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ABSTRACT | In the last few decades, noninvasive neuroimag-

ing has revealed macroscale brain dynamics that underlie

perception, cognition, and action. Advances in noninvasive

neuroimaging target two capabilities: 1) increased spatial and

temporal resolution of measured neural activity; and 2) inno-

vative methodologies to extract brain–behavior relationships

from evolving neuroimaging technology. We target the sec-

ond. Our novel methodology integrated three neuroimaging

methodologies and elucidated expertise-dependent differ-

ences in functional (fused EEG-fMRI) and structural (dMRI)

brain networks for a perception–action coupling task. A set of

baseball players and controls performed a Go/No-Go task

designed to mimic the situation of hitting a baseball. In the

functional analysis, our novel fusion methodology identifies

50-ms windows with predictive EEG neural correlates of ex-

pertise and fuses these temporal windows with fMRI activity

in a whole-brain 2-mm voxel analysis, revealing time-localized

correlations of expertise at a spatial scale of millimeters. The

spatiotemporal cascade of brain activity reflecting expertise

differences begins as early as 200 ms after the pitch starts

and lasts up to 700 ms afterwards. Network differences are

spatially localized to include motor and visual processing

areas, providing evidence for differences in perception–action

coupling between the groups. Furthermore, an analysis of

structural connectivity reveals that the players have signifi-

cantly more connections between cerebellar and left frontal/

motor regions, and many of the functional activation differ-

ences between the groups are located within structurally de-

fined network modules that differentiate expertise. In short,

our novel method illustrates how multimodal neuroimaging

can provide specific macroscale insights into the functional

and structural correlates of expertise development.

KEYWORDS | Diffusion tensor imaging; encephalography;

machine learning; magnetic resonance imaging; sensor fusion

I . INTRODUCTION

Noninvasive neuroimaging of structure and function has
been used for decades to better characterize and under-

stand how our perceptions relate to our actions. Al-

though new technologies are being developed to image
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the living brain, from optical methods to new types of
nanoprobes and sensors [1]–[3], observing in vivo activity

in the healthy human brain will be mostly based on mag-

netic resonance (MRI) and electromagnetic imaging

methods for the foreseeable future. In terms of func-

tional imaging, both electroencephalography (EEG) and

blood-oxygen-level-dependent functional magnetic reso-

nance imaging (BOLD fMRI) are extremely common

noninvasive methods for observing human brain func-
tion. Magnetoencephelography (MEG), a close cousin of

EEG, is also used to noninvasively measure brain activity,

though its costs are more prohibitive than EEG. EEG and

fMRI also can be acquired simultaneously, which is ap-

pealing given that both methods are complementary in

terms of their basic physiological measurements. EEG is

a direct measurement of neural “mass” activity and pro-

vides high temporal resolution and dynamics (at time-
scales of milliseconds) while fMRI is an indirect

measurement of neural activity, based on hemodynamic

changes, and offers high spatial resolution given its non-

invasive acquisition (spatial resolution in millimeters).

Separately, these modalities have made enormous contri-

butions to human behavioral, psychological, and clinical

neuroscience. When leveraged in a fused representation,

for example when simultaneously acquired, they have
been shown to provide new insight into the macroscale

dynamical networks that underlie function in the human

brain [4]–[11].

In addition to function, understanding the structural

organization of the human brain is central to understand-

ing why some brains may function differently than others.

Classically, structural differences underlying experience-

dependent plasticity were thought to occur in the gray
matter regions of the cortex, but recently, research has

suggested that neural adaptations can be seen in the white

matter fiber tracts as well [12], [13]. A diffusion MRI

(dMRI) scan captures the directional diffusion of water

within a voxel, and the location and direction of the white

matter tracts are inferred from the constrained movement

of water molecules (see [14] for a review). Changes in fi-

ber tract connections have been found over a range of tem-
poral scales, including research on professional concert

pianists in their thirties that found that differences in fiber

tract organization reflected the number of practicing hours

during adolescence [15], while another study found struc-

tural effects in adults after six weeks of juggling practice

[16]. Converging evidence from across the lifespan indi-

cates that variability in white matter fiber tract connec-

tions correlates with between subject variability in task
performance [17], [18].

In this paper, we demonstrate, with a comprehensive

example, that an integrated analysis of fused EEG-fMRI

functional imaging together with structural DTI provides

unique insight into difference in brain networks between

groups of individuals having different perception–action

coupling proficiencies. Our specific example focuses on

differences in perception–action coupling between ex-
perts (i.e., baseball players) and a nonexpert control

group during a Go/No-Go task based on baseball pitch

discrimination. Deciding on whether to swing at an in-

coming baseball pitch is a complex task with a very low

success rate worth millions of dollars. To be able to

quickly predict a 90-mph pitch trajectory and have the

motor control to place a bat on the 3-in diameter ball in

less than 400 ms has been referred to as “clearly an im-
possible task” [19]. However, after hours of training,

many professional athletes are able to succeed (although

with at best a 1/3 success rate) and have become experts

in this specific type of perception–action coupling.

Recently our group has shown, using only EEG, that

temporally specific neural correlates of a rapid Go/No-Go

decision differed between players versus controls [20].

Players, overall, performed better at the task compared to
controls both in terms of accuracy and faster response

times, i.e., players shifted their speed-accuracy tradeoff

curve instead of moving along the same curve as defined

by the controls. Players also showed differences in their

task-evoked EEG components. Players had larger and ear-

lier EEG components for Correct Go and Correct No-Go

trial types, relative to controls. These differences were

found to be most likely in the inhibition response during
the No-Go trials. Source localization suggested that

players have stronger cortical sources in the supplemen-

tary motor area (SMA) for Correct No-Go trials and the

fusiform gyrus for Correct Go trials. This work offered ev-

idence that there are distinct spatiotemporal neural dif-

ferences between baseball players and controls during a

baseball-like perceptual decision making task. However,

the EEG, by itself, only provides a partial picture and
does not enable a comprehensive investigation of the

structural and functional networks underlying these

differences.

Below we describe an approach and corresponding

results that use whole brain BOLD fMRI and simulta-

neously collected EEG and confirms these previous

player versus control differences found in our EEG-only

experiments [20]. In addition, we describe novel EEG/
fMRI fusion techniques and apply these to this data set

as a way to further elucidate functional networks under-

lying differences in this particular type of expertise.

Specifically, a single-trial sliding window linear discrimi-

nation analysis of the EEG is used to construct a tempo-

rally precise, neurally-derived rating of expertise for each

subject. The rating is used as a covariate of interest in

the fMRI model, identifying both the regions in the
brain that correlate with differences in expertise as well

as the timing of these differences. We analyze these re-

sults with respect to additional differences we identify in

a structural network analysis, enabled by advanced con-

nectivity methods informed by the functional analysis.

We conclude that advances in understanding the human

brain will be enabled by a more integrated analysis of
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structural and functional neuroimaging within the con-
text of complex behavior.

II . NEUROIMAGING DATA COLLECTION
AND METHODS OF ANALYSIS

A. Subjects
The study included 14 division I collegiate baseball

players (all male, 19.57 � 2.4 years) and 24 nonbaseball

player controls (all male, 20.92 � 2.7 years) with an age

range of 18–30 years. Three of the controls were not

used in the task-based analysis due to movement during

the fMRI scanning and one expert was excluded from

structural analysis due to low quality diffusion image re-

construction. Controls had no professional or collegiate
baseball experience. All subjects reported no history of

neurological problems and had normal or corrected vi-

sion and all gave informed consent according to the

guidelines and approval of the Columbia University Insti-

tutional Review Board.

B. Behavioral Paradigm
This behavioral paradigm has been applied and de-

scribed previously in [20] and [21] and is reproduced
here for completeness.

The experimental session involves a training session

prior to the simultaneous fMRI/EEG data acquisition. In

the training, subjects familiarized themselves with the

different pitch types and completed practice trials until

they scored an accuracy of at least 60% (above the ran-

dom chance accuracy of 50%). At the beginning of each

trial, a single letter corresponding to the pitch (“F” for
fastball, “C” for curveball, and “S” for slider) was shown

on the screen (Horizontal view 0.28˚ and vertical view

0.28˚) for a mean time of 819 � 3.1 ms. While the letter

was on the screen, a horizontal bar (horizontal extent

3.93˚, vertical 0.28˚) shrank (horizontally) at a constant

rate to either the left or right side of the screen. If the

pitch following the letter cue came from a left handed

pitcher, then the horizontal bar shrank toward the right,
and if the pitch came from a right handed pitcher, then

the horizontal bar shrank toward the left. After the hori-

zontal bar shrank completely to either the left or the

right, the pitch started from that point on the left or

right side of the screen (i.e., pitches from left-handed

pitchers started from the right side of the screen, and

vice versa).
Subjects used the VisuaStim Digital System (Reso-

nance Technology) 600 � 800 goggle display to view

450 simulated baseball pitches (five blocks of 90 trials,

three different types of pitches) from the viewpoint of a

baseball catcher (at the end of the baseball’s trajectory).

While viewing these pitches, subjects completed a Go/

No-Go task by determining if each pitch matched its

prestimulus cue. The program optseq2 [22] was used to

select a mean jittered interstimulus interval (ISI) that
enabled the rapid presentation of fMRI events without

overlap from the hemodynamic responses (mean of

3000 ms and SE of 225 ms). Each subject was instructed

to respond by pressing a keyboard button with the index

finger of his right hand if the prestimulus cue matched

the type of pitch that followed it (“Go” trials). In addi-

tion, in order for a “Go” response to be correct, the sub-

ject needed to respond while the ball was still in the
screen. If the prestimulus cue and the pitch did not

match, the subject was instructed to withhold his re-

sponse (“No-Go” trials). Feedback was given after every

trial (for both “Go” and “No-Go” trials) in the form of a

“+” for correct responses in “Go” trials and correct with-

holding of responses in “No-Go” trials and a “” for incor-

rect “Go” and “No-Go” responses. 60% of the trials were

“Go” and 40% of the trials were “No-Go.”
Overall accuracy for the task was determined by cal-

culating the percent of trials with a correct response (the

subject responded while the ball was still on the screen

for “Go” trials and withheld his response for “No-Go”

trials). Go accuracy was determined by calculating what

percent of all the “Go” trials had a correct response (sub-

ject responded and this response happened while the ball

was still on the screen). “No-Go” accuracy was deter-
mined by calculating what percent of all the “No-Go” tri-

als the subject correctly withheld his response.

Similar to our previous work, we simulated each

pitch via a differential equation solver in Matlab 2010a

(Mathworks, Natick, MA, USA) (see [20]–[23] for de-

tails) and presented these using PsychToolbox [24].

Pitches were simulated using six-coupled differential

equations. Each of the three pitches—fastball, curveball,
and slider—have well-defined initial conditions. To cre-

ate each pitch, we varied the initial velocity and the rota-

tion angle. For each simulated pitch, an isoluminant

green circle was plotted on a gray background for every

frame of the trajectory. The size of the circle increased

as it approached the viewer, so as to give the illusion of

depth. When the ball crossed “home plate,” the circle

disappeared.

C. Structural MRI and Simultaneous fMRI-EEG
Data Acquisition

A 3T Philips Achieva MRI scanner (Philips Medical

Systems) with an eight-channel SENSE head coil was

used to collect MRI data. For each task block, functional

echo planar imaging (EPI) data sensitive to blood oxy-

genated level-dependent (BOLD) contrast were collected
(2-s TR, 20-ms TE, 64 � 64 matrix, and 35 interleaved

slices, 240 repetitions). After the task based data collec-

tion, a 5-min resting state scan was collected. Whole

brain T1-weighted anatomical images ð1� 1� 1 mmÞ and
single high volume EPI images ð2� 2� 2 mmÞ were also
obtained to help with registration. DTI was acquired

along 50 directions with a b-value of 1500 s/mm2 (as well

Vol. 105, No. 1, January 2017 | Proceedings of the IEEE 85

Mursakin et al. : Fusing Multiple Neuroimaging Modalities to Assess Group Differences in Perception–Action Coupling



as one image with no diffusion weighting) with a voxel-
size of 2� 2� 2 mm3 (TR ¼ 8996 ms, TE ¼ 80 ms,

FOV ¼ 224 mm, 75 axial slices AC/PC aligned encom-

passing the whole brain, SENSE Factor ¼ 2).

Simultaneous and continuous EEG data were ac-

quired with a custom built MR-compatible EEG system

[7], [9], [25]. This system included a differential ampli-

fier and a bipolar EEG cap with 36 Ag/AgCl electrodes

(including the left and right mastoids) arranged as 43 bi-
polar pairs. In order to minimize noise from subject

head motion in the main magnetic field and from induc-

tive pickup from magnetic gradient pulses, we used

twisted bipolar pair leads. The 488-Hz-sampled EEG was

synchronized with the scanner clock at the start of each

functional image acquisition by sending a transistor–

transistor logic (TTL) pulse to the recording computer.

This was used in the gradient artifact removal during the
offline EEG data preprocessing steps. 10-k� resistors

were built into each electrode to ensure subject safety,

and all electrode impedances were kept below 20 k�.

D. EEG Preprocessing
EEG preprocessing was done with Matlab (Math-

works, Natick, MA, USA). First, gradient artifact removal

was performed using a template subtraction algorithm

[7]. Then, a software-based 0.5-Hz high-pass filter was

used to remove direct current (dc) drifts, a 60-Hz (har-
monic) notch filter to minimize line noise artifacts, and

a 100-Hz low-pass filter were applied before resampling

the data to 256 Hz. These filters were designed to be

zero phase to minimize delay distortions. Stimulus

events—i.e., countdown, pitch type, responses—were re-

corded on separate channels.

After filtering, ICA was run using EEGLAB [26] and

the FastICA [27] algorithm to remove eye-blink artifacts
and other non-EEG artifacts. In stimulus-locked epoching

(from 1500 to 2000 ms), the average baseline was re-

moved using data from 200 to 0 ms. An automatic arti-

fact epoch rejection algorithm from EEGLAB was run to

remove all epochs that exceeded a probability threshold

of five standard deviations from the average. Trials where

the subject’s response time (RT) was earlier than 100 ms

from pitch onset were excluded from further analysis.
Ballistocardiogram (BCG) artifacts were removed

from the continuous gradient-free data using a principal

components analysis method [7], [25]. First, the data

were low passed at 4 Hz to extract the signal within the

frequency range in which BCG artifacts are observed and

then the first two principal components were deter-

mined. The channel weightings corresponding to those

components were projected onto the broadband data and
subtracted out. These BCG-free data were then rerefer-

enced from the 43 bipolar channels to the 34-electrode

space to calculate scalp topographies of EEG discriminat-

ing components.

E. Behavioral Analysis
Percent error rates and RTs were analyzed. Errors

were broken down into both omissions and commissions,

i.e., no-responses and late responses in Go trials and but-

ton presses in No-Go trials. Repeated-measures ANOVAs

on each behavioral measure were carried out using Trial

type (two levels: Go, No-Go) as the within-subject factor

and group (player/control) as the between subject factor.

The Greenhouse–Geisser (GG) epsilon correction was
applied to adjust the degrees of freedom of the F ratios

where necessary, and post hoc comparisons were also

made in order to determine the significance of contrasts

by applying the Bonferroni procedure ðalpha ¼ 0:05Þ.

F. Single-Trial Analysis of EEG
Our analysis focused on a single-trial approach to dis-

criminate between a set of stimulus or response condi-

tions. First, we considered only behaviorally correct

trials. Regularized logistic regression was used as a linear

classifier to find an optimal projection for discriminating

between behaviorally correct Go and behaviorally correct

No-Go trials over a specific temporal window [28]. This
approach has been previously applied to identify neural

components underlying rapid perceptual decision making

[7], [9], [20], [23], [29]. Specifically, we defined a train-

ing window starting at either a prestimulus or poststimu-

lus onset time � , with a duration of �, and used logistic

regression to estimate a spatial weighting vector that

maximally discriminates between EEG sensor array sig-

nals X for each class (e.g., Go versus No-Go trials)

y� ¼ wT
�X��: (1)

In (1), X is an N � T matrix (N sensors and T time sam-

ples). The result is a “discriminating component” that is

specific to activity correlated with each condition, while

minimizing activity correlated with both task conditions.

For our experiments, the duration of the training win-

dow ð�Þ was 50 ms and the center of the window ð�Þ
was varied across time in 25-ms steps. We used the re-

weighted least squares algorithm to learn the optimal dis-

criminating spatial weighting vector [30]. We quantified

the performance of the linear discriminator by the area

under the receiver operator characteristic (ROC) curve,

referred to here as AUC, using a leave-one-out proce-

dure. We used the ROC AUC metric to characterize the

discrimination performance as a function of sliding our
training window from 0-ms prestimulus to 1000-ms post-

stimulus (i.e., varying �).
We quantified the statistical significance of AUC in

each window ð�Þ using a label permutation procedure.

We randomized the labels for each trial (i.e., trial was a

Correct Go or a Correct No-Go) and retrained the classi-

fier. This was done 1000 times for each subject, and the
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AUC values from these permutations were used to estab-

lish a p-value for the mean AUC in each time window.

All significant results have been corrected for multiple

comparisons using a Bonferroni correction at pG 0:05.

G. fMRI Preprocessing
Using FSL (FMRIB Software Library; [31]), we per-

formed bias-field correction on all images to adjust for

field distortion artifacts caused by the EEG wires. We

then performed slice-timing correction, motion correc-

tion, 0.01-Hz high-pass filtering, and 5-mm full-width

half-maximum spatial smoothing on the functional data.

Motion correction provided motion parameters that were

included as confounds in the subsequent GLM. To help

reduce noise in our fMRI data, MELODIC de-noising
was applied to the functional data using the methodology

described in [32]. Functional and structural images were

then registered to a standard Montreal Neurological In-

stitute (MNI) brain template after brain extraction, and

each subject’s image registration was checked manually

to ensure proper alignment.

H. Player Versus Control Traditional fMRI Analysis
We first ran a traditional fMRI analysis using event-

related and RT variability regressors in a GLM. The

event-related regressors were composed of boxcar func-

tions with unit amplitude and onset and offset matching

those of the stimuli (Correct Go, Correct No-Go, Incor-

rect No-Go, and a bad trial/Incorrect Go trial regressors).

RT variability was modeled using parametric amplitude

boxcars with onset/offset matching the stimulus, and
these were orthogonalized to the respective event-related

regressors. Orthogonalization was performed in FSL using

its Gram–Schmidt procedure [33] to decorrelate the RT

regressor from all other event-related regressors. All re-

gressors were convolved with the canonical hemodynamic

response function (HRF), and temporal derivatives were

included as confounds of no interest. A fixed effects

model was used to model activations across runs, and a

mixed effects approach (FLAME 1 þ 2 [31]) was used to

compute the contrasts for traditional players versus con-

trols to identify activation patterns for the Correct Go and

Correct No-Go conditions as well as the difference be-

tween Correct Go versus Correct No-Go contrasts. Statis-

tical image results for these traditional analyses were
thresholded at z 9 1:8, and clusters were corrected for

multiple comparisons at p ¼ 0:05 [34], [35].

I. Player Versus Control EEG-fMRI Fusion Analysis
We created a novel methodology to fuse EEG-fMRI

data and study group differences. First, we identify time

windows in the EEG signal that discriminate between

players and controls, and we then use these time win-
dows as regressors in a GLM analysis of the fMRI data.

In accordance with previous methods [7], [9], [10],

our methodology uses EEG trial-to-trial variability to

index a brain signal of interest and predict subject exper-

tise between players and controls. First, a sliding window

linear discrimination analysis, based on logistic regres-

sion, was run separately on Correct Go and Correct

No-Go trials to classify each trial as belonging to either a
player or control. Instead of processing the data within

subjects, the time window ð�Þ data were pooled across

subjects to create a data n� s matrix, n-trials (7213 for

Correct Go, 2791 for Correct Go) by s-subjects (35). A

sevenfold logistic regression was run independently for

each trial type, where for each fold the data from one

player and two controls were held out for testing. The

time window center defining the data input for the logis-
tic regression was varied across the trial, starting from 0

ms from stimulus onset and shifted by 25 ms until the fi-

nal window at 1000 ms. The accuracies of the classifiers

were assessed using the AUC [Fig. 1(a)].

After applying logistic regression to the time win-

dows, each subject’s y-values [see (1) and Fig. 1(b)] were

averaged and divided by the standard deviation of the

Fig. 1. Illustration of player/control EEG-fMRI data fusion methodology. (a) First, a sevenfold sliding window logistic regression

classifying EEG player trials from control trials across all subjects. These can be either Correct Go or Correct No-Go trials. The sliding

window logistic regression produces an area under the receiving operator curve (AUC) for each window analyzed. For each window

center � , the distance to the discriminating hyperplane ðyÞ for each trial is calculated (b). (c) Each subject’s y-values are averaged and

divided by their standard deviation producing a matrix Y�;Subjn
. (d) These Y-values are then used to construct sliding window AUC

metrics by comparing how well the Y-values predict subject expertise. (e) Significant window center Y-values are then used as

regressors in the fMRI general linear model to find the spatial components of expertise at that time window.
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individual subject’s trial-wise y-values to create an overall

“expertise-rating” y-value, Y�;Subjn [Fig. 1(c)]. For each

time window in each data set, the AUC was computed by

comparing the overall expertise y-value, Y�;Subjn , to the

ground-truth label of player or control. The significance

of the AUC for each time window was determined using

a permutation test. The label of player or control was
randomly assigned 1000 times for each window, the sev-

enfold logistic regression was performed, and a distribu-

tion of values for AUCs with random labels were used to

compute a significance threshold for the null hypothesis

that there was no EEG marker of expertise. Windows

were considered significant if they passed an FDR-

corrected threshold of pG 0:05.
To fuse the EEG results with fMRI, we used time

windows that discriminated players from controls in EEG

analysis as regressors of interest in a GLM that corre-

lated subject expertise with fMRI activation. Resulting

statistical parametric maps for these analyses were thre-

sholded at z 9 1:8, and clusters were corrected for multi-

ple comparison at p ¼ 0:05 [34], [35].

J. Structural Connectivity Differences Between
Player and Control

Diffusion MRI analysis [36] was performed using DSI

Studio (http://dsi-studio.labsolver.org/) and Matlab

(MathWorks, Inc.; Natick, MA, USA) on 37 subjects (13

experts, 24 novices). Diffusion data were reconstructed
using q-space diffeomorphic reconstruction (QSDR [37])

with a diffusion sampling length ratio of 1.25 and an out-

put resolution of 2 mm. Whole-brain fiber tractography

[38] was performed 1000 times for each participant to

minimize the impact of any bias in the tractography pa-

rameter scheme on streamline generation. Across the

1000 iterations, values were randomly sampled for QA-

based fiber termination thresholds (between 0.01 and
0.10), turning angle thresholds (between 40˚ and 80˚),

and smoothing (between 50% and 80%) to ensure re-

sults are robust to these parameter choices, while using

constant values for step size (1 mm) and min/max fi-

ber lengths (10 mm/400 mm). Each iteration generated

250000 streamlines, and with a fixed streamline count,

differences in the number of estimated fiber tracts can be

interpreted as differences in the strength of connection

[39]. For each subject, we derived a whole brain struc-

tural connectivity matrix by averaging the tractography

estimates across the 1000 iterations to estimate the

strength of connection between all 116 brain regions in

the AAL atlas.

The 116 � 116 structural matrix for each subject was
used as input in an ROI connectivity analysis. The Louvain

modularity algorithm implemented in the Brain Connec-

tivity Toolbox (BCT, [40]) was run on the group average

unthresholded streamline connectivity matrix. The order

of nodes in the connectivity matrix was reorganized

based on the representative modularity partition with

five modules. After partitioning, the number of stream-

line edges differing between groups with a threshold of
pG 0:05 uncorrected was assessed for each of the identi-

fied modules both for within-module and between-module

connections. This type of analysis has been used to iden-

tify structural differences between autistic patients and

controls [41]. A permutation test was implemented to as-

sess if the distribution of significant edges within and

across modules deviated from a null hypothesis that

there was no network difference between experts and
controls. The label of player or control was randomly as-

signed 5000 times, and for each permutation, a count of

significant edges between and within modules for each

group (player 9 control and control 9 player) was calcu-

lated. Each module-to-module count was then compared

to its permutation distribution to determine significance

at pG 0:05.

III . RESULTS

A. Behavioral Results
Table 1 presents group data for response times and

error rates for Go and No-Go trials. A two-way ANOVA
on the response times showed a significant effect for the

Group ðp ¼ 0:0024Þ. Trial type ðp ¼ 0:24Þ and the

Group � Trial interaction ðp ¼ 0:24Þ did not pass our

significance threshold of pG 0:05. The two-way ANOVA

for error rates showed a significant main effect for Group

ðpG 0:001Þ, Trial Type ðpG 0:001Þ, but the Group � Trial

interaction ðp ¼ 0:944Þ was not significant.

Table 1 Mean Behavioral Response Times (RTs) and Error Rates for Players and Controls. Standard Deviations Are in Parentheses
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B. Confirming Previous EEG-Only Neural Correlates
of Player Versus Control Differences

Given that we acquired our EEG and fMRI simulta-
neously, which can result in reduced SNR relative to sep-

arate acquisitions, we first sought to confirm results we

reported in a previous EEG-only acquisition and analysis

[20]. Fig. 2(a) shows the mean (across subjects, sepa-

rated by group) performance (area under the ROC curve:

AUC) for stimulus-locked EEG components discrimina-

tive of Correct Go versus Correct No-Go discrimination

trials. We found that players and controls had similarly
shaped discrimination curves; however, players exhibited

an earlier rise and larger peak than controls. Both groups

showed no significant early discrimination (discrimina-

tion before 300 ms); however, discrimination rose

sharply to a maximum AUC of 0.87 at 500 ms for players

and 0.79 at 525 ms for controls. The players’ discrimina-

tion curves also were shifted 25 ms earlier relative to that

for the controls. To test for significant discrimination dif-
ferences between players and controls, we computed an

independent groups t-test at each window. Shaded re-

gions indicated significant differences (pG 0:05 FDR cor-

rected) in discrimination activity between players and

controls. Players show significantly higher discrimination

than controls from 400 to 500 ms. These results are all

consistent with our previous EEG-only analysis [20].

C. Player Versus Control Traditional fMRI Results
We conducted a traditional GLM analysis to demon-

strate what an fMRI-only analysis would reveal on the
differences between players versus controls. After com-

puting the traditional fMRI contrasts for each subject, an

independent two groups t-test was run comparing the

players’ and controls’ Correct Go and Correct No-Go sub-

ject level beta estimates. Significant clusters showing

higher activations for players were found in both the

Correct Go and Correct No-Go trial types [Fig. 2(b)

and (c)]. Activations were located in the temporal fusi-
form gyrus, middle temporal gyrus, anterior cingulate,

presupplementary motor and supplementary motor corti-

ces for Correct Go trials. Similarly for Correct No-Go trials,

activations were found in the presupplementary motor

area, supplemental motor areas, middle temporal gyrus,

and fusiform gyrus.

D. Unique Functional Network Differences Between
Player Versus Control Revealed via
EEG-fMRI Fusion

The AUCs for sliding window logistic regression that

discriminated expertise in Correct Go and Correct No-Go

trials are plotted in Fig. 3(a). Sliding window AUC results

for classifying each subject by expertise based on the sev-

enfold logistic regression y-values are plotted in Fig. 3(b).

Fig. 2. EEG and fMRI traditional results. (a) Sliding window logistic regression results. Stimulus-locked EEG discrimination results for

Correct Go versus Correct No-Go trials for controls (blue) and players (red). Each AUC curve shows the mean and standard error bars

computed using leave-one-out discrimination. The significance line (dotted) is corrected for multiple comparisons (line at p ¼ 0:05 FDR

corrected for 41 time window comparisons). Gray shading indicates which time points showed a significant difference between players

and controls [independent groups t-test at each significant window and an FDR correction for multiple (26) windows]. (b) Group-level

results for players having higher activation for the Correct Go trials overlaid on the MNI brain template. (C) Group-level results for

players having higher activation for the Correct No-Go trials overlaid on the MNI brain template. Statistical maps were thresholded at

z 9 1:8, and clusters were multiple-comparison corrected at p ¼ 0:05.
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Correct Go trials (solid) had a maximum AUC of 0.89 at

350 ms, while Correct No-Go trials (dashed) had a maxi-

mum AUC of 0.95 at 325 ms. Significance thresholds are

plotted as horizontal lines and are set at pG 0:05 FDR-
corrected for multiple windows.

The expertise rating y-values from the significant win-

dows from the EEG analysis [Fig. 3(b)] were used as covar-

iates of interest in finding areas of the brain that correlate

with the EEG expertise measures derived across the trial

duration. For Correct Go trials, significant clusters were

found in almost all of the significant EEG expertise win-

dows [Fig. 3(c)]. Negative correlations were found more in
the earlier time windows (G 400 ms). Significant positive

correlation clusters were found in regions overlapping with

the traditional player 9 control contrasts. Significant nega-

tive correlation clusters were found during the 125-ms

window in the intracalcarine cortex and precuneus, during

the 275-ms window in the superior lateral occipital cortex

(LOC) and middle frontal gyrus, and during the 375-ms

window in the inferior LOC. For positive correlations, sig-
nificant clusters were found distributed across the entire

cortex and trial duration. Significant positive correlation

clusters were found during the 250-ms window in the pre-

central gyrus and SMA, during the 275-ms window in the

superior frontal gyrus (SFG) and middle temporal gyrus

(MTG), during the 375-ms window in the hippocampus and

fusiform gyrus, during the 425-ms window in the posterior

cingulate, and during the 525-ms window in the supra

marginal gyrus among others (Table 2).

For Correct No-Go trials, significant clusters were found

in almost all of the significant time windows [Fig. 3(d)].
Negative correlations were found more in the later time

windows (9 400 ms) after the peak of expertise discrimina-

tion. Significant positive correlation clusters were found in

regions overlapping with the traditional player 9 control

contrasts. However, significant clusters in the correlation

analysis are distributed far more broadly than in the tradi-

tional analysis. Positively correlated clusters were found

during the 225-ms window in the SMA, temporal and fron-
tal poles, during the 275-ms window in the SFG, lingual gy-

rus, and central opercular cortex, during the 375-ms

window in the hippocampus and inferior LOC. Negatively

correlated clusters were found during the 250-ms window

in the middle frontal gyrus (MFG), during the 350-ms

window in the occipital pole, during the 375-ms window

in the subcallosal cortex, during the 400-ms window in

the superior frontal gyrus, during the 425-ms window in
the preSMA, and during the 475-ms window in the infe-

rior LOC among others (Table 3).

E. Structural Connectivity Differences Between
Player Versus Control

To complement our functional connectivity analysis, we

also analyzed the DTI data to identify structural networks

Fig. 3. Player versus control EEG-fMRI fusion results. (a) Stimulus-locked sevenfold cross-validated EEG discrimination results

comparing control versus player Correct Go (solid) and Correct No-Go (dashed) trials. (B) Sliding window discrimination of player

versus controls by subject after transformation of the each subject’s trials y-values. The solid and dashed horizontal lines indicate the

p G0:05 FDR-corrected thresholds (c) A selection of significant Correct Go windows found from (b) showing brain regions that

positively (red) and negatively (blue) correlate with subject expertise at specified time windows. (d) A selection of significant Correct

No-Go windows found from (b) showing brain regions that positively (red) and negatively (blue) correlate with subject expertise at

specified time windows. Statistical maps were thresholded at z 9 1:8, and clusters were multiple-comparison corrected at p ¼ 0:05.

Tables 2 and 3 detail the cluster locations and sizes for activations shown in (c) and (d).
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Table 2 Correct Go trial EEG-fMRI Fusion Results. Significant Clusters Found by the Simultaneous EEG-fMRI Methodology for Correct Go Trials [Fig. 3(c)]

(continued on the next page)
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that differentiate the two groups [42]. Whole brain tracto-

graphy analysis showed a robust structural network of nodes

derived from the AAL atlas across all subjects [Fig. 4(a)].

The modular organization of the structural network found

five communities of nodes across the brain [Fig. 4(b)].

Communities were roughly organized by hemisphere
(LH-1,4;RH-2,3), cortical/subcortical motor and frontal re-

gions (modules 1 and 2), visual/occipital regions (modules 3

and 4), and cerebellar regions (module 5). We first exam-

ined expertise-related structural effects by directly compar-

ing the strength of structural connectivity between brain

regions, and we found that players had 1.7 times as many

connections as the controls, 548 in players versus 328 in

controls [pG 0:05, uncorrected, Fig. 4(c)]. Additionally, the
difference in structural connectivity was mostly found be-

tween modules [Fig. 4(d)-left panel], including a significant

difference between module 1 and module 5 ðpG 0:0026Þ
for players versus controls [Fig. 4(d)-right panel].

IV. DISCUSSION

In this work, we used multimodal neuroimaging to iden-

tify structural and functional brain networks that differ-

entiate a group of baseball players from a control group

Table 2 (continued)
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Table 3 Correct No-Go trial EEG-fMRI Fusion Results. Significant Clusters Found by the Simultaneous EEG-fMRI Methodology for CORRECT NoGo Trials

[Fig. 3(d)]

(continued on the next page)
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when they performed a Go/No-Go task designed to mimic

the situation of hitting a baseball. Below we discuss how

our novel multimodal fusion approach advances our under-
standing of the structural and functional correlates of

expertise, specifically expertise in hitting a baseball, while

also relating it to previous work on rapid decision making.

This study demonstrates that simultaneously acquired
EEG-fMRI can be used to infer functional networks and

Table 3 (continued)
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offer confirmatory evidence for source localization find-
ings, including those estimated from EEG-only acquisi-

tions [20]. Since source localization is an ill-posed

problem, the localization cannot be considered conclu-

sive; however, simultaneous EEG-fMRI enables a within-

subject and within-trial comparison of the brain regions

identified in functional analyses from the complementary

neuroimaging methodologies. Here, we show that activ-

ity in fusiform gyrus that was identified in our traditional
fMRI analysis of group differences between players and

controls [Fig. 2(b) and (c)] matched our EEG findings

that players have a larger activation in a source localized

in the fusiform region. This confirmatory, multimodal re-

sult adds to the growing literature that the fusiform gyrus

plays a significant role in the expertise-dependent visual

object recognition [43]–[47]. Players also had a larger ac-

tivation in the middle temporal gyrus (MTG) specifically
in the left visual area MT/V5 complex which may also give

players superior performance as this area is implicated in

motion processing. Another area where players exhibited

stronger activations was the supra-marginal gyrus. This

area is part of the action observation network (AON) and
plays a role in the somatosensory processing stream. Sur-

prisingly, we also see activation in the SMA in both the

Correct Go and Correct No-Go player/control contrasts.

The location of this activation is similar to the area found

in our previous Correct No-Go EEG source localization re-

sults [20], providing confirmatory evidence that players

preferentially activate their SMA, relative to controls, dur-

ing this baseball-like task. SMA regions, including the pre-
SMA, have a known role in motor learning [48]–[51] and

critical involvement during Go/No-Go tasks which probe

inhibitory control circuits [20], [52]–[56].

In addition to confirming previous results, simulta-

neously acquired EEG-fMRI allows for a more compre-

hensive understanding of the differences between players

and controls with respect to the spatiotemporal cascade

of activity across the brain. Our novel methodology iden-
tifies multiple poststimulus 50-ms windows with predic-

tive EEG neural correlates of expertise and fuses these

temporal windows with fMRI activity in a whole-brain

2-mm voxel analysis, revealing time-localized correlations

Table 3 (continued)
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of expertise at a spatial scale of millimeters. Many of the

significant regions found in the fusion analysis were also

observed in the traditional player versus controls con-

trast, though the fusion analysis enabled a deconstruction

of this activity across time. Additionally, some areas that

significantly correlate with expertise in the fused analysis

were not present in the traditional analysis, including the
SFG, the hippocampus, and all regions with significant

negative correlations [Fig. 3(c) and (d)]. These novel spa-

tiotemporal findings suggest that the fused approach may

provide more sensitivity than a traditional fMRI-only

GLM analysis. Interestingly, the fused approach identified

regions in early visual processing areas—the temporal oc-

cipital fusiform cortex (TOFC), parahippocampal gyrus,

and paracingulate gyrus. Activity in these regions were sig-
nificantly correlated with expertise, and they are the same

areas known to be used in Bar’s visual prediction theory

[57]. In addition, significant positive correlations in the

right SFG at 275 and 300 ms for Correct Go and Correct

No-Go trials maps directly to a region known to integrate

information from the visual processing areas [58]. This

functional evidence taken together helps to support the

theory that expertise—specifically, sportive expertise—can

produce more efficient neural processing for domain spe-

cific perceptual tasks [59]–[61].

This novel fusion methodology is fully data-driven

and uses the entire EEG sensor and fMRI voxel space to

identify the functional cascade that differentiates two

groups. To date, the majority of EEG-fMRI studies use
correlative measures to inspect the EEG-informed BOLD

modulations [62], and relatively little previous work has

used EEG-fMRI fusion methodologies to identify differ-

ences between subject populations. One recent exception

is [63], who used a joint independent component analy-

sis (jICA, [64]) with simultaneous EEG-fMRI to show

that schizophrenic patients have marked differences in

processing oddball stimuli compared to controls, but
their methodology only used a single electrode for the

EEG analysis and requires user supervision to determine

ICA components.

Our data-driven methodology takes a more comple-

mentary approach to fuse neural information across EEG

and fMRI methodologies since it is well known that each

neuroimaging measurement may reflect characteristics of

Fig. 4. Structural network organization and differences related to expertise. (a) Average structural connectivity matrix reorganized by

its modular organization. Edges are streamline counts that pass between AAL atlas regions of interest. (b) Three-dimensional sagittal

and axial views of the structural networks in anatomical space displaying the top 0.5% of connections. (c) Structural connectivity

matrix group differences (p G0:05, uncorrected) displaying expert baseball players 9 controls (red) and controls 9 players (blue) for

streamline counts in the connectivity matrix and 3-D brain space. (d) Number of player 9 control (red) and control 9 player between

group connections differing for within-module and between-module connections (left) and specific module-to-module results (right).

Significance (p G0:05 FDR corrected) for module-to-module differences was computed by 5000 permutations. Significant

module-to-module differences are marked by “**.”
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different populations of cells [65]. Here, we use all EEG

electrodes to identify temporal windows with neural cor-

relates of expertise that can successfully classify players

versus controls and then use this temporal information in

a whole-brain GLM analysis of fMRI data to investigate
which regions of the brain covary with the predictive

EEG signals of expertise. While our results confirm the

promise of our EEG-fMRI fusion approach, future re-

search should continue to explore additional methods to

extract the strengths of each neuroimaging modality and

mitigate known weaknesses, allowing additional hybrid

analyses to expand our understanding of relationships be-

tween complementary neuroimaging signals.
Our fusion approach for simultaneously collected EEG

and fMRI data provides a functional mapping of expertise

related differences between the players and controls. It is

also important to identify and understand if there are

structural differences between the groups. Structural con-

nectivity analysis showed that the players have signifi-

cantly more coherent structural connections between

cerebellar and left frontal/motor regions [Fig. 4(d)].
These trends point to the players having neuroplastic

changes specific to motor processing regions of the brain.

This is more clearly shown in the overlap between the

functional activations from the EEG-fMRI fusion and the

structural connectivity (Fig. 5). This fronto–cerebellar

pattern is particularly interesting given that there is a

well-established pattern of connectivity between lateral

frontal areas and lateral regions of the cerebellum, consis-
tent with the location of expertise predicting activity in

our task [66]. Rather than regulating motor coordination,

as is usually assumed with cerebellar pathways, these
cortical–cerebellar networks are thought to regulate the

integration of high-level executive and attention pro-

cesses that are critical for efficient, adaptive decision

making [67]. We found that expert players have greater

network-level communication, at both the structural and

functional levels, between these fronto–cerebellar cir-

cuits. This between-module communication is a plausible

neural substrate that can explain the improved behavioral
performance at a sensory discrimination task with mini-

mal movement control demands.

In summary, our results indicate a difference in the

unfolding of cognitive processes for players versus con-

trols and that these functional differences may at least be

partially a result of differences in structural networks be-

tween the groups. We find correlative evidence that

these macroscale neural differences translate into higher
behavioral accuracies and faster response times in

players. The spatiotemporal cascade reflecting these dif-

ferences between the groups begins as early as 200 ms

after the pitch starts and lasting up to 700 ms afterwards.

Network differences are spatially localized to include

motor and visual processing areas, providing evidence for

differences in perception–action coupling between the

groups. These findings reinforce many studies implicat-
ing these areas in mediating visual prediction and exper-

tise [43], [47], [57], [68]–[70]. We also find that our

results confirm many prior fMRI studies showing that

athletes have stronger activations in the action observa-

tion network while they observed or listened to the do-

main of their expertise [59]–[61], [71]–[76].

In general, our approach illustrates how multimodal

neuroimaging can provide specific macroscale insights into
the functional and structural correlates of expertise devel-

opment. This approach, however, may also capture under-

lying physiology that can account for variability in

performance, whether it arises from between subject differ-

ences due to genetic or experimental factors or from within

subject variability due to fluctuations in attention, interest,

etc. Future work should examine the sensitivity of this mul-

timodal approach to capture variability across varying levels
of expertise, providing a framework to reveal how brain

connectivity enables superior performance. h
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