
Embracing curiosity eliminates the
exploration-exploitation dilemma
Erik J Petersona,b,1 and Timothy D Verstynena,b,c,d

aDepartment of Psychology; bCenter for the Neural Basis of Cognition; cCarnegie Mellon Neuroscience Institute; dBiomedical Engineering, Carnegie Mellon University,
Pittsburgh PA

Balancing exploration with exploitation is seen as a mathematically
intractable dilemma that all animals face. In this paper, we provide an
alternative view of this classic problem that does not depend on ex-
ploring to optimize for reward. We argue that the goal of exploration
should be pure curiosity, or learning for learning’s sake. Through the-
ory and simulations we prove that explore-exploit problems based
on this can be solved by a simple rule that yields optimal solutions:
when information is more valuable than rewards, be curious, other-
wise seek rewards. We show that this rule performs well and robustly
under naturalistic constraints. We suggest three criteria can be used
to distinguish our approach from other theories.

Introduction

The exploration-exploitation dilemma is seen as a fundamental,
yet intractable, problem in the biological world (1–6). In this
problem, the actions taken are based on a set of learned values
(3, 7). Exploitation is defined as choosing the most valuable
action. Exploration is defined as making any other choice.
Exploration and exploitation are thus seen as opposites, but
their trade-off is not formally a dilemma.

To create the dilemma two more things must be true. First,
is that exploration and exploitation have a shared objective.
This is satisfied in reinforcement learning when exploration and
exploitation both try to maximize rewards collected from the
environment (3). Second uncertainty about the outcome must
be present prior to action (3). Combined these two assump-
tions create and define the classic exploration-exploitation
dilemma, which we illustrate in Figure 1a. They also make a
tractable solution to the problem impossible (2, 4, 5).

The dilemma in this form has been studied for decades
and a variety of complex and approximate answers have been
prooposed (2, 5, 6, 8–14). We put aside this work in order to
ask a critical and contrarian question: is the dilemma really a
fundamental problem for animals to solve?

In this paper we offer an alternative view. We hypothesize
that curiosity is a sufficient motivation for all exploration. We
then treat extrinsic rewards and intrinsic curiosity as equally
important, but independent motivations (15). We put them
in direct competition with each other, as illustrated in Figure
1b.

Ther is no one reason to suppose curiosity is sufficient, there
are many. Curiosity leads to the building of intuitive physics
(16) and is key to understanding causality (17). It can help
ensure that an animal has generalizable world models (18, 19).
It can drive imagination, play, and creativity (20–23). It can
lead to the discovery of, and creation of, knowledge (24–26).
It can ensure local minima, or other deceptive outcomes, are
overcome when learning (27, 28). It leads to the discovery
of changes in the environment (29), and ensures there are
robust action policies to respond to these changes (30). It can

help in the recovery from injury (31). It can drive language
learning (32). It is critical to evolution and the process of
cognitive development (33, 34). Animals will prefer curiosity
over extrinsic rewards, even when that information is costly
(35–38). It is this combination of reasons that makes curiosity
useful to an organism and it is this broad usefulness that let’s
us hypothesize that curiosity is sufficient for all exploration
(15, 27, 39).

Our simple approach is a stronger view than is standard.
Normally, to solve dilemma problems, exploration is motivated
by extrinsic rewards and aided by “breadcrumbs” from intrin-
sic rewards (9, 40, 41). Approximating a dilemma solution
is normally about choosing the algorithm that creates these
“breadcrumbs”, and then setting their relative importance com-
pared to environmental rewards. Instead, we contrast intrinsi-
cally motivated exploration with pure extrinsic exploitation
in a competitive game that is played out inside the minds of
individual animals.

This paper consists of a new union of pure intrinsic and pure
extrinsic motivations. We prove there is an optimal value rule
to choose between curiosity and environmental rewards. We
follow this up with naturalistic simulations, showing where our
union’s performance matches or exceeds normal approaches,
and we show that overall pure exploration is the more robust
solution to the dilemma of choosing to explore or chooosing
to exploit.

Results

Reward collection - theory. When the environment is unknown,
an animal needs to trade-off exploration and exploitation. The
standard way of approaching this is to assume, “The agent
must try a variety of actions and progressively favor those that
appear to be the most rewarding” (3).

We first consider an animal who interacts with an envi-
ronment over a sequence of states, actions and rewards. The
animal’s goal is to select actions in a way that maximizes the
total reward collected. How should an animal do this?

To describe the environment we use a discrete time Markov
decision process, Xt = (S,A, T ,R). Specifically, states are
real valued vectors S from a finite set S of size n. Ac-
tions A are from the finite real set A of size k. We con-
sider a set of policies that consist of a sequence of functions,
π = {πt, πt+1, . . . , πT−1}. For any step t, actions are gener-
ated from states by policies, either deterministic A = π(S) or
random A ∼ π(S|A). In our presentation we drop the index-
ing notation on our policies, using simply π to refer to the
sequence as a whole. Rewards are single valued real numbers,
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Fig. 1. Two views of exploration and exploitation from the point of view of a bee. a.
The classic dilemma: either exploit an action with a known reward by returning to the
best flower or explore other flowers on the chance they will return a better outcome.
The central challenge here is that the exploration of other flowers is innately uncertain
in terms of the pollen collected, the extrinsic reward. b. Our alternative: a bee can
have two goals: either exploit the pollen from the best flower, or explore to maximize
pure learning with intrinsically curious search of the environment. The solution we
propose to our alternative is the bee or any other learning agent ought to pursue either
intrinsic information value or extrinsic reward value, depending on which is expected
to be larger. In other words, to solve explore-exploit decisions we set information and
reward on equal terms, and propose a greedy rule to choose between them. Artist
credit : Richard Grant.

R, generated by a reward function R ∼ R(S|A, t). Transitions
from state S to new state Sť are caused by a stochastic tran-
sition function, S′ ∼ T (S|A, t). We leave open the possibility
both T and R may be time-varying.

In general we use the = to denote assignment, in contrast
to ∼ which we use to denote taking random samples from
some distribution. The standalone | operator is used to denote
conditional probability. An asterisk is used to denote optimal
value policies, π∗.

We focus on finite time horizons. We do not discount the
rewards. Both for simplicity. Our basic approach should
generalize to continuous spaces, and discounted but infinite
time horizons (42)

So given a policy πR, the value function in standard rein-
forcement learning is given by Eq. 1. This the term we use to
maximize reward collection.

VπR (S) = EπR

[ T∑
t=0

Rt | St = S
]

[1]

But this equation is hard to use in practice because it
requires we integrate over all time, T . The Bellman equation
(Eq. 2) is a desirable simplification because it reduces the
entire action sequence in Eq. 1 into two (recursive) steps, t
and t+ 1. These steps can then be recursively applied.

The practical problem we are with left in a this simplifica-
tion is finding a reliable estimate of Vπ∗

R
(St+1) (Eq. 2). This

is a problem we return to further on.

Vπ∗
R

(S) = max
πR

VπR (S)

= max
A∈A

E
[
Rt + Vπ∗

R
(St+1) | St = S, At = A

] [2]

Information collection - theory. Should any one role for curios-
ity dominate the others? We suggest no. We therefore define a
new metric of learning progress (43) that is general, practical,
simple, and compatible with the normal limits of experimental

knowledge. That is, we do not assume the learning algorithm
or goal is known. We only assume there is a memory whose
dynamics we can measure.

We now consider an animal who interacts with an environ-
ment over the same space as in reward collection, but whose
goal is to select actions in a way that maximizes information
value (26, 44–52). In this, we face two questions: How should
this information be valued and collected over time? And like
for reward collection, is there a Bellman solution?

We assume a Bellman solution is possible and set about
finding it. Let’s then say E represents the information value.
The Bellman solution we want for E is given by Eq. 3.

Vπ∗
E

(S) = max
A∈A

E
[
Et + Vπ∗

E
(St+1) | St = S, At = A

]
[3]

We assume that maximizing E also maximizes curiosity.
We refer to our deterministic approach to curiosity as E-
exploration. Or E-explore, for short. In the following para-
graphs we will define E, and prove this definition has the
Bellman solution shown in Eq.3. We will not limit ourselves
to Markovian ideas of learning and memory in doing this.

We define memory M as a vector of size p embedded in a
real-valued space that is closed and bounded. This idea maps
to a range of physical examples of memory, including firing
rates of neurons in a population (53), strength differences
between synapses (54), or calcium dynamics (55).

A learning function is then any function f that maps obser-
vations X into memory M. This idea can be expressed using
recursive notation, denoted by M← f(X ,M). Though we will
sometimes use M′ to denote the updated memory instead. We
also need to define a forgetting function, f−1f(X , M′)→M
which is important later. As an auxiliary assumption we as-
sume f has been selected by evolution to be formally learnable
(56).

Curiosity axioms. Should any one role for curiosity dominate
the others? We suggest no. We therefore define a new metric
of learning progress (43) that is general, practical, simple, and
compatible with the normal limits of experimental measure-
ments. That is, we do not assume the learning algorithm, or
target goal, are known. We only assume we have a memory,
who’s learning dynamics we can measure.

We reason the value of any information depends entirely
on how much memory changes in making an observation. We
formalize this idea with axioms, which follow.

These axioms are useful in three ways: First, they give a
measure of value information without needing to know the
exact learning algorithm(s) in use. This is helpful because
we rarely know how an animal is learning in detail. This
leads to the second useful property. If we want to measure
a subjects intrinsic information value, we need only record
differences in dynamics of their memory circuits. There is
little need to decode, or interpret. Third, these definitions
properly generalize all prior attempts to formalize curiosity.

So if we have a memory M which has been learned by f
over a path of observations, (X0,X1, ...), can we measure how
much value E the next observation Xt should have?
Axiom 1 (Axiom of Memory). E is continuous with continu-
ous changes in memory, ∆M, between M′ and f(X ,M).
Axiom 2 (Axiom of Specificity). If all p elements |∆Mi| in
M are equal, then E is minimized.
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Fig. 2. Information value. a. This panel illustrates a two dimensional memory. The
information value of an observation depends on the distance memory “moves” during
learning, denoted here by E We depict memory distance as euclidean space, but this
is one of many possible ways to realize E. b-c This panel illustrates some examples
of learning dynamics in time, made over a series of observations that are not shown.
If information value becomes decelerating in finite time bound, then we say learning
is consistent with Def. 2. This is what is shown in panel b. If learning does not
decelerate, then it is said to be inconsistent (Panel c). The finite bound is represented
here by a dotted line.

That is, information that is learned evenly in memory
cannot induce any inductive bias, and is therefore nonspecific
and is the least valuable learning possible (57).

Axiom 3 (Axiom of Scholarship). Learning has an innately
positive value, even if later on it has some negative conse-
quences. Therefore, E ≥ 0.

Axiom 4 (Axiom of Equilibrium). Given the same observation
Xi, learning will reach equilibrium. Therefore E will decrease
to below some finite threshold η > 0 in some finite time T .

See Figure 2a for an example of E defined in memory space.
We show examples of learning equilibrium and (self-)consistent
and inconsistent learning in Figure 2b-c.

Note that a corollary of Axiom 1 is that an observation that
doesn’t change memory, has no value. So if

∑p

i=1 |∆Mi| = 0
then E = 0. It also follows from Axiom 3 and 4 that E-
exploration will visit every state in S ar least once in a finite
time T , assuming E0 > 0. And as we stop exploration when
E < η, only states in which there is more to be learned will be
revisited. This, along with our deterministic policy, ensures
perfectly efficient exploration in terms of learning progress.

A Bellman solution. A common way to arrive at the Bellman so-
lution is to rely on a Markov decision space. This is a problem
for our definition of memory as it has path dependence and
so violates the Markov property. To get around this, we prove
that exact forgetting of the last observation is another way to
find a Bellman solution. Having proven the optimal substruc-
ture of M (see the Appendix), and assuming some arbitrary
starting value E0 > 0, it follows that the Bellman solution to
information optimization is in fact given by Equation 3.

The importance of boredom. To limit curiosity–to avoid the white
noise problem (18), other useless minutia (58), and to stop
exploration efficiently–we rely on the threshold term, η ≥ 0
(Ax. 4). We treat η as synonymous with boredom (9, 59,
60). In other words, we hypothesize boredom is an adaptive

parameter tuned to fit the environment (61). Specifically, we
use boredom to ignore arbitrarily small amounts of information
value, by requiring exploration of some observation X to cease
once E ≤ η for that X .

Reward and information - theory. Finally, our union of inde-
pendent curiosity with independent reward collection. We
now model an animal who interacts with an environment who
wishes to maximize both information and reward value, as
shown in Eq 4. How can an animal do this? To answer this,
let’s make two conjectures:

Conjecture 1 (The hypothesis of equal importance). Reward
and information collection are equally important for survival.

Conjecture 2 (The curiosity trick). Curiosity is a sufficient
solution for all exploration problems (where learning is possi-
ble).

VπER (S) = max
πER

E
[ T∑
t=0

max[Et, Rt]
∣∣∣ St = S

]
[4]

Having already established we have a Bellman optimal
policy for E , and knowing reinforcement learning provides
many solutions for R (3, 42), we can write out the Bellman
optimal solution for VπER . This is,

VπER (S) = max
πER

E
[

max[Et, Rt] + VπER (St+1)∣∣∣ St = S,At = A
] [5]

From here we can substitute in the respective value func-
tions for reward and information value. This gives us Eq.6,
which translates to the Bellman optimal decision policy shown
in Eq.7.

VπER (S) = max
πER

E
[

max[VπE (S), VπR (S)] + VπER (St+1)∣∣∣ St = S,At = A
] [6]

πER(S) =
{
πR(S) if VπR (S) ≥ VπE (S)
πE(S) otherwise

[7]

Simplifying with win-stay lose-switch. In our analysis of decision
making we have assumed value for the next state, V (St+1) is
readily and accurately available. In practice for most animals
this is often not so, and is a key distinction between the field
of dynamic programming and the more biologically sound
reinforcement learning. If we no longer assume VπE and VπR

are available but must be estimated from the environment,
then we are left with something of a paradox.

We wish to use value functions to decide between infor-
mation and reward value but are simultaneously estimating
those values. There are a range of methods to handle this
(3, 42), but we opted to further simplify πER in three ways.
We first shifted from using the full value functions to using
only the last payout, Et−1 and Rt−1. Second, we removed all
state-dependence leaving only time dependence. Third, we
also included η0 to control the duration of exploration. This
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gives our final working equation (Eq. 8 a new sort of win-stay
lose-switch (WSLS) rule.

π̃ER(S) =
{
πR(S) if Rt−1 ≥ Et−1 − η
πE(S) otherwise

[8]

In Eq. 8, we think of πR and πE as two “players” in a game
played for behavioral control (62). We feel the approach has
several advantages. It is myopic and therefore can optimally
handle nonlinear changes in either the reward function or
environmental dynamics (63). In stationary settings, its regret
is bounded (64). It can approximate Bayesian inference (65).
It leads to cooperative behavior (66). Further, WSLS has a
long history in psychology, where it predicts and describes
human and animal behavior (67). But most of all, our version
of WSLS is simple to implement, but robust in practice (shown
below). It should therefore scale well in different environments
and species.

Information collection - simulations. The optimal policy to
collect information value is not a sampling policy. It is a
deterministic greedy maximization (Eq 3). In other words, to
minimize uncertainty during exploration an animal should not
introduce additional uncertainty by taking random actions
(68).

To confirm our deterministic method is best we examined
a multi-armed information task (Task 1; Figure 3a). This
variation of a bandit task replaced rewards with information.
In this case, simple colors. On each selection, the agent saw
one of two colors (integers) returned according to specific
probabilities (Figure 3a).

In Figure 4 we compared optimal value E-exploration to a
noisy version of itself. As predicted, determinism generated
more value in less time, when compared against a (slightly)
stochastic agent using an otherwise identical curiosity-directed
search.

Reward collection - simulations.

Bandits. Can curious search solve reward collection problems
better than other approaches? To find out we measured the
total reward collected in several bandit tasks (Figure 3b-g).
We considered eight agents, including ours (Supplemental
table S1). Each agent differed only in their exploration strategy.
Examples of these strategies are shown in Figure. 5a. Note
our union is denoted in green throughout. Without loss of
generality, E is defined using a Bayesian information gain (14)
which we sometimes abbreviate as “IG” (see Methods).

Despite E-exploration never optimizing for reward value,
our method of pure exploration (69) matched or in some cases
outperformed standard approaches that rely on reward value,
at least in part.

In Figure 6 present overall performance in some standard
bandit tasks: simple (Figure 6b), sparse (Figure 6c), high
dimensional (Figure 6e) and non-stationary (Figure 6f). Over-
all, our approach matches or sometimes exceeds all the other
exploration strategies (Figure 6a)).

With the exception of Task 4, performance improvements,
when present, were small. This result might not look note-
worthy. We argue it is because our exploration strategy never
optimizes for reward value explicitly. Yet, we meet or exceed
exploration strategies which do. In other words, when intrinsic

curiosity is used in an optimal trade-off with extrinsic reward,
curiosity does seem sufficient in practice.

In Figure 6f we considered deception. In this bandit there
was an initial (misleading) 20 step decline in reward value
(Figure 3d). On this task, other exploration strategies pro-
duced little better than chance performance. When deception
is present, externally motivated exploration is a liability.

In Figure 7 we tested the robustness of all the agents to envi-
ronmental mistunings. We re-examined total rewards collected
across all model tunings or hyperparameters (Methods). Here
E-explore was markedly better, with both substantially higher
total reward when we integrate over all parameters (Figure 7a)
and when we consider the tasks individually (Figure 7b-f).

Foraging. Bandit tasks are a simple means to study the explore-
exploit problem space but in an abstract form. They do not
adequately describe more natural settings where there is a
physical space.

In Figure 8 we consider a foraging task defined on a 2d
grid. In our foraging task for any position (x, y) there is
a noisy “scent” which is “emitted” by each of 20 randomly
placed reward targets. A map of example targets is shown in
Figure 8a. The scent is a 2d Gaussian function centered at
each target, corrupted by 1 standard deviation of noise (not
shown).

In Figure 8b-d we show examples of foraging behavior by
4 agents (Supplemental table S2). Two of them are learning
agents, ours and a mixed value reinforcement learning model.
One is a chemotaxis agent. The other is a random search
agent. Figure 8b shows foraging behavior before any learning.
Figure 8c shows behavior halfway through the 100 experiments
we considered. Figure 8d represents an example of the final
behaviors. Notice how over this series ours, and the mixed
value agent, learn to focus their foraging to a small targeted
area as is best for this task.

In Figure 8e we show the reward acquisition time course
averaged across all learning episodes. This measures both a
learning progress and final task performance. Both reward
learning agents plateau to the max value of 200, but ours
(green) does so more quickly. In contrast, neither the chemo-
taxis or random agents show a change in profile. The takeaway
for Task 8 is our method does scale well to 2d environments and
can, at least in this one task, outperform standard approaches
here as well.

Discussion

We have shown that competitive union of pure curiosity with
pure reward collection leads to a simple solution to the explore-
exploit trade-off. Curiosity matches or exceeds reward-based
strategies, in practice. That is, when rewards are sparse,
high-dimensional, or non-stationary. It uniquely overcomes
deception. Curiosity is also far more robust than the standard
algorithms. We have derived a measure of information value
via learning progress, but done in an axiomatic way it is
possible to directly measure. This measure also properly
generalizes many prior efforts to formalize curiosity.

In summary, we have used theory and simulations to argue
scientists can safely set aside intuitions which suggest curious
search is too inefficient to be generally practical. We have not
shown our account can describe animal behavior in detail. For
this, we have three strong experimental predictions to make.
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Fig. 3. Multi-armed bandits – illustra-
tion and payouts. On each trial the
agent must take on n actions. Each ac-
tion generates a payout. Payouts can
be information, reward, or both. For
comments on general task design. a.
A 4 choice bandit for information col-
lection. In this task the payout is infor-
mation, a yellow or blue “stimulus”. A
good agent should visit each arm, but
quickly discover that only arm two is
information bearing. b. A 4 choice de-
sign for reward collection. The agent is
presented with four actions and it must
discover which choice yields the high-
est average reward. In this task that
is Choice 2. c. A 10 choice sparse
reward task. Note the very low overall
rate of rewards. Solving this task with
consistency means consistent explo-
ration. d. A 10 choice deceptive re-
ward task. The agent is presented with
10 choices but the action which is the
best in the long-term (>30 trials) has
a lower value in the short term. This
value first declines, then rises (see col-
umn 2). e. A 121 choice task with a
complex payout structure. This task
is thought to be at the limit of human
performance. A good agent will even-
tually discover choice number 57 has
the highest payout. f. This task is iden-
tical to a., except for the high payout
choice being changed to be the lowest
possible payout. This task tests how
well different exploration strategies ad-
just to simple but sudden change in the
environment.
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Fig. 4. Comparing deterministic versus stochastic variations of the same curiosity
algorithm in Task 1. Deterministic results are shown in the left column and stochastic
results are shown in the right. a. Examples of exploration behavior. b. Information
value plotted with time. Matches the behavior shown in a. Large values are prefered.
c. Average information value for 100 independent simulations. er of steps it took to
reach the stopping criterion in c., e.g. the boredom threshold eta (described below).
Smaller numbers of steps imply a faster search.

1. Invariant exploration strategy. The presence of re-
ward does not itself change the exploration strategy. For
example, in (70) the exploration patterns of rats in a
maze did change when a food reward was present at the
maze’s end. Auxiliary assumptions. Learning about the
environment is possible and there are some observations
available to learn from.

2. Deterministic search. It is possible to predict exactly
exploratory choices made during a curious search because
the optimal search policy is strictly deterministic. To
evaluate this we must move from population-level distri-
bution analysis of behavior–which could be generated by
bot deterministic or stochastic–to also examining moment-
by-moment prediction of animal behavior (71, 72). Auxil-
iary assumptions: The noise in the neural circuits which
implements behavior is sufficiently weak so it does not
dominate the behavior itself.

3. Well defined periods. There should be well-defined
periods of exploration and exploitation. For example,
fitting a hidden markov model to the decision space should
yield only two hidden states–one for exploration and one
for exploitation. As in, (73).

Questions and answers. We have been arguing that an es-
tablished problem in decision theory–the classic dilemma–has
been difficult or impossible to solve not because it must be, but
because the field historically took a wrong view of exploration.
We have also defined information value without considering
the direct usefulness of the information learned. These are
controversial viewpoints. So let’s consider some questions and
answers.

Why curiosity? Our use of curiosity rests on three well
established facts. 1. Curiosity is a primary drive in most, if
not all, animal behavior (15). 2. Curiosity is as strong, if not
sometimes stronger, than the drive for reward (25, 74, 75). 3.
Curiosity as an algorithm is highly effective at solving difficult
optimization problems (9, 16, 27, 31, 32, 49, 58, 76, 77).

Is this a slight of hand, theoretically? Yes. We have
taken one problem that cannot be solved and replaced it with
another related problem that can be. In this replacement
we swap one behavior, extrinsic reward seeking, for another,
curiosity.

Is this too complex? Perhaps turning a single objective
into two, as we have, is too complex an answer. If this is true,
then it would mean our strategy is not a parsimonious solution
to the dilemma. Should we reject it on that alone?

Questions about parsimony can be sometimes resolved by
considering the benefits versus the costs of added complexity.
The benefits are an optimal value solution to the exploration
versus exploitation trade-off. A solution which seems especially
robust to model-enviroment mismatch. At the same time
curiosity-as-exploration can build a model of the environment
(78), useful for later planning (79, 80), creativity, imagination
(81), while also building diverse action strategies (32, 77, 82,
83).

Is this too simple? So have we “cheated” by changing
the dilemma problem in the way we have?

The truth is we might have cheated, in this sense: the
dilemma might have to be as hard as it has seemed in the
past. But the general case for curiosity is clear and backed
up by the brute fact of its widespread presence in the animal
kingdom. The question is: is curiosity so useful and so robust
that it is sufficient for all exploration with learning (27).

The answer to this question is empirical. If our account does
well in describing and predicting animal behavior, that would
be some evidence for it (2, 29, 36, 74, 75, 84–88). If it predicts
neural structures (89, 90), that would be some evidence for it.
If this theory proves useful in machine learning, that would
be some evidence for it (9, 27, 28, 31, 32, 46, 48, 82, 88, 91).
In other words how simple, complex, or parsimonious an
theoretical idea comes down to usefulness.

What about truth? IIn other prototypical examples
information value comes from prediction errors or is otherwise
measured by how well learning corresponds to the environment
(92–94) or how useful the information might be in the future
(30). Colloquially, one might call this “truth seeking".

As a people we pursue information which is fictional (95),
or based on analogy (96), or outright wrong (97). Conspiracy
theories, disinformation, and more mundane errors, are far
too commonplace for information value to rest on mutual
information or error. This does not mean that holding false
beliefs cannot harm survival but this is a second order question
as far as information value goes. The consequences of error
on information value come after the fact.

What about information theory? In short, the prob-
lems of communication of information and its value are wholy
different issues that require different theories.

Weaver (98) in his classic introduction to the topic, de-
scribes information as a communication problem with three
levels. A. The technical problem of transmitting accurately.
B. The semantic problem of meaning. C. The effectiveness
problem of using information to change behavior. He then
describes how Shannon’s work addresses only the problem A.,
which let’s information theory find broad application.

Valuing information is not, at its core, a communications
problem. It is a problem in personal history. Consider Bob
and Alice who are having a phone conversation, and then
Tom and Bob who have the exact same phone conversation.
The personal history of Bob and Alice will determine what
Bob learns in their phone call, and so determines what he
values in that phone call. Ro so we argue. This might be
different from what Bob learns when talking to Tom, even
when the conversations was identical. What we mean to show
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Fig. 5. Behavior on a complex high-dimensional
action space (Task 5). a. Examples of strategies
for all agents (1 example). b. Average reward
time courses for all agents (10 examples).

Fig. 6. Reward collection
performance. b. Overall re-
sults. Total reward collected
for each of the four tasks was
normalized. Dot represents
the median value, error bars
represent the median abso-
lute deviation between tasks
(MAD). b. Results for Task 2,
which has four choices and
one clear best choice. c. Re-
sults for Task 3, which has 10
choices and very sparse pos-
itive returns. d. Results for
Task 4, whose best choice
is initially “deceptive” in that
it returns suboptimal reward
value over the first 20 trials.
e. Results for Task 6, which
has 121 choices and a quite
heterogeneous set of pay-
outs but still with one best
choice. f. Results for Task
7, which is identical to Task
6 except the best choice was
changed the worst. Agents
were pre-trained on Task 6,
then tested on 7. In panels
b-e, grey dots represent to-
tal reward collected for indi-
vidual experiments while the
large circles represent the
experimental median.

Fig. 7. Exploration parameter sensitivity. a. In-
tegrated total reward (normalized) across 1000
randomly chosen exploration hyperparameters.
Dots represent the median. Error bars are the
median absolute deviation. b-f. Normalized to-
tal reward for exploration 1000 randomly chosen
parameters, ranked according to performance.
Each subpanel shows performance on a differ-
ent task. Lines are colored according to overall
exploration strategy - E-explore (ours), reward
only, or a mixed value approach blending reward
and an exploration bonus).
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Fig. 8. Reward collection during foraging (Task 8). See Methods for
full details. a. Illustration of a 2 dimensional reward foraging task.
b-d. Examples of agent behavior, observed over 200 time steps.
a. Without any training. b. After 50 training episodes. c. After 99
training episodes. e. Total rewards collected over time, median value
of 100 independent simulations.
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Fig. 9. The relationship between the technical problem of communication with the
technical problem of value. Note how value is not derived from the channel directly.
Value comes from learning about observations taken from the channel, which in turn
depends on memory.

by this example is that the personal history, also known as
past memory, defines what is valuable on a channel.

We have summarized this diagrammatically, in Figure 9.
Finally, we argue there is an analogous set of levels for

information value as those Weaver describes for information.
There is the technical problem of judging how much was
learned. This is the one we address, like Shannon. There
is the semantic problem of what this learning “means” and
also what its consequences are. There is also the effectiveness
problem of using what was learned to some other effect.

Does value as a technical problem even make sense?
Having a technical definition of information value, free from
any meaning, might seem counterintuitive for any value mea-
sure. We suggest it is not any more or less counterintuitive
than stripping information of meaning.

So you suppose there is always a positive value
for learning of all fictions, disinformation, and decep-
tions? We must. This is a most unexpected prediction. Yet
sit seems consistent with the behavior of humans, and animals
alike. Humans do consistently seek to learn falsehoods. Our
axioms suggest why this is rational.

Was it necessary to build a general theory for in-
formation value to describe curiosity? No. We made
an idealistic choice that worked out. The field of curiosity
studies has shown that there are many kinds of curiosity
(9, 20, 25, 48, 49, 58, 74–76, 82, 85, 99–102). At the extreme
limit of this diversity is a notion of curiosity defined for any
kind of observation, and any kind of learning. This is what we
offer. At this limit we can be sure to span fields, addressing
the problem of information value as it appears in computer sci-
ence, machine learning, game theory, psychology, neuroscience,
biology, economics, among others.

What about other models of curiosity? Curiosity
has found many specific definitions (45, 75). Curiosity has
been described as a prediction error, by learning progress
(9, 103). Schmidhuber (9) noted the advantage of looking
at the derivative of errors, rather than errors directly. Itti
(104) and others (14, 20, 23, 105) have taken a statistical
and Bayesian view often using the KL divergence to estimate

information gain or Bayesian surprise. Other approaches have
been based on adversarial learning, model disagreement (58),
or model compression (20). Some measures focused on past
experience (18, 78, 106). Others focused on future planning
and imagination (107–109). Graphical models of memory have
been useful (110).

What distinguishes our approach to information value is we
focus on memory dynamics, and base value on some general
axioms. We try to embody the idea of curiosity “as learning
for learning’s sake”, not done for the sake of some particular
goal (111), or for future utility (30). Our axioms were however
designed with all these other definitions in mind. In other
words, we do not aim to add a new metric. We aim to generalize
the others.

Is information a reward? If reward is any quantity that
motivates behavior, then our definition of information value
is a reward, an intrinsic rewaard. This last point does not
mean that information value and environmental rewards are
interchangeable however. Rewards from the environment are
a conserved resource, information is not. For example, if a rat
shares a potato chip with a cage-mate, it must break the chip
up leaving it less food for itself. While if a student shares an
idea with a classmate, that idea is not divided up. It depends,
in other words.

But isn’t curiosity impractical? It does seem curiosity
can lead away from a needed solution as towards it. Consider
children, who are the prototypical curious explorers (29, 74).
This is why we focus on the derivatives of memory and limit
curiosity with boredom, as well as counter curiosity with a drive
for reward collecting (i.e., exploitation). All these elements
combined seek to limit curiosity without compromising it.

Let’s consider colloquially how science and engineering
can interact. Science is sometimes seen as an open-ended
inquiry, whose goal is truth but whose practice is driven by
learning progress, and engineering often seen as a specific
target driven enterprise. They each have their own pursuits,
in other words, but they also learn from each other often in
alternating iterations. Their different objectives is what makes
them such good long-term collaborators.

In a related view Gupta et al (1) encouraged managers in
business organizations to strive for a balance in the exploitation
of existing markets and ideas with exploration. They suggested
managers should pursue periods of “punctuated equilibrium”,
where employees work towards either pure market exploitation
or pure curiosity-driven exploration to drive future innovation.

What is boredom, besides being a tunable param-
eter? A more complete version of the theory would let us
derive a useful or even optimal value for boredom if given a
learning problem or environment. We cannot do this. It is the
next problem we will work on, and it is important.

Does this mean you are hypothesizing that bore-
dom is actively tuned? Yes we are predicting that.

But can animals tune boredom? Geana and Daw (61)
showed this in a series of experiments. They reported that
altering the expectations of future learning in turn alters self-
reports of boredom. Others have shown how boredom and
self-control interact to drive exploration (59, 60, 112).

Do you have any evidence in animal behavior and
neural circuits? There is some evidence for our theory of
curiosity in psychology and neuroscience, however, in these
fields curiosity and reinforcement learning have developed as
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separate disciplines (3, 74, 85). Indeed, we have highlighted
how they are separate problems, with links to different basic
needs: gathering resources to maintain physiological home-
ostasis (113, 114) and gathering information to decide what
to learn and to plan for the future (3, 56). Here we suggest
that though they are separate problems, they are problems
that can, in large part, solve one another. This insight is the
central idea to our view of the explore-exploit decisions.

Yet there are hints of this independent cooperation of cu-
riosity and reinforcement learning out there. Cisek (2019) has
traced the evolution of perception, cognition, and action cir-
cuits from the Metazoan to the modern age (89). The circuits
for reward exploitation and observation-driven exploration ap-
pear to have evolved separately, and act competitively, exactly
the model we suggest. In particular he notes that exploration
circuits in early animals were closely tied to the primary
sense organs (i.e. information) and had no input from the
homeostatic circuits (89, 113, 114). This neural separation
for independent circuits has been observed in some animals,
including zebrafish (115) and monkeys (36, 116).

Is the algorithmic run time practical? Computer
scientists often study the run time of an algorithm as a measure
of its efficiency. The worst case algorithmic run time of our
method is linear and additive in the independent policies. If it
takes TE steps for πE to converge, and TR steps for πR, then
the worst case run time for πER is TE + TR.

Methods and Materials

Tasks. We studied seven bandit tasks. On each trial there
were a set of n choices, and the agent should try and learn the
best one. Each choice action returns a “payout” according to
a predetermined probability. Payouts are information, reward,
or both (Figure 3).

Task 1 was designed to examine information foraging.
There were no rewards. There were four choices. Three
of these generated either a “yellow” or “blue” symbol, with a
set probability. See Figure 3a.

Task 2 was a simple simple bandit, designed to examine
reward collection. At no point does the task generate infor-
mation. Rewards were 0 or 1. There were four choices. The
best choice had a payout of p(R = 1) = 0.8. This is a much
higher average payout than the others (p(R = 1) = 0.2). See
Figure 3b.

Task 3 was designed with very sparse rewards (117, 118).
There were 10 choices. The best choice had a payout of
p(R = 1) = 0.02. The other nine had, p(R = 1) = 0.01 for all
others. See Figure 3c.

Task 4 had deceptive rewards. By deceptive we mean that
the best long-term option presents itself initially with a lower
value. The best choice had a payout of p(R > 0) = 0.6. The
others had p(R > 0) = 0.4. Value for the best arm dips,
then recovers. This is the “deception” It happens over the
first 20 trials. Rewards were real numbers, between 0-1. See
Figure 3d.

Tasks 5-6 were designed with 121 choices, and a complex
payout structure. Tasks of this size are at the limit of human
performance (119). We first trained all agents on Task 6,
whose payout can be seen in Figure3f-g. This task, like the
others, had a single best payout p(R = 1) = 0.8. After training
for this was complete, final scores were recorded as reported,
and the agents were then challenged by Task 7. Task 7 was

identical except that the best option was changed to be the
worst p(R = 0) = 0.2 (Figure 3f-g).

Task 7 was a spatial foraging task (Figure 8a) where 20
renewing targets were randomly placed in a (20, 20) unit grid.
Each target “emitted” a 2d Gaussian “scent” signal with a 1
standard deviation width. Agents began at the (0,0) center
position and could move (up, down, left, right). If the agent
reached a target it would receive reward (1), continuously.
All other positions generate 0 rewards. Odors from different
targets were added.

Agents. We considered two kinds of specialized agents. Those
suited to solve bandit tasks and those suited to solve foraging
tasks.

Bandit: E-explore - Our algorithm. It pursued either pure
exploration based on E maximization or pure exploitation
based on pure Rmaximization. All its actions are deterministic
and greedy. Both E and R maximization was implemented
as an actor-critic architecture (3) where value updates were
made in crtic according to Eq. 19. Actor action selection was
governed by,

At = argmaxA ∈ A = Q(., At) [9]

where we use the “.” to denote the fact our bandits have
no meaningful state.

This agent has two parameters, the learning rate α (Eq. 19)
and the boredom threshold η (Eq. 8). It’s payout function
was simply, G = Rt (Eq. 19).

Bandit: Reward. An algorithm whose objective was to
estimate the reward value of each action, and stochastically
select the most valuable action in an effort to maximize total
reward collected. It’s payout function was simply, G = Rt
(Eq. 19). Similar to the E-explore agent, this agent used actor-
critic, but its actions were sampled from a softmax / Boltzman
distribution,

p(At) = eγQR(.,At)∑
A∈A e

γQR(.,A) [10]

Where γ is the “temperature” parameter. Large γ generate
more random actions. This agent has two parameters, the
learning rate α (Eq. 19) and the temperature γ > 0 (Eq. 10).

Bandit: Reward+Info. This algorithm was based on the
Reward algorithm defined previously but it’s reward value
was augmented or mixed with E. Specifically, the information
gain formulation of E described below. It’s payout is, Gt =
Rt + βEt (Eq. 19). Critic values were updated using this G,
and actions were selected according to Eq. 10. This agent has
three parameters, the learning rate α (Eq. 19) the temperature
γ (Eq. 10) and the exploitation weight β > 0. Larger values
of β will tend to favor exploration.

Bandit: Reward+Novelty. This algorithm was based on
the Reward algorithm defined previously but it’s reward value
wass augmented or mixed with a novelty/exploration bonus
(Eq. 11).

BAt =
{
B if At not it Z
0 otherwise

[11]

Where Z is the set of all actions that agent has taken so
far in a simulation. Once all actions have been tried, B = 0.
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This agent’s payout is, Gt = Rt+Bt (Eq. 19). Critic values
were updated using this G and actions were selected according
to Eq. 10. This agent has three parameters, the learning rate
α (Eq. 19), the temperature γ (Eq. 10), and the bonus size
B > 0.

Bandit: Reward+Entropy. This algorithm was based on
the Reward algorithm defined previously but it’s reward value
was augmented or mixed with an entropy bonus (Eq. 12).
This bonus was inspired by the “softactor” method common
to current agents in the related field of deep reinforcement
learning (120).

H(At) =
∑
A∈A

p(A) log p(A) [12]

Where p(A) was estimated by a simple normalized action
count.

This agent’s payout is, Gt = Rt + βHt (Eq. 19). Critic
values were updated using this G, and actions were selected
according to Eq. 10. It has three free parameters, the learn-
ing rate α (Eq. 19), the temperature γ (Eq. 10), and the
exploitation weight β > 0.

Bandit: Reward+EB. This algorithm was based on the
Reward algorithm defined previously but it’s reward value was
augmented or mixed with an evidence bound (EB) statistic
(8) (Eq 13).

EB(A) =
√
C(A) [13]

Where C(A) is a running count of each action, A ∈ A. This
agent’s payout is, Gt = Rt+β EB (Eq. 19). Critic values were
updated using this G, and actions were selected according to
Eq. 14.

At = argmaxA ∈ A = Q(., At) + β EB(A) [14]

It has three two parameters, the learning rate α (Eq. 19)
and the exploitation weight β > 0.

Bandit: Reward+UCB. This algorithm was based on the
Reward algorithm defined previously, but it’s reward value was
augmented or mixed with an upper confidence bound (UCB)
statistic (8) (Eq 15).

UCB(A) = 2 log(NA + 1)√
C(A)

[15]

Where C(A) is a running count of each action, A ∈ A and
NA is the total count of all actions taken. This agent’s payout
is, Gt = Rt + β UCB (Eq. 19). Critic values were updated
using this G, and actions were selected according to Eq. 16.

At = argmaxA ∈ A = Q(., At) + β UCB(A) [16]

It has three two parameters, the learning rate α (Eq. 19)
and the exploitation weight β > 0.

Forage: E-explore. This algorithm was identical to Ban-
dit: E-explore except for the change in action space this task
required (described above).

Forage: Reward+Info. This algorithm was identical to
Bandit: Reward+Info except for change in action space the
forage task required (as described in the Task 8 section above).

Forage: Diffusion This algorithm was designed to ape 2d
brownian motion, and therefore to implement a form of random
search (121). At every timestep this agent either continued

in motion, if it had not traversed a previously sampled length
l, or it drew a new l and random uniform direction, df =
U(up, down, left, right). Movement lengths were sampled from
an exponential distribution (Eq. 17).

p(l) = eλ [17]

Where λ is the length scale which was set so λ = 1 in all
experiments.

Forage: Chemotaxis Movement in this algorithm was based
on the Diffusion model, except it used a biased approach to de-
cide when to turn. Specifically, it used the scent concentration
gradient to bias its change in direction (Eq. 18).

∇(A) = sign (O −O′) [18]

Where O is the sense or scent observation made by the
agent at its current grid position, and sign returns 1 if the
argument is positive, and -1 otherwise.

Turning decisions were based on a biased random walk
model, often used in -taxis behaviors (122). In this there are
two independent probability thresholds, pf and pr. If the
gradient is positive, then the pf is “selected” and a coin flip
happens, generating a random value 0 ≤ xi ≤ 1. If pf ≥ xi,
then the current direction df is maintained, otherwise a new
direction is randomly chosen (see Diffusion above for details).
If the gradient was negative, then the criterion pr ≥ xi is used.

Task memory for E-explore. In the majority of simulations we
have used a Bayesian or Info Gain formulation for curiosity and
E. Each task’s observations fit a simple discrete probabilistic
model, with a memory “slot” for each action for each state.
Specifically, probabilities were tabulated on state reward tuples,
(S,R). To measure distances in this memory space we used
the Kullback–Leibler divergence (20, 104, 123–126).

Learning equations. Reward and information value learning
for all agents on the bandit tasks were made using update rule
below,

V (S) = V (S) + α[Gt − V (St)] [19]

Where V (S) is the value for each state, Gt is the return
for the current trial, either Rt or Et, and α is the learning
rate (0− 1]. See the Hyperparameter optimization section for
information on how α is chosen for each agent and task.

Value learning updates for all relevant agents in the foraging
task were made using the TD(0) learning rule (3),

V (St) = V (St) + α[Gt − V (St+1)− V (St)] [20]

We assume an animal will have a uniform prior over the pos-
sible actions A and set accordingly, E0 =

∑
K
p(Ak) log p(Ak).

Hyperparameter optimization. The hyperparameters for each
agent were tuned independently for each task by random
search (127). Generally, we reported results for the top 10
values, sampled from 1000 possibilities. Top 10 parameters
and search ranges for all agents are shown in Supplemental
Table S3. Parameter ranges were held fixed for each agent
across all the bandit tasks.
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Mathematical Appendix.

Optimal substructure in memory. To find an optimal value
solution for E using the Bellman equation we must prove
our memory M has optimal substructure. This is because the
normal route to a Bellman solution, which assumes the problem
rests in a Markov Space, is closed to us. To understand why
it is closed to us let’s consider a normal Markov case.

In Markov spaces there are a set of states where the transi-
tion to the next St depends only on the previous state St−1.
If we were to optimize over these states, as in typical rein-
forcement learning, we can know each transition as its own
“subproblem”, dynamics programming approaches apply.

The problem for our definition of information value is that
it relies on a memory definition which is necessarily composed
of many past observations, arbitrarily, and so it cannot for
certain be a Markov space. In fact, it is probably now. So if
we wish to use a dynamics programming approach we need
to find another way to establish optimal substructure, which
is the ability to make the simpler independent “subproblems”
dynamic programming and the Bellman equation rely on.
Establishing these subproblems is the focus of Theorem 1,
which proceeds by contradiction.

The “heavy lifting” in the proof is done by assuming we
have a perfect forgetting function for the most recent past
observation. This is what we denote asas f−1. In this theorem
we assume X , A, M, f , and T are implicitly given.

In the theorem below which shows the optimal substructure
of M we assume X , and f are given,
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Theorem 1 (Optimal substructure). If V ∗πE
is the optimal

information value given by policy πE, a memory Mt has opti-
mal substructure if the last observation S can be removed from
M, by Mt−1 = f−1f(X ,Mt) such that the resulting value
V ∗t−1 = V ∗t − Et is also optimal.

Proof. Given a known optimal value V ∗ given by πE we assume
for the sake of contradiction there also exists an alternative
policy π̂E 6= πE at time t that gives a memory M̂t−1 6= Mt−1
and for which V̂ ∗t−1 > V ∗t−1.
To recover the known optimal memory Mt we lift M̂t−1 to
Mt = f(M̂t−1, St). This implies V̂ ∗ > V ∗ which contradicts
the purported optimality of V ∗ and therefore πE .

Table S1. Exploration strategies for bandit agents.

Name Class Exploration strategy
E-explore Info. val. Deterministic max. of infor-

mation value
Random Random Random exploration
Reward Mixed Softmax sampling of re-

ward
Reward+Info. Mixed Random sampling of re-

ward + β information value
Reward+Novelty Mixed Random sampling of re-

ward + β novelty signal
Reward+Entropy Mixed Random sampling of re-

ward + β action entropy
Reward+EB Mixed Random sampling of re-

ward + β visit counts
Reward+UCB Mixed Random sampling of re-

ward + β visit counts

Table S2. Exploration strategies for foraging agents.

Name Class Exploration strategy
E-explore Info. val. Deterministic max. of infor-

mation value
Diffusion Random Random exploration
Chemotaxis Obs. Sense gradient + Random

exploration
Reward+Info. Mixed Random sampling of re-

ward + β information

Table S3. Hyperparameter tuning - parameters and ranges.

Task Agent Parameter Range
Bandit E-explore η (1e-9, 1e-2)
Bandit E-explore α (0.001, 0.5)
Forage E-explore η (1e-9, 1e-2)
Forage E-explore α (0.001, 0.5)
Bandit Reward γ (0.001, 1000)
Bandit Reward α (0.001, 0.5)
Bandit Reward+Info. γ (0.001, 1000)
Bandit Reward+Info. β (0.001, 10)
Bandit Reward+Info. α (0.001, 0.5)
Forage Reward+Info. γ (0.001, 1000)
Forage Reward+Info. β (0.001, 10)
Forage Reward+Info. α (0.001, 0.5)
Bandit Reward+Novelty γ (0.001, 1000)
Bandit Reward+Novelty B (1, 100)
Bandit Reward+Novelty α (0.001, 0.5)
Bandit Reward+Entropy γ (0.001, 1000)
Bandit Reward+Entropy β (0.001, 10)
Bandit Reward+Entropy α (0.001, 0.5)
Bandit Reward+EB β (0.001, 10)
Bandit Reward+EB α (0.001, 0.5)
Bandit Reward+UCB β (0.001, 10)
Bandit Reward+UCB α (0.001, 0.5)
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