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The  stria  terminalis  (ST)  connects  the  amygdale  (AM)  with  the  hypothalamus,  anterior  commissure,
preoptic  area,  and  septal  region.  Many  animal  studies  have  reported  on  the  anatomy  and  function  of
the ST;  in  contrast,  little  is  known  about  its anatomy  and  function  in  the  human  brain.  In the  current
study,  we  attempted  to  investigate  the  anatomical  characteristics  of  the ST in  the normal  human  brain,
using  diffusion  tensor  tractography.  We  recruited  30 healthy  volunteers  for this  study.  Diffusion  tensor
images  were  scanned  using  1.5-T,  and  the ST was  obtained  using  FMRIB  software.  Values  of  fractional
anisotropy,  mean  diffusivity,  and  tract  volume  of the ST were  measured.  STs  passed  from  the  AM to  the
mygdala
ypothalamus

anterior  hypothalamus,  through  the  region,  around  to  the  anterior  margin  of  the  temporal  horn  of the
lateral  ventricle,  over  the posterior  and  superior  margin  of  the  thalamus,  behind  the  anterior  commissure.
No  differences  according  to the  side  of  the  hemisphere  and sex  in terms  of  fractional  anisotropy,  mean
diffusivity,  and  tract  volume  of  the  ST (P <  0.05)  were  observed.  We  identified  the  ST  and  observed  the
anatomical  characteristics  of  the  ST  in  the  normal  human  brain.  We  believe  that  the  methodology  and
results  reported  here  would  be  helpful  to researchers  and  clinicians  in this  field.

© 2011 Elsevier Ireland Ltd. All rights reserved.
he stria terminalis (ST) is one of the major efferent pathways
rom the amygdala (AM); it connects the AM with the hypotha-
amus, anterior commissure, preoptic area, and septal region
1,2,4,7,10,11,15,18,28,32,33,35].  It is known to be involved in

odulation of memory, emotional responses, sexual behavior,
nd sex identification [3,12,13,19,20,23,26,30,41]. Many animal
tudies have reported on the anatomy and function of the ST
1,10–16,23,26,29,30,33,34]; in contrast, little is known about
ts anatomy and function in the human brain [18,32].  For clar-
fication of the physiology and pathology of any neural tract,
esearch on the anatomical characteristics of the neural tract
hould be performed first, ahead of other research. Anatomical
tudy of the ST in the human brain has been difficult due to
ts anatomical characteristics: long, thin, C-shaped, and indistin-
uishable from adjacent neural structures on conventional brain
RI.
Recent developments in diffusion tensor tractography (DTT),
hich is derived from diffusion tensor imaging (DTI), allow visu-
lization and localization of neural tracts at the subcortical level
n three dimensions [24]. Many neural tracts that could not be
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identified clearly on conventional brain MRI  have been identi-
fied three dimensionally by DTT [8,17,21,24,36,38,39].  However,
no DTT study of the ST in the human brain has been con-
ducted.

In the current study, we attempted to investigate the anatomical
characteristics of the ST in the normal human brain, using DTT.

We recruited 30 healthy subjects (male: 15, female: 15, mean
age: 33.73 years, range: 20–50 years) with no previous history of
neurological, physical, or psychiatric illness. All subjects under-
stood the purpose of the study, and provided written, informed
consent prior to participation. The study protocol was approved by
our local Institutional Research Board.

A 6-channel head coil on a 1.5-T Philips Gyroscan Intera
(Philips, Ltd., Best, The Netherlands) with single-shot echo-
planar imaging was  used for acquisition of DTI data. For
each of the 32 non-collinear diffusion sensitizing gradients,
we acquired 67 contiguous slices parallel to the anterior
commissure-posterior commissure line. Imaging parameters
were as follows: acquisition matrix = 96 × 96; reconstructed
to matrix = 128 × 128 matrix; field of view = 221 mm × 221 mm;

TR = 10,726 ms;  TE = 76 ms;  parallel imaging reduction factor
(SENSE factor) = 2; EPI factor = 49; b = 1000s/mm2; NEX = 1; and
a slice thickness of 2.3 mm (acquired isotropic voxel size
2.3 × 2.3 × 2.3 mm3) (Table 1).

dx.doi.org/10.1016/j.neulet.2011.06.013
http://www.sciencedirect.com/science/journal/03043940
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Table  1
Diffusion tensor imaging parameters of the stria terminalis.

FA MD Tract volume

Hemisphere
Right 0.37 (0.02) 1.12 (0.13) 153.30 (71.85)
Left 0.38 (0.02) 1.12 (0.13) 154.03 (82.03)
Both 0.37 (0.02) 1.12 (0.13) 153.67 (76.45)

Sex
Male 0.37 (0.02) 1.13 (0.13) 163.53 (82.81)
Female 0.37 (0.02) 1.11 (0.13) 143.80 (69.52)
Both 0.37 (0.02) 1.12 (0.13) 153.67 (76.45)

V
d

o
w
H
w
F
m
s
f
t
fi
R
s
S
u

following results with regard to the anatomical characteristics of

F
p
S
w
a
r

alues represent mean (±standard deviation); FA, fractional anisotropy; MD,  mean
iffusivity, MD × 10−3 (mm2/s).

The Oxford Centre for Functional Magnetic Resonance Imaging
f the Brain (FMRIB) Software Library (FSL; www.fmrib.ox.ac.uk/fsl)
as used for the analysis of diffusion-weighted imaging data.
ead motion effect and image distortion due to eddy current
ere corrected by affine multi-scale two-dimensional registration.

iber tracking was performed using a probabilistic tractography
ethod based on a multifiber model, and applied in the present

tudy utilizing tractography routines implemented in FMRIB Dif-
usion (5000 streamline samples, 0.5 mm step lengths, curvature
hresholds = 0.2) [5,6,31]. STs were determined by selection of
bers passing through three regions of interest (ROIs). The seed
OI was placed on the AM on the axial image (Fig. 1) [9].  We

elected two target ROIs. The first target ROI was placed on the
T around the hippocampus (green portion) at the level between
pper midbrain and bicommissure on a color map  of axial images

ig. 1. The region of interest (ROI) and results of diffusion tensor tractography for the s
laced  on the hippocampus region (green portion) at the level between upper midbrain
T  area (below the pathway of the body of fornix) (Target ROI 2). (B) STs were construct
as  reconstructed and shows comparison of the left ST. These two  structures show parall

xial  view. (D) The pathway of the ST is shown at each level of the brain on the coronal 

eferences to color in this figure legend, the reader is referred to the web version of this a
etters 500 (2011) 99– 102

[25]. The second target ROI was  placed on the ST area below
the pathway of the body of the fornix on a color map  of coro-
nal images [2].  Of 5000 samples generated from each seed voxel,
results for each contact were the visualized threshold point at
disappearance of the frontal area. Values of fractional anisotropy
(FA), mean diffusivity (MD), and tract volume of the ST were mea-
sured.

We used an independent t-test for determination of variances
in the value of FA, MD,  and tract volume between the right and left
hemispheres, and between males and females. The significant level
of the P value was  set at 0.05.

In the brains of all subjects, STs that originated from the AM,
passed posteriorly over the hippocampus, around the anterior mar-
gin of the temporal horn of the lateral ventricle, and then extended
superior-anteriorly over the posterior and superior margin of the
thalamus (Fig. 1). They descended between the posterior limb of
the internal capsule and the precommissural fornix, and then ter-
minated in the anterior hypothalamus.

Mean values for FA, MD,  and tract volume were 0.37, 1.12,
and 153.67, respectively. In terms of FA, MD,  and tract volume,
no significant differences were observed between hemispheres
(P < 0.05). In addition, no significant differences in FA, MD,
and tract volume were observed between males and females
(P < 0.05).

In the current study, we identified the ST and observed the
the ST in the human brain. First, the pathway of the ST: the ST
passed from the AM to the anterior hypothalamus, through the
region, around to the anterior margin of the temporal horn of

tria terminalis (ST). (A) Seed ROI is placed on the Amygdala. The first target ROI is
 and bicommissure (Target ROI 1). The second target ROI is placed on the isolated
ed in both hemispheres (right: blue color, left: red color). Left fornix (green color)
el relationship. (C) The pathway of the ST is shown at each level of the brain on the
view (a: anterior part, b: middle part, c: posterior part). (For interpretation of the
rticle.)

http://www.fmrib.ox.ac.uk/fsl
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he lateral ventricle, over the posterior and superior margin of
he thalamus, behind the anterior commissure. Our results were
ompatible with those of previous studies and with text book
escriptions [1,2,4,7,10,11,15,18,28,32,33,35].  Second, DTI param-
ter data of the ST revealed no differences according to the side of
he hemisphere and sex in terms of FA, MD,  and tract volume of the
T.

Many studies have reported on the anatomy and pathology of
he ST [1,10–16,18,23,26,29,30,32–34].  Most of these studies have
een performed in lower mammals, such as rat or cat; in con-
rast, only a few studies of the brain in monkeys and humans have
een conducted [1,18,32]. Johnston and Strenge et al. reported on
he ST in a human embryo brain and in an adult human brain,
espectively [18,32].  In 1952, Adey and Meyer demonstrated the
etailed anatomy of seven monkey brains by observation of degen-
ration following neuronal destruction [1].  They found that the ST
rose mainly in the basal nuclei of the AM and was  subdivided
nto supracommissural, commissural, and hypothalamic bundles
round the anterior commissure. The hypothalamic component
erminated mainly in the ventromedial hypothalamic nucleus. In
he current study, we  selected three ROIs on the AM (seed ROI)
nd the ST area (two target ROIs). However, we  found only the
ypothalamic component of the ST and could not find the ST com-
onents to the precommissural area and the anterior commissure.
his result might be attributed the fact that the ST components
o the precommissural area and the anterior commissure have the
haracteristics of less directionality than the hypothalamic compo-
ent. We  think that further studies on this topic should be invited

n the future.
In conclusion, we identified the ST and observed the anatomi-

al characteristics of the ST in the normal human brain. As far as
e are aware, this is the first DTT study of the ST in the human

rain. We  believe that the methodology and results reported here
ould be helpful to researchers and clinicians in this field. Sev-

ral limitations of DTI should be considered. First, the fiber tracking
echnique is operator-dependent. Second, DTI may  underestimate
he fiber tracts. DTI is a powerful anatomic imaging tool that can
emonstrate the gross fiber architecture, but not the functional
r synaptic connections. Third, regions of fiber complexity and
rossing can prevent full reflection of the underlying fiber archi-
ecture by DTI [22,27,37,40].  We  suggest additional studies on
linical correlation, aging, and the validity and reliability of the
T.
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