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Abstract: Post-task resting state dynamics can be viewed as a task-driven state where behavioral per-
formance is improved through endogenous, non-explicit learning. Tasks that have intrinsic value for
individuals are hypothesized to produce post-task resting state dynamics that promote learning. We
measured simultaneous fMRI/EEG and DTI in Division-1 collegiate baseball players and compared to
a group of controls, examining differences in both functional and structural connectivity. Participants
performed a surrogate baseball pitch Go/No-Go task before a resting state scan, and we compared
post-task resting state connectivity using a seed-based analysis from the supplementary motor area
(SMA), an area whose activity discriminated players and controls in our previous results using this
task. Although both groups were equally trained on the task, the experts showed differential activity
in their post-task resting state consistent with motor learning. Specifically, we found (1) differences in
bilateral SMA–L Insula functional connectivity between experts and controls that may reflect group
differences in motor learning, (2) differences in BOLD-alpha oscillation correlations between groups
suggests variability in modulatory attention in the post-task state, and (3) group differences between
BOLD-beta oscillations that may indicate cognitive processing of motor inhibition. Structural connectiv-
ity analysis identified group differences in portions of the functionally derived network, suggesting
that functional differences may also partially arise from variability in the underlying white matter
pathways. Generally, we find that brain dynamics in the post-task resting state differ as a function of
subject expertise and potentially result from differences in both functional and structural connectivity.
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INTRODUCTION

The post-task resting state has been described as a
“task-driven” functional network state [Wang et al., 2012]
associated with learning [Albert et al., 2009; Lewis et al.,
2009; Vincent, 2009] and cognition [Grigg and Grady, 2010;
Hasson et al., 2009; Waites et al., 2005]. This is premised
on the idea that if subjects are interested in improving per-
formance on a task, they may covertly rehearse the task
that they just completed, a process which is hypothesized
to reengage the task-dependent brain network dynamics
just evoked and promote learning and adaption during
this rest period. Consequently, it is purported that recruit-
ment of task-related brain dynamics during a post-task
resting-state might facilitate the development of expertise
in a task over time [Zhang et al., 2014].

To study post-task resting state dynamics, a subject pop-
ulation is often trained on a task and incentivized to per-
form like experts [Grigg and Grady, 2010; Zhang et al.,
2014]. The challenge is that such incentives are rather con-
trived, using laboratory tasks that have only modest
reward/value for the subjects and relying on a few dollars
of monetary payout as the incentive. Another approach,
the one that we adopt here, is to identify a population that
has substantial expertise and intrinsic motivation for a
task and have them perform a related surrogate task in
the laboratory. In this way, we can tap into robust and
real-world brain dynamics, leveraging expertise and inher-
ent value that have been developed in the task over years,
to investigate post-task resting state.

While likely facilitated by innate sensorimotor predispo-
sitions, such as exceptional visual acuity or motoric agility,
it has been proposed that athletes largely develop their
cognitive expertise through continued practice and learn-
ing [Miura et al., 2010]. As an example, baseball players
are exceedingly good at deciding whether to swing at a
pitch, given a split second to observe a baseball’s trajecto-
ry, spin, and speed. During this split second decision,
there is little time for explicit decision-making; instead, the
ability to hit a baseball relies on largely implicit mecha-
nisms that must link perception to action as a fast percep-
tual decision [Muraskin et al., in press; Muraskin et al.,
2015; Nakamoto and Mori, 2008; Radlo et al., 2001]. This
process is largely dependent on the efficiency of globally
distributed networks throughout the brain [Forstmann
et al., 2010; Heekeren et al., 2004]; however, precisely
which functional and structural components of these net-
works foster expert level performance remains a mystery.

Our goal in the current article is to investigate differ-
ences between groups (expert/baseball-hitters vs. novices/
controls) in post-task resting state functional networks,
where these differences relate to group-level differences in

the functional activity assessed during the task. We
recruited Division 1 collegiate baseball players as an
expert group as well as a matched control group, and we
perform a seed-based connectivity analysis. We use seeds
in right and left supplementary motor area (SMA) regions,
including the preSMA, since we have previously shown in
an EEG-only study [Muraskin et al., 2015] and during the
task portion of this dataset [Muraskin et al., in press] that
task-related differences between baseball players and con-
trols were found in the SMA, and interestingly not in oth-
er areas associated with Go/No-Go tasks. A whole brain
analysis with respect to these seed regions was performed
to investigate group differences in the post-task resting
state that may reflect expertise effects with respect to
motor learning, modulatory attention, and cognitive proc-
essing related to motor inhibition. Together with our pre-
vious results, SMA was targeted as a seed region given its
known role in motor learning [Aizawa et al., 1991; Hals-
band and Freund, 1990; Halsband and Lange, 2006; Sakai
et al., 1996] and involvement in Go/No-Go tasks [Duno-
van et al., 2015; Forstmann et al., 2010; Frank et al., 2015;
Jahfari et al., 2012; Simmonds et al., 2008].

In addition to BOLD correlations, we also examined corre-
lations between alpha and beta activity in the SMA and the
rest of the brain. Alpha oscillations have been linked with
attention-related circuits [Capotosto et al., 2009; Klimesch
et al., 1998; Laufs et al., 2003a; Ray and Cole, 1985] and mod-
ulation of attention is important for both motor learning
[Jueptner et al., 1997; Wulf et al., 2001] and learning in gener-
al [Lewis et al., 2009]. Similarly, beta oscillations play a role
in cognitive [Ray and Cole, 1985; Wang et al., 2013] and
motor processing, especially motor inhibition [Zhang et al.,
2008]. The beta wave has been shown to reflect cognition-
related processes during rest [Laufs et al., 2003b] and during
tasks [Ray and Cole, 1985], with others linking it to involve-
ment in motor activity [Hari and Salmelin, 1997; Kristeva-
feige et al., 2002]. For example, beta wave synchronization
after movement has been described as a marker of an idling
motor cortex [Cassim et al., 2001; Pfurtscheller, 1996].

In our experiment, both baseball experts and control
participants performed a surrogate pitch discrimination
task in a Go/No-Go paradigm [Muraskin et al., in press;
Muraskin et al., 2015; Sherwin et al., 2015] while simulta-
neous fMRI/EEG neuroimaging is collected, and we exam-
ined expertise effects in brain dynamics of the post-task
resting state as well as related structural connectivity dif-
ferences from DTI data. We examined three estimates of
SMA region activity, that include the pre-SMA, from the
averaged fMRI BOLD activity and from EEG sources,
including mean alpha and beta power. In each case, we
identified relationships between the SMA region seeds and
the fMRI functional activity in all voxels outside of the
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SMA regions that demonstrated expertise-related effects.
Finally, we examined whether expertise differences arose
from variation in underlying structural connectivity of the
network. Using the ten functionally derived regions of
interest from the fMRI/EEG analysis, we compared differ-
ences in the number of tracked streamlines between each
pair of regions, where differences can be interpreted as the
strength of connections [Griffa et al., 2013]. Collectively,
this set of analyses assessed whether functional and/or
structural connectivity can identify neural correlates of
expertise by differentiating expert baseball hitters from
controls.

METHODS

Subjects

This study included 14 Division I collegiate Ivy League
championship baseball players (all male, 19.57 6 2.4 years)
and 24 non-baseball players (all male, 20.92 6 2.7 years)
with an age range of 18–30 years. None of the non-
baseball players (controls) had professional or collegiate
baseball experience. Subjects reported no history of neuro-
logical problems and had normal or corrected to normal
vision. All subjects gave informed consent according to the
guidelines and approval of the Columbia University Insti-
tutional Review Board.

Behavioral Paradigm

This behavioral paradigm consisted of a Go/No-Go task
using simulated baseball pitch videos that have been
applied previously [Muraskin et al., 2015; Sherwin et al.,
2015]. The task based portion of this experiment is
described in Muraskin et al. [in press]. For clarity, we reit-
erate the experimental procedure below. The experiment
involved a training session prior to the simultaneous
fMRI/EEG data acquisition. During training, subjects
familiarized themselves with the different pitch types and
completed practice trials until they have scored an accura-
cy of at least 60% (above the random chance accuracy of
50%).

At the beginning of each trial, a single letter correspond-
ing to the pitch (“F” for fastball, “C” for curveball, and
“S” for slider) was shown on the screen (horizontal view
0.288and vertical view 0.288) for a mean time of 819 6 3.1
ms. While the letter was on the screen, a horizontal bar
(horizontal extent 3.938, vertical 0.288) shrank (horizontally)
at a constant rate to either the left or right side of the
screen. If the pitch following the letter cue came from a
left handed pitcher, then the horizontal bar shrank toward
the right, and if the pitch came from a right handed pitch-
er, then the horizontal bar shrank toward the left. After
the horizontal bar shrank completely to either the left or
the right, the pitch started from that point on the left or
right side of the screen (i.e., pitches from left-handed

pitchers started from the right side of the screen, and vice
versa).

Subjects used the VisuaStim Digital System (Resonance
Technology) 600x800 goggle display to view 450 simulated
baseball pitches (5 blocks of 90 trials, 3 different types of
pitches) from the viewpoint of a baseball catcher (at the
end of the baseball’s trajectory). While viewing these
pitches, subjects completed a Go/No-Go task by determin-
ing if each pitch matched its pre-stimulus cue. The pro-
gram optseq2 [Dale, 1999] was used to select a mean
jittered inter-stimulus interval (ISI) that enabled the rapid
presentation of fMRI events without overlap from the
hemodynamic responses (mean of 3,000 ms and SE of 225
ms). Each subject was instructed to respond by pressing a
keyboard button with the index finger of his right hand if
the pre-stimulus cue matched the type of pitch that fol-
lowed it (“Go” trials). In addition, in order for a “Go”
response to be correct, the subject needed to respond while
the ball was still in the screen. If the pre-stimulus cue and
the pitch did not match, the subject was instructed to
withhold his response (“No-Go” trials). Feedback was giv-
en after every trial (for both “Go” and “No-Go” trials) in
the form of a “1” for correct responses in “Go” trials and
correct withholding of responses in “No-Go” trials and a
“2” for incorrect “Go” and “No-Go” responses. Sixty per-
cent of the trials were “Go” and 40% of the trials were
“No-Go.”

Overall accuracy on the task was determined by calcu-
lating the percent of trials with a correct response (the sub-
ject responded while the ball was still on the screen for
“Go” trials and withheld his response for “No-Go” trials).
Go accuracy was determined by calculating what percent
of all the “Go” trials had a correct response (subject
responded and this response happened while the ball was
still on the screen). “No-Go” accuracy was determined by
calculating what percent of all the “No-Go” trials the sub-
ject correctly withheld his response.

Pitch Simulations

Following our previous work [Muraskin et al., in press;
Muraskin et al., 2015; Sherwin et al., 2012, 2015], the pitch
simulations were created by solving six-coupled differen-
tial equations [Adair, 1990; Armenti, 1992] in MATLAB
2010a (Mathworks, Natick, MA) using a differential equa-
tion solver. The PsychToolbox [Brainard, 1997; Pelli, 1997]
was used to present the simulated baseball pitches. In the
pitch simulations, an isoluminant green circle moving in
the plane of the screen represented a baseball pitch, and it
simulated movement in the plane perpendicular to the
screen (depth) by increasing in size while approaching the
subject.

Three different pitch categories (fastball, curveball, and
slider) were used in this paradigm, and these pitches were
identified by their trajectory only (even though these
pitches also have spin in real-life). A fastball has a
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trajectory that is straight, a curveball has a combination of
side and top spin that takes the ball on a rightward and
downward trajectory, and a slider only has side spin that
takes it on a rightward trajectory [Sherwin et al., 2012].

dx

dt
5vx (1)

dy

dt
5vy (2)

dz

dt
5vz (3)

dvx

dt
52FðvÞvvx1Bxðvz sin H2vy cos HÞ (4)

dvy

dt
52FðvÞvvy1Bxvy cos H (5)

dvz

dt
52g2FðvÞvvz1Bxvx sin H (6)

FðvÞ50:00391
0:0058

11e
ðv2vdÞ

D

(7)

The first three equations specify the change in spatial loca-
tion in each direction,which equals the velocity of the
baseball. Equations 4–6 specify the accelerations due to the
drag [F(v)], the Magnus force (B), and gravity (g) acting on
the baseball. Equation 7 is used to calculate the drag force
at different velocities with vd 5 35 m/s and D 5 5 m/s. The
Magnus force (B), which occurs due to differential drag on
a spinning object, is approximated here to be 4.1 3 1024

(dimensionless). After specifying the initial conditions [x0,
y0, z0, vx0, vy0, vz0, x (rotational frequency)], the six ordi-
nary differential equations were solved in MATLAB. Each
of the three pitch categories have well-defined ranges of
initial velocities and rotation angles, and within these
ranges, pitches were varied so that no two trials of the
same category had the exact same trajectory.

fMRI/EEG Resting State Scan

After completing the Go/No-Go perceptual decision-
making task, participants waited about 2 minutes while the
MRI technician prepared the scanner for the final 5 minute
resting state scan. Participants were told to “rest and focus
on the cross on the screen,” and they rested supine in the
MRI scanner with eyes open and fixated on a central point.

Simultaneous fMRI/EEG and

DTI Data Acquisition

A 3T Philips Achieva MRI scanner (Philips Medical Sys-
tems) with an eight channel SENSE head coil was used to
collect MRI data. Functional echo planar imaging (EPI) data
sensitive to blood oxygenated level-dependent (BOLD) con-
trast were collected (2 s TR, 20 ms TE, 64 3 64 matrix, and 35
interleaved slices). Whole brain T1-weighted anatomical

images (1 3 1 3 1 mm) and single high volume EPI images
(2 3 2 3 2 mm) were also obtained to help with registration.
DTI was acquired along 50 directions with a b-value of
1,500 s/mm2 (as well as a b0 image with no diffusion
weighting) and a voxel-size of 2 3 2 3 2 mm3 (TR 5 8,996
ms, TE 5 80 ms, FOV 5 224 mm, 75 axial slices AC/PC
aligned encompassing the whole brain, SENSE Factor 5 2).

Simultaneous and continuous EEG data were acquired
with a custom built MR-compatible EEG system [Goldman
et al., 2009; Sajda et al., 2010]. This system included a dif-
ferential amplifier and a bipolar EEG cap with 36 Ag/
AgCl electrodes (including left and right mastoids)
arranged as 43 bipolar pairs. In order to minimize noise
from subject head motion in the main magnetic field and
from inductive pickup from magnetic gradient pulses, we
used twisted bipolar pair leads. The 488 Hz sampled EEG
was synchronized with the scanner clock at the start of
each functional image acquisition by sending a transistor–-
transistor logic (TTL) pulse to the recording computer.
This was used in the gradient artifact removal during the
offline EEG data preprocessing steps. About 10 kX resis-
tors were built into each electrode to ensure subject safety,
and all electrode impedances were kept below 20 kX.

fMRI/EEG Data Preprocessing

Simultaneous fMRI/EEG data collection introduces
some known confounds (i.e., gradient and ballistocardio-
gram artifacts (BCG) in EEG and bias field distortion in
fMRI) that were removed with standard EEG/fMRI proc-
essing [Walz et al., 2013], and then each neuroimaging
modality was preprocessed according to well-adopted
approaches for its imaging type. Based on previous find-
ings in EEG-only [Muraskin et al., 2015] and the task based
EEG-fMRI [Muraskin et al., in press] studies that highlight
SMA involvement in Go/No-Go tasks with expertise, our
analysis focused on connectivity relationships between R
and L SMA functional activity, either fMRI or EEG, and
the fMRI activity in all voxels located outside of the SMA.
Consequently, each preprocessing stream targeted an end
state that produced a representative time series for the
SMA by either averaging voxels in the fMRI data or by
estimating a dipole source in the EEG data.

fMRI preprocessing

SPM8 (Wellcome Trust Centre for Neuroimaging, Lon-
don) was used to preprocess the resting state fMRI EPI
images (bias field correction, slice-time correction, motion
realignment, normalization, and smoothing) and MPRAGE
structural images (segmentation and normalization). The
realignment parameters from the motion realignment step
were included as first level covariates in the fMRI analysis.
In a segmentation step, a mask for each subject’s gray mat-
ter, white matter, and CSF images were obtained, and a
group gray matter mask (size 199,768 voxels; 1 voxel 5 2
3 2 3 2 mm3) was created by averaging the gray matter
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images from all of the subjects. This mask was used as
input into the Functional Connectivity (CONN) toolbox
[Whitfield-Gabrieli and Nieto-Castanon, 2012] to ensure
that all the ROIs detected in the seed to voxel connectivity
analysis were in the brain’s gray matter. Furthermore,
using CONN’s anatomical aCompCor strategy, noise sig-
nals due to CSF, white matter, realignment parameters,
and time-series predictors of global signal were removed
[Behzadi et al., 2007]. Finally, the AAL atlas [Tzourio-
Mazoyer et al., 2002] was used on the MPRAGE image to
parcellate the gray matter voxels into regions, and the vox-
els within the SMA were averaged to produce a functional
fMRI time series for the connectivity seed analysis.

EEG preprocessing

Matlab (Mathworks, Natick, MA) was used to preprocess
the resting state EEG data. First, gradient artifact removal
was performed using a template subtraction algorithm
[Goldman et al., 2009]. Then, a software-based 0.5 Hz high
pass filter was used to remove DC drifts, a 60 Hz (harmon-
ic) notch filter to minimize line noise artifacts, and a 100
Hz low pass filter were applied before resampling the data
to 256 Hz. These filters were designed to be zero-phase to
minimize delay distortions. Independent components analy-
sis (ICA) was run using EEGLAB [Delorme and Makeig,
2004] and the FastICA [Hyvarinen, 1999] algorithm was
used to remove eye-blink artifacts. This methodology has
been used previously to identify and remove eye-blink arti-
facts reliably [Muraskin et al., 2015; Sherwin et al., 2012;
Sherwin and Sajda, 2013]. Stimulus events—that is, count-
down, pitch type, responses—were recorded on separate
channels for event-related analysis.

Ballistocardiogram artifacts are more challenging to
remove because they share frequency content with EEG
activity. BCG artifacts were removed from the continuous
gradient-free data using a principal components analysis
method [Goldman et al., 2009; Sajda et al., 2010]. First, the
data were low passed at 4 Hz to extract the signal within the
frequency range in which BCG artifacts are observed and
then the first two principal components were determined.
The channel weightings corresponding to those components
were projected onto the broadband data and subtracted out.
These BCG-free data were then re-referenced from the 43
bipolar channels to the 34-electrode space.

We performed cortical source imaging using eConnec-
tome [He et al., 2011]. eConnectome uses the cortical current
density source model to solve the inverse problem in order
to determine cortical source distribution. After producing a
high resolution cortical surface, it down-samples the cortical
surface to 7,850 current dipoles spread evenly across and
perpendicular to the cortical surface. The dipole strengths
on the cortical surface were estimated, and using the region
of interests defined by the AAL atlas, the dipole located in R
and L SMA was identified. A Morlet transformation was
applied to the SMA time series in order to obtain a power-
time series. The power corresponding to alpha (8–12 Hz)

and beta (15–30 Hz) waves was normalized by dividing the
power at each time point by the mean power. The EEG data
(8–12 Hz and 15–30 Hz) were then convolved with a canoni-
cal hemodynamic response function so that it modeled
blood oxygen level dependent (BOLD) changes. An average
value was obtained for every 2-s interval for the alpha (8–12
Hz) and beta (15–30 Hz) power time courses.

Seed to Voxel Connectivity Analysis

Our analysis focused on connectivity relationships
between R and L SMA seed regions and all fMRI voxels out-
side of the SMA that are located in the brain’s gray matter.
We either averaged the fMRI time series across all SMA
voxels to produce the seed time series, or we estimated the
EEG source time series for a dipole located near the SMA
region. The SMA time series, either fMRI or EEG, was then
used in a regression with all non-SMA fMRI voxels. A flow
chart of the processing stream is detailed in Figure 1.

For each subject, we created a regression contrast image
for three SMA time series: the first uses fMRI SMA time
series data, the second uses EEG alpha (8–12 Hz) SMA
data controlling for the fMRI SMA time series, and the
third uses EEG beta (15–30 Hz) SMA data controlling for
the fMRI SMA time series. These individual contrasts were
done separately for R and L SMA and then used in two
group analyses. The first group general linear model
(GLM) investigated expertise effects, directly comparing
the baseball experts and controls. The second group GLM
examined connectivity relationships with overall accuracy
on the Go/No-Go task while controlling for expertise by
including group assignment as a regressor in the GLM (1
for expert and 0 for control). Thus, the second group anal-
ysis identified fMRI voxels that varied with R or L SMA
activity (fMRI, EEG alpha, or EEG beta) based on the per-
son’s task performance, independent of their expertise. We
also ran one variant of the second group analysis, using
the participant’s performance accuracy on only the “No-
Go” trials and the EEG beta SMA activity based on prior
evidence of beta power involvement in motor response
inhibition [Zhang et al., 2008].

We generated a regression contrast image for each
group analysis. To minimize type I and type II errors, we
used AFNI’s 3dClustSim program to determine a FWE-
corrected P value <0.05. The group gray matter mask
(199,768 voxels) was used as input for a Monte Carlo sim-
ulation (10,000 iterations) with parameters for set for voxel
size (2 3 2 3 2) and smoothing (FWHM 8 mm), and we
found that our uncorrected P value and minimum cluster
size threshold for significance was P <0.005 (uncorrected)
and a minimum cluster size of 156 voxels.

For each region of interest (ROI) cluster that reached
significance, we extracted parameter estimates/b weights
(measure of functional connectivity strength in arbitrary
units) for each subject, then conducted post-hoc indepen-
dent samples t-tests and plotted average functional
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connectivity parameter (and standard error) in each group
to show the strength of the functional connectivity in each
of the groups. We also conducted post-hoc Pearson corre-
lation coefficient analyses between connectivity parameters
to examine the direction of the relationship, where positive
values indicate that the task performance increased and
negative values are related to decreases in performance.

Structural Connectivity Analysis

Structural connectivity was computed using DSI Studio
and analyzed using Matlab. First, DTI data were recon-
structed using Q-Space Diffeomorphic Reconstruction
(QSDR; [Yeh and Tseng, 2011]. Whole-brain fiber tractog-
raphy [Yeh et al., 2013] was performed 1,000 times for
each participant (13 experts, 24 novices, since one expert
was excluded for poor normalization into MNI QA space).
In order to minimize the impact of local microarchitectural
variability on streamline generation, the 1,000 iterations
randomly sampled values for QA thresholds (between 0.01
and 0.10), turning angle thresholds (between 408 and 808),
and smoothing (between 50% and 80%) to ensure results
are robust to these parameter choices, while using constant
values for step size (1 mm) and min/max fiber lengths
(10 mm/400 mm). This was done in order for the structur-
al connectivity results to not be biased by a particular
parameter scheme, but instead reflect the likelihood of a
particular connectivity pattern across parameter dependen-
cies. Each iteration generated 250,000 streamlines, and
with a fixed streamline count, differences in the number of
estimated fiber tracts can be interpreted as differences in
the strength of connection [Griffa et al., 2013].

A targeted ROI analysis was performed on the ten func-
tionally derived regions of interest from the fMRI/EEG

expert versus novice analysis: L insula, L superior frontal
gyrus (SFG), L superior parietal cortex, L posterior cingu-
late gyrus, R SFG, R inferior frontal gyrus (IFG), R precen-
tral gyrus, R superior parietal gyrus, R middle temporal
gyrus, R cerebellum. The fMRI/EEG seed regions in L and
R supplementary motor areas (SMA) from the AAL atlas
were also included. Visual inspection confirmed that these
masks subsumed most of the preSMA as well [Zhang et al.,
2012]. To determine the strength of structural connections,
the numbers of streamlines passing through each region-
pair were averaged across iterations, and type two t-tests
were performed to compare expertise-related structural
connectivity patterns between experts and novices.

Figure 2.

Behavioral results for Go/No-Go task. A, Behavioral task accura-

cy for the task overall and then split by No-Go and Go trial

accuracy. Two-way independent t-tests were used to test for sig-

nificant differences between groups. B, Average response times

for correct Go trials split by expertise group. [Color figure can

be viewed in the online issue, which is available at wileyonlineli-

brary.com.]

Figure 1.

Resting-state FMRI/EEG methods diagram. A, EEG data were

first preprocessed by removing gradient artifacts, then filtered,

down-sampled, BCG removed, and re-referenced to 34-

electrode space. Dipole strengths on the cortical surface were

then estimated and averaged at both L and R SMA. A Morlet

transformation was applied to the time series to generate a and

b power fluctuations across time. Finally, the a and b power

time series were convolved with the canonical hemodynamic

response function (HRF). B, Preprocessing was done on the

fMRI data (slice-time correction, motion realignment, normaliza-

tion, and smoothing) and MPRAGE structural images

(segmentation and normalization). Filtered BOLD time courses

from L and R SMA regions were averaged to be seed regions

for further analysis. C, Covariates of interest were created

either by the grouping of subjects by expertise or creating con-

tinuous regressors based on each subject’s task performance. D,

A seed to voxel connectivity analysis was performed between L

and R SMA seed regions (fMRI voxels or a and b power source

time series) and the gray matter voxels outside of L and R SMA.

Statistical parametric maps were created by analyzing group dif-

ferences or correlating subject performance with seed to voxel

connectivity.
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RESULTS

Behavioral Results

Behavioral task results are shown in Figure 2. Overall
accuracy (% correct trials) for controls was 65% 6 8 and
for experts was 73% 6 5. Experts had significantly higher
accuracy compared with controls (t 5 4.16, P 5 0.0002,
Cohen’s d 5 1.33). Expert No-Go (55% 6 9) and Go trial
(90% 6 3) accuracies were significantly higher than the con-
trol group (42% 6 15, 79% 6 13) (No-Go Trials: t 5 3.31,
P 5 0.0021, Cohen’s d 5 1.04; Go Trials: t 5 3.86, P 5 0.006,

Cohen’s d 5 1.14). Experts (449 6 24 ms) also have faster reac-
tion times than controls (477 6 25 ms) for Correct Go trials
(t 5 23.24, P 5 0.0031, Cohen’s d 5 21.09).

Group Analysis: Expert Versus Control

A significant group effect was found in resting state
functional connectivity between the R SMA (AAL
atlas) and the L insula (MNI peak [242 10 28],
t 5 3.84, Z 5 3.49, P< 0.001; cluster volume of
1,920 mm3). Post-hoc t-tests revealed that experts had

Figure 3.

Expertise differences in the functional connectivity to SMA. A, Overlay of the functional connec-

tivity differences at L insula between experts and controls to R SMA (red), L SMA (blue), and

overlap (magenta). B, Post-hoc tests show significant differences between the two groups, with

experts having a significantly higher connectivity to L and R SMA at L insula. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]

TABLE I. fMRI Only: Seed-based post-task resting state functional connectivity of R and L SMA voxels with the rest

of the brain’s gray matter voxels

MNI coordinates

Seed Contrast Region name X Y Z Voxels T-score Z-score

fMRI BOLD at R. SMA Experts > Non-experts L insula 242 10 28 240 3.84 3.49
Non-experts > Experts (None)

fMRI BOLD at L. SMA Experts > Non-experts L insula 244 6 26 276 3.68 3.37
Non-experts > Experts (None)

fMRI BOLD at R. SMA Overall Accuracy Regressor,

Controlling for Expertise
Positive Correlations

R. insula 42 218 214 261 4.88 4.23
R superior

frontal gyrus
24 44 34 194 4.41 3.91

Overall Accuracy Regressor,

Controlling for Expertise
Negative Correlations

L Parahippocampal 224 214 230 160 4.08 3.66

fMRI BOLD at L. SMA Overall Accuracy Regressor,

Controlling for Expertise

Positive Correlations

R insula 42 214 0 307 3.97 3.58

Overall Accuracy Regressor,

Controlling for Expertise

Negative Correlations

L Cerebellum 228 248 226 220 4.68 4.10

Reports all clusters with uncorrected P< 0.005 and minimum cluster extent threshold (contiguous voxels) 156 voxels.
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higher functioned connectivity between the R SMA
and the L insula than controls (t 5 3.74, P< 0.001) (Fig.
3A and Table I).

Similarly, a significant group effect in functional connec-
tivity (Fig. 3B) was also found between the L SMA (AAL
atlas) and the L insula (MNI peak [244 6 26], t 5 3.68,
Z 5 3.37; P< 0.001, cluster volume 2,208 mm3). Post-hoc
t-tests revealed that experts had significantly higher func-
tional connectivity than controls (t 5 3.66, P< 0.001).

Group Analysis: Go/No-Go Performance

with fMRI SMA

Given the dominance of expertise in the group fMRI-
only seed analysis, we added a regressor for expertise lev-
el (expert or non-expert) and examined how functional
connectivity fluctuated with task performance when using

Figure 4.

SMA functional connectivity correlates with task performance.

A, Overlay of significant clusters where task performance corre-

lates with functional connectivity to L SMA (orange) and R SMA

(dark red). B, Scatter plot of the functional connectivity to L

SMA from R insula by the behavioral accuracy of each subject

controlling for expertise (r 5 0.509, P value 5 0.001). C, Scatter

plot of the functional connectivity to R SMA from R SFG by the

behavioral accuracy of each subject controlling for expertise

(r 5 0.56, P value< 0.001). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 5.

SMA a power correlations differences between experts and

controls. A, Group-level activations for L SMA a-power correla-

tions contrast for controls> experts. Multiple significant clusters

are displayed including L insula. B, Post-hoc tests show signifi-

cant differences between the two groups, with experts having a

significantly lower a-connectivity to L SMA at multiple regions.

C, Group-level activations for R SMA a-power correlations con-

trast for controls> experts (blue) and experts> controls (red).

Multiple significant clusters are displayed including L insula and R

middle temporal gyrus. D, Post-hoc tests show significant differ-

ences between the two groups, with experts having a significant-

ly lower a-connectivity to R SMA in L insula and L superior

frontal gyrus and significantly higher a-connectivity in R cerebel-

lum and R middle temporal gyrus. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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fMRI activity from the R and L SMA as seed regions in
separate analyses. Across all subjects, functional connectiv-
ity between L SMA was found (Fig. 4A and Table I) to
vary positively with task performance (overall accuracy)
with R insula (MNI peak [42 214 0], t 5 3.97, Z 5 3.58,
P< 0.001; cluster volume 2,456 mm3). Conversely, func-
tional connectivity between L SMA varied negatively with
L cerebellum (MNI peak [228 248 226], t 5 4.68, Z 5 4.10;
P< 0.001, cluster volume 1,760 mm3). When we looked
across hemispheres and used the R SMA as the seed
region, we found that functional connectivity varied posi-
tively according to task performance between R SMA and
R insula (MNI peak [42 218 214], t 5 4.88, Z 5 4.23,
P< 0.001; cluster volume 2,088 mm3) and with R superior
frontal gyrus (MNI peak [24 44 34], t 5 4.41, Z 5 3.91,
P< 0.001; cluster volume 1,552 mm3) and negatively
between R SMA and L parahippocampal gyrus (MNI peak
[224 214 30], t 5 4.08, Z 5 3.66, P< 0.001; cluster volume
1,280 mm3).

Pearson coefficient correlation tests revealed (Fig. 4B,C)
that functional connectivity was positively correlated with
overall accuracy scores in the Go/No-Go task for R
SMA–R SFG (r 5 0.56, P value< 0.001), R SMA–R insula
(r 5 0.36, P value 5 0.03), and L SMA–R insula (r 5 0.509, P

value 5 0.001), while negatively correlating with overall
accuracy scores for R SMA–L parahippocampal (r 5 20.36,
P 5 0.026) and L SMA–L cerebellum (r 5 20.57, P< 0.001).

Group Analysis: Go/No-Go Performance

with EEG Alpha SMA

Next, we used a time series of EEG alpha power from a
L SMA EEG source as the seed to examine connectivity
relationships with BOLD time series in non-SMA voxels. As

shown in Figure 5A and Table II, group differences in cor-
relation were found between the EEG alpha power at L
SMA and fMRI BOLD signal at R precentral gyrus (MNI
peak [58 28 14], t 5 5.04, Z 5 4.36, P< 0.001; cluster volume
1,912 mm3), R superior parietal gyrus (MNI peak [22 264
54], t 5 4.09, Z 5 3.68, P< 0.001; cluster size 5 2,992 mm3), R
superior frontal gyrus (MNI peak [32 52 36], t 5 3.97,
Z 5 3.59, P< 0.001; cluster volume 1,496 mm3), R inferior
frontal gyrus (MNI peak [52 30 0], t 5 3.86, Z 5 3.51,
P< 0.001; cluster volume 1,576 mm3), L insula (MNI peak
[228, 20, 6], t 5 3.66, Z 5 3.35, P< 0.001; cluster volume
1,312 mm3), and L superior parietal (MNI peak [220 260
66], t 5 3.48, Z 5 3.21, P< 0.001; cluster volume 1,472 mm3).

In Figure 5B, post-hoc tests revealed that there were neg-
ative correlations in experts and positive correlations in
controls between the EEG alpha power for L SMA–R supe-
rior parietal fMRI BOLD (t 5 3.61, P< 0.001) and L SMA–R
superior frontal gyrus (t 5 3.54, P< 0.001). Post-hoc test
revealed that there were negative correlations in experts
and negligible correlations in controls between the EEG
alpha power at L SMA and the fMRI BOLD signal at R
inferior frontal gyrus (t 5 3.45, P 5 0.001), L insula (t 5 3.29,
P 5 0.002), and L superior parietal (t 5 3.24, P 5 0.003).

We next examined functional connectivity using EEG
alpha power from a R SMA EEG source as the seed region
and BOLD time series from non-SMA voxels. As shown in
Figure 5C, we found significant group effects. Controls
had significantly greater correlation between R SMA and L
superior frontal gyrus (MNI peak [222 2 46], t 5 4.16,
Z 5 3.74; P< 0.001, cluster volume 2,624 mm3) and L insula
(MNI peak [236 16 0], t 5 3.92, Z 5 3.56, P< 0.001; cluster
volume 2,360 mm3). Experts had greater correlation
between R SMA and R middle temporal gyrus (MNI peak
[46 242 0], t 5 5.26, Z 5 4.50, P< 0.001; cluster volume
3,944 mm3).

TABLE II. Simultaneous fMRI/EEG Alpha Power: Seed-based post-task resting state functional connectivity of EEG

alpha power using R and L SMA sources with all fMRI gray matter voxels outside of R and L SMA

MNI coordinates

Seed Contrast Region name X Y Z Voxels T-score Z-score

EEG Alpha power at R. SMA Experts > Non-experts R cerebellum 28 288 236 493 5.66 4.76
Controlling for fMRI R middle temporal

gyrus
46 242 0 442 5.26 4.50

signal at R. SMA

Non-experts > Experts L superior frontal
gyrus

222 2 46 328 4.16 3.74

L insula 236 16 0 295 3.92 3.56
EEG Alpha Power at L. SMA Experts > Non-experts (None)
Controlling for fMRI

signal at L. SMA Non-experts > Experts R precentral 58 28 14 239 5.04 4.36
R superior parietal 22 264 54 374 4.09 3.68
R superior frontal gyrus 32 52 36 187 3.97 3.59
R inferior frontal gyrus 52 30 0 197 3.86 3.51
L insula 228 20 6 164 3.66 3.35
L superior parietal 220 260 66 184 3.48 3.21
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As shown in Figure 5D, post-hoc t-tests revealed that
there are strong negative correlations in experts, but negli-
gible correlations in controls between R SMA alpha and L
insula (t 5 3.75, P< 0.001). Post-hoc t-tests revealed that
there were inverse correlations in experts, but positive cor-
relations in controls between R SMA alpha and L superior
frontal gyrus (t 5 3.75, P< 0.001). Post-hoc t tests revealed
positive correlations in experts and negative correlations
in controls between R SMA alpha and R middle temporal
gyrus (t 5 4.10, P< 0.001).

Group Analysis: Go/No-Go Performance with

EEG Beta SMA

As a complement to the alpha analysis, we implemented
the same approach but used beta power. As shown in
Figure 6 and Table III, significant group differences were
found between the L SMA source seed and L superior
frontal gyrus (MNI peak [218 26 60], t 5 4.99, Z 5 4.32,
P< 0.001; cluster volume 2,416 mm3) and L posterior cin-
gulum (MNI peak [28 242 10], t 5 3.82, Z 5 3.47,
P< 0.001; 1,912 mm3).

Investigating the R SMA source seed as shown in Figure
6 and Table III, significant group difference were found
with fMRI BOLD signal at L superior frontal gyrus (MNI
peak [216 26 58], t 5 4.52, Z 5 4.00; P< 0.001, cluster vol-
ume 1,608 mm3). Post-hoc tests revealed that the correla-
tion was inverse in experts but positive in controls
(t 5 4.23, P< 0.001).

As shown in Figure 7, post-hoc Pearson coefficient cor-
relation tests revealed significant positive correlations
between R SMA beta and R parahippocampal gyrus
(PHG) (r 5 0.39, P 5 0.026) and negative correlations with
L SFG (r 5 20.59, P< 0.001) and L anterior cingulate cortex
(ACC) (r 5 20.61, P< 0.001). There were no significant cor-
relations with the “No-Go” accuracy using the L SMA
beta activity as the seed.

Structural Connectivity Results

Our final analysis used DTI to investigate structural con-
nectivity that may underlie these functional network differ-
ences in post-task resting state dynamics between experts
and the control group. A targeted ROI analysis was per-
formed on the ten functionally derived regions of interest
from the fMRI/EEG analysis, shown in Figure 8A (black
orbs): L insula, L superior frontal gyrus, L superior parietal
cortex, L posterior cingulate gyrus, R superior frontal gyrus,
R inferior frontal gyrus, R precentral gyrus, R superior pari-
etal gyrus, R middle temporal gyrus, and R cerebellum.
The seed regions, left and right SMA from the AAL atlas,
were also included (gold orbs). Although no significant
expertise-related differences survived a conservative FDR
correction, several trends for significance are shown in Fig-
ure 8B (*) at uncorrected P< 0.05 levels within our sample
size of only 13 experts and 24 novices. Experts exhibited
uncorrected higher numbers of connections than novices
between R superior frontal gyrus and L posterior cingulate
(t 5 2.10, P 5 0.043), R inferior frontal gyrus and R cerebel-
lum (t 5 2.19, P 5 0.035), and R precentral gyrus, and both
L posterior cingulate (t 5 3.09, P 5 0.004) and L insula
(t 5 2.38, P 5 0.023). Novices exhibited higher numbers of
connections than experts between R SMA and R inferior
frontal gyrus (t 5 22.29, P 5 0.028), and L superior frontal
gyrus and L insula (t 5 22.69, P 5 0.011).

DISCUSSION

In this article, we studied post-task resting state func-
tional brain dynamics to examine their purported role in
learning a recently performed task as a concomitant pro-
cess in expertise development. Instead of using a conven-
tional laboratory task and monetary incentives, we
recruited athletes to perform a surrogate sports task in the
laboratory, enabling a study of post-task resting state
dynamics in a population with substantial expertise and
intrinsic motivation for the task domain. We collected
simultaneous fMRI/EEG data from Division 1 collegiate
baseball players and age-matched controls with no base-
ball experience and conducted a seed-based connectivity
analysis from L and R SMA regions defined from both
fMRI voxels and EEG estimated sources to investigate
functional relationships with performance-dependent
BOLD signal fluctuations in non-SMA voxels. Our results
highlight four main expertise differences: (1) experts had

Figure 6.

SMA b power correlations differences between experts and

controls. A, Group-level activations for L SMA (bright green)

and R SMA (dark green) b-power correlations contrast for con-

trols> experts. B, Post-hoc tests show significant differences

between the two groups, with controls having a significantly

higher connectivity to L and R SMA at L. superior frontal gyrus.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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increased connectivity between bilateral SMA regions,
including the preSMA, and L insula that may reflect
expertise-level differences in post-task rumination critical
for motor learning compared with controls, (2) differences
in BOLD-alpha power correlations between groups, indica-
tive of variability in modulatory attention in the post-task
state and trained learning effects on connecting motor
areas, (3) group differences between BOLD-beta power
indicating possible expertise-level differences in cognitive
processing of motor inhibition, and (4) we identified
trends for several expertise-level differences in indirect
structural connections that support functional connectivity
network with SMA regions.

Group Differences in Motor Learning

Our seed connectivity analysis focused on whole-brain
relationships with L and R SMA regions based on their
known role in motor learning [Aizawa et al., 1991; Hals-
band and Freund, 1990; Halsband and Lange, 2006; Sakai
et al., 1996] and from our previous experiments showing
that activation of SMA regions during a Go/No-Go task
could potentially be a marker of baseball expertise [Muras-
kin et al., in press; Muraskin et al., 2015]. Here, in our
group functional connectivity analysis that examined expert
versus control differences, we found that baseball experts
have significantly greater functional connectivity between L
and R SMA regions and L insula in the post-task resting
state compared with controls. Although the insula is not
typically thought of as a motor learning region, recent evi-
dence has identified differential activity of L insula based
on expertise or prior experience in a given field. A walking

study compared highly fit people with those having poor
fitness and found that the highly fit people (i.e., a type of
expert group) had more insular activation during motor
imagery [Godde and Voelcker-Rehage, 2010], indicating a
role of the insula in motor circuits. A study with musicians
found increased activity in L insula that was higher when
musicians listened to a piece that they had previously
rehearsed compared with a piece that they had never heard
before, and this suggests that L insula is particularly impor-
tant in learning when a person has prior experience in a
certain field [Chein and Schneider, 2005]. Finally, research
on error processing in Go/No-Go tasks [Hester et al., 2004;
Menon et al., 2001] has found activation in bilateral insula,
and this activity may lead to motor learning since effective
motor circuits are key to performance on this task. Insula
activity is also demonstrated during error processing in
general [Bossaerts, 2010; Preuschoff et al., 2008; Ullsperger
et al., 2010], which may reflect the region’s more general
role in learning by guiding a person to recognize, and ulti-
mately avoid making a specific error in the future. Our
results align with this previous research and suggest an
additional role for functional connectivity between SMA
and insula in expert motor learning during a post-task rest-
ing state. Since the post-task resting state represents a
“task-driven” state of learning [Albert et al., 2009; Lewis
et al., 2009; Vincent, 2009] and cognition [Grigg and Grady,
2010; Hasson et al., 2009; Waites et al., 2005], these differ-
ences in functional connectivity between experts and con-
trols may represent different motor learning circuits in
these two groups.

In our second group GLM analysis, we examined con-
nectivity relationships with overall accuracy on the Go/

TABLE III. Simultaneous fMRI/EEG Beta Power: Seed-based post-task resting state functional connectivity of EEG

beta power using R and L SMA sources with all fMRI gray matter voxels outside of R and L SMA

MNI
coordinates

Seed Contrast Region name X Y Z Voxels T-score Z-score

EEG beta power at R. SMA Experts > Non-experts (None)
Controlling for fMRI signal

at R. SMA
Non-experts > Experts L superior frontal gyrus 216 26 58 201 4.52 4.00

EEG Beta power at L. SMA Experts > Non-experts (None)
Controlling for fMRI signal

at L. SMA
Non-experts > Experts L superior frontal gyrus 218 26 60 302 4.99 4.32

L cingulum posterior 28 242 10 239 3.82 3.47
EEG Beta power at R. SMA No-Go Accuracy regressor

Controlling for expertise
Positive Correlations

R para-hippocampal
gyrus

38 238 26 243 5.06 4.35

Controlling for fMRI signal
at R. SMA

No-Go Accuracy regressor

Controlling for expertise
Negative Correlations

L anterior cingulate cortex 210 40 12 170 4.67 4.09
L superior frontal gyrus 26 32 56 287 4.32 3.84

EEG Beta power at L. SMA No-Go Accuracy regressor

Controlling for expertise

Negative/Positive Correlations

(None)
Controlling for fMRI signal

at L. SMA
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No-Go task while controlling for expertise, and we found
that subjects who performed better on the task had signifi-
cantly higher functional connectivity between L and R
SMA and right-lateralized regions (specifically, R insula, R
hippocampus, and R superior frontal gyrus) in the post-
task resting state. This right lateralization was a bit unex-
pected since previous research has shown that the left
hemisphere plays a larger role in motor learning circuits
[Garry et al., 2004; Mutha et al., 2012; Suzuki et al., 2013];
however, a review article identified differential roles for
the left and right hemispheres in motor learning [Hals-
band and Lange, 2006]. The literature review suggests that
right hemisphere motor regions have strong activation
during the early phases of motor learning while activation
in the left hemisphere motor regions increases with prac-
tice and may serve as the storehouse for visuo-motor skills
once mastered. Our group differences support this differ-
ential role for hemisphere specialization. The high task
performers (when controlling for expertise) have right
hemisphere involvement in the post-task resting state,
which may reflect motor learning, while experts have a
left hemisphere dominance that may capture their exper-
tise and stored visuo-motor knowledge from extended
practice.

Expertise effects in motor learning were also revealed in
alpha power-BOLD correlations between motor regions
and cerebellum. Recently, Mehrkanoon et al. [2016] used a
motor learning task with EEG to perform a functional con-
nectivity analysis on cortical sources. They showed that
increases in functional connectivity between motor regions
and cerebellum in the alpha band after motor learning.
Our results show that experts have an increase in function-
al connectivity in the alpha band between SMA and cere-
bellum and which may be due to long-term motor training
in experts.

Group Differences in Post-Task Attention

Modulation

In addition to identifying group differences in motor
learning, our finding that baseball experts have greater
connectivity between bilateral SMA and L insula may
reflect differences in attention modulation, a mechanism
which supports motor learning circuits critical for exper-
tise development [Jueptner et al., 1997; Stefan et al., 2004;
Wulf, 2007; Wulf et al., 2001]. In meditation studies, expert
meditators have consistently higher activation in L insula
compared with novices, and researchers have suggested
that this may reflect expert versus non-expert differences
in the recruitment of attention-related neural resources
[Lutz et al., 2013; Manna et al., 2010]. Since selective atten-
tion is important for implicit learning [Jiang and Chun,
2001], and similar brain regions are activated in implicit
and explicit learning [Willingham et al., 2002], modulation
of attention may indicate a mechanism by which motor

learning occurs during the post-task resting state scan in
baseball experts.

Our SMA alpha analysis provides complementary sup-
port for this underlying attentional mechanism. In experts,
there is a negative relationship between EEG alpha power
at bilateral SMA and fMRI BOLD signal in L insula, indi-
cating decreased insular activity with increased task per-
formance, while there is only a negligible (close to 0)
relationship for control participants. Given the role of EEG
alpha oscillations in attention [Laufs et al., 2003a,; Ray and
Cole, 1985] and inhibitory processes [Jensen and Mazaheri,
2010; Klimesch et al., 2007], our findings suggest that a
neural circuit between bilateral SMA and L insula that is
reliant on alpha band activity may have a role in modula-
tion of attention, and it is well known that attention mod-
ulation is important for motor learning to occur [Jueptner
et al., 1997; Stefan et al., 2004; Wulf, 2007; Wulf et al.,
2001]. Taken together, we conclude that the higher bilater-
al SMA–L insula BOLD connectivity and stronger inverse
correlation between SMA alpha power and L insula in
experts likely reflect differential involvement of attention
circuits in experts and controls in the post-task resting
state, and these differences may facilitate enhancements in
motor learning that are critical for expertise development.

Figure 7.

R SMA b functional connectivity correlates with task perfor-

mance. A, Overlay of significant clusters where No-Go task per-

formance correlates with b-power to R SMA. B, Scatter plot of

the b correlations from R SMA to ACC by the No-Go trial

behavioral accuracy of each subject controlling for expertise. C,

Scatter plot of the b correlations from R SMA to R parahippo-

campal gyrus by the No-Go trial behavioral accuracy of each

subject controlling for expertise. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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Figure 8.

Expert versus control structural differences. A, Black orbs are

shown for all 10 functionally derived regions, and gold orbs for

seed regions, that were included in the ROI analysis. Red con-

nections indicate region pairs with higher streamline counts in

experts while blue connections indicate higher streamline counts

in novices. B, Mean numbers of streamlines (bottom left) with a

color-scaled t-score map (top right) for streamline counts

traversing between each region pair in experts and novices.

Region pairs that have significant group differences (P< 0.05

uncorrected) are highlighted in gray or marked with an asterisk

(*). While no correlations survived FDR correction, the ** cell

trended toward significance. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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Fronto-parietal brain regions have been implicated in
attention [Coull et al., 1996; Naghavi and Nyberg, 2005],
spatial attention deployment [Praamstra et al., 2005], and
motor learning [Halsband and Lange, 2006]. These regions
are recruited in a variety of contexts and tasks, including
spatial and action perception [Matelli and Luppino, 2001],
action observation [Buccino et al., 2001], action imagina-
tion [Johnson et al., 2002], and listening to motor sequen-
ces [Tettamanti et al., 2005]. A previous fMRI/EEG resting
state study hypothesized that inverse correlations between
alpha power and fMRI-BOLD signal in fronto-parietal
brain regions reflect attention-modulatory circuits [Laufs
et al., 2003b]. Our results support this hypothesis, reveal-
ing significant differences between experts and controls in
the correlation between bilateral SMA alpha power and
BOLD activity in bilateral fronto-parietal and primary
motor regions. After post-hoc analyses, we found that
these were inverse correlations in experts, but positive cor-
relations in controls. These principles would suggest that
in our study, some specific attention-related processes
were occurring in the brains of expert baseball players
who demonstrated inverse correlations in the post-task
resting scan while controls had positive correlations
between bilateral SMA alpha power and bilateral fronto-
parietal and primary motor regions.

Group Differences in Post-Task Motor Inhibition

To examine the contribution of motor inhibition processes
to expertise development in the post-task resting state scan,
we investigated the relationship between fluctuations in
BOLD activity and beta band activity from an EEG source
located within SMA regions, including the preSMA, since
several studies have found beta band involvement in motor
response inhibition. In a Go/No-Go task, beta activity in
macaques was found to have a significant rebound after
desynchronization only after “No-Go” responses [Zhang
et al., 2008], suggesting involvement of the beta band in
response inhibition. Also, in a stop-signal task, an inhibitory
beta band oscillation within a prefrontal–primary motor cir-
cuit was found during behavioral stopping [Swann et al.,
2009]. Finally, our use of a priori ROI masks resulted in the
SMA regional seed encompassing both SMA proper and
the preSMA. The preSMA, particularly in the right hemi-
sphere, is a critical part of the hyperdirect pathway that
regulates reactive inhibition via communication with sub-
cortical basal ganglia pathways [Aron et al., 2007; Aron and
Poldrack, 2006; Dunovan et al., 2015]. In fact, the efficiency
of communication between SMA regions, primarily the pre-
SMA, and ventral lateral regions of the prefrontal cortex,
including aspects of the insula reported in our functional
network, have been shown to regulate the cortical control
of proactive action inhibition like that required for success-
ful completion in “No-Go” tasks [Aron, 2011].

Here, we compared experts and non-experts who
performed well on “No-Go” trials to examine a similar

inhibitory mechanism, and we found high accuracy on the
“No-Go” trials had an inverse relationship between beta
power in SMA regions and fMRI BOLD activity in a L pre-
frontal region and anterior cingulate cortex (ACC). That is,
participants who successfully inhibited a response on the
“No-Go” trials had decreased connectivity in the beta
band between SMA regions and frontal regions. In addi-
tion, our post-hoc results found positive correlations
between “No-Go” accuracy and R SMA beta power in the
PHG. These results complement our previous finding that
experts have more activity in occipital regions during
inhibitory responses [Muraskin et al., 2015], and together,
these studies provide evidence that occipital and motor
regions are linked to SMA activity and that the strength of
these connections can be a marker for accurate “No-Go”
performance. The inverse relationship between SMA beta
power and a L superior frontal region may reflect a pro-
cess similar to the desynchronization of beta band oscilla-
tions that occurs during movement [Kuhn et al., 2004],
and the positive correlations found in controls may reflect
an idling motor cortex that is similar to the well-studied
after-movement beta band synchronization [Pfurtscheller
et al., 1998].

Group Differences in Structural Connectivity

The structural connectivity analysis provided additional
insights into differences in functional networks between
experts and controls. Using 10 functionally derived regions
of interest from the fMRI/EEG analysis, we compared dif-
ferences in the number of estimated fiber tracts between
each pair of regions, where differences are interpreted as
the strength of connection [Griffa et al., 2013]. Although
the functional analysis identified these regions based on
their connectivity relationships with SMA, we found no
direct structural connections between SMA and regions
that discriminated between experts and controls; however,
there were several cases where several region pairs could
account for observed functional relationships through indi-
rect structural connections. For example, the SMA alpha
functional connectivity relationship with the R cerebellum
would potentially be mediated by structural connectivity
between experts and novices in terms of structural connec-
tions from R SMA to R IFG, and then R IFG to R cerebel-
lum (see Fig. 8). Future work may better elucidate the
functional and structural networks that underlie brain
dynamics of task experts, but our current results show
that key parts of the functional network that differentiates
experts from novices may arise in part from differences in
the underlying structural connections.

Limitations

One limitation of the current methodology arises from
the source localization technique used to identify the EEG
time series in the SMA. Because of head volume
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conduction, the estimated time series localized in an SMA
source may have contributions from brain activity outside
the region of interest. This is known as the “common
feeding” problem for functional connectivity of EEG data,
and several techniques using auto-regressive models and
granger causality can untangle this issue in EEG connec-
tivity analyses and identify if functional connectivity is
directly between functional source A and B or whether the
observed relationship between sources A and B originates
from a common source C [Blinowska, 2011; Kaminski and
Blinowska, 2014]. Since our methodology focused on con-
nectivity in fMRI space, we did not assess evidence for a
common EEG source, leaving open the possibility that
brain areas outside of the SMA may contribute to the cor-
relations seen in our alpha and beta frequency connectivity
analyses. Future confirmatory studies may employ these
complementary methods and examine the direct functional
connectivity between pairs of cortical areas as power den-
sity and BOLD that account for this important “common
feeding” issue.

An additional enhancement to our methodological
approach could be individualization of the studied EEG
frequency ranges. In our approach, the estimated SMA
was computed separately for each participant to capture
individual variability, but previous research has also
shown that identifying individualized ranges for alpha
and beta frequency ranges can improve overall signal-to-
noise [Klimesch et al., 2007; Walz et al., 2015]. Individual-
ized alpha/beta frequencies are often used when localizing
sources in motor or occipital cortices due to empirical find-
ings that these areas have large generators with highly
individualized peak frequencies in the range of 8–12 Hz.
However, relative to motor or occipital cortex, the power
of these oscillations is significantly lower in the SMA, and
it is difficult to identify specific frequencies on an individ-
ual subject basis in our targeted SMA seed regions. In our
method, we increase the signal-to-noise ratio by estimating
EEG alpha and beta sources in the SMA using common
standard frequency bands across subjects, but this comes
with the tradeoff of sacrificing individual subject specific-
ity in the EEG source frequencies. Future research may
address whether individualized frequency ranges further
improves the relationship between brain and behavior.

Conclusion

This work investigated differences in the brain dynamics of
the post-task resting state as a function of task expertise. We
identified brain dynamics involving SMA regions showed
expert-dependent differences underlying motor learning and
cognitive task processing. We also found that expertise-
related differences in structural connectivity could potentially
account for some of the observed differences in the functional
activity in the resting state. Though this work examined a spe-
cific population, namely baseball players, and created a surro-
gate task specific to their type of expertise, we believe that

these findings would generalize to other populations where
rapid perceptual decision making and enhanced perception-
action coupling are critical for expertise.

ACKNOWLEDGMENTS

The views and conclusions contained in this document are
those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied,
of the Army Research Laboratory or the U.S. Government.
Authors Jordan Muraskin and Jason Sherwin are co-
founders of deCervo, a private company that provides
neuro-profiles for athletes. Author Timothy Verstynen has
equity interest in Neuroscouting, a private company that
provides services to baseball players.

REFERENCES

Adair RK (1990): The Physics of Baseball. New York: Harper &

Row. 110 p.
Aizawa H, Inase M, Mushiake H, Shima K, Tanji J (1991): Reorga-

nization of activity in the supplementary motor area associated

with motor learning and functional recovery. Exp Brain Res

84:668–671.
Albert NB, Robertson EM, Miall RC (2009): The resting human

brain and motor learning. Curr Biol: CB 19:1023–1027.
Armenti A (1992): The Physics of Sports. New York: American

Institute of Physics.
Aron AR (2011): From reactive to proactive and selective control:

Developing a richer model for stopping inappropriate

responses. Biol Psychiatry 69:e55–e68.
Aron AR, Poldrack RA (2006): Cortical and subcortical contribu-

tions to Stop signal response inhibition: Role of the subthala-

mic nucleus. J Neurosci 26:2424–2433.
Aron AR, Durston S, Eagle DM, Logan GD, Stinear CM, Stuphorn

V (2007): Converging evidence for a fronto-basal-ganglia net-

work for inhibitory control of action and cognition. J Neurosci

27:11860–11864.
Behzadi Y, Restom K, Liau J, Liu TT (2007): A component based

noise correction method (CompCor) for BOLD and perfusion

based fMRI. NeuroImage 37:90–101.
Blinowska KJ (2011): Review of the methods of determination of

directed connectivity from multichannel data. Med Biol Eng

Comput 49:521–529.
Bossaerts P (2010): Risk and risk prediction error signals in anteri-

or insula. Brain Struct Funct 214:645–653.
Brainard DH (1997): The psychophysics toolbox. Spatial Vision 10:

433–436.
Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V,

Seitz RdJ, Zilles K, Rizzolatti G, Freund HJ (2001): Action

observation activates premotor and parietal areas in a somato-

topic manner: An fMRI study. Eur J Neurosci 13:400–404.
Capotosto P, Babiloni C, Romani GL, Corbetta M (2009): Fronto-

parietal cortex controls spatial attention through modulation of

anticipatory alpha rhythms. J Neurosci 29:5863–5872.
Cassim Fc, Monaca C, Szurhaj W, Bourriez JL, Defebvre L,

Derambure P, Guieu JD (2001): Does post-movement beta syn-

chronization reflect an idling motor cortex? Neuroreport 12:51.
Chein JM, Schneider W (2005): Neuroimaging studies of practice-

related change: FMRI and meta-analytic evidence of a domain-

r Brain Dynamics of Post-Task Resting State r

r 15 r



general control network for learning. Brain Res Cogn Brain

Res 25:607–623.
Coull JT, Frith CD, Frackowiak RSJ, Grasby PM (1996): A fronto-

parietal network for rapid visual information processing: A

PET study of sustained attention and working memory. Neu-

ropsychologia 34:1085–1095.
Dale AM (1999): Optimal experimental design for event-related

fMRI. Hum Brain Mapp 8:109–114.
Delorme A, Makeig S (2004): EEGLAB: An open source toolbox

for analysis of single-trial EEG dynamics including indepen-

dent component analysis. J Neurosci Methods 134:9–21.
Dunovan K, Lynch B, Molesworth T, Verstynen T (2015): Compet-

ing basal ganglia pathways determine the difference between

stopping and deciding not to go. Elife 4:08723.
Forstmann BU, Anwander A, Schafer A, Neumann J, Brown S,

Wagenmakers EJ, Bogacz R, Turner R (2010): Cortico-striatal con-

nections predict control over speed and accuracy in perceptual

decision making. Proc Natl Acad Sci U S A 107:15916–15920.
Frank MJ, Gagne C, Nyhus E, Masters S, Wiecki TV, Cavanagh JF,

Badre D (2015): fMRI and EEG predictors of dynamic decision

parameters during human reinforcement learning. J Neurosci

35:485–494.
Garry MI, Kamen G, Nordstrom Ma (2004): Hemispheric differ-

ences in the relationship between corticomotor excitability

changes following a fine-motor task and motor learning.

J Neurophysiol 91:1570–1578.
Godde B, Voelcker-Rehage C (2010): More automation and

less cognitive control of imagined walking movements in

high- versus low-fit older adults. Front Aging Neurosci 2:

1–13.
Goldman RI, Wei CY, Philiastides MG, Gerson AD, Friedman D,

Brown TR, Sajda P (2009): Single-trial discrimination for inte-

grating simultaneous EEG and fMRI: Identifying cortical areas

contributing to trial-to-trial variability in the auditory oddball

task. NeuroImage 47:136–147.
Griffa A, Baumann PS, Thiran JP, Hagmann P (2013): Structural

connectomics in brain diseases. NeuroImage 80:515–526.
Grigg O, Grady CL (2010): Task-related effects on the temporal

and spatial dynamics of resting-state functional connectivity in

the default network. PloS One 5:e13311.
Halsband U, Freund HJ (1990): Premotor cortex and conditional

motor learning in man. Brain 113:207–222.
Halsband U, Lange RK (2006): Motor learning in man: A review

of functional and clinical studies. J Physiol Paris 99:414–424.
Hari R, Salmelin R (1997): Human cortical oscillations: A neuro-

magnetic view through the skull. Trends Neurosci 20:44–49.
Hasson U, Nusbaum HC, Small SL (2009): Task-dependent organi-

zation of brain regions active during rest. Proc Natl Acad Sci

U S A 106:10841–10846.
He B, Dai Y, Astolfi L, Babiloni F, Yuan H, Yang L (2011): eCon-

nectome: A MATLAB toolbox for mapping and imaging of

brain functional connectivity. J Neurosci Methods 195:261–269.
Heekeren HR, Marrett S, Bandettini Pa, Ungerleider LG (2004): A

general mechanism for perceptual decision-making in the

human brain. Nature 431:859–862.
Hester R, Fassbender C, Garavan H (2004): Individual differences

in error processing: A review and reanalysis of three event-

related fMRI studies using the GO/NOGO task. Cereb Cortex

(New York, N.Y.: 1991) 14:986–994.
Hyvarinen A (1999): Fast and robust fixed-point algorithms for

independent component analysis. IEEE Trans Neural Netw 10:

626–634.

Jahfari S, Verbruggen F, Frank MJ, Waldorp LJ, Colzato L,

Ridderinkhof KR, Forstmann BU (2012): How preparation

changes the need for top-down control of the basal ganglia

when inhibiting premature actions. J Neurosci 32:10870–10878.
Jensen O, Mazaheri A (2010): Shaping functional architecture by

oscillatory alpha activity: Gating by inhibition. Front Human

Neurosci 4:186.
Jiang Y, Chun MM (2001): Selective attention modulates implicit

learning. Q J Exp Psychol A, Hum Exp Psychol 54:1105–1124.
Johnson SH, Rotte M, Grafton ST, Hinrichs H, Gazzaniga MS, Heinze

HJ (2002): Selective activation of a parietofrontal circuit during

implicitly imagined prehension. NeuroImage 17:1693–1704.
Jueptner M, Stephan KM, Frith CD, Brooks DJ, Frackowiak RSJ,

Passingham RE (1997): Anatomy of motor learning. I. Frontal

cortex and attention to action. J Neurophysiol 77:1313–1324.
Kaminski M, Blinowska KJ (2014): Directed Transfer Function is

not influenced by volume conduction-inexpedient pre-process-

ing should be avoided. Front Comput Neurosci 8:61.
Klimesch W, Doppelmayr M, Russegger H, Pachinger T,

Schwaiger J (1998): Induced alpha band power changes in the

human EEG and attention. Neurosci Lett 244:73–76.
Klimesch W, Sauseng P, Hanslmayr S (2007): EEG alpha oscilla-

tions: The inhibition-timing hypothesis. Brain Res Rev 53:

63–88.
Kristeva-feige R, Fritsch C, Timmer J, Lu Ch (2002): Effects of

attention and precision of exerted force on beta range EEG-

EMG synchronization during a maintained motor contraction

task. Clin Neurophysiol 113:124–131.
Kuhn AA, Williams D, Kupsch A, Limousin P, Hariz M,

Schneider GH, Yarrow K, Brown P (2004): Event-related beta

desynchronization in human subthalamic nucleus correlates

with motor performance. Brain 127:735–746.
Laufs H, Kleinschmidt a, Beyerle a, Eger E, Salek-Haddadi a,

Preibisch C, Krakow K (2003a): EEG-correlated fMRI of human

alpha activity. NeuroImage 19:1463–1476.
Laufs H, Krakow K, Sterzer P, Eger E, Beyerle a, Salek-Haddadi a,

Kleinschmidt a (2003b): Electroencephalographic signatures of

attentional and cognitive default modes in spontaneous brain

activity fluctuations at rest. Proc Natl Acad Sci U S A 100:

11053–11058.
Laufs H, Holt JL, Elfont R, Krams M, Paul JS, Krakow K,

Kleinschmidt A (2006): Where the BOLD signal goes when

alpha EEG leaves. NeuroImage 31:1408–1418.
Lewis CM, Baldassarre A, Committeri G, Luca G (2009): Learning

sculpts the spontaneous activity of the resting human brain.

Proc Natl Acad Sci U S A 106:17558.
Lutz A, McFarlin DR, Perlman DM, Salomons TV, Davidson RJ

(2013): Altered anterior insula activation during anticipation

and experience of painful stimuli in expert meditators. Neuro-

Image 64:538–546.
Manna A, Raffone A, Perrucci MG, Nardo D, Ferretti A, Tartaro A,

Londei Aa (2010): Neural correlates of focused attention and

cognitive monitoring in meditation. Brain Res Bull 82:46–56.
Matelli M, Luppino G (2001): Parietofrontal circuits for action and

space perception in the macaque monkey. NeuroImage 14:

S27–S32.
Mehrkanoon S, Boonstra TW, Breakspear M, Hinder M, Summers

JJ (2016): Upregulation of cortico-cerebellar functional connec-

tivity after motor learning. NeuroImage 128:252–256.
Menon V, Adleman NE, White CD, Glover GH, Reiss AL (2001):

Error-related brain activation during a go nogo response inhi-

bition task. Hum Brain Mapp 143:131–143.

r Muraskin et al. r

r 16 r



Miura A, Nakata H, Kudo K, Yoshie M (2010): Characteristics of

the athletes’ brain: Evidence from neurophysiology and neuro-

imaging. Brain Res Rev 62:197–211.

Muraskin J, Sherwin J, Lieberman G, Garcia JO, Verstynen T, Vettel

JM, Sajda P (in press) Fusing multiple neuroimaging modalities

to assess group differences in perception-action coupling. Pro-

ceedings of the IEEE. doi: 10.1109/JPROC.2016.2574702

Muraskin J, Sherwin J, Sajda P (2015): Knowing when not to

swing: EEG evidence that enhanced perception-action cou-

pling underlies baseball batter expertise. NeuroImage 123:

1–10.

Mutha PK, Haaland KY, Sainburg RL (2012): the effects of brain

lateralization on motor control and adaptation. J Motor Behav

44:455–469.

Naghavi HR, Nyberg L (2005): Common fronto-parietal activity in

attention, memory, and consciousness: Shared demands on

integration? Conscious Cogn 14:390–425.

Nakamoto H, Mori S (2008): Effects of stimulus-response compati-

bility in mediating expert performance in baseball players.

Brain Res 1189:179–188.

Pelli DG (1997): The VideoToolbox software for visual psycho-

physics: Transforming numbers into movies. Spatial Vision 10:

437–442.

Pfurtscheller Ga (1996): Post-movement beta synchronization. A

correlate of an idling motor area? Electroencephalogr Clin

Neurophysiol 98:281–293.

Pfurtscheller G, Zalaudek K, Neuper C (1998): Event-related beta

synchronization after wrist, finger and thumb movement. Elec-

troencephalogr Clin Neurophysiol 109:154–160.

Praamstra P, Boutsen L, Humphreys GW (2005): Frontoparietal

control of spatial attention and motor intention in human EEG.

J Neurophysiol 94:764–774.

Preuschoff K, Quartz SR, Bossaerts P (2008): Human insula activa-

tion reflects risk prediction errors as well as risk. J Neurosci

28:2745–2752.

Radlo SJ, Janelle CM, Barba DA (2001): Perceptual decision mak-

ing for baseball pitch recognition: Using P300 latency and

amplitude to index attentional processing. Res Q Exerc Sport

72:22–31.

Ray WJ, Cole HW (1985): EEG alpha activity reflects attentional

demands, and beta activity reflects emotional and cognitive

processes. Science 228:750–752.

Sajda P, Goldman RI, Dyrholm M, Brown TR (2010): Signal Proc-

essing and Machine Learning for Single-Trial Analysis of

Simultaneously Acquired EEG and fMRI. in Statistical Signal

Processing for Neuroscience and Neurotechnology, Academic

Press, Incorporated, pp. 311–334.

Sakai K, Miyauchi S, Sasaki Y, Putz B, Hikosaka O, Sakai K,

Miyauchi S, Takino R, Sasaki Y, Putz B (1996): Activation of

human presupplementary motor area in learning of sequential

procedures: A functional MRI study. J Neurophysiol 76:

617–621.

Sherwin J, Sajda P (2013): Musical experts recruit action-

related neural structures in harmonic anomaly detection: Evi-

dence for embodied cognition in expertise. Brain Cogn 83:

190–202.

Sherwin J, Muraskin J, Sajda P (2012): You can’t think and hit at

the same time: Neural correlates of baseball pitch classification.

Front Neurosci 6:177.

Sherwin JS, Muraskin J, Sajda P (2015): Pre-stimulus functional

networks modulate task performance in time-pressured

evidence gathering and decision-making. NeuroImage 111:

513–525.

Simmonds DJ, Pekar JJ, Mostofsky SH (2008): Meta-analysis of

Go/No-go tasks demonstrating that fMRI activation associated

with response inhibition is task-dependent. Neuropsychologia

46:224–232.

Stefan K, Wycislo M, Classen J (2004): Modulation of associative

human motor cortical plasticity by attention. J Neurophysiol

92:66–72.

Suzuki T, Higashi T, Takagi M, Sugawara K (2013): Hemispheric

asymmetry of ipsilateral motor cortex activation in motor skill

learning. Neuroreport 24:693–697.

Swann N, Tandon N, Canolty R, Ellmore TM, McEvoy LK, Dreyer

S, DiSano M, Aron AR (2009): Intracranial EEG reveals a time-

and frequency-specific role for the right inferior frontal gyrus

and primary motor cortex in stopping initiated responses.

J Neurosci 29:12675–12685.

Tettamanti M, Buccino G, Saccuman MC, Gallese V, Danna M,

Scifo P, Fazio F, Rizzolatti G, Cappa SF, Perani D (2005): Lis-

tening to action-related sentences activates fronto-parietal

motor circuits. J Cogn Neurosci 17:273–281.

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F,

Etard O, Delcroix N, Mazoyer B, Joliot M (2002): Automated

anatomical labeling of activations in SPM using a macroscopic

anatomical parcellation of the MNI MRI single-subject brain.

NeuroImage 15:273–289.

Ullsperger M, Harsay Ha, Wessel JR, Ridderinkhof KR (2010):

Conscious perception of errors and its relation to the anterior

insula. Brain Struct Funct 214:629–643.

Vincent JL (2009): Learning and memory: While you rest, your

brain keeps working. Curr Biol: CB 19:R484–R486.

Waites AB, Stanislavsky A, Abbott DF, Jackson GD (2005):

Effect of prior cognitive state on resting state networks

measured with functional connectivity. Hum Brain Mapp 24:

59–68.

Walz JM, Goldman RI, Carapezza M, Muraskin J, Brown TR,

Sajda P (2013): Simultaneous EEG-fMRI reveals temporal

evolution of coupling between supramodal cortical

attention networks and the brainstem. J Neurosci 33:

19212–19222.

Walz JM, Goldman RI, Carapezza M, Muraskin J, Brown TR,

Sajda P (2015): Prestimulus EEG alpha oscillations modulate

task-related fMRI BOLD responses to auditory stimuli. Neuro-

Image 113:153–163.

Wang Z, Liu J, Zhong N, Qin Y, Zhou H, Li K (2012): Changes in

the brain intrinsic organization in both on-task state and post-

task resting state. NeuroImage 62:394–407.

Wang Y, Zhang X, Huang J, Zhu M, Guan Q, Liu C (2013): Asso-

ciations between EEG beta power abnormality and diagnosis

in cognitive impairment post cerebral infarcts. J Mol Neurosci:

MN 49:632–638.

Whitfield-Gabrieli S, Nieto-Castanon A (2012): Conn: A functional

connectivity toolbox for correlated and anticorrelated brain

networks. Brain Connect 2:125–141.

Willingham DB, Salidis J, Gabrieli JDE (2002): Direct comparison

of neural systems mediating conscious and unconscious skill

learning. J Neurophysiol 88:1451–1460.

Wulf G (2007): Attentional focus and motor learning: A review

of 10 years of research. E-journal Bewegung Train 1:

1–11.

r Brain Dynamics of Post-Task Resting State r

r 17 r

info:doi/10.1109/JPROC.2016.2574702


Wulf G, Prinz W, Planck M (2001): Directing attention to move-
ment effects enhances learning: A review. Psychon Bull Rev 8:
648–660.

Yeh FC, Tseng WY (2011): NTU-90: a high angular resolution
brain atlas constructed by q-space diffeomorphic reconstruc-
tion. NeuroImage 58:91–99.

Yeh FC, Verstynen TD, Wang Y, Fernandez-Miranda JC, Tseng
WY (2013): Deterministic diffusion fiber tracking improved by
quantitative anisotropy. PloS One 8:e80713.

Zhang Y, Chen Y, Bressler SL, Ding M (2008): Response prepara-
tion and inhibition: The role of the cortical sensorimotor beta
rhythm. Neuroscience 156:238–246.

Zhang S, Ide JS, Li CS (2012): Resting-state functional connectivi-
ty of the medial superior frontal cortex. Cereb Cortex 22:
99–111.

Zhang H, Long Z, Ge R, Xu L, Jin Z, Yao L, Liu Y (2014): Motor
imagery learning modulates functional connectivity of multiple
brain systems in resting state. PloS One 9:e85489.

r Muraskin et al. r

r 18 r


	l

