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The exploration-exploitation dilemma is a fundamental but in-
tractable problem in the learning and decision sciences. In this prob-
lem the goal of exploration and exploitation is to maximize reward.
Here we challenge this basic form. We conjecture the dilemma can
be viewed as a competition between exploiting known rewards or ex-
ploring to learn a world model, a simplified concept of memory bor-
rowed from computer science. We prove this competition is tractable
and can be solved by a simple greedy algorithm. This solution has
the properties expected of an optimal solution to original dilemma–
finding maximum value with no regret.

Introduction

Let’s imagine a bee foraging in a meadow. Our bee has
a decision to make. It could go back to the location of a
flower it has visited before (exploitation) or go somewhere
else (exploration). In a traditional reinforcement learning
account when our bee explores it acts to maximize tangible
rewards (1), such as finding a plant with more flowers (Figure 1,
A). This reinforcement learning account however leads to a
mathematically intractable dilemma over whether it is optimal
to explore or exploit a any given moment (2–5).

Resource gathering is not the only reason animals explore.
Many animals, like our bee, learn simplified models of the world
to make decisions and plan actions (6, 7). Borrowing from the
field of artificial intelligence we refer to these as world models
(1, 8, 9). When learning a world model, information about
the environment is intrinsically valuable and is why animals
are intrinsically curious (10–15) and prone to explore even
when no rewards are present or expected (16). In some cases
information seeking is known to happen even if it explicitly
leads to a loss of reward (17).

Here we conjecture that the only kind of exploratory be-
havior an animal needs to do is that which builds its world
model. With this conjecture we can propose an alternative
to the classic dilemma, breaking exploration and exploitation
into independent objectives that compete to either exploit
known rewards or explore to learn a world model (Figure 1B).
We prove this alternative has a tractable and optimal solution.
Optimal here means maximising rewards while minimizing
regrets.

Our contribution is threefold. We offer five axioms that
serve as a general basis to estimate the value of any learned
observation, given a memory. This prospective leads to a
surprising result. Information theory can be formally discon-
nected from information value, producing a new universal
theory. Next we prove that the computer science method of
dynamic programming (1, 18) provides an optimal way to
maximize this kind of information value. Finally, we describe
a simple greedy scheduling algorithm that can maximize both
information value and reward.

Fig. 1. Two views of exploration and exploitation. A. The classic dilemma is depicted
as two options for reward maximization: exploit an action with a known reward
likelihood (e.g., return to the previous plant) or stochastically explore other actions
on the chance they return better outcomes (e.g., find a plant with more flowers). B.
Here we offer an alternative view of the dilemma, with two different competitive goals:
maximize rewards (e.g., keep returning to known flower locations) or build a model of
the world by learning new information (e.g., layout of the environment). Notice how
exploration here is based not on finding rewards per se (e.g., flowers), but on learning
in general. Artist credit : Richard Grant.

Results

A definition of information value. Rewards and information
are fundamentally distinct concepts. Rewards are a conserved
resource. Information is not. For example if a rat shares
potato chip with a cage-mate, she must necessarily split the
chip up leaving less food for herself. Whereas if student shares
the latest result from a scientific paper with a lab-mate, they
do not necessarily forget a portion of that result.

To formally separate the value of information from the
value of reward we look to the field of information theory (19).
Rather than focus on the statistical problem of transmitting
symbols, as was Shannon’s goal, we focus on remembering
symbols, in order to produce a learning and memory view of
information value.

World models are memories that range from simple novelty
signals (20), to location or state counts (21, 22), state and
action prediction (9, 15, 23), flow (24), learning progress (25),
classic working or episodic memories (26, 27), Bayesian and
hierarchical Bayesian models (23, 28–30), latent spaces (31)
and recurrent neural networks (32–35). In all of these examples,
the value of any observation made by an agent who is learning
a world model depends entirely on what the agent learns by
making that observation.

We do not prefer any one kind of world model to any other.
So we adopt a broad definition of memory, which overlaps with
nearly any world model. We assume that time t is continuous
quantity, and denote increases in time using the differential
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quantity dt. We generally then express changes in M (our
memory, defined below) as a differential equation (e.g., dM

dt
),

although for non-differential memories difference equations
can be used (e.g., ∆M

∆t ).
Observations about the environment s are real numbers

sampled from a finite state space s ∈ S, whose size is N
(denoted SN ). Actions are also real numbers a drawn from a
finite space AK . Rewards Rt, when they appear, are generally
binary and always provided by the external environment.

Preliminaries aside, we can formally define a memory M
as a finite set of real numbers, whose maximum size is also N
(MN ). We say that learning of s at time t by M happens by
an invertible encoder function f , Mt+dt = f(Mt, st) and Mt =
f−1(Mt+dt, st). (Invertibility here is equivalent to saying that
any observations which be stored can be forgotten). Memories
ŝt about st are recalled by a decoder function g, such that
ŝt = g(Mt, st).

The details of f and g define what kind of world model M
is. To make this more concrete, let’s consider some examples.
If f simply adds states to the memory and g tests whether st
is in M , then M models novelty (20). If f counts states and g
returns those counts, thenM is a count-based heuristic (21, 22).
If f follows Bayes rule and g decodes the probability of st, then
we have recovered a classic frequently used information theory
account of information value (23, 29, 30). In this account the
decoded state probabilities could be the current state, or for
future states or actions (9, 15, 23). Or if M is much smaller
than the size of the space SN , then f could learn a latent or
compressed representation (28, 31, 33–38), with g decoding a
reconstruction of current (ŝt) or future states (ŝt+dt).

We define a real valued distance E to measure how M
changes with both time and observations. Different f and g
pairs will naturally need different ways to exactly express this
distance. For example, a novelty model (20) would produce
binary values, as would a count model (21, 22). A latent mem-
ory (9, 15) might use its own error gradient. A probabilistic
memory (23, 28) would likely use the KL divergence. All that
matters is the chosen distance meet our five axioms.

Axiom 1 (Axiom of Memory). E(st) depends only on how
the memory M changes when making an observation st.

Axiom 2 (Axiom of Novelty). An observation st that doesn’t
change the memory M has no value. E(st) = 0 if and only if
dM
dt

= 0.

Axiom 3 (Axiom of Scholarship). All learning in M about
st is valuable. E(st) ≥ 0; dM

dt
≥ 0.

Axiom 4 (Axiom of Specificity). If the total change in mem-
ory M due to observation st is held constant ( dM

dt
= h), the

more compact (Eq. 6) the change in memory the more valuable
the observation.

Axiom 4 adds two critical and intertwined properties. It
ensures that if all else is held equal, more specific observations
are more valuable that less specific observations (39, 40). It
also ensures that an observation that leads to a simplifying
or parsimonious insight (is equivalent to a compression of the
memory, (36)) is more valuable than one that changes memory
the same total amount but does not lead to compression.

Axiom 5 (Axiom of Equilibrium). An observation st must
be learnable by M . d2M

dt2 ≤ 0.

Technically speaking by learnable we mean learnable using
the probably approximately correct (PAC) framework (41), a
common tool of computer science used to formalize learning
and inference. Any observation that cannot be learned, for
whatever the reason, is not valuable because it cannot change
behavior.

Having written down a positive definition, for clarity we’ll
also state what our theory is not. Information value is not
based on the intrinsic complexity of an observation (that is,
its entropy) (42), nor on its similarity to the environment
(its mutual information; (43)), nor on its novelty or surprise
(3, 23, 29).

Stimulus complexity and surprise have tremendous poten-
tial to drive learning, of course. In cases like Bayesian rule
there is even a fixed relationship between learning and surprise
(23, 29, 44). However, this does not hold for all learning rules.
Complexity and surprise which can’t be learned is not valuable;
if it can’t be learned it can’t shape future actions.

Exploration as a dynamic programming problem. Dynamic
programming is a popular optimization approach because it
can guarantee total value is maximized by a simple, determin-
istic, and greedy algorithm. In Theorem 1 (see Mathematical
Appendix) we prove our definition of memory has one critical
property, optimal substructure, that is needed for a greedy dy-
namic programming solution (18, 45). The other two needed
properties, E ≥ 0 and the Markov property (18, 45), are
fulfilled by the Axioms 3 and 1 respectively.

To write down dynamic programming (or Bellman) solution
for E we must introduce a little more notation. We let π denote
the action policy, a function that takes a state s and returns
an action a. We let δ be a transition function that takes a
state-action pair (st, at) and returns a new state, st+dt. For
notational simplicity we also redefine E as F (Mt, at), and call
this the payoff function (18).

F (Mt, at) = E(s)
subject to the constraints

at = π(st)
st+dt = δ(st, at),

Mt+dt = f(Mt, st)

[1]

The value function for F is,

VπE (M0) =
[

max
a∈A

∞∑
t=0

F (Mt, at)
∣∣∣ M, S, A

]
. [2]

And the recursive Bellman solution to learn this value function
is,

V ∗πE
(Mt) = F (Mt, at) + max

a∈A

[
F (Mt+dt, at)

]
. [3]

For the full derivation see theMathematical Appendix. Eq. 3
implies that the optimal action policy π∗E for E (and F ) is a
simple greedy policy. This greedy policy ensures that explo-
ration of any finite space S is exhaustive (Theorems 2 and 3
in Mathematical Appendix).

Axiom 5 requires that learning in M converge. Axiom 4
requires information value increases with surprise, re-scaled by
specificity. When combined with a greedy action policy like
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π∗E , these axioms naturally lead to active learning (14, 46, 47)
and to adversarial curiosity (48).

Scheduling a way around the dilemma. Remember that the
goal of reinforcement learning is to maximize reward, an objec-
tive approximated by the value function VR(s) and an action
policy πR.

V πR
R (s) = E

[ ∞∑
k=0

Rt+k+1
∣∣s = st

]
[4]

To find an algorithm that maximizes both information and
reward value we imagine the policies for exploration and ex-
ploitation acting as two possible “jobs” competing to control
behavior. For exploration and exploitation we know (by defi-
nition) each of these jobs produces non-negative values which
an optimal job scheduler could use: E for information or R for
reward/reinforcement learning. Finding an optimal scheduler
turns out to require we further simplify our assumptions.

We assume we are in a typical reinforcement learning set-
ting, which is where the dilemma finds its simplest expression
anyway. In this setting rewards are either present or absent
(0, 1). Each action takes a constant amount of time and has
no energetic cost. And each policy can only take one action
at a time.

Most scheduling problems also assume that the value of a
job is fixed, while in our problem information value changes as
the memory learns and we expect that rewards are stochastic.
However, in a general setting where one has no prior infor-
mation about the environment the best predictor of the next
future value is very often the last value (45, 49). We assume
this precept holds in all of our analysis.

The optimal solution to a scheduling problem with non-
negative values and fixed run times is a deterministic greedy
algorithm (45). We restate this solution as a set of inequalities
where Rt and Et represent the value of reward and information
at the last time-point.

ππ(st) =
{
π∗E(st) : Et − η > Rt

πR(st) : Et − η ≤ Rt
subject to the constraints

p(E[R]) < 1
E − η ≥ 0

[5]

To ensure that the default policy is reward maximization,
Eq. 5 breaks ties between Rt and Et in favor of πR. In stochas-
tic environments, M can show small continual fluctuations.
To allow Eq. 5 to achieve a stable solution we introduce η, a
boredom threshold for exploration. Larger values of η devalue
exploration.

Reframing the exploration-exploitation dilemma as a
scheduling problem comes at the cost of increasing overall
computational complexity (41). The worst case run time for
ππ is linear and additive in its policies. That is, if in isolation
it takes TE steps to earn ET =

∑
TE

E, and TR steps to earn
rT =

∑
TR

R, then the worst case training time for ππ is
TE +TR. This is only true if neither policy can learn from the
other’s actions. There is, however, no reason that each policy
cannot observe the transitions (st, at, R, st+dt) caused by the
other. If this is allowed, worst case training time improves to
max(TE , TR).

Exploration without regret. Suboptimal exploration strategies
will lead to a loss of potential rewards by wasting time on
actions that have a lower expected value. Regret G measures
the value loss caused by such exploration. G = V̂ − Va,
where V̂ represents the maximum value and Va represents the
value found by taking an exploratory action rather than an
exploitative one (1).

Optimal strategies for a solution to the exploration-
exploitation dilemma should maximize total value with zero
total regret.

Fig. 2. Bandits. Reward probabilities for each arm in bandit tasks I-IV. Grey dots
highlight the optimal (i.e., highest reward probability) arm. See main text for a complete
description.

Fig. 3. Regret and total accumulated reward across models and bandit task. Median
total regret (left column) and median total reward (right column) for simulations of
each model type (N = 100 experiments per model). See main text and Table 1 for
description of each model. Error bars in all plots represent median absolute deviation.

To evaluate dual value learning (Eq. 5) we compared total
reward and regret across a range of both simple, and challeng-
ing multi-armed bandit tasks. Despite its apparent simplicity,
the essential aspects of the exploration-exploitation dilemma
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Table 1. Artificial agents.

Agent Exploration mechanism
Dual value Our algorithm (Eq 5).

E-greedy
With probability 1−ε follow a greedy
policy. With probability ε follow a ran-
dom policy.

Annealed e-greedy
Identical to E-greedy, but ε is de-
cayed at fixed rate.

Bayesian reward

Use the KL divergence as a
weighted intrinsic reward, sam-
pling actions by a soft-max policy.∑

T
Rt + βEt

Random
Action are selected with a random
policy (no learning)

exist in the multi-armed task (1). Here the problem to be
learned is the distribution of reward probabilities across arms
(Figure 2). To estimate the value of any observation st,
we compare sequential changes in this probabilistic memory,
Mt+dt and Mt using the KL divergence (i.e. relative entropy;
Figure 4A-B). The KL divergence is a standard way to mea-
sure the distance between two distributions (44) and is, by
design, consistent with the axioms (see the Supplementary
Materials for a more thorough discussion).

We start with a simple experiment with a single high value
arm. The rest of the arms have a uniform reward probability
(Bandit I). This represents a trivial problem. Next we tried
a basic exploration test (Bandit II), with one winning arm
and one distractor arm whose value is close to but less than
the optimal choice. We then move on to a more difficult
sparse exploration problem (Bandit III), where the world has
a single winning arm, but the overall probability of receiving
any reward is very low (p(R) = 0.02 for the winning arm,
p(R) = 0.01 for all others). Sparse reward problems are
notoriously difficult to solve, and are a common feature of both
the real world and artificial environments like Go, chess, and
class Atari video games (50–52). Finally, we tested a complex,
large world exploration problem (Bandit (IV) with 121 arms,
and a complex, randomly generated reward structure. Bandits
of this type and size are near the limit of human performance
(53).

We compared the reward and regret performance of 6 ar-
tificial agents. All agents used the same temporal difference
learning algorithm (TD(0), (1)); see Supplementary materials).
The only difference between the agents was their exploration
mechanism (Table 1). The e-greedy algorithm is a classic
exploration mechanism (1). Its annealed variant is common
in state-of-the-art reinforcement learning papers, like Mnih
et al ((50)). Other state-of-the-art exploration methods are
models that treat Bayesian information gain as an intrinsic
reward and the goal of all exploration is to maximize total
reward (extrinsic plus intrinsic) (9, 54). To provide a lower
bound benchmark of performance we included an agent with
a purely random exploration policy.

All of the classic and state-of-the-art algorithms performed
well at the different tasks in terms of accumulation of rewards
(right column, Figure 3). The one exception to this being the
sparse low reward probability condition (Bandit III), where
the dual value algorithm consistently returned more rewards
than the other models. In contrast, most of the traditional
models still had substantial amounts of regret in most of the

tasks, with the exception of the annealed variant of the e-
greedy algorithm during the sparse, low reward probability
task (left column, Figure 3). In contrast, the dual value
learning algorithm consistently was able to maximize total
reward with zero or near zero (Bandit III) regret, as would
be expected by an optimal exploration policy.

Discussion

Past work. We are certainly not the first to quantify infor-
mation value (43, 55), or use that value to optimize reward
learning (3, 9, 29, 56, 57). Information value though is typi-
cally framed as a means to maximize the amount of tangible
rewards (e.g., food, water, money) accrued over time (1). This
means information is treated as an analog of these tangible
or external rewards. An intrinsic reward (9, 12, 23, 29). This
approximation does drive exploration in a practical and useful
way, but doesn’t change the intractability of the dilemma
(2–5).

At the other extreme from reinforcement learning are pure
exploration methods, like curiosity (15, 39, 54) or PAC ap-
proaches (41). Curiosity learning is not generally known to
converge on rewarding actions with certainty, but never-the-
less can be an effective heuristic (15, 58, 59). Within some
bounded error, PAC learning is certain to converge (41). For
example, to find the most rewarding arm in a bandit, and will
do so with a bounded number of samples (60). However, the
number of samples is fixed and based on the size of the envi-
ronment (but see (61, 62)). So while PAC will give the right
answer, eventually, its exploration strategy also guarantees
high regret.

Animal behavior. In psychology and neuroscience, curiosity
and reinforcement learning have developed as separate disci-
plines (1, 39, 40). And indeed they are separate problems, with
links to different basic needs–gathering resources to maintain
physiological homeostasis (63, 64) and gathering information
to plan for the future (1, 41). Here we prove that though they
are separate problems, they are problems that many ways they
solve each other.

The theoretical description of exploration in scientific set-
tings is probabilistic (5, 65–67). By definition probabilistic
models can’t make exact predictions of behavior, only statis-
tical ones. Our approach is deterministic, and so does make
exact predictions. Our theory predicts it should be possible to
guide exploration in real-time using, for example, optogenetic
methods in neuroscience, or well timed stimulus manipulations
in economics or other behavioral sciences.

Artificial intelligence. Progress in reinforcement learning and
artificial intelligence research is limited by three factors: data
efficiency, exploration efficiency, and transfer learning.

Data efficiency refers to how many samples or observations
it takes to make a set amount of learning progress. The most
successful reinforcement learning algorithms are highly data
inefficient. For example, Q-learning (68). To make reinforce-
ment learning data inefficient generally requires one include
a (world) model in the reinforcement algorithm itself. In the
challenging environments modern methods must learn, it this
model exists. A dual algorithm offers a good compromise.
Exploration learns a world model. As this model improves it
can be used directly by the reinforcement learning policy, po-
tentially leading to substantial improvement in data efficiency.
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The specialist could think of this as a loose generalization of
the successor model (6, 22, 69).

In the large and complex environments modern machine
learning operates in random exploration takes to long to be
practical. So there is a critical need for more efficient ex-
ploration strategies (33), often known as active sampling or
directed exploration. A range of heuristics for exploration
have been explored (13, 21, 42, 70–72). Dual value algorithms
offer a new and principled approach. Designing efficient ex-
ploration reduces to two questions: what should our agent
remember? How should we measure change change in that
memory? Subject to the axioms and Eq. 5, of course.

Deep reinforcement learning can match or exceed human
performance in games like chess (52), Go (51), as well as less
structured games like classic Atari video games (68). It It
would be ideal to transfer performance from one task to another
without (much) retraining (1). But with even minor changes to
the environment, most artificial networks often cannot adapt
(73, 74). This is known as the transfer problem. One thing
which limits transfer is that many networks are trained end-to-
end, which simultaneously (implicitly) learns a world model
and a strategy for maximizing value. Disentangling these can
improve transfer. We’re therefore not the first to suggest using
a world model for transfer (33, 75). What we offer is a simple
and optimal algorithm to combine nearly any world model
with any reinforcement learning scheme.

Cost. It’s not fair to talk about benefits without talking about
costs. The worst-case run-time of a dual value algorithm is
max(TE , TR), where TE and TR represent the time to learn
to some criterion (see Results). In the unique setting where
minimizing regret, maximizing data efficiency, exploration
efficiency, and transfer do not matter, dual value learning can
be a suboptimal choice.

Everyday life. Our most important contribution is perhaps a
better worldview on a hard and common problem.

Q: Should we eat at our favorite, or try the new restaurant
down the street? What if it’s bad? A: I’m not sure. . .

Even in a mundane setting like this question, and its
dilemma, the potential loss from exploration is daunting and
uncertain to think about. Well beyond the mundane, varia-
tions on this problem are universal appearing in psychology,
neuroscience, biology, data science, artificial intelligence, game
theory, economics, demography, and political science. Here we
suggest an universal alternative.

The uncertainty of the unknown can always be recast as
an opportunity to learn. But rather than being a trick of
psychology, we prove this view is (in the narrow sense of our
formalism anyway) mathematically optimal.

Q: Would I rather have this reward, or learn something
new? A: Which do I value more right now? Pick the biggest.
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Mathematical Appendix.

Compactness. The compactness C of a hyper-cube has a sim-
ple formula, C = P2

A
where P is the cube’s perimeter and A is

its area. Perimeter and area are of course defined by a set of
distances D. Traditionally these would be euclidean distances,
but any notion of distance should work.

To review, our world model M is simply a finite set of N
real values. It therefore seems fair to assume one can always
find, or define, a suitable axiomatic distance to measure how
elements in M changed with time and learning, as Mt moves
to Mt+dt. This distance might be measured on the elements
of M directly or, as a convenient proxy, using memories taken
from M by the decoder function g (which we define in the
main text).

With any set of distances D = {di, di+1, di+2, . . . dO} de-
fined for all observed states Z ⊆ S, we can imagine they form
a O-dimensional hyper-cube (O ≤ N). By measuring this
imagined cube we find a geometric estimate for compactness
(Eq. 6). Compactness defined this way encompass both specific
changes to, and compression of, the representation in M .

C =

(
2
∑O

i
di

)2

∏O

i
di

[6]

Information value as a dynamic programming problem. To
find greedy dynamic programming (1, 45) answers we must
prove our memory M has optimal substructure. By optimal
substructure we mean that M can be partitioned into a small
number, collection, or series of memories, each of which is
itself a dynamic programming solution. In general by proving
we can decompose some optimization problem into a small
number of sub-problems whose optimal solution are known, or
easy to prove, it becomes trivial to prove that we can also grow
the series optimally. That is, proving optimal sub-structure
nearly automatically allows for proof by induction (45).

Theorem 1 (Optimal substructure). Assuming transition
function δ is deterministic, if V ∗πE

is the optimal information
value given by πE, a memory Mt+dt has optimal substructure
if the the last observation st can be removed from Mt, by
Mt+dt = f−1(Mt+dt, st) where the resulting value V ∗t−dt =
V ∗t − F (Mt, at) is also optimal.

Proof. Given a known optimal value V ∗ given by πE we assume
for the sake of contradiction there also exists an alternative
policy π̂E 6= πE that gives a memory M̂t−dt 6= Mt−dt and for
which V̂ ∗t−dt > V ∗t−dt.

To recover the known optimal memory Mt we lift M̂t−dt to
Mt = f(M̂t−dt, st). This implies V̂ ∗ > V ∗ which in turn con-
tradicts the purported original optimality of V ∗ and therefore
π̂E .

Bellman solution. Armed with optimal substructure of M we
want to do the next natural thing and find a recursive Bellman
solution to maximize our value function for F (Eq. 1). (A
Bellman solution of F is also a solution for E (Eq.2). We do
this in the classic way by breaking up the series for F into an
initial value F0, and the remaining series in the summation.
We can then apply this same decomposition recursively (Eq 3)
to arrive at a final “twp-step” or recursive form which is shown
Eq. 7).

V ∗πE
(M0) = max

a∈A

[ ∞∑
t=0

F (Mt, at)
]

= max
a∈A

[
F (M0, a0) +

∞∑
t=1

F (Mt+dt, at+dt)
]

= F (M0, a0) + max
a∈A

[ ∞∑
t=1

F (Mt+dt, at+dt)
]

= F (M0, a0) + V ∗πE
(Mt+dt) + V ∗πE

(Mt+2), . . .

[7]

A greedy policy explores exhaustively. To prevent any sort of
sampling bias, we need our exploration policy πE (Eq.3) to
visit each state s in the space S. As our policy for E is a greedy
policy, proofs for exploration are really sorting problems. That
is if a state is to be visited it must have highest value. So if
every state must be visited (which is what we need to prove
to avoid bias) then under a greedy policy every state’s value
must, at one time or another, be the maximum value.

We assume implicitly here the action policy πE can visit
all possible states in S. If for some reason πE can only visit a
subset of S, then the following proofs apply only to exploration
of that subset.

To begin our proof, some notation. Let Z be the set of
all visited states, where Z0 is the empty set {} and Z is built
iteratively over a path P , such that Zt+ = {s|s ∈ P and s 6∈
Zt}. As sorting requires ranking, we also need to formalize
ranking. To do this we take an algebraic approach, are define
inequality for any three real numbers (a, b, c) (Eq. 8).

a ≤ b⇔ ∃ c; b = a+ c [8]
a > b⇔ (a 6= b) ∧ (b ≤ a) [9]

Theorem 2 (State search: breadth). A greedy policy π is
the only deterministic policy which ensures all states in S are
visited, such that Z = S.

Proof. Let E = (E1, E2, ...) be ranked series of E values for
all states S, such that (E1 ≥ E2,≥ ...). To swap any pair of
values (Ei ≥ Ej) so (Ei ≤ Ej) by Eq. 8 Ei − c = Ej .

Therefore, again by Eq. 8, ∃
∫
δE(s)→ −c.

Recall: Axiom 5.
However if we wished to instead swap (Ei ≤ Ej) so (Ei ≥

Ej) by definition 6 ∃c;Ei + c = Ej , as 6 ∃
∫
δ → c.

To complete the proof, assume that some policy π̂E 6= π∗E .
By definition policy π̂E can be any action but the maximum,
leaving k − 1 options. Eventually as t→ T the only possible
swap is between the max option and the kth, but as we have
already proven this is impossible as long as Axiom 5 holds.
Therefore, the policy π̂E will leave at least 1 option unexplored
and S 6= Z.

Theorem 3 (State search: depth). Assuming a deterministic
transition function Λ, a greedy policy πE will resample S to
convergence at Et ≤ η.

Proof. Recall: Axiom 5.
Each time π∗E visits a state s, so M →M ′, F (M ′, at+dt) <

F (M,at)
In Theorem 2 we proved only a deterministic greedy policy

will visit each state in S over T trials.
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By induction, if π∗E will visit all s ∈ S in T trials, it will
revisit them in 2T , therefore as T →∞, E → 0.

Optimality of ππ . In the following section we prove two things
about the optimality of ππ. First, if πR and/or πE had any
optimal asymptotic property for value learning before their
inclusion into our scheduler, they retain that optimal property
under ππ. Second, we use this Theorem to show if both πR
and πE are greedy, and ππ is greedy, then Eq 5 is certain to
maximize total value. This is analogous to the classic activity
selection problem (45).

Independent policy convergence.

Theorem 4 (Independence policy convergence under ππ).
Assuming an infinite time horizon, if πE is optimal and πR is
optimal, then ππ is also optimal in the same senses as πE and
πR.

Proof. The optimality of ππ can be seen by direct inspection.
If p(R = 1) < 1 and we have an infinite horizon, then πE will
have a unbounded number of trials meaning the optimally
of P ∗ holds. Likewise,

∑
E < η as T → ∞, ensuring piR

will dominate ππ therefore πR will asymptotically converge to
optimal behavior.

In proving this optimality of ππ we limit the probability of
a positive reward to less than one, denoted by p(Rt = 1) < 1.
Without this constraint the reward policy πR would always
dominate ππ when rewards are certain. While this might be
useful in some circumstances, from the point of view πE it
is extremely suboptimal. The model would never explore.
Limiting p(Rt = 1) < 1 is reasonable constraint, as rewards
in the real world are rarely certain. A more naturalistic to
handle this edge case is to introduce reward satiety, or a model
physiological homeostasis (63, 64).

Optimal scheduling for dual value learning problems. In classic
scheduling problems the value of any job is known ahead
of time (18, 45). In our setting, this is not true. Reward value
is generated by the environment, after taking an action. In
a similar vein, information value can only be calculated after
observing a new state. Yet Eq. 5 must make decisions before
taking an action. If we had a perfect model of the environ-
ment, then we could predict these future values accurately
with model-based control. In the general case though we don’t
what environment to expect, let alone having a perfect model
of it. As result, we make a worst-case assumption: the envi-
ronment can arbitrarily change–bifurcate–at any time. This
is, it is a highly nonlinear dynamical system (76). In such
systems, myopic control–using only the most recent value to
predict the next value– is known to be an robust and efficient
form of control (49). We therefore assume that last value is
the best predictor of the next value, and use this assumption
along with Theorem 4 to complete a trivial proof that Eq. 5
maximizes total value.

Optimal total value. If we prove ππ has optimal substructure,
then using the same replacement argument (45) as in Theo-
rem 4, a greedy policy for ππ will maximize total value.

Theorem 5 (Total value maximization of ππ). ππ must have
an optimal substructure.

Proof. Recall: Reinforcement learning algorithms are embed-
ded in Markov Decisions space, which by definition have opti-
mal substructure.

Recall: The memory M has optimal substructure (Theo-
rem 1.

Recall: The asymptotic behavior of πR and πE are inde-
pendent under ππ (Theorem 4

If both πR and πE have optimal substructure, and are
asymptotically independent, then ππ must also have optimal
substructure.
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Supplementary materials.

Dual value implementation.

Value initialization and tie breaking. The initial value E0 for π∗E
can be arbitrary, with the limit E0 > 0. In theory E0 does
not change π∗E ’s long term behavior, but different values will
change the algorithm’s short-term dynamics and so might be
quite important in practice. By definition a pure greedy policy,
like π∗E , cannot handle ties. There is simply no mathematical
way to rank equal values. Theorems 3 and 2 ensure that
any tie breaking strategy is valid, however, like the choice of
E0, tie breaking can strongly affect the transient dynamics.
Viable tie breaking strategies taken from experimental work
include, “take the closest option”, “repeat the last option”, or
“take the option with the highest marginal likelihood”. We do
suggest the tie breaking scheme is deterministic, which main-
tains the determinism of the whole theory. See Information
value learning section below for concrete examples both these
choices.

The rates of exploration and exploitation. In Theorem 4 we proved
that ππ inherits the optimality of policies for both exploration
πE and exploitation πR over infinite time. However this does
proof does not say whether ππ will not alter the rate of conver-
gence of each policy. By design, it does alter the rate of each,
favoring πR. As you can see in Eq. ??, whenever rt = 1 then
πR dominates that turn. Therefore the more likely p(r = 1),
the more likely πR will have control. This doesn’t of course
change the eventual convergence of πE , just delays it in di-
rect proportion to the average rate of reward. In total, these
dynamics mean that in the common case where rewards are
sparse but reliable, exploration is favored and can converge
more quickly. As exploration converges, so does the optimal
solution to maximizing rewards.

Re-exploration. The world often changes. Or in formal parlance,
the world is non-stationary process. When the world does
change, re-exploration becomes necessary. Tuning the size of ε
in ππ (Eq ??) tunes the threshold for re-exploration. That is,
once the π∗E has converged and so π∗R fully dominates ππ, if ε
is small then small changes in the world will allow piE to exert
control. If instead ε is large, then large changes in the world
are needed. That is, ε acts a hyper-parameter controlling how
quickly rewarding behavior will dominate, and easy it is to let
exploratory behavior resurface.

Bandits.

Design. Like the slot machines which inspired them, each bandit
returns a reward according to a predetermined probability. As
an agent can only chose one bandit (“arm”) at a time, so it
must decide whether to explore and exploit with each trial.

We study four prototypical bandits. The first has a single
winning arm (p(R) = 0.8, Figure 2A); denoted as bandit I.
We expect any learning agent to be able to consistently solve
this task. Bandit II has two winning arms. One of these (arm
7, p(R) = 0.8) though higher payout than the other (arm 3,
p(R) = 0.6). The second arm can act as a “distractor” leading
an to settle on this suboptimal choice. Bandit III also has a
single winning arm, but the overall probability of receiving
any reward is very low (p(R) = 0.02 for the winning arm,
p(R) = 0.01 for all others). Sparse rewards problems like these
are difficult to solve and are common feature of both the real

world, and artificial environments like Go, chess, and class
Atari video games (50–52). The fourth bandit (IV) has 121
arms, and a complex randomly generated reward structure.
Bandits of this type and size are probably at the limit of
human performance (53).

World model and distance. All bandits share a simple basic com-
mon structure. The have a set of n-arms, each of which
delivers rewards in a probabilistic fashion. This lends itself
to simple discrete n-dimensional world model, with a memory
slot for each arm/dimension. Each slot then represents the
independent probability of receiving a reward (Supp. Fig 4A).

The Kullback–Leibler divergence (KL) is a widely used
information theory metric, which measures the information
gained by replacing one distribution with another. It is highly
versatile and widely used in machine learning (? ), Bayesian
reasoning (23, 29), visual neuroscience (29), experimental
design (77), compression (78? ) and information geometry
(79), to name a few examples. KL has seen extensive use in
reinforcement learning.

The Kullback–Leibler (KL) divergence satisfies all five
value axioms (Eq. 10).

Itti and Baladi (29) developed an approach similar to ours
for visual attention, where our information value is identical
to their Bayesian surprise. Itti and Baladi (2009) showed that
compared to range of other theoretical alternative, information
value most strongly correlates with eye movements made when
humans look at natural images. Again in a Bayesian context,
KL plays a key role in guiding active inference, a mode of
theory where the dogmatic central aim of neural systems is
make decisions which minimize free energy (14, 23).

Let E represent value of information, such that E :=
KL(Mt+dt,Mt) (Eq. 10) after observing some state s.

KL(Mt+dt,Mt) =
∑
s∈S

Mt+dt(s)log
Mt+dt(s)
Mt(s)

[10]

Axiom 1 is satisfied by limiting E calculations to successive
memories. Axiom 2-3 are naturally satisfied by KL. That is,
E = 0 if and only if Mt+dt = Mt and E ≥ 0 for all pairs
(Mt+dt,Mt).

To make Axiom 5 more concrete, in Figure 5 we show how
KL changes between a hypothetical initial distribution (always
shown in grey) and a “learned” distribution (colored). For sim-
plicity’s sake we use a simple discrete distribution representing
a 10-armed bandit, though the illustrated patterns hold true
for any pair of appropriate distributions. In Figure 5C we see
KL increases substantially more for a local exchange of proba-
bility compared to an even global re-normalization (compare
panels A. and B.).

Initializing ππ . In these simulations we assume that at the start
of learning an animal should have a uniform prior over the pos-
sible actions A ∈ RK . Thus p(ak) = 1/K for all ak ∈ A. We
transform this uniform prior into the appropriate units for our
KL-based E using Shannon entropy, E0 =

∑
K
p(ak) log p(ak).

In our simulations we use a tie breaking “right next” heuris-
tic which keeps track of past breaks, and in a round robin
fashion iterates rightward over the action space.

Reinforcement learning. Reinforcement learning in all agent mod-
els was done with using the TD(0) learning rule (1) (Eq. 11).
Where V (s) is the value for each state (arm), Rt is the return
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Fig. 4. A world model for bandits. B. Example of a single world model suitable for all
bandit learning. B Changes in the KL divergence–our choice for the distance metric
during bandit learning–compared to changes in world model, as by measured the
total change in probability mass.

Fig. 5. An example of observation specificity during bandit learning. A. A initial
(grey) and learned (distribution), where the hypothetical observation s increases the
probability of arm 7 by about 0.1, and the expense of all the other probabilities. B.
Same as A except that the decrease in probability comes only from arm 8. C. The KL
divergence for local versus global learning.

Table 2. Hyperparameters for individual bandits (I-IV).

Agent Parameter I II III IV
Dual value η 0.053 0.017 0.003 5.8e-09
Dual value α 0.34 0.17 0.15 0.0011
E-greedy ε 0.14 0.039 0.12 0.41
E-greedy α 0.087 0.086 0.14 0.00048
Annealed e-greedy τE 0.061 0.084 0.0078 0.072
Annealed e-greedy ε 0.45 0.98 0.85 0.51
Annealed e-greedy α 0.14 0.19 0.173 0.00027
Bayesian β 0.066 0.13 0.13 2.14
Bayesian α 0.066 0.03 0.17 0.13
Bayesian γ 0.13 0.98 0.081 5.045

for the current trial, and α is the learning rate (0 − 1]. See
the Hyperparameter optimization section for information on
how α chosen for each agent and bandit.

V (s) = V (s) + α(Rt − V (s) [11]

The return Rt differed between agents. Our dual value
agent, and both the variations of the e-greedy algorithm, used
the reward from the environment Rt as the return. This value
was binary. The Bayesian reward agent used a combination of
information value and reward Rt = Rt + βEt, with the weight
β tuned as described below.

Hyperparameter optimization. The hyperparameters for each
agent were tuned independently for each bandit using a modi-
fied version of Hyperband (80). For a description of hyperpa-
rameters seen Table 1, and for the values themselves Table ??.

Exploration and value dynamics. . While agents earned nearly
equivalent total reward in Bandit I (Fig 3, top row), their
exploration strategies were quite distinct. In Supp. Fig 6B-D)
we compare three prototypical examples of exploration, for
each major class of agent: ours, Bayesian, and E-greedy for
Bandit I. In Supp. Fig 6A) we include an example of value
learning value learning in our agent.

10 | Peterson et al.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 15, 2019. ; https://doi.org/10.1101/671362doi: bioRxiv preprint 

https://doi.org/10.1101/671362
http://creativecommons.org/licenses/by-nc-nd/4.0/


PR
EP

RIN
T

Fig. 6. Exploration and value dynamics. A. An example of our dual value learning
algorithm during 500 trials on Bandit. The light purple line represents the boredom
threshold η (Eq. 5). B. An example of exploration dynamics (i.e arm selection) on
Bandit. Note how the search is structured, and initially sequential. C-D. Exploration
dynamics for two other agents. C. The Bayesian agent, which like our algorithm uses
active sampling, and values information. Note how this shows a mixture of structures
and repeated choices, mixed with seemingly random behavior. D. The E-greedy
agent, which uses purely random sampling. Note how here the agent is either greedy,
repeating the same arm, or seemingly random.
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