functional connectivity in chronic pain and its associationwith pain rumination. Journal of Neuro-
science 2014;34(11):3969–3975.

[23] Carlson SM,White RE. Executive function, pretend play, and imagination. The Oxford handbook of the development of
imagination 2013;p. 161–174.

[24] Gonsalves B, Reber PJ, GitelmanDR, Parrish TB,MesulamMM, Paller KA. Neural evidence that vivid imagining can lead
to false remembering. Psychological Science 2004;15(10):655–660.

[25] Schacter DL, Addis DR. The cognitive neuroscience of constructive memory: remembering the past and imagining the
future. Philosophical Transactions of the Royal Society B: Biological Sciences 2007;362(1481):773–786.

[26] Zarr N, Brown J. Foundations of human problem solving. bioRxiv 2019;p. 779322.
[27] SchultzW, Dayan P,Montague PR. A neural substrate of prediction and reward. Science 1997;275:1593–1599.
[28] EshelN,BukwichM,RaoV,HemmelderV, Tian J,UchidaN. Arithmetic and local circuitryunderlyingdopamineprediction

errors. Nature 2015;525(7568):243–246.
[29] Eshel N, Tian J, BukwichM, Uchida N. Dopamine neurons share common response function for reward prediction error.

Nature neuroscience 2016;19(3):479–486.
[30] Sutton RS, Barto A. Reinforcement Learning: An Introduction. 2 ed.MIT Press; 2018.
[31] FrankMJ, Badre D. Mechanisms of hierarchical reinforcement learning in corticostriatal circuits 1: computational anal-

ysis. Cerebral cortex 2011;22(3):509–526.
[32] BadreD, FrankMJ. Mechanisms of hierarchical reinforcement learning in cortico-striatal circuits 2: Evidence from fMRI.

Cerebral Cortex 2012;22(3):527–536.
[33] Weber T, Racanière S, Reichert DP, Buesing L, Guez A, RezendeDJ, et al. Imagination-Augmented Agents for Deep Rein-

forcement Learning 2017;(Nips). http://arxiv.org/abs/1707.06203.
[34] WythoffWA. Amodification of the game of Nim. NieuwArchWisk 1907;7(2):199–202.
[35] Leike J, MarticM, Krakovna V, Ortega PA, Everitt T, Lefrancq A, et al. AI Safety Gridworlds 2017;.
[36] Aaron S. Combinatorial Game Theory. Graduate Studies in Mathematics (Book 146), American Mathematical Society;

2013.
[37] RaghuM, Irpan A, Andreas J, Kleinberg R, Le QV, Kleinberg J. Can Deep Reinforcement Learning Solve Erdos-Selfridge-

Spencer Games? 2017;.
[38] Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, et al. Playing Atari with Deep Reinforcement

Learning. NIPS 2013;p. 9.
[39] van Hasselt H, Guez A, Silver D. Deep Reinforcement Learning with Double Q-Learning. arXiv:150906461 [cs] 2015

Dec;.
[40] Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, BellemareMG, et al. Human-Level Control throughDeep Reinforce-

ment Learning. Nature 2015 Feb;518(7540):529–533.
[41] Hassabis D, Kumaran D, Summerfield C, Botvinick M. Neuroscience-Inspired Artificial Intelligence. Neuron

2017;95(2):245–258. http://dx.doi.org/10.1016/j.neuron.2017.06.011.
[42] Parpart P, Jones M, Love BC. Heuristics as Bayesian Inference under Extreme Priors. Cognitive Psychology 2018

May;102:127–144.

http://arxiv.org/abs/1707.06203
http://dx.doi.org/10.1016/j.neuron.2017.06.011

PETERSON ET AL. 19

[43] Tversky A, KahnemanD. Judgment under uncertainty: Heuristics and biases. science 1974;185(4157):1124–1131.
[44] Parpart P. Heuristics as Bayesian Inference 2017;.
[45] Rieskamp J,OttoPE. SSL:A theory of howpeople learn to select strategies. Journal of Experimental Psychology: General

2006;135(2):207–236.

20 PETERSON ET AL.

F IGURE 9 DQNperformance. We tried three styles of network architecture. The first, xy, was aMLPwhose input
is a vector of game position and action, represented as a set of Cartesian coordinates. This is akin to our Strategist
model. It’s output was a scalar, representing aQ-value estimate. The second, hot, was also anMLP, though this one
used a one-hot representation. It’s input was a NxN vector, that was zeros except for a 1 placed in the current board
position. The output was a NxN vector, representing the value of all possible moves at that position. (Illegal moves
weremasked.) The third, conv, had the same input/output representation as hot, but featured convolutional layers
whose ability to learn local features could, in principle, allow the network to generalize to new board sizes and rules.
a-c. Optimal play in trained DQNs. d. Total fraction of wins when trained DQNs played a random opponent (N=100).
Detailed descriptions of eachmodel can be found in Table 2 and theMethods.

PETERSON ET AL. 21

F IGURE 10 A comparison to deep learning. a. Optimal play by the best DQN network (black) compared our
strategist (teal) on new larger game boards, inWythoff’s (N = 100). Prior to this experiment bothmodels were
trained on a 15x15 board, exclusively. b. Player wins in versus a random player. The DQN is in black and the strategist
is in teal. Error bars represent SEM.

	1 Introduction
	2 Methods
	2.1 Impartial games: Wythoff's game, Nim, and Euclid
	2.2 A hot and cold heuristic
	2.3 Network design
	2.4 Network training and parameter tuning
	2.5 Deep Q-Learning Network (DQN)

	3 Results
	4 Discussion

