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Diverse aspects of physical, affective, and cognitive health relate to social integration, 

reflecting engagement in social activities and identification with diverse roles within a 

social network. However, the mechanisms by which social integration interacts with the 

brain are unclear. In healthy adults (N=155) we tested the links between social 

integration and measures of white matter microstructure using diffusion tensor imaging. 

Across the brain, there was a predominantly positive association between a measure of 

white matter integrity, fractional anisotropy (FA), and social network diversity. This 

association was particularly strong in a region near the anterior corpus callosum and 

driven by a negative association with the radial component of the diffusion signal. This 

callosal region contained projections between bilateral prefrontal cortices, as well as 

cingulum and corticostriatal pathways. FA within this region was weakly associated with 

circulating levels of the inflammatory cytokine IL-6, but IL-6 did not mediate the social 

network and FA relationship. Finally, variation in FA indirectly mediated the relationship 

between social network diversity and intrinsic functional connectivity of medial 

corticostriatal pathways. These findings suggest that social integration relates to myelin 

integrity in humans, which may help explain the diverse aspects of health affected by 

social networks. 
  



Aspects of the social environment affect physical health in humans. For example, 

increasing social integration predicts greater longevity and many positive long-term 

health outcomes (House et al. 1988; Berkman et al. 2000; Cohen 2004; Holt-Lunstad et 

al. 2010). Emerging research also shows that social network characteristics are 

associated with measures of neural integrity (Yang et al. 2013). For example, 

neuroimaging studies demonstrate that people with larger and more diverse social 

networks have larger brain volumes and greater functional connectivity in emotional 

salience processing networks (Bickart et al. 2011; Bickart et al. 2012), while larger social 

networks are indirectly associated with greater volume in the orbital prefrontal cortex, an 

area implicated in social cognition (Powell et al. 2012). 

The relationship between social networks and the brain is not restricted to humans. In 

monkeys, neocortical regions important for processing social signals, including the 

rostral prefrontal cortex and amygdala, increase in volume with social network size 

(Sallet et al. 2011). Social isolation in adult mice causes reversible changes in 

prefrontal oligodendrocytes and hinders myelin repair in white matter (Liu et al. 2012). 

In young mice, however, the detrimental effects of social isolation on prefrontal myelin 

thickness are irreversible (Makinodan et al. 2012). The white matter changes in socially 

isolated animals associate with elevated pro-inflammatory cytokines like interleukin-6 

(IL-6; (Hermes et al. 2006; Karelina et al. 2009)), suggesting a molecular basis for 

changes in the body with inflammation in the brain (Rosano et al. 2012). With the 

exception of a recent study examining overall brain volume (James et al. 2012), the 

human imaging literature has largely ignored the relationship between white matter 

integrity and social network structure. Yet a growing body of literature supports a 



connection between inflammatory markers and aspects of an individual’s social 

network. For example elevated IL-6 and C-reactive protein (CRP) levels are present in 

less socially integrated men (Häfner et al. 2011). 
 

Furthermore, inflammatory cytokines are known to have a role in initiating “sickness 

behavior”, which includes symptoms such as social withdrawal (Dantzer et al. 1998). It 

is possible that inflammation leads to feelings of social disconnection and withdrawal 

(Eisenberger et al. 2011). There is also emerging work showing a link between 

inflammation and white matter structure in humans (Arfanakis et al. 2013; Miralbell et 

al. 2012; Verstynen et al. 2013) and this pathway mediates relationships between 

social factors, like socioeconomic status, and white matter integrity (Gianaros et al. 

2013). Taken together, these findings support the idea that aspects of the social 

environment relate to white matter structure in humans, possibly via inflammatory 

pathways. 

 

Here we explored whether social network characteristics are associated with 

inflammation and white matter structure in humans. In a sample of neurologically healthy 

midlife adults we measured global white matter integrity using diffusion tensor imaging 

and evaluated social network size (number of people in the social network) and diversity 

(number of social roles) using the Social Network Index (Cohen et al. 1997). We 

hypothesized that more diverse and larger social networks would be associated with 

greater white matter integrity, i.e., larger fractional anisotropy and smaller radial 

diffusivity, and that this relationship would be mediated by circulating CRP and IL-6. We 

further predicted that these social associations with white matter have corresponding 



implications for the functional dynamics of communication between connected brain 

areas. 
 

Methods 

Participants 

Participants were 155 community-dwelling adults (78 men) who were recruited via mass 

mailings to residents of Allegheny County, Pennsylvania (U.S.A.). Table 1 lists all 

relevant participant demographics. A complete description of this sample is reported by 

Gianaros et al. 2013. All participants were screened for pre-existing health conditions. 

Informed consent was obtained prior to testing with approval from the University of 

Pittsburgh Institutional Review Board. 

Social network assessment 

All participants completed a questionnaire assessing the structure of their social 

networks. We evaluated two descriptive metrics of social networks that have been 

associated with neuromorphology or brain function (Bickart et al. 2011; Bickart et al. 

2012). 
 

(i) Diversity: assesses participation in 12 social roles (e.g., friends, family, church 

member). One point is assigned for each role (possible score of 12) for which 

respondents indicate that they speak (in person or on the phone) to someone in 

that relationship at least once every 2 weeks (Cohen et al. 1997).  

(ii) Size: assesses the number of people with whom the respondent has regular 

contact (i.e., at least once every 2 weeks). To calculate network size, we 

computed the number of people with whom the respondent has regular contact 



within each of the 12 social roles and then summed across the 12 roles (Cohen 

et al. 1997). 

Physiological, psychosocial and health measures 

We examined two markers of inflammation in a subset of subjects (N = 135 for CRP; N = 

126 for IL-6). 

 

(i) Interleukin-6 (IL-6) levels in pg/mL were determined using a high sensitivity 

quantitative sandwich enzyme immunoassay kit (R & D Systems). IL-6 levels 

were extrapolated from a standard curve with linear regression from a log-linear 

curve. All samples were run in duplicate, and the average coefficient of variation 

(CV) between samples was 10%. Prior to analysis, IL-6 values (mean = 1.79, std 

= 1.84) were natural log transformed. 

 

(ii) Circulating levels of high-sensitivity C-reactive protein (CRP) in mg/dL were 

assayed on a SYNCHRON LX System (Beckman Coulter, Inc., Brea, California, 

with precision values of 5.0%CV within-run and 7.5%CV total for serum assays). 

Prior to analyses, CRP values (mean = 0.28, std = 0.47) were natural log 

transformed. 

 

Two measures of socioeconomic status were also assessed at the initial testing session.  

(i) Education was assessed by having participants report the number of years of 

schooling they had completed prior to the time of testing (mean = 17.12, std = 

3.2). 



(ii) Pre-tax income was assessed by having participants indicate their annual 

household earnings in U.S. dollars on a 15-point scale ranging from less than 

$10,000/year (or $0-833/month) to more than $185,000/year (or more than 

$15,417/month). See details on scale construction and computation in 

Gianaros et al. 2013.  

 

Four measures of general physical health were collected. 

(i) Waist circumference, as a measure of central adiposity, was measured at 

end-expiration to the nearest 1/2in with a tape measure centered at the 

umbilicus (mean = 35.64, std= 5.17 inches).  

(ii) Seated, resting blood pressure was measured from the non-dominant arm 

with an oscillometric device (Critikon Dinamap 8100, Johnson & Johnson, 

Tampa, FL). Participants provided three measures taken 2 min apart after a 

~20 min acclimation period, with the average of the last 2 of the 3 BP 

readings serving as the resting systolic (SBP) and diastolic (DBP) blood 

pressures (SBP, mean = 121.44, std = 9.48; DBP, mean = 73.25, std = 8.80). 

(iii) Smoking status was measured by self-report, using a binary classification 

variable where 0 indicates non-smoker or former smoker, 1 indicates current 

smoker (25 smokers total).  

(iv) Quality of sleep was measured using the Pittsburgh Sleep Quality Index 

(PSQI; Buysse et al. 1989) that ranks total sleep quality on a scale between 0 

and 21, with scores 5 or less reflecting good sleep quality and scores greater 

than 5 reflecting poor sleep quality (mean = 4.53, std = 2.52). 

 

Finally, we assessed trait positive and negative emotionality and social support.  



(i) Dispositional positive and negative emotionality were assessed using the trait 

positive and negative affect scales of the Positive Affect (PA) and Negative Affect 

(NA) Schedule (Watson, Clark, & Tellegen, 1988; PA mean = 3.58, std = 0.59; 

NA mean = 1.61; std = 0.52). 

(ii) Perceptions of social support were evaluated using the Interpersonal Support 

Evaluation List (ISEL) scale (Cohen et al. 1983). This is a list of 40 statements 

that focus on the perceived availability of potential social resources. (mean = 

3.47, std = 0.45). 

 

MRI Acquisition 

All imaging was performed on a 3 Tesla Trio TIM whole-body MRI scanner (Siemens, 

Erlangen, Germany), equipped with a 12-channel phased-array head coil. Diffusion 

tensor imaging (DTI) was performed using a pair of pulsed-gradient, spin-echo 

sequences with a single-shot echo-planar imaging (EPI) readout. A parallel imaging 

algorithm (generalized auto-calibrating partial-parallel acquisition; GRAPPA) was applied 

during diffusion imaging to reduce echo-planar distortion. DTI parameters were: time-to-

repetition (TR) = 5800 ms; time-to-inversion (TI) = 2500 ms; time-to-echo (TE) = 91 ms; 

flip angle = 90°; pixel size = 2 × 2 mm; resolution = 128 × 128 (with field-of-view [FOV] = 

256 × 256 mm); 43 slices of 3 mm thickness with no gap; and total imaging time = 6 min 

and 19 s. Diffusion-sensitizing gradient encoding was applied in 30 uniform angular 

directions with a diffusion weighting of b = 1000 s/mm2. A reference image with no 

diffusion gradient (b = 0) was also acquired. The acquisition sequence was repeated 

twice to improve the DTI signal-to-noise ratio. Usable DTI data were available for 145 

participants. 



Resting state functional BOLD images were acquired with a gradient-echo EPI 

sequence (FOV = 205×205 mm; 64×64 matrix; TR = 2 sec; TE = 28 ms; flip angle = 90°) 

for 5 minutes and 6 seconds. During scanning, participants were asked to keep their 

eyes open while resting quietly. Thirty-nine slices (3mm thick, no gap) were obtained for 

each TR, yielding 150 images (the first 3 images were discarded, allowing for magnetic 

equilibration). A structural image used for functional image co-registration and 

normalization was collected using a T1-weighted 3D magnetization-prepared rapid 

gradient echo (MPRAGE) sequence (FOV = 256×208 mm; 256×208 matrix; TR = 2100 

ms; TI = 1100 ms; TE = 3.29 ms; flip angle = 8°; 192 slices; 1mm thick, no gap). Usable 

resting state data were available for 110 participants. 

DTI Analysis 

All DTI data were processed using the FSL Diffusion Toolbox (v2.0), which used the 

following steps: correction for motion and eddy current distortions by affine registration to 

the reference image, removal of skull and non-brain tissue, and calculation of diffusion 

parameters by fitting the diffusion images to a diffusion tensor model. Within each voxel 

three estimates of water diffusion patterns were calculated: fractional anisotropy (FA), 

radial diffusivity (RD) and axial diffusivity (AD). FA is a common white matter measure 

derived from DTI, and it represents the ‘shape’ of the underlying water diffusion in each 

voxel. AD and RD reflect subcomponents of the FA measure that define the length and 

width of the estimated tensor respectively.  

 

All FA images were normalized to the 1mm3 MNI152 stereotaxic space via the FSL FA 

template (FMRIB58_FA). This was done by combining two transformations: (1) a 



nonlinear registration of each participant's FA image to the FMRIB59_FA template, and 

(2) an affine transformation of the template to MNI152 space. These non-linear and 

linear normalization parameters were then applied to the axial and radial diffusivity 

maps. Finally, all maps for each subject were spatially smoothed using a 2mm3 FWHM 

isotropic Gaussian kernel. 

 
To quantify head motion in each DTI scan we used a similar procedure to Yendiki et al., 

2013. We calculated the average volume-by-volume translation and rotation, and the 

percentage of slices with signal dropout. Slices with a score greater than 1 have suspect 

signal dropout. Signal dropout severity was calculated over all slices in the scan that 

were greater than 1. 

 

Structural connectivity was assessed on a tractography template (the CMU-60 template) 

comprised of averaged diffusion information across 60 neurologically healthy controls (29 

male, mean age = 26) that underwent a 257-direction diffusion spectrum imaging 

sequence. Details of this template can be found here 

http://www.psy.cmu.edu/~coaxlab/?page_id=423 and the general procedures are 

described in Yeh & Tseng 2011. Clusters that were identified from the DTI analysis as 

being statistically significant to either SNI factor, after adjustment for multiple 

comparisons (FDR < 0.05) and cluster size (k>40), were loaded into the CMU-60 

template. A set of 20,000 streamlines was tracked through this region of interest (fiber 

threshold = 0.05, max turning angle = 75 degrees, step size = 1mm). This set of 

streamlines was then hand segmented into 4 subsets (corpus callosum, cingulum, 

corticostriatal, and hypothalamic projections) based on pairwise start and end locations. 



rs-fMRI Analysis 
Resting BOLD images were preprocessed using SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). BOLD images were realigned to the 

first series image, co-registered to the MPRAGE, and normalized to ICBM/MNI space 

using the SPM template. Normalized images were smoothed with a 6 mm FWHM 

isotropic Gaussian kernel and re-sliced to 2 mm3 voxels. The contiguous clusters of the 

tractography endpoints larger than 50 voxels were selected as regions of interest (ROIs) 

for connectivity analysis. The connectivity between each pair of ROIs was assessed by 

the cross-correlation of the mean BOLD time series in the regions. Before the 

assessment, the time series in each voxel was de-trended, de-spiked, mean-centered, 

and adjusted for the confounding covariance due to movement, physiological noise, and 

hemodynamic response using regression method. The parameters estimated from rigid 

body transformation were used as the movement regressors. The physiological noise was 

modeled by the component-based method (Behzadi et al. 2007) with 3 principle 

components of BOLD time series from a white matter mask and 2 principle components 

from a CSF mask. The masks were constructed using the SPM MNI templates of 90% 

and 75% probability maps for white matter and CSF, respectively; they were further 

eroded to avoid partial volume effect. The hemodynamic response was modeled by the 

SPM default hemodynamic response function and its derivative. After the adjustment, 

the BOLD signals were bandpass filtered for the frequencies between 0.08 and 0.15HZ 

and submitted to the connectivity analysis. 

Results 

Social Network Size and Diversity 

We first examined the associations of network indices with various demographic, social, 

affective, and health factors (See Table 1). In general both diversity and network size 



were associated with similar measures, including age, income, education, PA and ISEL 

scores. Only network size was associated with current smoking status. There was no 

difference between men and women in social network size (t(154) = 0.029, p = 0.33) or 

diversity (t(154) = 0.963, p = 0.87).  Moreover, neither network measure was associated 

with measures of physical or cardiorespiratory health. In the analyses below we control 

for central adiposity, age, sex, and years of education because these factors are 

plausible confounds of white matter structure and inflammatory measures. 

Inflammation and social network structure 

After controlling for central adiposity, age, sex, and years of education, IL-6 was 

negatively associated with the diversity of a person’s social network (r(128) = -0.194, p = 

0.027), but uncorrelated with social network size (r(128) = -0.088, p = 0.319). We did not 

find a relationship between network diversity and CRP (r(137) = 0.04, p = 0.638). CRP 

was also not correlated with social network size (r(137) = 0.125, p = 0.144). Finally, as 

expected CRP and IL-6 were moderately correlated with each other (r(120) = 0.415, p < 

0.0001). 

White matter and social network structure 

We found that across all white matter voxels there was a predominant positive 

association between fractional anisotropy (FA) and diversity of a person’s social network 

(mean = 0.012 +/- 0.039 std; Fig. 1a-b), after controlling for age, sex, education and 

central adiposity, which have all be found to be independently associated with measures 

of white matter integrity (Westlye et al. 2010; Gianaros et al. 2013; Verstynen et al. 

2013). This means that in a numerical majority of voxels, individuals with more high-

contact roles had greater microstructural white matter integrity. In the uncorrected 



statistical maps we found several independent clusters with strong positive associations 

to diversity (Fig. 1a), including near prefrontal boundaries of the dorsal medial prefrontal 

cortex, considered part of the “social brain” (Lewis et al. 2011; Powell et al. 2012). 

 

While there was a global positive association between network diversity and FA across a 

majority of voxels (Fig. 1a-b), this effect was particularly strong in a cluster of voxels 

near the posterior section of the genu of the corpus callosum (Fig. 1c). This large cluster 

of voxels surpassed both multiple comparison correction (FDR < 0.05) and cluster size 

thresholding (k > 40). No such patterns were observed for social network size, thus no 

further exploratory analysis was done on this measure.  

 

To ensure that head motion did not interfere with the associations between SNI and FA 

(Yendiki et al. 2013), we ran a linear regression between the two SNI variables and head 

motion parameters. We found no significant correlations between SNI and head motion 

(all r’s < -0.137, all p’s > 0.11); thus spurious differences in head movement during the 

scans cannot account for the relationship between SNI diversity and FA that we 

detected. 

 

In order to assess whether the association between SNI diversity and FA in this cluster 

is driven by particularly low diversity individuals, as would be predicted by the social 

isolation findings in rodents (Liu et al. 2012), we segmented the sample into three 

groups: low social diversity (< 5 roles, n = 38), moderate diversity (between 5 & 7 roles, 

n = 65), and high diversity (8 or more roles, n = 42). The unadjusted FA values within the 

corpus callosum cluster were extracted and averaged across groups. After controlling for 

age, sex, education and central adiposity, FA increased consistently with each diversity 

group (Fig. 2a), with a significant difference between low and high diversity individuals 



(t(79) = 2.79, p = 0.008) and marginal differences between low and medium diversity 

groups (t(106) = 1.48, p = 0.14) and medium and high diversity groups (t(102) = 1.46, p 

= 0.14). Thus, the FA associations within this cluster are not driven exclusively by low or 

high diversity individuals. 

 

Within the SNI-related cluster radial diffusivity (RD) decreased as social network 

diversity increased, after age, sex, education and central adiposity were controlled for 

(Fig. 2b; R = -0.15, p = 0.021). As with FA, we observed a significant difference between 

low and high diversity subjects (t(79) = 2.04, p = 0.044), but no difference between low 

and medium diversity individuals (t(106) = 1.55, p = 0.12) or medium and high diversity 

individuals (t(102) = 0.72, p = 0.47). Unlike RD, we did not observe a significant group 

effect on axial diffusivity within the cluster (Fig. 2c; R = - 6.55 x 10-7, p = 0.45, 

Spearman’s r(145) = -0.05, p = 0.200). This selective association with the radial 

component of the diffusion signal is consistent with patterns seen in animal models of 

demyelination (Klawiter et al. 2011). 

 

Previous observations in rodents (Hermes et al. 2006; Karelina et al. 2009) predict that 

inflammatory factors should be moderately associated with white matter structure. Within 

the SNI-related cluster we found that, after controlling for age, sex, education and central 

adiposity, FA was negatively correlated with circulating levels of IL-6 (Fig. 3; Spearman’s 

r(126) = -0.14, p = 0.017), and trending, but not significant, when correlated against 

circulating CRP (Spearman’s r(135) = -0.12, p = 0.084). However, no such correlation 

was observed between IL-6 and either RD (r(126) = 0.07, p = 0.165) or AD (r(126) = -

0.09, p = 0.096). This negative association between IL-6 and FA generally suggests that 

inflammation may be playing a role in white matter variation. However, this trend 



disappears after controlling for age and sex (all p’s > 0.1), thus negating IL-6 as a 

mediating variable within this sample. 

 

Finally, we expanded our analysis to include a full set of psychosocial & health factors 

against the cluster-wise FA values. These results are shown in Table 2. Of these factors 

only smoking status correlated with FA within the target cluster. This association is 

consistent with a possible inflammation link to the FA variation in this region.  However, 

given the lack of association with socioeconomic and general health factors that 

correlated with social network measures, it is unlikely that this SNI and white matter 

association is the mediated by socioeconomic (Gianaros et al. 2013) or physical health 

(Verstynen et al. 2013) pathways previously reported in this sample. 

Network connectivity through SNI-related voxels 

To characterize the pathways running through this cluster we performed deterministic 

tractography on a template of 60 neurologically healthy volunteers who were scanned 

using a high angular resolution form of diffusion imaging that is optimal for tractography in 

MNI space (see Methods). Using the SNI-related cluster as a region of interest, we found 

that a majority of the cluster covers interhemispheric connections between the superior 

and middle frontal gyrus (Fig. 4). The dorsal aspects of the cluster also include 

projections from the left cingulum tract while the ventral aspects intersect with portions of 

the superior infundibulum. Thus, the voxels having particularly strong associations with 

social network diversity predominantly reflect pathways connecting the left and right 

dorsolateral prefrontal cortex, with some carry over to fronto-parietal and limbic 

pathways. 



To determine the extent that variation in the integrity of the white matter cluster 

associates with the functional properties of this connected circuit, we selected the 

cortical clusters of the tractography endpoints that had more than 50 contiguous voxels 

(ROIs; Fig. 5a) and used resting-state BOLD time series to evaluate the functional 

connections between all ROIs for each subject. After correcting for multiple 

comparisons (FDR < 0.05) and controlling for sex, age and central adiposity, one 

cluster pair was found to be negatively associated with FA within the SNI-related cluster 

(β = -1.09, p = 0.0146). This region reflected functional connections between an area on 

the superior frontal sulcus (SFG; center of mass (COM) in MNI-space = 22, 45, 30) and 

nucleus accumbens (NAcc; COM = 9, 7, 13), both in the right hemisphere. The diffusion 

component that explained the most variance between subjects’ functional connectivity 

was the RD component (β = 652.30, p = 0.0016). Although the AD component was also 

associated with changes in functional connectivity (β = 351.95, p = 0.0286), this 

significance does not survive the threshold for multiple comparisons (Bonferroni 

adjusted p = 0.0167). Thus, within this corticostriatal pathway that runs through the SNI-

associated cluster, we observed that individual differences in FA predict variance in 

functional connectivity, particularly with radial component of the DTI signal. 

While white matter integrity correlated with functional connectivity of the corticostriatal 

pathway, social network diversity did not have a direct association with the functional 

connectivity between these regions (β = -0.0027, p = 0.36). However, because social 

network diversity is associated with white matter integrity within this cluster, it is possible 

that white matter serves as an indirect pathway linking SNI diversity with corticostriatal 

functional connectivity. Using a statistical mediation analysis (Preacher & Hayes 2008) 



we found that FA (a*b = -0.0049, p = 0.0005) and RD (a*b = -0.0053, p = 0.0002) served 

as significant indirect pathways linking SNI diversity with corticostriatal functional 

connectivity (Fig. 5b). This indirect pathway was marginally significant with AD (a*b = -

0.0013, p = 0.046) but this does not survive multiple comparison correction and the 95% 

confidence interval includes zero. Therefore, only FA and RD are indirect mediators 

linking social network diversity to corticostriatal functional connectivity. 

Discussion 

In a neurologically healthy group of midlife adults, we found that social network diversity 

correlated with the microstructural integrity of white matter pathways in the brain, 

particularly in an area near the anterior corpus callosum that includes multiple fiber 

pathways. This association was reflected as an increase in fractional anisotropy and 

decrease in radial diffusivity as social network diversity increases. In addition, white 

matter integrity in these voxels was associated with levels of inflammation. Both the 

pattern of anisotropy changes and association with inflammation are consistent with 

animal studies on the influence of the amount of social contact on myelin integrity (Liu et 

al. 2012; Hermes et al. 2006; Karelina et al. 2009). Any inferences between patterns in 

the diffusion signal and myelin or axonal changes are only speculative since the diffusion 

imaging signal is only an indirect measure of white matter microstructure and difficult to 

interpret in areas with crossing fibers (Wheeler-Kingshott and Cercignani 2009). Most 

importantly, we found that variation in SNI-related white matter indirectly mediates a 

relationship between social network diversity and functional connectivity of corticostriatal 

pathways, suggesting that the pattern of white matter variation may have an impact on 

functional processing as well (see also Bickart et al. 2012). 



Recent neuroimaging work in humans has demonstrated the relationship between social 

network structure and general brain morphology (James et al. 2012; Bickart et al. 2012). 

Here we found decreased measures of white matter integrity (Liu et al. 2012; Makinodan 

et al. 2012) and increased inflammation (Hermes et al. 2006; Karelina et al. 2009) with 

decreased levels of social network diversity, results that are qualitatively consistent 

with evidence from studies of social isolation in mice. However, by assessing social 

network diversity as a continuous variable, our results suggest that it is not just the lack 

of social interaction that is associated with poorer brain health. Instead each increment 

in the diversity of one’s network is associated with an increase in integrity. This may 

have important implications for understanding why greater diversity is associated with 

better cognitive function (Beland et al. 2005; Bennett et al. 2006; Ertel et al. 2008; 

Fratiglioni et al. 2000; Seeman et al. 2001; Tilvis et al. 2004; Zunzunegui et al. 2003). 

Mechanistically, rodent models have shown that inflammation acts as a mediator 

between the amount of social isolation and reduced white matter integrity (Hermes et al. 

2006; Karelina et al. 2009). Our results are also qualitatively consistent with this pathway 

in that reduced social network diversity correlated with reduced white matter integrity 

and increased systemic inflammation. While inflammation did not serve as an indirect 

mediator between white matter and social network structure, previous reports have 

found a direct link between white matter integrity and systemic inflammation throughout 

the human brain (Verstynen et al. 2013; Arfanakis et al. 2013; Wersching et al. 2010; 

Miralbell et al. 2012; Brück 2005). Inflammatory pathways reflect a general mechanism 

through which peripheral systems can interact with the central nervous system by 

visceral afferent transmission or by crossing the blood brain barrier (Banks et al. 1991; 

Ek et al. 2011; Hampel et al. 2005; Tracy 2002; Trapero & Cauli 2014; Yirmiya & 

Goshen 2011). Pro-inflammatory cytokines such as IL-6 are produced by microglia as 



part of a normal brain cell functioning (Nakanishi et al. 2007; Shigemoto-Mogami et al. 

2001). If the normal inflammatory immune response becomes chronic, increased levels 

of cytokines in the local microenvironment can lead to neuronal and glial dysfunction and 

death (Ramesh et al. 2013). Oligodendrocytes in particular may be more sensitive to 

raised levels of pro-inflammatory cytokines (di Penta et al. 2013). Furthermore, 

inflammatory cytokines are known to have a role in initiating “sickness behavior”, which 

includes social withdrawal as a symptom (Eisenberger et al. 2011), and acute social 

stress leads to increased levels of IL-6 and TNF-α (Slavich et al. 2010). Inflammation 

could therefore have potential social psychological consequences, possibly playing a 

role in social withdrawal. With larger sample sizes, it may be possible to detect such 

relationships. Also, it should be noted that the white matter structural changes that occur 

as a result of inflammation in socially isolated rodents are observed under a more 

extreme measure of social integration than is used in humans. The stricter isolation that 

the rodents experience may have more observable consequences than measuring social 

diversity and number of contacts in a normal human population. Low power is likely a 

significant reason why we did not detect the same inflammation-mediated relationship 

between social network measurements and white matter integrity. 

Previous human studies have also demonstrated a provisional association between 

measures of social network structure and both neuromorphology and brain function. In 

particular, Bickart and colleagues found that in humans, as social network size 

increases the volume of the amygdala is larger (Bickart et al. 2011) and the intrinsic 

functional dynamics increase between the amygdala and cortical areas related to social 

processing (Bickart et al. 2012). We found no correlation between social network size 

and pathways that directly innervate the amygdala itself. Instead, the portion near the 



corpus callosum most strongly associated with social network diversity appears to 

interconnect the prefrontal, medial parietal and limbic areas. Functionally, this cluster is 

associated with changes in functional connectivity of corticostriatal pathways. However, 

the current findings are not necessarily mutually exclusive from the findings of Bickart 

and colleagues as the prefrontal cortex, striatum and amygdala are all known to have 

strong functional associations (Dolcos & McCarthy 2006; Kim et al. 2012; Lee & 

D’Esposito 2012; Golkar et al. 2012; Ochsner & Gross 2005). Therefore the gray 

matter and functional network differences in amygdala processing may not be 

detectible in the white matter pathways that innervate the nucleus. It is also possible 

that we did not have sufficient power in our sample to detect differences in the white 

matter pathways to the amygdala. More work is needed to bridge our white matter 

findings with the gray matter and functional network findings previously reported. 

The fact that diversity-related variation in FA mediated corticostriatal functional 

connectivity implies that differences in social structure may have functional 

consequences for basal ganglia processing. Indeed, the dopaminergic pathways within 

cortico-basal ganglia loops have been indicated as being a key part of the so-called 

“social brain” (Skuse & Gallagher 2009).  According to this model, inherent variation in 

sensitivity to feedback signals impacts an individual’s likelihood to engage in social 

interactions. Unfortunately, given the cross-sectional nature of the current study, we 

cannot tell whether inherent differences in corticostriatal connectivity predisposes an 

individual to a particular social network structure or whether exposure to many high 

contact social roles modulates corticostriatal connectivity itself. Inferring the causal 

direction of these associations is left to future intervention or longitudinal studies. 



 
Nonetheless, the current findings suggest that, like in rodents, reduced social network 

structure in humans is linked to the health of myelin in the brain. Our findings from the 

DTI analysis are largely consistent with variation in myelin integrity, and the simple 

correlation between FA and inflammation hints that similar molecular mechanisms may 

be mediating this effect in humans as in non-human animals. While previous work has 

linked both socioeconomic status (Gianaros et al. 2013) and physical health (Verstynen 

et al. 2013) to white matter integrity via inflammatory pathways, we believe that the 

social network associations reported here reflect an independent social-white matter link. 

This is supported by the fact that the voxels with the strongest network diversity and FA 

associations do not correlate with measures of socioeconomic status or general physical 

health (Table 2). Considering our current results in the context of previous findings 

suggests that different social factors can relate to brain morphology in different ways, but 

possibly through shared molecular pathways (e.g., inflammation). Thus, complex 

features of the broader social environment previously implicated in physical health 

(House et al. 1988; Holt-Lunstad et al. 2010; Uchino 2006; Cohen 2004) may also relate 

to the health of the brain. The extent to which these associations with neural integrity 

influence behavior should be a focus of future work. 
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Figure Captions 

Figure 1. A) Uncorrected maps (p < 0.025) showing the voxels with strong positive (red) 

and negative (blue; none survive thresholding) associations with the social network 

index measure of diversity (SNI (Div)), and fractional anisotropy (FA). B) Probability 

distribution of regression coefficients between SNI (Div) and FA across all white matter 

voxels shown in panel A. The purple distribution shows the observed values while the 

gray distribution shows the average distribution shape across a set of randomized 

permutation tests designed to model the null effect. C) Location of the strongest cluster 

of voxels in the brain, with associations that survive multiple comparison corrections 

(FDR < 0.05) and clusterwise adjustments (k>40). 

 

Figure 2. A) Average cluster FA for each SNI (Div) group. Subjects were assigned to 

groups based on which tertile of the social network distribution they fell into. The same 

values for axial diffusivity (AD) and radial diffusivity (RD) with the cluster are shown in 

panels B and C respectively. See text for statistical results. All errorbars show the 

standard error of the mean. 

 

Figure 3. Scatterplot showing the negative correlation between clusterwise FA and IL-6 

(natural log transformed). 

 

Figure 4. Coronal, A, and sagittal, B, views showing the tracked fiber streamlines that 

run through the SNI (Div) related cluster (yellow region). Tractography was performed 

on the CMU-60 template brain. 

 



Figure 5. A) Sagittal slices showing the eight regions of interest masks generated from 

cortical endpoints of tracked fiber pathways from analysis shown in Figure 4. These 

ROIs were used as masks for resting state functional connectivity analysis on the 

subset of the sample (N=110) that had viable resting state fMRI data. Variation in FA 

within the SNI (Div) related cluster correlated with variation in functional connectivity 

between a region on the right medial wall of the superior frontal gyrus and a region 

near the right nucleus accumbens (lower row). ACC, anterior cingulate cortex; PCC, 

posterior cingulate cortex; NAcc, nucleus accumbens; vmPFC, ventromedial prefrontal 

cortex; SFG, superior frontal gyrus; R, right; L, left. B) Mediation analysis showing how 

FA and RD served as indirect pathways linking SNI (Div) to functional connectivity of 

the significant corticostriatal pathway identified in A. Size of the lines represents the 

magnitude of the indirect (a*b) pathway. Dashed lines indicate non-significant results 

after correcting for multiple comparisons. Bracketed numbers indicate the upper and 

lower bound of the bias corrected and accelerated 95% confidence interval for the 

indirect pathway. 

 
 



 SNI Diversity SNI # 
r p r p 

Age 0.173 0.031 0.159 0.048 
Sex -0.004 0.960 -0.123 0.126 
Income 0.273 0.001 0.319 <0.0001 
Education (years) 0.205 0.010 0.257 0.001 
Waist  0.018 0.820 0.015 0.856 
SBP 0.040 0.623 0.104 0.197 
DBP -0.025 0.760 0.050 0.536 
Smoking β = -0.186 0.104 β = -0.062 0.210 
PSQI (Duration) -0.057 0.484 -0.087 0.290 
PA 0.214 0.008 0.241 0.003 
NA -0.002 0.976 -0.077 0.340 
ISEL 0.187 0.020 0.170 0.035 

 
Table 1. Associations between demographic, socioeconomic, affective factors, and health 
factors and each social network measure.  All associations except for smoking status were 
estimated using a non-parametric Spearman’s rank order correlation test. Smoking status 
associations were determined using an iteratively reweighted binary regression routine. 
Statistically significant (p < 0.05 uncorrected) associations are indicated in bold. 



 FA 
r (N) p 

Age -0.118 (145) 0.158 
Sex -0.047 (145) 0.578 
Income 0.163 (141) 0.053 
Education (years) 0.106 (145) 0.206 
Waist -0.133 (145) 0.112 
SBP -0.035 (145) 0.676 
DBP -0.063 (145) 0.450 
Smoking β = 0.198 (145) < 0.0001 
PSQI -0.134 (142) 0.113 
PA 0.048 (144) 0.569 
NA 0.088 (144) 0.292 
ISEL 0.087 (145) 0.299 
 
Table 2. Associations between demographic, socioeconomic, personality factors, and 
health factors and FA within the target cluster.  Same analysis and reporting conventions as 
used in Table 1. 
 












