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The modern study of perceptual learning across humans, non-human animals, and artificial agents 
requires large-scale datasets with flexible, customizable, and controllable features for distinguishing 
between categories. To support this research, we developed the Oomplet Dataset Toolkit (ODT), an 
open-source, publicly available toolbox capable of generating 9.1 million unique visual stimuli across 
ten feature dimensions. Each stimulus is a cartoon-like humanoid character, termed an “Oomplet,” 
designed to be an instance within clearly defined visual categories that are engaging and suitable for 
use with diverse groups, including children. Experiments show that adults can use four to five of the 
ten dimensions as single classification criteria in simple perceptual discrimination tasks, underscoring 
the toolkit’s flexibility. With the ODT, researchers can dynamically generate large, novel stimulus sets 
to study perceptual learning across biological and artificial contexts.

The use of computer-generated stimuli in psychometric studies of behavior has a rich history. In perhaps the 
first study to use “computer-graphics psychophysics”1, Shepard and Metzler used novel 3D objects “generated 
by digital computer and associated graphical output” to study mental simulations of physical actions (Fig. 1A)2. 
Since then, the art of visual stimulus creation has continued to be driven by advances in computer graphics. 
Salient examples include 3D “wire-frame” objects 3 (Fig. 1B) and 3D blob-like “amoebae” objects 4 (Fig. 1C). 
While these early studies relied on workstation-class computing and graphics, the advent of consumer level 
computer graphics tools running on desktop computers enabled a new generation of visual stimuli comprised of 
increasingly more complex and realistic novel objects. Helping drive this trend, beginning in the 1990’s, one of 
the collaborators on this project developed multiple, publicly accessible 5, complex visual stimulus datasets 6,7 – 
two notable examples of this work being the “Greebles” 8 (Fig. 1D) and the “Fribbles” 9 (Fig. 1E), both of which 
have been used in 100’s of psychophysical, cognitive science, cognitive neuroscience, and clinical studies. A 
recent and non-exhaustive list of other examples from the field includes “smoothies, spikies, and cubies” 10 (Fig. 
1F), “Ziggerins” 11 (Fig. 1G), “digital embryos” 12 (Fig. 1H), the NOUN Database 13 (Fig. 1I), “Widgets” 14 (Fig. 
1J), and “Sheinbugs” 15 (Fig. 1K), many of which emerged from collaborations within the Perceptual Expertise 
Network (PEN) 16.

Many of these visual datasets were created using a compositional approach in which individual parts from 
a dictionary were sampled and manually combined in different configurations to form complex objects 6,8,9,17. 
Critically, these datasets were created by hand, relying on 3D modeling skills rather than explicit algorithms 7–9. 
In contrast, a variety of other datasets were generated parametrically using varying values within mathematical 
functions to deform 3D shapes, define parts, and specify attachment points 3,4,10,12,18. One characteristic across 
almost all of these datasets has been the relatively low number of available stimuli and/or stimulus categories. 
While datasets with a broad dictionary of discrete parts potentially allowed for thousands of distinct novel 
stimuli and hundreds of categories, the selection of parts, placement in different configurations, and category 
boundaries is laborious, making large-scale stimulus generation ad hoc and time-consuming 7,9. Consequently, 
while the shape and configuration differences between parts enable the possibility of many different well-
defined visual categories, the actual number of available categories is quite small – on the order of 10-20 at 
best. In contrast, visual datasets created through parametric variations allows for nearly an infinite number 
of different individual stimuli, but are often less suited to being organized into a large number of naturally-
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defined visual categories 3,4,10. That is, the shape and configural variations across different parameter values are 
metric, meaning that visual categories, while nominally definable, are not perceptually salient or aligned with 
how humans typically infer categorical boundaries 19.

Until recently, limitations in dataset size and variety did not hinder most human behavioral and neuroimaging 
experiments, which typically have relied on using small numbers of categories and stimuli. However, with the rise 
of artificial intelligence and the availability of large-scale datasets 20,21, the field has shifted toward using larger, 
more diverse datasets 22. This trend has enabled larger datasets 23–25 and important new findings 26–29, but these 
datasets often rely on internet-sourced images, mainly representing common objects and natural categories 20,21. 
Such datasets are not ideal for studying perceptual categorization, as participants’ prior experience with these 
categories is unknown and uncontrolled 8. Furthermore, many visual processes, such as developing invariance 
to variations within categories, are best studied using novel stimuli to avoid memory-based strategies that can 
obscure the learning process 30.

To address these limitations, we developed the Oomplet Dataset Toolkit (ODT), a tool designed to generate 
complex and novel stimuli by precisely controlling each component’s attributes and spatial arrangements. Using 
an extensive parts dictionary and contrastive part attributes, the ODT enables composing novel characters 
from distinct anthropomorphic features (e.g., arms, eyes, colors). Rather than allowing all components to 
occupy any position on the character, each component is restricted to a single role in each generated character 
image. As such, this reflects a form of compositional logic for character assembly31. At the same time, as 
implemented, compositionality in the ODT is limited to recombining which parts and attributes appear with 
one another. In contrast, human language (and some programming languages) often include more complex 
compositional structures (e.g., order or higher-order meaning). While not currently present in the ODT, 
relatively straightforward modifications (e.g., expanding the range of valid spatial positions for each part type) 
would enable a deeper compositional logic. Furthermore, the ODT quantitatively specifies spatial arrangements, 
allowing users to systematically alter parts within designated roles. Unlike previous compositional datasets such 
as Greebles 8 or Fribbles 9, which relied on manually positioned parts, the ODT’s controlled assembly requires 
less manual adjustment for natural-looking designs.

Novelty is a key characteristic of the stimuli created by the ODT. Although observers might use general 
knowledge of body plans and face structures to interpret each component, the specific attributes that define 
individual ODT instances and categories are entirely unique. As a result, prior experience does not assist 
participants in learning some examples or categories faster or more accurately than others. In contrast, datasets 
of familiar natural objects – such as faces or everyday objects – typically have category boundaries that are 
intuitively recognizable or already have been learned 19. Furthermore, individual experience with specific familiar 
categories impacts how they are processed and perceived   32,33. At the same time, the generic configuration 
of stimuli generated by the ODT is not entirely novel in that they follow a humanoid body plan and facial 
configuration. As such, Oomplets are not ideal stimuli for studies of face or body processing 34.

Fig. 1.  A brief history of computer generated stimuli for psychometric studies. Timeline not to scale. a) 
Shepard, R., et al. (1971); b) Poggio, T., et al. (1990); c) Bülthoff, H., et al. (1992); d) Gauthier, I., et al. (1997); 
e) Williams, P. (1997); f) Op de Beeck, H. P., et al. (2006); g) Wong, A. C.-N., et al. (2009); h) Hegdé, J., et al. 
(2012); i) Horst, J. S., et al. (2016); j) Lebaz, S., et al. (2020); k) Jones, T., et al. (2020).
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The ODT was created as a stand-alone component of an interactive virtual environment designed to look 
at the dynamics of cooperative learning, where one task involves learning complex perceptual discriminations. 
Within this context, our objectives in creating the ODT were as follows: 1) enable the generation of a millions 
of individual stimuli and a large number of categories; 2) enable the use of a large dictionary of reusable parts 
defined by a wide variety of visual dimensions (e.g., color, shape, orientation, spacing, etc.); 3) enable visually-
salient conjunctions and disjunctions of parts so as to create well-defined categories and category hierarchies; 
4) build a toolkit that is user controllable to enable automatic generation of stimuli, but with fine-grained user 
control over parts, part attributes, and categories; 5) build a toolkit that requires only standard end-user skills 
(e.g., no programming knowledge or artistic skills), but that is extensible for users with those skills. The ODT is 
unique in realizing these objectives, providing a powerful stimulus generation toolkit that allows users to create 
a large number of visually-defined natural categories with potentially hundreds of thousands of hierarchically-
nested, individual exemplars per category. In this way the ODT has potential applications in the psychological, 
neuroscientific, and artificial intelligence domains.

Methods
The ODT is a user-friendly and customizable python-based pipeline for generating large sets of unique stimuli, 
“Oomplets,” and sorting them into hierarchically organized categories based on user-specified classification 
dimensions applied to the Oomplets’ visual features. The pipeline consists of two python scripts (generate.
py and categorize.py) and 148 component images that are combined to create 9.1 million unique visual 
stimuli (Fig. 2). These scripts, component images, and other relevant files are available in a publicly accessible 
repository (https://doi.org/10.1184/R1/25813726.v1).

Oomplet generation
Components
The components consist of images of various types of body parts or features to be used as references in creating 
individual Oomplets – humanoid candy stimuli. These images are stored as .png files in the subdirectories of 
the repository’s “Components” directory. Each individual Oomplet stimulus image is made up of instances 
from seven classes of component images (Fig. 2). Because some components provide more than one attribute, 
a total of ten different attributes are recorded in a JSON formatted identification (ID) file associated with each 
generated Oomplet.

Generate
The generate.py script consists of Python code that creates an Oomplet by selecting one file from each of 
the seven component directories and compiling these components into a complete Oomplet. To accomplish this, 
generate.py employs OpenCV’s35 image processing functionality to visually parse the components and re-
draw them jointly onto a common image depicting the newly created Oomplet. When invoked, generate.py 
is passed a number of required and optional arguments that allow user control of customization, computational 
processing, and output location. Full documentation of the script arguments and their functions is available in 
the repository.

Each Oomplet is defined by the user along 10 attributes nested within the 7 classes of components. To create 
a unique individual Oomplet, the generate process selects a value for each attribute, where there are 2-4 possible 

Fig. 2.  An example Oomplet with each component and attribute.
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values for each attribute that have been randomly ordered. As mentioned, generate.py captures these values 
and writes them into the associated JSON ID file. These ID files are what allows the pipeline to then sort the 
Oomplets into distinct visual categories using categorize.py.

Categorize
The categorize.py script consists of Python code that categorizes each Oomplet through a set of user-
defined attribute criteria. The user specifies which attributes (a minimum of 1 and up to all 10 attributes) will 
be used to determine category membership. For each attribute, the user specifies the value of that attribute that 
helps define the category, where the complete category definition is the intersection of all 10 attribute values. 
As illustrated in Fig. 3, for each Oomplet that satisfies the criteria, categorize.py makes a copy of that 
Oomplet file and places it in automatically created output directories corresponding to Oomplets that match 
the criteria (“Match_[TIMESTAMP]”) and those that do not (“NoMatch_[TIMESTAMP]”). When invoked, 
categorize.py is passed a number of required and optional arguments that allow user control of input 
location, categorization criteria, and other customizations.

Because categorization is based on a concatenation of values for each attribute, categorical boundaries can 
be along a single attribute or the intersection of many attributes. Additionally, a hierarchy may be created by 
running categorize.py multiple times (i.e., once to categorize all Oomplets with a common set of attribute 
values and then a second time to further sort Oomplets in one of the first sort categories based on a new set of 
attribute values).

Example
As a snapshot of the whole process, let us suppose that a stimulus is compiled by the generate.py script 
using the components <mouth,open,1.png> as reference. This stimulus would be recorded to have the 
attribute “open” for “mouth openness” in its ID file. The categorize.py script, when specified to look for 
images with closed mouths, would put this stimulus into the “NoMatch” sorting directory.

Usage notes
We provide detailed instructions to ensure bug-free usage of the Bit-or-Sweet pipeline. Start by completing the 
following steps to complete the initial setup of the stimulus generator.

Installation

	1.	� Clone the repository locally

% python —m venv venv

	2.	� Set up a Python virtual environment in the root directory

Fig. 3.  The categorization pipeline. Dashed lines represent potential paths while solid lines represent executed 
paths for one example run of the pipeline.

 

Scientific Reports |         (2025) 15:9287 4| https://doi.org/10.1038/s41598-025-93036-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


MacOS or Unix:
% source venv/bin/activate
Windows:
% venv\Scripts\activate

	4.	� Install all the requirements

% pip install —r requirements.txt

Implementation
Following installation, the generate.py script can be run from the command line. This is where users can 
specify any of the various options available to make their unique set of stimuli.

% python generate.py [—h] [—n N] [—p] [—c C] [—v] [—k] [—s S]

Options: 

	—h, ——help	� show this help message and exit
	 —n N	� number of candies to generate N (def: all combinations)
	 —p	� multiprocessing flag (def: off)
	 —c C	� max number of processes to spawn if multiprocessing (def: 4)
	 —v	� verbose (def: off)
	 —k	� keep existing files in output folder (def: off)
	 —s S	� seed value for randomly generated candies (def: 0)

The image and meta file output of this script will be located in the OompletToolkit/Output/Oomplets/ directory. 
Now, the categorize.py script may be run from the command line. 

% python categorize.py [—h] [—d D] [—i I] [—k] [—a]

Options:

	—h, ——help	� show this help message and exit
	 —d, ——def	� define your ‘bitter’ images (required)
	—i, ——input	� name of the directory from which Oomplets will be sorted
	 —k	� keep existing files in output folders (def: off)
	 —a, ——any	� flags Oomplets with ANY of defining attributes as Match (def: off)

The categorize.py script was made to be easily customized. The-d option allows users to choose any 
number of non-contradicting attribute values to define their Match and NoMatch Oomplet groups. Attribute 
value specifications must be typed in the terminal exactly as shown in the list below.

‘color_cool’, ‘color_warm’,
‘shape_sharp’, ‘shape_mixed’, ‘shape_round’,
‘lash_yes’, ‘lash_no’,
‘wide_eyes’, ‘middle_eyes’, ‘narrow_eyes’,
‘short_legs’, ‘middle_legs’, ‘long_legs’,
‘feet_left’, ‘feet_right’, ‘feet_in’, ‘feet_out’,
‘open_mouth’, ‘closed_mouth’,
‘dots_pattern’, ‘stripes_pattern’,
‘right_arm_down’, ‘right_arm_up’, ‘left_arm_down’, ‘left_arm_up’

Example
This section will show each step a user would take in order to generate a set of 200 images, and sort them based 
on their pattern and eye lashes, using a MacOS computer. First, the user needs to set up their virtual python 
environment.

% python —m venv venv
% source venv/bin/activate
% pip install —r requirements.txt

Next, the user must navigate to the Scripts/ProcessingScripts directory. From here, they will run the 
generation script using this command:

% python generate.py —n 200

The user has now created 200 unique images in the Output/Oomplets directory. Now, they must navigate 
to the Scripts/AnalysisScripts directory, where the categorization script is located. To sort the images 
based on their desired attributes, the user must use this command:

% python categorize.py —d stripes_pattern lash_no
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Once the script has finished running, the user will now have two new directories. Each image that has a striped 
pattern, and eye lashes will be located in the Output/Match directory. All images that do not meet this 
requirement will be located in the Output/NoMatch directory.

Technical validation
In order to evaluate the perceptual discriminability of the different Oomplet attributes, we conducted a series 
of online studies using a forced choice discrimination task. We chose the eight most relevant attributes that can 
be used as binary classification boundaries and tested each attribute individually. In cases where attributes had 
more than two possible values (e.g., shape can be ’sharp’, ’mixed’, or ’round’), we only used the two most extreme 
values as the classification features (e.g., ’sharp’ and ’round’). Each experiment used its own set of roughly 40,000 
unique Oomplets.

All study procedures were approved by the Carnegie Mellon University Institutional Review Board and 
informed consent was obtained prior to each participant starting the study. All experiments were performed in 
accordance with relevant guidelines and regulations.

Participants
Studies were hosted on Connect36 , CloudResearch’s online crowd-sourcing platform. We recruited 50 
participants for each study. Participants were excluded from the final analysis if their responses were improperly 
submitted to the cloud server or if they responded to fewer than 50 trials. The final sample sizes per condition 
were: Shape (N = 50), Pattern (N = 48), Mouth Openness (N = 49), Leg Length (N = 50), Eye Lash (N = 43), Eye 
Separation (N = 50), Hue (N = 47), and Arm Orientation (N = 48). Individuals who reported being colorblind 
were excluded from recruitment. We did not collect or restrict recruitment along any demographic category.

Task
We built the eight single-task studies using Gorilla’s Experiment Builder (Task Builder 2)37, with each task 
reflecting a single attribute for the classification boundary. In the task, participants were presented with 300 
Oomplets (presented to participants as “candies” in this study), one at a time, and were asked whether the 
Oomplet is Bitter (“f ” key) or Sweet (“j” key). Trials were counterbalanced, assuring that 150 images of each type 
were always presented. The terms “bitter” and “sweet” were chosen to avoid bias towards any of the humanoid 
characteristics; the bitter and sweet sets were created using Match and NoMatch criteria in the set creation with 
categorize.py.

Each trial consisted of three distinct phases (see Fig. 4). The trial started with a fixation phase, where the 
participant was presented with a centrally presented cross to bring their attention to the middle of the screen. 
This phase lasted 200ms, after which the cross was removed. After 100ms, the stimulus was presented (stimulation 
phase) with the words “Bitter” (left) and “Sweet” (right) presented on either side of the Oomplet, along with the 
keyboard response associated with each choice. Participants were given 2000ms to respond. Responses occurring 
after 2000ms were not recorded. Key presses were also not recorded for the first 250ms following stimulus onset 
in order to avoid false start responses. Finally, during the feedback phase, participants were informed via icons as 
to whether their response was correct or incorrect. Importantly, participants were not given explicit instructions 
as to what attributes defined the two categories and had to simply rely on this feedback to learn the relevant 
category boundaries.

Fig. 4.  The Stimulus display was shown to participants for at least 250 ms, and up to 2000ms. This display 
would transition early to the Feedback display when participants selected a response.
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Analysis
To visualize how well each attribute could be detected as a classification dimension, we calculated two signal 
detection measures38. First, we estimated the d′ for each participant as d′ = Φ(hits) − Φ(fa), where hits 
represents the true classification rate, and fa reflects the false alarm rate for incorrectly classifying a stimulus as 
sweet or bitter. The d′ measure reflects the signal-to-noise ratio of the discrimination as standard deviations away 
from the noise distribution. The distribution of d′ measures, across participants, was evaluated independently 
for each task. When participants had a perfect classification rate, we capped the d′ value at 5.

In addition, we plotted the receiver operating characteristic (ROC) curve across tasks. This presents the joint 
distribution of fa and hits rates, and allows for visualizing when inter-subject responses vary along d′ (reflecting 
consistent varying thresholds applied to the same signal-to-noise ratio) or criterion (reflecting varying signal-to-
noise ratios along the same selection threshold).

In order to avoid any potential biases from stimulus characteristics (e.g., implicit assumptions on color to 
bitter/sweet mapping) in the resulting choices, we counterbalanced the bitter/sweet mapping across participants. 
Half of the participants would get one mapping and the remaining half the other. Task assignments were random 
without replacement, targeting 25 participants per group.

Results
Data records
We used the process described in the Methods section to generate roughly all 9 million possible unique 
Oomplets. The Oomplets and the code used to generate them are organized according to the TIER Protocol 4.0 
directory architecture39 (Fig. 5). Oomplet images were then stored in PNG format, with transparent backgrounds. 
Additional scripts used to help with building the validation study are included in the Scripts directory.

Perceptual sensitivity analysis
Figure 6 shows the distribution of d′ scores, across participants, for each attribute tested. Attributes are sorted 
from lowest to highest average d′ and errorbars reflect the 95% confidence intervals. We see that the eye distance, 
leg length, arm orientation, and eye lash attributes are unreliable dimensions for classification, reflected by the 
fact that the confidence intervals overlap with zero. The mouth openness and texture pattern show a modest 
discriminability, with mean d′ values of 0.873 and 1.046 respectively. However, we see that this comes with a 
high degree of variability across participants, with a somewhat bimodal distribution of individual scores. One 
mode of participants sits around zero, indicating lack of discriminability. The other mode has very high d′ values 
ranging from 1 to almost 4. Finally, body shape and color had the strongest discriminability, with mean values 
of 2.040 and 2.301 respectively. For both of these attributes, the spread of individual d′ values was fairly broad, 
with some participants hovering near zero and 2 participants maxing out at d′ values of 5 (reflecting perfect 
performance).

As an additional evaluation of participant performance, we also plotted the hit vs. false alarm rate for each 
participant in each task as an ROC curve. This allows for assessing the sensitivity of discrimination and response 
bias of each participant more clearly. We see two general patterns in these ROC plots, reflecting the general split 
between attributes with strong discriminability and those with weak perceptual discriminability. For attributes 
that had overall low d′ scores, we see distributions of hit vs. false alarm rates centered near the unity diagonal, 
reflecting performance near chance. This suggests that those attributes have low signal-to-noise. In contrast, 
there is a separate, and somewhat orthogonal, cluster in the upper left portion of the plot that corresponds to 
attributes with high d′ values. The direction of the distribution in this cluster reflects variation in the noise (and 
signal) distribution standard deviations, relative to a constant signal strength (i.e., d′). Thus the ROC plot for 
these features reveals that the primary source of between subject variance is simply variation in perceptual noise 
(e.g., the participant’s visual acuity), not the signal-to-noise separation itself.

Our technical validation reveals a wide range of perceptual discrimination abilities for human testers, both 
within and across attributes. Certain attributes are easier to use as classification boundaries than others. This 
allows for customizing the difficulty of perceptual classification depending on the experimenter’s needs.

Discussion
The Oomplet Dataset Toolkit (ODT) is a critical new tool for generating complex, novel visual stimuli 
through a controlled and generative process. The ODT enables the creation of large-scale datasets (millions of 
potential images) with engaging, compositional visual objects and categories, suitable for studying perceptual 
categorization in both biological (e.g., humans) and artificial agents (e.g., neural networks). Our technical 
validation demonstrates how different feature dimensions offer distinct levels of task complexity, guiding future 
experimental applications.

Flexibility is a key characteristic of the ODT. Because the toolkit allows for the generation of an extremely large 
number of categories, one can deploy a variety of heretofore challenging experimental paradigms. For example, 
examining how established mental representations of learned categories change when new categories – either 
more or less similar – are introduced could reveal how category structures adapt in response to new information. 
The generative nature of the ODT also allows the experimenter to flexibly adjust category relationships, adapting 
within an experiment based on how each category was initially learned or processed. This flexibility enables the 
ODT to fine-tune category boundaries or connections as new categories are introduced. The ODT’s flexibility 
also allows the generated category structure to mirror the complex overlapping relationships of real-world 
categories, enabling experimenters to examine multiple facets of category learning in a single study. By varying 
factors such as participant experience, diversity within categories, and distances between categories, researchers 
can use controlled generation and overlap of components to simulate realistic learning conditions. This latter 
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point is particularly important for developing AI-based studies of human-like category learning in artificial 
systems. Modern neural networks require millions of training examples to achieve their high performance. 
While humans obviously learn from much less data, there are many reasons to mirror the structure of the 
categories used in experiments in both natural and artificial systems 40.

Along with flexibility, the ODT is extensible. First, although the ODT currently employs a dictionary of 
components with discrete values, the experimenter can introduce new parts through the creation of new 

Fig. 5.  Directory architecture for the ODT. Light grey folders indicate standard TIER Protocol 4.0 directories 
that are unused.
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component image files or increasing the number of levels per attribute. Users with some proficiency with 
Python can create new category boundaries by adding or altering the attribute tags associated with specific 
components and adapting our provided code accordingly. Likewise, users with some proficiency with art or 
computer graphics can create new components using existing attribute values, or, in tandem with the appropriate 
code modifications, can introduce new discrete or continuous attributes. For example, attributes could be 
varied in a continuous manner by building new components and attribute dictionaries or morphing between 
endpoints (e.g., continuous leg length values, body hues along a color gradient, or degree of mouth openness). 
These manipulations allow experimenters to identify perceptual boundaries that naturally emerge along specific 
feature dimensions or combinations of dimensions. By adjusting these dimensions, researchers could observe 
how boundaries form based on varying perceptual cues. Second, although the stimuli generated by the ODT are 
static, because of their humanoid appearance and compositional structure, it would relatively straightforward 
to animate them (e.g., using Spine software, <https://esotericsoftware.com/>). This opens up the possibility for 
dynamic attributes in combination with component parts or attributes.

Beyond its flexibility and extensibility, perhaps the ODT’s most critical value lies in its generative design, 
allowing for a well-defined and manipulable distance metric between components and attributes. This makes 
it a versatile tool for diverse experimental and modeling applications. In contrast to the large majority of 
prior datasets, out-of-the-box the ODT does not require significant artistic or programming skills and is fully 
extensible. The ODT is user-friendly and freely available, filling a gap in the field. Instead of relying on and 
living with the limitations of smaller image datasets or uncurated online images, the ODT enables researchers to 
create well-controlled, large-scale stimulus datasets for exploring category learning in both natural and artificial 
systems. No comparable toolkit offers such a customizable, precise, and open-source solution.

Data availability
The code and assets used in the ODT stimulus generation pipeline are available on KiltHub: ​(​​​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​
.​1​1​8​4​/​R​1​/​2​5​8​1​3​7​2​6​.​v​1​​​​​)​.​​
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