
Learning model-based strategies in

simple environments with hierarchical

q-networks

Necati Alp Müyesser
Department of Mathematical Sciences

Carnegie Mellon University

nmuyesse@andrew.cmu.edu

Kyle Dunovan
Department of Psychology

Carnegie Mellon University

kdunovan@andrew.cmu.edu

Timothy Verstynen
Department of Psychology

Center for the Neural Basis of Cognition

Carnegie Mellon University

timothyv@andrew.cmu.edu

January 23, 2018

Abstract

Recent advances in deep learning have allowed artificial agents to ri-
val human-level performance on a wide range of complex tasks; however,
the ability of these networks to learn generalizable strategies remains a
pressing challenge. This critical limitation is due in part to two factors:
the opaque information representation in deep neural networks and the
complexity of the task environments in which they are typically deployed.
Here we propose a novel Hierarchical Q-Network (HQN), motivated by
theories of the hierarchical organization of the human prefrontal cortex,
that attempts to identify lower dimensional patterns in the value land-
scape that can be exploited to construct an internal model of rules in sim-
ple environments. We draw on combinatorial games, where there exists
a single optimal strategy for winning that generalizes across other fea-
tures of the game, to probe the strategy generalization of the HQN and
other reinforcement learning (RL) agents using variations of Wythoff’s
game. Traditional RL approaches failed to reach satisfactory performance
on variants of Wythoff’s Game; however, the HQN learned heuristic-like
strategies that generalized across changes in board configuration. More
importantly, the HQN allowed for transparent inspection of the agent’s
internal model of the game following training. Our results show how a
biologically inspired hierarchical learner can facilitate learning abstract
rules to promote robust and flexible action policies in simplified training
environments with clearly delineated optimal strategies.

1

ar
X

iv
:1

80
1.

06
68

9v
1

 [
cs

.A
I]

 2
0

Ja
n

20
18

1 Introduction

Deep reinforcement learning (DRL) networks currently rival human-level per-
formance in a variety of domains, including object recognition [1], speech recog-
nition [2], video games [3], and complex board games such as Go [4]. Despite the
impressive achievements of DRL, networks fail to adapt to trivial changes of the
inputs and goals of the learning task, such as changes to board dimensions and
structure [5]. One potential reason for this shortcoming is that DRL algorithms
learn through extensive feedback about the value of specific input-output asso-
ciations, without any appreciation for the organizing features of the game that
govern these associations. In contrast, evidence from cognitive science suggests
that humans learn to perform complex tasks through a model-based approach
that involves constructing an internal model of the organizing principles or rules
of the environment [5, 6]. This form of learning is particularly important in dy-
namic environments where survival depends on the ability to generalize previous
training to novel settings [7]. While model-based learning algorithms stand to
improve the robustness of DRL networks in dynamic environments, it remains
a largely unanswered question how this might be achieved.

One reason for the paucity of model-based approaches to deep learning is
that DRL agents are typically developed to solve highly complex tasks, thereby
precluding any straightforward process for exploring possible internal models
of the environment[8]. One way to facilitate development of deep model-based
learning agents is to identify simpler testing environments that effectively reduce
the number of available features from which internal models can be constructed.
A recent paper [9] highlighted several advantages of simplified environments
for evaluating the safety and robustness of DRL agents, showing that simple
”gridworld” environments provide a tractable way for identifying pitfalls in the
learned action policy. Indeed, in these simple environments two state-of-the-art
DRL networks failed to effectively adapt to subtle differences between training
and testing environments, highlighting the need for more robust RL and DRL
algorithms. Another important environmental characteristic for the purposes
of building model-based agents is the ability to alter, remove, or introduce
dimensions of the environment without rendering previous training irrelevant.
In other words, in order to fairly evaluate the success of the agent, there needs
to exist a reliable strategy or internal model that is robust across variations of
the environment or task rules [10].

The conditions described above are satisfied by a class of impartial combi-
natorial games [11]. The most notable difference between an impartial game
and a game such as Go is that most impartial games have a ground truth so-
lution. Every position in an impartial game is either hot, meaning that there
exists a winning strategy for the player about to make a move, or cold, mean-
ing that under optimal play, the player about to make a move will always lose.
The distribution of hot and cold positions across the state space in an impar-
tial game usually comes with inherent mathematical structure. In an impartial
game, Player 1 (p1) and Player 2 (p2) alternate in making moves until there
are no available moves to make, with the player to make the last move declared

2

the winner. The function that takes in a state and returns the set of available
legal actions has as its domain an infinite set, meaning it can be generalized
to arbitrary dimensions, lending impartial games particularly amenable to a
model-based learning strategy.

Working within the constraints of impartial game theory, we now consider
the differences between RL agents with model-free and model-based learning
strategies. Substantial evidence from cognitive psychology and neuroscience
suggests that model-based learning is associated with hierarchical information
processing, with action-value associations learned at lower levels of the hierarchy
and abstract predictions about the environment at higher levels [12, 13, 14,
15, 16, 17]. One example of such a hierarchy is the prefrontal cortico-basal
ganglia (BG) network [18, 19] found in many mammalian species. Converging
evidence from human and animal neurophysiological experiments shows that the
prefrontal BG networks engage in model-free learning of action-values, driven
by phasic dopaminergic signals from the midbrain that alter the weights of
cortical inputs to the BG in accordance with environmental feedback [20, 21, 22].
As a result of this plasticity, rewarded (or punished) actions become more (or
less) likely to be executed in the future. This form of learning is analogous to
that enacted by deep Q-Learning (DQL) agents that exhibit behavioral policies
determined solely by the feedback of previous actions.

Importantly, rather than arising from an entirely separate and independent
process, model-based learning can be viewed as a companion system that is both
informed by and exerts control over the feedback-dependent associations formed
through model-free learning [17]. Behavior becomes “model-based” when lower-
level feedback dependent representations are leveraged to construct an internal
model of the environmental dynamics responsible for previous observations [16],
sometimes referred to as a “generative model”. A key difference in the behavioral
outcomes of these two forms of learning is flexibility [23, 17]: model-free learning
results in habitual actions based on a static cache of associated values whereas
model-based learning results in goal-directed actions based on inferred dynamics
of the environment. Evidence from human neuroimaging experiments suggests
that the shift from model-free to model-based policies is driven by a concomitant
shift from BG to prefrontal behavioral control [23, 24], signaling a shift away
from feedback-dependent knowledge to active predictions drawn from the agent’s
internal model of the environment.

Motivated by the hierarchical organization of prefrontal cortico-BG systems
that are thought to implement model-based learning in the human brain, we
devised a novel Hierarchical Q-Network (HQN) that attempts to build an in-
ternal strategy (e.g., generative model) based on inferred patterns of hot and
cold positions (e.g., model-free Q-learning) on a variant of impartial combina-
torial games called Wythoff’s game. We show how this hierarchical learning
structure promotes generalizability and robustness to rule changes while also
improving post-training interpretability of learning outcomes. Compared to the
performance of standard Q learning and deep Q-Networks, the HQN is markedly
faster at learning the task and, more importantly, shows clear benefits to the
transfer of learning, not only to alterations of Wythoff’s game, but across a

3

Figure 1: The proposed model-based learning architecture: The Hierarchical Q-Network
(HQN). The Q-Network and the Model Network use datasets that differ in dimensionality,
but cooperate in order to generate a generalized model for the impartial game environment.

variety of other impartial games with distinct, but similar rule structures. Be-
low, we describe our findings, highlighting 1) the benefits afforded by impartial
games for developing more robust deep learning agents and 2) the importance
of hierarchical learning in environments that demand flexibility.

2 Methods

2.1 Impartial games: Wythoff’s game, Nim, and Euclid

Wythoff’s game is played on a two dimensional grid in which players alternate
turns to move an object that is initially on the bottom-right corner towards the
top-left corner. The player who gets to place the object in the top-left corner
terminates, and thereby wins the game. Every turn, the object can be moved
horizontally, vertically, or diagonally towards the top-left corner.

Definition 1. Wythoff’s game is an impartial game where the states are all
2-dimensional non-negative integer coordinates. From coordinates (a, b), p1 and
p2 can access all states of the form (i, b), (a, j), and (a−k, b−k) where 0 < i < a,
0 < j < b, and 0 < k < min(a, b).

4

As mentioned above, every position in an impartial game is either hot or
cold, indicating whether p1 or p2 will win the game under optimal play. For
formal definitions of hot and cold positions, see Definition 5, for an inductive
proof of the partitioning, see Theorem 2.

The partition of hot and cold positions in Wythoff’s game is deeply embedded
in properties of the Fibonacci string and the golden ratio [11].

Theorem 1. Let rk = bkφc and ck = bkφ2c where φ = 1+
√
5

2 is the golden ratio.
Then, all cold positions in Wythoff’s game is in the form (rk, ck) or (ck, rk),
where k is a natural number.

The mathematical structure of Wythoff’s game (expressed by Theorem 1)
manifests in a highly patterned separation of hot and cold positions (see Figure
2).

Figure 2: Cold positions in Wythoff’s game are distributed along two symmetrical lines.
Arrows show how from every other position (hot) there exists a move to a cold position.
There does not exist any move from a cold position to another cold position. Figure used
with permission from Zachary Abel [25]

While we benchmark our HQN agent on Wythoff’s game, we will also subject
the game to certain rule changes in later sections. The hot-cold partition of the
resulting games are structurally similar to Wythoff’s game, and are discussed
in the Appendix section. See Figure 12 for a visualization.

Definition 2. We denote by Nim the impartial game resulting from a Wythoff’s
game where diagonal moves are disallowed.

Definition 3. We denote by Euclid the impartial game resulting from a Nim
where a distance travelled in the horizontal or vertical direction has to be a
multiple of the minimum of the horizontal and vertical distance to the top-left
corner.

2.2 Hierarchical Q-Network (HQN)

2.2.1 Overview

The HQN is comprised of two interconnected systems, the Q-agent and the
Model-Network, that attempt to cooperatively generate an internal model for

5

the task environment while working with datasets that differ in dimensionality.
The Q-agent works with a high-dimensional dataset reflecting the expected value
of state-action pairs. The Model-Network, on the other hand, feeds off of the
conclusions of the Q-agent obtain a low-dimensional dataset that solely reflects
the expected values of given states. The Model-Network uses a deep neural
network to extrapolate a model from the extracted dataset and evaluates the
value of the model by testing the model against an opponent simulated by the
Q-agent. In return, the Model-Network biases the action policy of the Q-agent
to favor movements to states more likely to generalize to larger environments.
The behavior of the Q-agent then effectively explores state-action pairs that
contradict or corroborate the current generative model of the Model Network.
The HQN succeeds if and only if the Model-Network converges on a generalizable
model of the given environment.

2.2.2 Network Details

A summary of the underlying logic behind the HQN is given above, whereas a
detailed discussion about its implementation including pseudocode is provided
below. Here, we provide details about the architectures of the networks that
compose the HQN.

The Q-agent component of the HQN uses Q-Learning [26] to build estimates
for how good a given state is for the player, based solely on gameplay experience.
The learning rate (α) is set to 0.1 and the discount rate (λ) is set to 1. Action
selection is randomized through a Boltzmann distribution where the exploration
constant (β) is set to 0.7. Further details are given in the next section.

The Model-Network is a feed-forward, single-layer (15 neurons), and fully-
connected network. The error limit and maximum number of iterations are also
randomized, to account for errors due to over-fitting or under-fitting. Sigmoid-
activation function is used as the activation function for individual neurons.
We use the standard backpropogation algorithm [27] to train the network with
the cross-entropy function as the cost-function to avoid learning slow-down, as
dysfunctional models are expendable, making the trade-off worthwhile. The
cross-entropy cost-function is given by:

Cost = − 1

n

∑
x

[y ln a+ (1− y) ln (1− a)]

Where x is over all training inputs, n is the number of inputs, y is the desired
output, and a is the output of the neuron.

Nimblenet [28] library for Python was used in order to simulate the neural
network that is in the architecture of the Model-Network. Further details about
the separate networks and their interaction is given in the next section.

2.2.3 The Q-agent

The Q-agent relies on Q-Learning, a standard model-free reinforcement learning
technique [26], to estimate the expected value (Q-value) of a state-action pair in

6

a given environment over multiple training sessions (see Figure 3). Every move
made adjusts the values stored in the Q-table through value iteration update.
Directly updating state-action pairs in this way affords greater precision, and is
computationally simpler, than relying on error propagation to adjust the weights
of neural network. The Q-Network was able to achieve similar performance to
the basic Q-agent when action values were estimated independent of the current
state (e.g., board position), albeit less efficiently.

Here (s, a) is a state-action pair, while s′ is the new state after action a is
taken at state s, r(s,a) is the reward associated with (s, a), and α and λ are the
learning and the discount rate, respectively. Finally, moves(s) is the function
that returns the set of available actions from state s in the environment. Then,
the Q-value is updated through:

Q(s, a) := Q(s, a) + [α · (r(s,a) + λ · max
a′∈moves(s′)

(Q(s′, a′))−Q(s, a)]

We take α = 0.1 and λ = 1, since every action has equal effect on the
outcome in a given impartial game, so discounting future rewards is redundant.

Actions are selected through the Boltzmann distribution that uses current
approximations of the Q-Values to generate a weighted probability space.

Explicitly, the probability that action a ∈ moves(s) is selected is given by:

eβ·Q(s,a)∑
a′∈moves(s) e

β·Q(s,a′)

Here β is the constant that determines how exploratory or exploitative the
action selection process is going to be. We set β = 0.7 throughout, reflecting a
moderate degree of exploratory behavior in the model.

It is important to note that the process that selects actions to explore also
depends on the model as a variable. Actions favored by the model generated by
the Model-Network get a boost in their probability of being selected. Before the
decision process is left to the Boltzmann probability space, the HQN decides
whether to explore the action recommended by the model with probability:

L− e−ζ·E[model]

E[model] is the expected value, or performance of the model as computed by
the Model-Network. L is the limit imposed on the confidence on the model, in
order to maintain that the Q-agent still operates mostly independently of the
Model-Network. Otherwise, “echo-loops” may be created in the HQN. ζ is the
steepness factor, determining how fast the probability approaches the limit L
as E[model] increases. We set L = 0.25 as an appropriate limit, and ζ = 7 to
get an optimal probability function with respect to E[model], where the model
does not begin to influence the Q-agent until E[model] > 0.25.

2.2.4 The Model-Network

The question that motivates the Q-agent is “What moves should I make in
which positions to maximize my likelihood of winning?”. However, this question

7

1 de f Q learn (Q, t r i a l s , l r , y , beta , (rows , c o l s) , bestModel) :
2 f o r ep i sode in range (t r i a l s) :
3 #i n i t i a l i z e random game given dimensions
4 game . row , game . c o l = randint (0 , rows) , rand int (0 , c o l s)
5 whi le not game . i sTermina l () :
6 s t a t e = game . getIndex ()
7 #noisy d e c i s i o n proce s s f o r ac t i on s e l e c t i o n :
8 i f random . random ()<getModelConf (zeta , lim , model) :
9 #take t i p from model to s e l e c t ac t i on

10 ac t i on = getModelDecis ion (model , game)
11 e l s e :
12 #or exp lo r e through weighted p r o b a b i l i t y d i s t :
13 pSpace = makeBoltzmannPspace (Q, game , beta)
14 ac t i on = we ighted cho i c e (pSpace) #s e l e c t ac t i on
15 game . makeAction (ac t i on)
16 i f game . i sTermina l () : reward = 1 #act i on wins game
17 e l i f not game . i sTermina l () :
18 makeGreedyQMove(Q, game) #simulated opponent move
19 i f game . i sTermina l () : reward=−1 #opponent wins
20 e l s e : reward = 0 #game goes on
21 #get best obta inab l e Q−value g r e e d i l y :
22 nextQValue = max(Q[game . getIndex ()] . va lue s ())
23 #update Q−Table :
24 Q[s t a t e] [a c t i on] = l r ∗ (reward + y∗nextQValue
25 − Q dict [s t a t e] [a c t i on])

Figure 3: Python Code for Q learn, the learning algorithm used by the Q-agent

is restricted to the space in which learning occurs. Thus, the question that
motivates the Model Network is “Are some positions better for me than others,
if so, is there any structure to how these positions are distributed across the
board?” For an n by m Wythoff’s game, there are 2nm possible ways in which
good and bad positions could be distributed. But without the latter question,
the former question seems too short-sighted in order to yield any useful insights
into the nature of the game. The HQN architecture allows us to ask these
questions simultaneously.

While the Q-agent attempts to approximate the Q-values of state-action
pairs, the Model-Network works with simply the expected values of individual
states in order to find a heuristic that will separate good states from bad states
(see Figure 4). The expected value of a state is simply the Q-value of the best
available action from that state.

E[state] = max
a∈moves(s)

Q(s, a)

The Model-Network, equipped with some fixed confidence threshold, ε creates a
dataset classifying state s as cold if 0 ≤ E[state] ≤ ε and hot if 1−ε < E[state] ≤
1. Random samples of this dataset are then fed into a neural network. We refer
to the trained neural network as the model. Architectural details about the
neural network was given in the previous section.

The Model-Network evaluates the performance of a model by benchmarking

8

against a greedy-agent that has access to the Q-agent, as opposed to perfect-
play, thus the training process remains unsupervised. The model receives a
performance score between 0 and 1, based on the ratio of games the model can
win against the greedy-Q-agent. Since the Q-agent almost always remains more
accurate on smaller board sizes, benchmarking games are played on a larger
board size so as to favor potentially generalizable models.

1 de f modelBuild (Q, conf) :
2 Q part = getQPart i t ion (Q, qDim) #obta in E[s] va lue s
3 datase t = getModelDataSet (Q part , conf) #no i sy e x t r a c t i o n
4 modelNet = NeuralNet (networkSett ings) #s e t up neural−net
5 #t r a i n network with the ext rac t ed datase t :
6 backpropagat ion (modelNet , dataset , c r o s s e n t r o p y c o s t ,
7 e r r o r l i m i t , max i t e r a t i on s)
8 #c a l c u l a t e model performance vs . greedy Q−agent :
9 p e r f = evaluateModel (modelNet , Q, t r i a l s , game=Wythoff)

10 r e turn modelNet , p e r f

Figure 4: Code for modelBuild, learning algorithm used by the Model-Network

2.2.5 Q-agent and Model-Network

1 de f modelBasedLearn (Q, t r i a l s , game , . . .) :
2 g l o b a l bestModel , bestPerformance
3 #re−eva luate cur rent bes t model :
4 cu r r en tPe r f = evaluateModel (bestModel , Q, t r i a l s , game)
5 i f severePerformanceDrop (currentPer f , bestPerformance) :
6 modelMemory . add (bestModel) #s t o r e o ld high−p e r f model
7 #check i f any models in memory f i t the task :
8 bestModel = rememberModel (modelMemory , game)
9 bestPerformance = evaluateModel (bestModel , . .)

10 Q = rese t Q agent (. . .)
11 #t r a i n the Q−agent :
12 Q learn (Q, t r i a l s , bestModel , l r , y , beta , zeta , . . .)
13 #then , t r a i n a new model :
14 (newModel , newPerformance) = modelBuild (Q, conf , . . .)
15 #compare new model to the past bes t per forming model :
16 i f newPerformance>=bestPerformance :
17 bestModel = newModel
18 bestPerformance = newPerformance

Figure 5: pseudo-code for modelBasedLearn, the learning algorithm used by the HQN-agent.
Q learn and modelBuild are the two main components of the algorithm

The full HQN integrates both the Q-agent and the Model-Network through
the learning algorithm modelBasedLearn. On every iteration of the modelBas-
edLearn algorithm, the Q-agent is trained on the specified amount of gameplays,
and the process concludes with the construction of a candidate model, poten-
tially replacing the current best-performing model. Note that even models that

9

Figure 6: The initial stages of the training of the Q-Network. Given a state, the network
attempts to produce a vector of values that represent the approximated reward of each possible
action. While testing performance, the highest valued action will be greedily chosen. During
training, action that is chosen will depend on how explorative the Boltzmann distribution is.
Afterwards, weights are readjusted to account for the reward error via the backpropagation
algorithm.

eventually get outplaced have a positive impact on the learning outcomes, since
hypotheses from flawed models get contradicted by the Q-agent, allowing for the
construction of more accurate models in upcoming iterations.

Performance of the HQN agent was also tested against changes in the rules
of the game, without explicitly notifying the agent of such changes. It is crucial
that the HQN agent is able to detect such changes and adapt to the new rules
of the game, especially if the HQN agent was trained on the same set of rules
earlier. In order to do so, we allow the HQN agent access to a dataset consisting
of the calculated performances of the current best performing model. For a
predetermined ∆, if currentPerf

avgPerf < ∆, where avgPerf is the average of the past
performances, and currentPerf is the current calculated performance of the
model, HQN detects a severe performance drop. In this case, the bestModel is
stored away on the modelMemory if the need for that same model later arises.
modelMemory is also checked for the existence of models that would fit the
new rules of the game, and if so, that model is used as the bestModel variable.

2.2.6 Model-Free Learning Agents

We compared the HQN to two non-hierarchical implementations of Q-learning.
Q-Agent
We benchmark the HQN against an independent Q-Agent to illustrate the

effect of the addition of the Model-Network to the system. The Q-Agent has
an almost identical framework to the Q-Agent component of the HQN agent.
The only difference is that this Q-agent does not have its exploration procedure
influenced by a Model-Network. Hence, we do not include more details about
its implementation.

Q-Network
The core difference between the Q-Network and the Q-Agent is that the Q-

Network makes use of a neural network to approximate the Q-function, whereas
the Q-agent algorithm does not attempt to make an inference beyond the look-

10

1 de f Q network learn (network , . . .) :
2 (game . row , game . c o l) = (rand int (0 , rows) , rand int (0 , c o l s))
3 whi le not game . i sTermina l () :
4 #Feed−Forward Pass :
5 q e s t imat e s=network . p r e d i c t (game . ge t In s tance ()) [0]
6 #noisy Boltzmann d e c i s i o n proce s s f o r ac t i on s e l e c t i o n :
7 pSpace = makeBoltzmannPspace (network , game , beta)
8 move = we ighted cho i c e (pSpace)
9 #simulate game−play :

10 game . makeAction (move) #agent ’ s ac t i on
11 i f game . i sTermina l () :
12 reward = 1
13 e l s e :
14 makePerfectWythoffMove (game)
15 i f game . i sTermina l () :
16 reward=−1
17 e l s e :
18 #f i n d reward f o r greedy move from new s t a t e :
19 bes t q = g e t b e s t q (network , game)
20 reward = y∗ bes t q #discounted reward
21 #update the Q vecto r from s t a t e ac co rd ing l y
22 q e s t imat e s [move] += l r ∗ (reward − q e s t imat e s [move])
23 datase t =[Ins tance (s t a t e , q e s t imat e s)] #r e s u l t i n g datase t
24 #adjus t neuronal weights based on the adjusted q vec to r :
25 backpropagat ion (network , dataset , c r o s s e n t r o p y c o s t ,
26 max i t e r a t i on s =1)

Figure 7: pseudo-code for Q network learn, the learning algorithm used by the Q-Network
agent. The QN agent was not able to perform more accurately than random chance within
the given time constraints of the benchmark.

up-table process for the Q-values of the state-action pairs. A high-level expla-
nation of the algorithm is given in Figure 7, and detailed pseudo-code is given
in Figure 7. Nimblenet [28] was used to simulate the neural network.

The network was fully-connected and single-layer, however, more layers did
not have a significant effect on the learning outcomes. The standard back-
propogation algorithm was used with the sum-squared-error cost function with
sigmoid activation function on the individual units. α = 0.01 and β = 0.7.

3 Results

3.1 Model Building

The Model-Network displayed great efficacy in producing generalizable models
for Wythoff’s game and its variants. Figure 8 shows how the two components
of the HQN learned the value of board positions at different stages of learning.
Models that are developed in the earlier stages of training remain mostly irrele-
vant to generalization; however, models that meaningfully generalize, although
with low accuracy accurately, begin to emerge soon after initial training. Such
models are crucial for the learning process because they influence the way the

11

Q-Network chooses to explore different action spaces. Without such guidance,
the Q-Network explores actions without any overall purpose or insight. With
the guidance from the Model Network, the Q-Network explores actions that
would either contradict or confirm an overall hypothesis about the nature of the
learning environment.

Figure 8: HQN in various stages of training on Wythoff’s game. The early models (Discov-
ery) will be largely unsuccessful, while certain inaccurate generalizations (Experimentation)
will supply reasonable strategies to the Q-Network, allowing the provision of useful datasets
into the model network that translate into accurate and general models (Convergence) The
Q-network has been trained for 2000 gameplays across each time-step.

Wythoff’s games have the type of mathematical structure that should be
very easy for a neural network to recognize, explaining a significant portion
of the HQN agent’s success. Unfortunately, neural networks are less adept in
recognizing discrete, stepwise patterns then they are in recognizing regions and
finding slopes. For example, even the best models generated by the HQN agent
for Wythoff’s game largely ignored the stepwise distribution of the cold positions
across the line. As previously mentioned, this issue begs the existence of a layer
that can be more flexible in the types of models that it could hypothesize.

3.2 HQN Efficiency vs. Q-agent and Q-Networks

We compared the performance of the HQN agent in Wythoff’s game to that
of a Q-agent and a Q-Network (QN) . Figure 9 shows the accuracy of all three
agents during learning. The HQN agent improves performance in discrete jumps
as better models replace worse ones over time. Since models are assessed by the
HQN in an unsupervised manner, some models evaluated to be better will in

12

fact be less accurate, explaining the occasional fall in the performance of the
HQN agent.

Figure 9: The HQN vastly outperforms the Q-agent and the Q-Network on identical training
periods with respect to time. Time-steps calculated on a 2.7 GHZ Intel i5 2-core processor
(2015 MacBook Pro). The Näıve-Q is trained on a 50 by 50 board on 5000 gameplay simula-
tions per time-step, whereas the Q-Network is trained on a 12 by 12 board with 1000 simula-
tions each. The HQN learns better models in discrete jumps whereas the Q-agent has a steady
but diminishing learning rate. Q-agent parameters: (λ = 1, α = 0.1, β = 0.6). Q-Network pa-
rameters: (single-layer with 15 neurons, standard backpropagation, fully-connected, sigmoid
activation function, sum-squared-error cost function, α = 0.01, β = 0.7) Change in network
architecture, cost functions, or layer count did not have a noticable effect on the learning
outcomes of the Q-Network agent.

The core idea that gives rise to the Q-Network is using neural networks to
approximate the Q-function. Whereas a traditional Q-learning attempts to fill
in every single value for the Q-function in increasing accuracy in a look-up table
manner, a Q-Network attempts to train a neural network that approximates
this function. The Q-Network is also able to interpolate after training, since the
network attempts to approximate the Q-function continuously, filling in for the
gaps in the dataset. The benefits of such an approach have been demonstrated in
detail in DeepMind’s Atari Network [3]. However, while attempting to be more
efficient and general than a naive Q-agent, Q-Networks sacrifice a lot of stability.
Re-training a Q-Network with a newly discovered dataset can be destructive to
already existing features of the network. In order to remedy the destructive
re-training issue, especially while training through large datasets, (deep) Q-
Networks make use of “experience replay” [3]. A Q-Network agent that uses
experience replay will store training data as it comes, and backpropagates that

13

data across the network in occasional intervals, as opposed to some novel data-
point.

For Wythoff’s game, the Q-Network agent’s performance was subpar com-
pared to the HQN and naive Q-agents, even with additional modifications such
as experience replay. Overall Q-Network performance did not exceed random
chance significantly within the time constraints that allowed the HQN and the
Q-agent to attain reasonable performance. Giving the Q-Network additional
advantages, such as training against a perfect agent, or increasing the number
of layers in the neural network, was not able to fix the disparity.

The only structural change that observably changed the behavior of the Q-
Network was to equate actions and states in the training phase. In an impartial
game, how good an action is depends only on which state the action takes the
game to. Moves towards cold positions are good moves, whereas moves towards
hot positions are bad moves. Under most learning tasks, this assumption does
not hold, e.g. pressing left could win the game in a certain scenario, but be
disastrous in the other. As illustrated in Figure 6, the Q-Network, similar to
the HQN and the Q-agent, does not operate under this assumption, since the
network trains to approximate how good an action is given the state.

action = ∆(state)

However, we can hard-code the irrelevance of the starting state as a assumption,
by representing an action as simply the encoding of the new state.

action = statenew

Under this framework, the task of the Q-Network would be to output the iden-
tical Q-vector that separates good states from bad states, given any state in the
game. Since there are a lot more states in a game of Wythoff (Order=O(rows ·
cols)) then there are actions (Order=O(rows+cols), assuming action = ∆(state)),
the resulting Q-vector will be significantly larger. Increasing the number of neu-
rons to the same order fixes the problem while slowing down training periods.
However, the resulting modified agent is able to converge on strategies on a pace
that is competitive.

This “trick”, however, is inapplicable in most scenarios outside impartial
games, that is why we did not hard-code such notions to the HQN agent. For a
similar reason, we do not include the modified Q-Network agent that treats an
action as a statenew in our analysis.

3.3 HQN performance across dimensions

The HQN agent was able to attain reasonably high levels of performance beyond
the dimensions it was trained in. Figure 10 shows the accuracy of a specific
model generated by the HQN agent for Wythoff’s game across different board
dimensions.

The Q-agent was collecting data on a 12 by 12 board, while the Model-
Network was evaluating generated models against the Q-agent on a 50 by 50

14

Figure 10: Performance of a Model Network that the HQN agent converged to through
datasets received from a Q-Network trained on a 12 by 12 board. Single layer feedforward
network with cross-entropy cost function, trained for 2000 epochs, on a dataset extracted from
the Q-Network of size 78. The HQN agent gave scores ranging between 0.95 and 0.97 to this
model by benchmarking performance against a greedy Q-agent on a 50 by 50 board.

board. The fact that the Model-Network tests models by their performance on
dimensions that they were not trained on is crucial to prioritize generalizability
across dimensions. The fact that the Q-agent cannot perform optimally on
higher dimensions is also an advantage, since models that achieve some level of
generalizability will be assigned a higher score despite having poor accuracy on
smaller boards.

Fortunately, even though the Model-Network was attempting to optimize
performance up to a 50 by 50 board size, the models generated were able to
display a reasonable degree of performance on boards that are larger. For the
model in Figure 10, the model achieved 70% accuracy on a board that was 300
by 300.

3.4 HQN performance across rule variations

HQN was also benchmarked against contexts where the rules of the game did not
stay constant. In Figure 11 shows performance of the HQN agent across three
games that had similar, but not identical, rules. The HQN agent started out
by being trained through Wythoff’s game. Once the agent reached satisfactory
(> 0.9) performance, we changed the gameplay rules to that of the game Nim,
without informing the agent of this change. The agent was able to detect this
change through the sharp decrease in the model’s performance (as perceived by
the HQN agent, displayed with the green line), store the model for the Wythoff
task away, reset the Q-agent, and start training again. Since Nim (and later,
Euclid) has less complex of an action space, we decreased the period from 250
Q-agent gameplays to only 50, in order to slow the learning process down for
visualization purposes. When satisfactory performance was reached in Nim, we
changed the learning task to Euclid. When we cycled through the three tasks in

15

Figure 11: Performance of a HQN across 3 different impartial combinatorial games. When
the HQN converges on a model with performance exceeding a certain threshold, the rules of
the game are changed. The HQN discovers the changes in rules, and adapts and reuses old
models if they apply to the new set of rules. Performance decreases become less drastic as
HQN learns all three games simultaneously. Tasks are cycled through in the order Wythoff-
Nim-Euclid, shown as red-blue-green circles respectively in the x-axis. In a period, the Q-agent
component of the HQN is trained across 250 gameplays for Wythoff, and 50 gameplays for
Euclid and Nim.

a similar fashion once again; however, the agent was able to attain satisfactory
performance immediately after it detects a change in the rules.

4 Discussion

In this paper, we proposed some basic strategies for developing and evaluating
agents that learn adaptable and robust strategies, an increasingly important
goal for developing AI capable of navigating novel environments. The hierar-
chical structure of HQN showed promise in the transfer-learning domain, while
remaining competitive with standard RL approaches in terms of performance.
We trained a Q-agent, a Q-Network, and a HQN for identical amounts of time
on the Wythoff’s game (see Figure 9). The Q-agent was able to show improved
accuracy, although at a steadily decreasing rate over time. The Q-Network, a
more unstable but also more efficient advancement over the Q-agent algorithm,
was not able to learn as well in this context of impartial games. The HQN

16

agent, on the other hand, achieved increasing accuracy in discrete jumps as
better models for the environment were discovered. The HQN also did more
than merely excel in terms of efficiency. In the transfer-learning domain, where
standard RL approaches are infamously unsuccessful, the HQN agent was able
to achieve performance that generalized across dimensions (Figure 10) and re-
main resistant to changes to rules of the game (Figure 11). Most importantly,
we could query the HQN agent to show its strategy for game play in an intuitive
and explainable way.

Towards this goal of extensibilty in artificial agents, meta-reinforcement
learning, the idea that RL agents can be trained to build better base networks
for other RL agents to be trained on, holds a lot of promise. Wang et al.
[29], Duan et al. [30] and Hansen [31] provide state-of-the-art approaches to
Meta-reinforcement learning, that they call Deep Meta-Reinforcement Learning
(DMRL), RL2, and Deep Episodic Value Iteration (DEVI) respectively. These
agents are evaluated against benchmarks beyond efficiency and accuracy met-
rics, including one-shot changes to rewards, and ability to learn abstract task
structure. Real et al. [32] and Miikkulainen et al. [33] also propose algorithms
to optimize network architecture, including connectivity and parameters, for
high-dimensional deep learning tasks such as image recognition and language
modeling. We consider these efforts important as we aim for artificial networks
that can generalize across tasks and yield interpretable outcomes.

4.1 The Hierarchical Q Network

Our key innovation in this study was the introduction of the Hierarchical Q-
Network (HQN), a model-based learning agent that capitalizes on hierarchical
information processing (see discussion of biological motivations in subsection
4.2). The HQN was composed of an “lower” layer, the Q-agent, that explored
through the high-dimensional state-action search space, and an “higher” layer,
the Model-Network, that abstracted away the action dimension, and processed
through the expected values of states to extract generalized structure from the
environment. More important than the hierarchical structure of the HQN, how-
ever, is that the two networks interact in such a way that observations by the
Q-agent effectively inform model building and that hypotheses generated by the
Model Network effectively constrain future action policies. Without the Model-
Network, the Q-agent blindly explores the massive search space without any
“insight”. Conversely, without the Q-agent, the Model-Network does not have
any information with which to generalize from.

While the HQN’s performance was superior than the other RL agents tested
here, we should point out that it does suffer from limitations that future work
should focus on. One of the inherent limitations of the HQN agent as proposed in
this paper is that neural networks were used as the implementation of the Model-
Network. Neural networks proved themselves to be suitable in a wide variety of
learning tasks; however, there exists a wide range of limitations. For instance, a
standard neural network will not be able to classify objects that follow a discrete
pattern. For example, in Wythoff’s game, even though the Model-Network

17

was able to generate models that recognized the two symmetrical lines of cold
positions, the network was unable to appreciate the discrete intervals separating
cold positions along each of the lines. Processing-units that can independently
and cohesively handle a vast array of decision problems are essential, if the goal
is to understand and simulate how the biological brain can seamlessly navigate a
highly-complex physical environment where inputs and goals of a learning task
can change rapidly. We propose that symbolic representations combined with
the strengths of statistical approaches of neural networks might be extremely
useful. An initial attempt to explore such an intersection is given by Garnelo et
al. where they propose a symbolic model-based learning agent [34]. We intend
to follow a similar direction in our future work.

4.2 Biological Motivations for Hierarchical Processing

The advantages of the HQN, along with recent work by others [5, 3, 31], suggests
that hierarchical structure is an effective catalyst for adaptive and generalizable
learning in artificial agents. Indeed, substantial evidence from experimental
and computational neuroscience suggests the same is true of biological brains
[15, 18, 24], pointing towards the looped architecture of cortico-basal ganglia
networks as an important feature for model-based and model-free learning sys-
tems [18, 24]. The basal-ganglia (BG) is a subcortical network that receives
widespread cortical input through the striatum, forming a channel-like archi-
tecture - each channel representing a particular action - that loops back up
to motor cortex through the thalamus [35]. Critically, each action channel in
the BG contains a facilitation and suppression pathway, capable of exerting
bidirectional control over the corresponding action channel in primary motor
cortex. Schultz and colleagues [36] famously showed that, during learning, the
weights of these pathways are adjusted by phasic changes in striatal dopamine,
encoding both the magnitude and sign of the prediction errors estimated from
Q-learning models. This dopamine-dependent plasticity of cortico-striatal con-
nections serves to reinforce the future selection of rewarding actions while also
suppressing less desirable alternatives, serving a similar computational goal to
that of Q-Networks [37, 38, 39]. However, as previously mentioned, relying on
feedback alone to drive learning 1) quickly becomes inefficient as task complexity
increases, 2) limits the range of learned associations that can be simultaneously
stored and exploited, and 3) fails to account for the robust and flexible nature
of mammalian behavior.

The fundamental idea behind model-based learning is that, through experi-
ence and observation, internal beliefs are formed about the causal relationship
between contextual features, states, and action values. For hierarchically struc-
tured tasks, for which state-action values depend on multiple, nested contextual
features, generative models offer an imperfect but highly efficient strategy for
guiding action selection. Critically, however, implementing a model-based learn-
ing strategy often relies on simultaneously learning from feedback in a model-free
manner. Thus, the challenge of implementing model-based learning is two-fold,
requiring 1) a generative mechanism for constructing hypotheses and 2) fluid

18

interaction between inferential and feedback-dependent learning systems.
Both the neuroscience [40, 41, 42] and machine learning [43, 7, 44, 45] com-

munities have shown a growing interest in model-based learning mechanisms ,
leading to mutually informative lines of investigation (e.g., understanding how
biological brains encode model-based learning strategies provides hints for over-
coming the challenges of model-based learning in artificial agents). Evidence
from human neuroimaging studies suggests that model-free learning computa-
tions in the BG are regulated by top-down inputs from a model-based learning
system in the prefrontal cortex (PFC) [15]. Critically, due to the looped architec-
ture of cortico-BG pathways, model-based computations in cortex are informed
by feedback-dependent updates in the action-value landscape. Over time, cor-
tical model-based learning systems generate predictions based on model-free
computations and, in turn, provide top-down constraints that regulate feed-
back sensitivity and decision policies in the BG. This symbiosis between BG-
and PFC-dependent learning systems is mirrored in the HQN, with observed
state-action values in the Q-Network facilitating better predictive models in the
Model Network that, in turn, improve future performance through top-down
constraints on action evaluation. This scaffolding of model-based and model-
free learning computations accelerates the learning process by proactively test-
ing different hypotheses about the rule structure of the task and constraining
future decision policies as confidence increases about the fidelity of these expec-
tations.

4.3 Impartial Games as a Benchmark

We should point out that we are not the first to observe and leverage the fact that
the benchmark environment chosen profoundly influences the learning agents we
design. Although the success of the DeepMind Atari Network was impressive,
the benchmark featured implausible 2D environments through a third person
perspective. Kempka et al. developed VizDoom [46], a dynamic first-person
perspective learning environment as an alternative testing benchmark for visual
RL agents. RL2 [30] was evaluated in the VizDoom environment to demonstrate
adaptability to high-scale problems. More recently, DeepMind and Blizzard an-
nounced a partnership [47] to utilize StarCraft II as a AI research environment.
StarCraft II is a third-person strategy game with complicated raw visual in-
put, state and action space, and delayed rewards and punishments to selected
actions. Initial results already show that this new learning environment will
be a challenge for even to most well-established deep reinforcement learning
architectures.

We share similar goals with most of the aforementioned research, including
designing learning agents that are more adaptable to changes in inputs and
goals, as well as ensuring that learning outcomes are interpretable to humans.
However, our critical argument is that, in order to achieve these goals, tasks
should be designed in which adaptability, as opposed to accuracy, is prioritized.
One of the ways our approach separates itself is in the sheer simplicity of the
learning task chosen: Impartial games are equipped with rules straightforward

19

enough that winning strategies have a complete mathematical theory. The fact
that impartial games are “solved” games allows us to conveniently evaluate
performance, and shift focus entirely to the transfer-learning and model-building
domain.

Despite their simplicity, the scalability of impartial games makes them uniquely
conducive to experimentation with model-based learning algorithms. Common
benchmarks such as multi-armed bandit problems [29] lack an environment that
needs to be navigated through dynamic model-building: a model for the envi-
ronment cannot go beyond the predetermined expected value and variance dis-
tribution. The complexity of games like Go and Starcraft II, on the other hand,
preclude any straightforward approach to model-building. For impartial games,
model-building can be performed by exploring the geometrical structure of value
over topology of the game environment. Thus, we argue that impartial games
offer a more suitable environment for rigorously testing and comparing deep
model-based agents. The benefits of using impartial games for benchmarking
model-based deep learning are summarized below.

• The rules of impartial games immediately generalize to bigger board dimen-
sions, in a way that preserves the mathematical structure of the winning
strategy. This feature allows us to differentiate between learning agents
beyond simply looking at their performance. In order to realize whether
a learning agent has truly understood the nature of the game environ-
ment, we would just need to benchmark it on a bigger board size. Thus,
the learning outcomes of an agent become more transparent. Games like
Chess or Go do not have structure that straightforwardly generalizes across
different board sizes, so such an approach at benchmarking would have
been infeasible.

• Impartial games offer wide variety of ways to change the rules of the game,
without destroying the inherent mathematical structure of the winning-
strategy associated with the specific set of rules. Just by imposing some
natural restrictions on the function that returns the set of legal moves from
a position on Wythoff’s game, we were able to generate two other games
(Nim and Euclid) where the winning strategy has similar mathematical
structure. Rule changes in games such as Chess or Go, albeit how insignif-
icant, may influence overall strategy in very intricate ways. Thus Chess
and Go would be less accessible for initial attempts for transfer-learning
across rule changes.

• There are a lot of impartial games where structure and noise can co-exist,
similar to the real world. This is a feature that we did not utilize in this
paper, but also reflects an advantage of impartial games. For example, a
complete mathematical characterization of the winning (hot) and losing
(cold) positions in a 3D Wythoff’s game, as of time of writing, has not been
discovered. However, results from the 2D version partially generalize to
shed some light into optimal behaviour. A learning agent that can figure

20

out how to make generalizations across dimensions could be worthwhile
challenge.

All these features allow us to conclude that impartial games, when taken as
a benchmark for learning agents, allows for asking questions to the agent where
answers in the affirmative demonstrate a type of intelligence that goes beyond a
brute-force pattern matching task.

21

References

[1] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Con-
volutional architecture for fast feature embedding. In Proceedings of the
22nd ACM international conference on Multimedia, pages 675–678. ACM,
2014.

[2] Alex Graves, Abdel rahman Mohamed, and Geoffrey Hinton. Speech recog-
nition with deep recurrent neural networks. pages 2–5, 2013.

[3] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel
Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K.
Fidjeland, and Georg Ostrovski. Human-level control through deep rein-
forcement learning. Nature, 518:529–533, 2015.

[4] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, and Marc Lanctot. Mastering the game of go with deep
neural networks and tree search. Nature, 529(7587):484–489, 2016.

[5] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J
Gershman. Building machines that learn and think like people. Behavioral
and Brain Sciences, 40, 2017.

[6] Asako Toyama, Kentaro Katahira, and Hideki Ohira. A simple computa-
tional algorithm of model-based choice preference. Cognitive, Affective, &
Behavioral Neuroscience, pages 1–20, 2017.

[7] Wouter Kool, Fiery A Cushman, and Samuel J Gershman. When does
model-based control pay off? PLoS computational biology, 12(8):e1005090,
2016.

[8] Gary Marcus. Deep learning: A critical appraisal. arXiv, 2018.

[9] J. Leike, M. Martic, V. Krakovna, P. A. Ortega, T. Everitt, and
A. Lefrancq. Ai safety gridworlds. arXiv, 2017.

[10] Falk Lieder and Thomas L Griffiths. When to use which heuristic: A
rational solution to the strategy selection problem. In CogSci, 2015.

[11] Guy R. Berlekamp, E. and J. Conway. Winning Ways for your Mathemat-
ical Plays. A K Peters, Natick, MA, 1982.

[12] B. B. Doll, D. A. Simon, and N. D. Daw. The ubiquity of model-based
reinforcement learning. Current opinion in neurobiology, 22(6):1075–1081,
2012.

[13] P. Smittenaar, T. H. FitzGerald, V. Romei, N. D. Wright, and R. J. Dolan.
Disruption of dorsolateral prefrontal cortex decreases model-based in favor
of model-free control in humans. Neuron, 80(4):914–919, 2013.

22

[14] K. Wunderlich, P. Smittenaar, and R. J. Dolan. Dopamine enhances model-
based over model-free choice behavior. Neuron, 75(3):418–424, 2012.

[15] B. B. Doll, K. D. Duncan, D. Simon, D. Shohamy, and N. D. Daw. Model-
based choices involve prospective neural activity. Nature Neuroscience,
18:1–9, 2015.

[16] E. M. Russek, I. Momennejad, M. M. Botvinick, S. J. Gershman, and
N. D. Daw. Predictive representations can link model-based reinforcement
learning to model-free mechanisms. PLOS Computational Biology, 13:9,
2017.

[17] J. P. O’Doherty, J. Cockburn, and W. M. Pauli. Learning, reward, and
decision making. Annual review of psychology, 68:73–100, 2017.

[18] M. J. Frank and D. Badre. Mechanisms of hierarchical reinforcement learn-
ing in corticostriatal circuits 1: Computational analysis. Cerebral Cortex,
22:509–526, 2012.

[19] D. Badre and M. D’esposito. Is the rostro-caudal axis of the frontal lobe
hierarchical? Nature Reviews Neuroscience, 10(9):659–669, 2009.

[20] W. Schultz, P. Dayan, and P. R. Montague. A neural substrate of prediction
and reward. Science, 275:1593–1599, 1997.

[21] Neir Eshel, Michael Bukwich, Vinod Rao, Vivian Hemmelder, Ju Tian,
and Naoshige Uchida. Arithmetic and local circuitry underlying dopamine
prediction errors. Nature, 525(7568):243–246, 2015.

[22] Neir Eshel, Ju Tian, Michael Bukwich, and Naoshige Uchida. Dopamine
neurons share common response function for reward prediction error. Na-
ture neuroscience, 19(3):479–486, 2016.

[23] N. D. Daw, Y. Niv, and P. Dayan. Uncertainty-based competition between
prefrontal and dorsolateral striatal systems for behavioral control. Nature
neuroscience, 8(12):1704–1711, 2005.

[24] D. Badre and M. J. Frank. Mechanisms of hierarchical reinforcement learn-
ing in cortico-striatal circuits 2: evidence from fmri. Cereb. Cortex, 22:527–
36, 2011.

[25] Zachary Abel. Putting the why in wythoff. http://blog.zacharyabel.

com/2012/06/putting-the-why-in-wythoff/, 2014.

[26] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction
(Vol. 1, No. 1). MIT press, Cambridge, 1998.

[27] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal
representations by error propagation. California Univ San Diego La Jolla
Inst for Cognitive Science, 8506, 1985.

23

http://blog.zacharyabel.com/2012/06/putting-the-why-in-wythoff/
http://blog.zacharyabel.com/2012/06/putting-the-why-in-wythoff/

[28] Jorgen Grimnes. Nimblenet. http://jorgenkg.github.io/

python-neural-network/, 2016. Github repository.

[29] J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, et al. Learning to
Reinforcement Learn. 2017.

[30] Yan Duan, John Schulman, Xi Chen, Peter L. Bartlet, et al. RL2. arXiv,
2016.

[31] Steven S. Hansen. Deep episodic value iteration for model-based meta-
reinforcement learning. arXiv, 2017.

[32] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, et al. Large-
scale evolution of image classifiers. arXiv, 2017.

[33] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, et al.
Evolving deep neural networks. 2017.

[34] M. Garnelo, K. Arulkumaran, and M. Shanahan. Towards Deep Symbolic
Reinforcement Learning. ArXiv e-prints, September 2016.

[35] G. E. Alexander, M. R. DeLong, and P. L. Strick. Parallel organization
of functionally segregated circuits linking basal ganglia and cortex. Annu.
Rev. Neurosci., 9:357–381, 1986.

[36] W. Schultz, P. Dayan, and P. R. A Montague. Neural substrate of prediction
and reward. Science, 80:1593–1599.

[37] M. J. Frank, L. C. Seeberger, and R. C. O’reilly. By carrot or by stick: cog-
nitive reinforcement learning in parkinsonism. Science, 306:1940–3, 2004.

[38] S. M. L. Cox et al. Striatal d1 and d2 signaling differentially predict learning
from positive and negative outcomes. Neuroimage, 109:95–101, 2015.

[39] A. V. Kravitz, L. D. Tye, and A. C. Kreitzer. Distinct roles for direct and
indirect pathway striatal neurons in reinforcement. Nature Neuroscience,
15:816–8, 2012.

[40] Michael A McDannald, Yuji K Takahashi, Nina Lopatina, Brad W Pietras,
Josh L Jones, and Geoffrey Schoenbaum. Model-based learning and the
contribution of the orbitofrontal cortex to the model-free world. European
Journal of Neuroscience, 35(7):991–996, 2012.

[41] Peter Dayan and Kent C Berridge. Model-based and model-free pavlovian
reward learning: revaluation, revision, and revelation. Cognitive, Affective,
& Behavioral Neuroscience, 14(2):473–492, 2014.

[42] Nathaniel D Daw, Samuel J Gershman, Ben Seymour, Peter Dayan, and
Raymond J Dolan. Model-based influences on humans’ choices and striatal
prediction errors. Neuron, 69(6):1204–1215, 2011.

24

http://jorgenkg.github.io/python-neural-network/
http://jorgenkg.github.io/python-neural-network/

[43] D. Hassabis, D. Kumaran, C. Summerfield, and M. Botvinick.
Neuroscience-inspired artificial intelligence. Neuron, 95:245–258, 2017.

[44] Nathaniel D Daw and Peter Dayan. The algorithmic anatomy of model-
based evaluation. Phil. Trans. R. Soc. B, 369(1655):20130478, 2014.

[45] Kenji Doya, Kazuyuki Samejima, Ken-ichi Katagiri, and Mitsuo Kawato.
Multiple model-based reinforcement learning. Neural computation,
14(6):1347–1369, 2002.

[46] Michal Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and
Wojciech Jaskowski. A Doom-based AI Research Platform for Visual Re-
inforcement Learning. 2016.

[47] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko
Georgiev, et al. https://deepmind.com/blog/

deepmind-and-blizzard-open-starcraft-ii-ai-research-environment/,
2017.

25

https://deepmind.com/blog/deepmind-and-blizzard-open-starcraft-ii-ai-research-environment/
https://deepmind.com/blog/deepmind-and-blizzard-open-starcraft-ii-ai-research-environment/

5 Appendix

In this section, we formalize some definitions referred to in the rest of the paper.
We also provide some of the proofs that will create suitable mathematical back-
ground for analysing impartial combinatorial games, such as Wythoff’s game.
We start by giving a formal description of an impartial game.

Definition 4. Let S be a set of states, and f : S → S be the legal moves
function. An impartial game is a game played among p1 and p2, such that:

1. p1 and p2 alternate in making moves with p1 going first.

2. Given a state s, the move m made by p1 has to be an element of f(s)

3. pi loses at state s if and only if it is pi’s turn, and f(s) is the empty-set,
meaning that there are no legal actions for pi to do.

4. There cannot exist a sequence of states s1, s2, · · · , sn such that f(s1) = s2,
f(s2) = s3, · · · , f(sn) = s1.

5. From every state s there exists a valid sequence of states s1, s2, · · · , sn
such that f(s1) = s2, f(s2) = s3, · · · , f(sn−1) = sn where f(sn) is the
empty-set. Thus, sn is a terminal state in the game.

Conditions 1, 2 and 3 lay out the main structure of the game. Condition 4
insists that once a state has been reached, it cannot be re-accessed, and thus
the game cannot go in cycles. Condition 4, combined with Condition 5 ensures
that the game will always terminate, since every legal move must decrease the
maximum distance to a terminal state where there are no available actions.
Once the the distance reaches zero, the player whose turn it is loses, and the
other player wins.

First, we prove using the principle of mathematical induction that indeed,
in any well-defined impartial game, every position will be either hot or cold.
First, we formally define the notions of hot and cold.

Definition 5. Let (S, f) be an impartial game. Let s ∈ S. We say s is cold if
f(s) = ∅, that is, s is a terminal position. We say s ∈ S is hot if and only if
there exists a s ∈ f(s) such that s′ is a cold position. If s is not a cold position,
we say s is cold if and only if for all s′ ∈ f(s), s′ is a hot position.

Thus, the definition of hot and cold recursively builds up from each other,
and since terminal states being cold constitute the necessary base case, the
recursion is well-defined. However, if the reader is unfamiliar with recursive
constructions, the theorem we present next does not immediately follow.

Theorem 2. Let (S, f) be a impartial game. Then, for all s ∈ S, s is either
hot or cold.

Proof. Proof is by induction on the maximum distance the state has to a ter-
minal state. We refer to this distance as the depth of the state.

26

In the base case, the depth is just 0, implying that the s is a terminal state,
then by definition s is cold, so the theorem is true.

Now, we assume inductively that the depth of s is greater than 0. For all
s′ ∈ f(s), the depth of s′ in necessarily smaller than that of s, thus inductive
hypothesis applies to show all such s′ is either hot or cold.

Case 1: All such s′ are hot.
Then by definition, s is cold.

Case 2: There exists a s′ which is cold.
Then by definition, s is hot.

Since these are the only two cases, the result follows by induction.

Thus we have that for all impartial games, the states can be partitioned
into hot and cold positions. The question that remains is what the partition
is, given a specific impartial game. We answer this question for the game of
Nim. We will prove that a position in 2 pile Nim is hot as long as the piles are
asymmetrical.

Theorem 3. Let (S, f) be the impartial game of Nim restricted to only 2 piles.
Then, (a, b) ∈ S is a cold position if and only if a = b.

Proof. Proof is by induction on depth of the state (a, b). If depth is 0, we know
(a, b) = (0, 0), (a, b) is cold, and a = b, as desired. If the depth is greater than
0, we have two cases.

Case 1: a 6= b
Without loss of generality, assume a > b. By the rules of Nim, there exists a
move that decreases a to b. Since (b, b) has a smaller depth, by induction, (a, b)
is hot, as desired.

Case 2: a = b
In this case, since in Nim diagonal moves are disallowed, all moves will will bring
the game to a state where the piles are asymmetrical. Any new state will have a
smaller depth, and by induction, will be hot. Thus, (a, b) is cold, as desired.

The partition in Nim for arbitrarily many dimensions has a similar structure,
but requires a little more background to prove, hence but we state it below.

Theorem 4. Let (n1, n2, · · · , nk) represent a k−dimensional Nim game. Then,
(n1, n2, · · · , nk) is a cold position if and only if when n1 through nk combined
with the bitwise exclusive or operation (xor), the result is 0.

Since bitwise logical operators bring us into the realm of stepwise distribu-
tions again, it becomes difficult for a HQN-like agent to converge on optimal
performance.

For Wythoff’s game, the proof for the partition is again somewhat involved,
and hence we omit a proof for Theorem 1. We do present, however, a short
proof for the partition of the hot and cold positions for Euclid, making use of
the properties of the golden ratio.

27

Theorem 5. Let (S, f) be the impartial game of Euclid restricted to 2 dimen-
sions. Then, let (a, b) ∈ S, and without loss of generality, assume a ≤ b. Then,

(a, b) is hot if and only if a > 1
φ · b where φ = 1+

√
5

2 is the golden ratio.

Proof. Given a game state (a, b), it suffices to show (1) that if a ≤ 1
φ · b, then a

is a cold position, and (2) otherwise (a, b) is a hot position. Since we reduce one
of the dimensions each move, and theorem works for terminal positions trivially,
we can inductively assume theorem works for all accessible states from a given
state.

Let (a, b) be a game state for Euclid, and suppose without loss of generality
that a ≤ b.

(1) First, let a < 1
φ · b. Since 1

φ >
1
2 , the only state accessible from (a, b) is

(b− a, a). We need to show b− a > 1
φ · a, which implies by inductive hypothesis

that (b− a, a) is a hot position.

b− a > φ · a− a Since φ · a < b by assumption

= (φ− 1)a

=
1

φ
· a φ− 1 =

1

φ
by definition of the golden ratio

(2) Now, we let a > 1
φ · b. We want to access a game in the form (a, b− qa)

where q is an integer, and ((a, b−qa)) is a cold position. By inductive hypothesis,
this is equivalent to saying a > 1

φ · (b− qa) or (b− qa) > 1
φ · (a), depending on

whether a or (b− qa) is the larger integer.
The only reason why we would be unable to access such a state is while

removing multiples of a from b, we skip over the entirety of the cold range. This
would only happen if a was a number larger then the number of unique k’s such
that (a, k) is a cold position, i.e. k < 1

φ ·a or a < 1
φ ·k hold true. Combining the

inequalities, we see that we need to count the number of integer k’s such that

1

φ
· a < k < φ · a

There will be precisely a such values for k, so the entirety of the cold range
cannot be leaped over, as desired.

28

(a) Nim (b) Euclid

Figure 12: Hot-Cold Partitions for the impartial games Nim and Euclid. The mathematical
rules that generate the partitions is similar to that of Wythoff’s game; however, Nim and
Euclid lack stepwise distribution along a region, unlike Wythoff’s game.

29

	1 Introduction
	2 Methods
	2.1 Impartial games: Wythoff's game, Nim, and Euclid
	2.2 Hierarchical Q-Network (HQN)
	2.2.1 Overview
	2.2.2 Network Details
	2.2.3 The Q-agent
	2.2.4 The Model-Network
	2.2.5 Q-agent and Model-Network
	2.2.6 Model-Free Learning Agents

	3 Results
	3.1 Model Building
	3.2 HQN Efficiency vs. Q-agent and Q-Networks
	3.3 HQN performance across dimensions
	3.4 HQN performance across rule variations

	4 Discussion
	4.1 The Hierarchical Q Network
	4.2 Biological Motivations for Hierarchical Processing
	4.3 Impartial Games as a Benchmark

	5 Appendix

