
The Oomplet Dataset Toolkit: A �exible and
extensible system for large-scale, multi-category
image generation
John P. Kasarda

Carnegie Mellon University
Angela Zhang

Carnegie Mellon University Entertainment Technology Center
Hua Tong

Carnegie Mellon University Entertainment Technology Center
Yuan Tan

Carnegie Mellon University Entertainment Technology Center
Ruizi Wang

Carnegie Mellon University Entertainment Technology Center
Timothy Verstynen

Carnegie Mellon University
Michael Tarr

Carnegie Mellon University

Article

Keywords:

Posted Date: July 16th, 2024

DOI: https://doi.org/10.21203/rs.3.rs-4618904/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-4618904/v1
https://doi.org/10.21203/rs.3.rs-4618904/v1
https://doi.org/10.21203/rs.3.rs-4618904/v1
https://creativecommons.org/licenses/by/4.0/

The Oomplet Dataset Toolkit: A flexible and1

extensible system for large-scale, multi-category2

image generation3

John P. Kasarda1, Angela Zhang2, Hua Tong2, Yuan Tan2, Ruizi Wang2, Timothy4

Verstynen1,3,*, and Michael Tarr1,3,*
5

1Department of Psychology, Carnegie Mellon University, Pittsburgh, 15213, USA6

2Entertainment Technology Center, Carnegie Mellon University,Pittsburgh, 15213, USA7

3Neuroscience Institute, Carnegie Mellon University, Pittsburgh, 15213, USA8

*corresponding author(s): Timothy Verstynen (timothyv@andrew.cmu.edu), Michael J Tarr (michaeltarr@cmu.edu)9

ABSTRACT10

Understanding the dynamics of perceptual learning in humans, non-human animals, and artificial agents requires large stimulus

sets with flexible features that can be used to discriminate across categorical groups. Here we introduce the Oomplet Dataset

Toolkit (ODT), an open-source, publicly available toolbox for generating up to 9.1 million unique visual stimuli that are assembled

across ten different feature dimensions. The resulting stimuli consist of cartoon-like humanoid characters – “Oomplets” – that

are meant to be engaging, pleasant to look at, and can be appropriately used in research on a variety of populations, including

children. Across several behavioral experiments, we show how eight of the ten possible dimensions that define an individual

Ooomplet can be used by adults as effective classification boundaries for simple perceptual discrimination. The ODT thus

provides a flexible and customizable way for generating very large and novel stimulus sets in order to study perceptual learning

in both biological and artificial systems.

11

Background & Summary12

The use of computer-generated stimuli in psychometric studies of behavior has a rich history. In Shepard and Metzler’s1
13

classic study of mental rotation, they used novel 3D objects “generated by digital computer and associated graphical output”14

to understand internal mental imagery (Figure 1A). Since then, the creation of visual stimuli has continued to be driven by15

advances in computer graphics. Salient examples from influential studies include 3D “wire-frame” objects2 (Figure 1B) and16

3D blob-like “amoebae” objects3 (Figure 1C). As computer graphics tools became more widely accessible, the generation of17

novel visual objects as stimuli became increasingly more complex and realistic. Helping drive this trend, our lab has developed18

multiple complex visual stimulus datasets4, 5 and made them publicly accessible6 – a notable example of this work being the19

“Greebles”7 (Figure 1D) which have been used in well more than 100 different studies. A recent and non-exhaustive list of20

examples from the field includes “smoothies, spikies, and cubies”8 (Figure 1E), “Ziggerins”9 (Figure 1F), “digital embryos”10
21

(Figure 1G), the NOUN Database11 (Figure 1H), “Widgets”12 (Figure 1I), and “Sheinbugs”13 (Figure 1J), many of which22

emerged from collaborations within the Perceptual Expertise Network (PEN)14.23

Many of these visual datasets were created using a compositional approach in which individual parts from a dictionary24

were sampled and combined in different configurations to form complex objects4, 7, 15. Other datasets have been generated25

parametrically using varying values within mathematical functions to deform 3D shapes, define parts, and specify attachment26

points2, 3, 8, 10, 16. Still other datasets were created by hand, relying on 3D modeling skills rather than explicit algorithms5, 7. One27

characteristic across almost all of these datasets is the relatively low number of available stimuli and stimulus categories. While28

some datasets with a broad dictionary of parts potentially allow for thousands of novel stimuli and hundreds of categories, the29

selection of parts, placement in different configurations, and category boundaries were all accomplished manually, making30

large-scale stimulus generation ad hoc and time-consuming5. Moreover, while the shape and configuration differences enable31

the possibility of many different well-defined visual categories, the actual number available is quite small – on the order of32

10-20 at best. In contrast, visual datasets created through parametric variations allows for nearly an infinite number of different33

individual stimuli, but are less suited to being organized into a large number of natural visually-defined categories2, 3, 8. This is34

because the shape and configural variations across different parameter values are metric, meaning that visual categories, while35

definable, are not perceptually salient or aligned with how humans typically infer categorical boundaries17.36

To this end, we developed the Oomplet Dataset Toolkit (ODT), which is designed to create complex novel stimuli through37

a controllable generative process, using an extensive parts dictionary and contrastive part attributes. ODT was created as a38

stand-alone component of an interactive virtual environment designed to look at the dynamics of cooperative learning, where39

one task involves learning complex perceptual discriminations. Within this context, our objectives in creating ODT were as40

follows: 1) enable the generation of a millions of individual stimuli and a large number of categories; 2) enable the use of a41

large dictionary of reusable parts defined by a wide variety of visual dimensions (e.g., color, shape, orientation, spacing, etc.);42

3) enable visually-salient conjunctions and disjunctions of parts so as to create well-defined categories and category hierarchies;43

4) build a toolkit that is user controllable to enable automatic generation of stimuli, but with fine-grained user control over parts,44

part attributes, and categories; 5) build a toolkit that requires only standard end-user skills (e.g., no programming knowledge),45

but that is extensible for users with artistic and/or programming knowledge. ODT is unique in realizing these objectives,46

providing a powerful stimulus generation toolkit that allows users to create a large number of visually-defined natural categories47

with potentially hundreds of thousands of heirarchically-nested, individual exemplars per category. As such, ODT has potential48

applications in the psychological, neuroscientific, and artificial intelligence domains.49

Methods50

ODT is a user-friendly and customizable python-based pipeline for generating large sets of unique stimuli, “Oomplets”, and51

sorting them into hierarchically organized categories based on user-specified classification dimensions applied to the Oomplets’52

visual features. The pipeline consists of two python scripts (generate.py and categorize.py) and 148 component53

images that are combined to create 9.1 million unique visual stimuli (Figure 2). These scripts, component images, and other54

relevant files are available in a publicly accessible repository (https://github.com/CoAxLab/OompletDatasetToolkit).55

Components56

The components consist of images of various types of body parts or features to be used as references in creating individual57

Oomplets – humanoid candy stimuli. These images are stored as .png files in the subdirectories of the repository’s “Components”58

directory. Each individual Oomplet stimulus image is made up of instances from seven classes of component images (Figure 2).59

Because some components provide more than one attribute, a total of ten different attributes are recorded in a JSON formatted60

identification (ID) file associated with each generated Oomplet.61

Generate62

The generate.py script consists of Python code that creates an Oomplet by selecting one file from each of the seven63

component directories and compiling these components into a complete Oomplet. To accomplish this, generate.py64

employs OpenCV’s18 image processing functionality to visually parse the components and re-draw them jointly onto a common65

image depicting the newly created Oomplet. When invoked, generate.py is passed a number of required and optional66

arguments that allow user control of customization, computational processing, and output location. Full documentation of the67

script arguments and their functions is available in the repository.68

Each Oomplet is defined by the user along 10 attributes nested within the 7 classes of components. To create a unique69

individual Oomplet, the generate process selects a value for each attribute, where there are 2-4 possible values for each attribute70

that have been randomly ordered. As mentioned, generate.py captures these values and writes them into the associated71

JSON ID file. These ID files are what allows the pipeline to then sort the Oomplets into distinct visual categories using72

categorize.py.73

Categorize74

The categorize.py script consists of Python code that categorizes each Oomplet through a set of user-defined attribute75

criteria. The user specifies which attributes (a minimum of 1 and up to all 10 attributes) will be used to determine category76

membership. For each attribute, the user specifies the value of that attribute that helps define the category, where the complete77

category definition is the intersection of all 10 attribute values. As illustrated in Figure 3, for each Oomplet that satisfies the78

criteria, categorize.py makes a copy of that Oomplet file and places it in automatically created output directories corre-79

sponding to Oomplets that match the criteria (“Match_[TIMESTAMP]”) and those that do not (“NoMatch_[TIMESTAMP]”).80

When invoked, categorize.py is passed a number of required and optional arguments that allow user control of input81

location, categorization criteria, and other customizations.82

Because categorization is based on a concatenation of values for each attribute, categorical boundaries can be along a83

single attribute or the intersection of many attributes. Additionally, a hierarchy may be created by running categorize.py84

multiple times (i.e., once to categorize all Oomplets with a common set of attribute values and then a second time to further sort85

Oomplets in one of the first sort categories based on a new set of attribute values).86

2/11

Example87

As a snapshot of the whole process, let us suppose that a stimulus is compiled by the generate.py script using the88

components <mouth,open,1.png> as reference. This stimulus would be recorded to have the attribute “open” for “mouth89

openness” in its ID file. The categorize.py script, when specified to look for images with closed mouths, would put this90

stimulus into the “NoMatch” sorting directory.91

Data Records92

We used the process described in Methods to generate roughly all 9 million possible unique Oomplets. The Oomplets and the93

code used to generate them are organized according to the TIER Protocol 4.0 directory architecture19 (Figure 4). Oomplet94

images were then stored in PNG format, with transparent backgrounds. Additional scripts used to help with building the95

validation study are included in the Scripts directory.96

Technical Validation97

In order to evaluate the perceptual discriminability of the different Oomplet attributes, we conducted a series of online studies98

using a forced choice discrimination task. We chose the eight most relevant attributes that can be used as binary classification99

boundaries and tested each attribute individually. In cases where attributes had more than two possible values (e.g., shape100

can be ’sharp’, ’mixed’, or ’round’), we only used the two most extreme values as the classification features (e.g., ’sharp’ and101

’round’). Each experiment used its own set of roughly 40,000 unique Oomplets.102

Participants103

All study procedures were approved by the Carnegie Mellon University Institutional Review Board and informed consent was104

obtained prior to each participant starting the study. Studies were hosted on Connect20 , CloudResearch’s online crowd-sourcing105

platform. We recruited 50 participants for each study. Participants were excluded from the final analysis if their responses were106

improperly submitted to the cloud server or if they responded to fewer than 50 trials. The final sample sizes per condition were:107

Shape (N = 50), Pattern (N = 48), Mouth Openness (N = 49), Leg Length (N = 50), Eye Lash (N = 43), Eye Separation (N =108

50), Hue (N = 47), and Arm Orientation (N = 48). Individuals who reported being colorblind were excluded from recruitment.109

We did not collect or restrict recruitment along any demographic category.110

Task111

We built the eight single-task studies using Gorilla’s Experiment Builder (Task Builder 2)21, with each task reflecting a single112

attribute for the classification boundary. In the task, participants were presented with 300 Oomplets (presented to participants113

as "candies" in this study), one at a time, and were asked whether the Oomplet is Bitter ("f" key) or Sweet ("j" key). Trials were114

counterbalanced, assuring that 150 images of each type were always presented. The terms “bitter” and “sweet” were chosen115

to avoid bias towards any of the humanoid characteristics; the bitter and sweet sets were created using Match and NoMatch116

criteria in the set creation with categorize.py.117

Each trial consisted of three distinct phases (see Figure 5). The trial started with a fixation phase, where the participant118

was presented with a centrally presented cross to bring their attention to the middle of the screen. This phase lasted 200ms,119

after which the cross was removed. After 100ms, the stimulus was presented (stimulation phase) with the words "Bitter" (left)120

and "Sweet" (right) presented on either side of the Oomplet, along with the keyboard response associated with each choice.121

Participants were given 2000ms to respond. Responses occurring after 2000ms were not recorded. Key presses were also not122

recorded for the first 250ms following stimulus onset in order to avoid false start responses. Finally, during the feedback phase,123

participants were informed via icons as to whether their response was correct or incorrect. Importantly, participants were not124

given explicit instructions as to what attributes defined the two categories and had to simply rely on this feedback to learn the125

relevant category boundaries.126

In order to avoid any potential biases from stimulus characteristics (e.g., implicit assumptions on color to bitter/sweet127

mapping) in the resulting choices, we counterbalanced the bitter/sweet mapping across participants. Half of the participants128

would get one mapping and the remaining half the other. Task assignments were random without replacement, targeting 25129

participants per group.130

Analysis131

To visualize how well each attribute could be detected as a classification dimension, we calculated two signal detection132

measures22. First, we estimated the d′ for each participant as d′ = Φ(hits)−Φ(f a), where hits represents the true classification133

rate, and f a reflects the false alarm rate for incorrectly classifying a stimulus as sweet or bitter. The d′ measure reflects the134

signal-to-noise ratio of the discrimination as standard deviations away from the noise distribution. The distribution of d′
135

3/11

measures, across participants, was evaluated independently for each task. When participants had a perfect classification rate,136

we capped the d′ value at 5.137

In addition, we plotted the receiver operating characteristic (ROC) curve across tasks. This presents the joint distribution138

of f a and hits rates, and allows for visualizing when inter-subject responses vary along d′ (reflecting consistent varying139

thresholds applied to the same signal-to-noise ratio) or criterion (reflecting varying signal-to-noise ratios along the same140

selection threshold).141

Sensitivity Analysis142

Figure 6 shows the distribution of d′ scores, across participants, for each attribute tested. Attributes are sorted from lowest to143

highest average d′ and errorbars reflect the 95% confidence intervals. We see that the eye distance, leg length, arm orientation,144

and eye lash attributes are unreliable dimensions for classification, reflected by the fact that the confidence intervals overlap145

with zero. The mouth openness and texture pattern show a modest discriminability, with mean d′ values of 0.873 and 1.046146

respectively. However, we see that this comes with a high degree of variability across participants, with a somewhat bimodal147

distribution of individual scores. One mode of participants sits around zero, indicating lack of discriminability. The other mode148

has very high d′ values ranging from 1 to almost 4. Finally, body shape and color had the strongest discriminability, with mean149

values of 2.040 and 2.301 respectively. For both of these attributes, the spread of individual d′ values was fairly broad, with150

some participants hovering near zero and 2 participants maxing out at d′ values of 5 (reflecting perfect performance).151

As an additional evaluation of participant performance, we also plotted the hit vs. false alarm rate for each participant in152

each task as an ROC curve. This allows for assessing the sensitivity of discrimination and response bias of each participant153

more clearly. We see two general patterns in these ROC plots, reflecting the general split between attributes with strong154

discriminability and those with weak perceptual discriminability. For attributes that had overall low d′ scores, we see155

distributions of hit vs. false alarm rates centered near the unity diagonal, reflecting performance near chance. This suggests156

that those attributes have low signal-to-noise. In contrast, there is a separate, and somewhat orthogonal, cluster in the upper157

left portion of the plot that corresponds to attributes with high d′ values. The direction of the distribution in this cluster158

reflects variation along a common threshold, suggesting that the discriminability of these attributes largely reflects a very high159

signal-to-noise ratio and thus variability across participants generally reflecting reliance along a common selection criterion.160

Our technical validation reveals a wide range of perceptual discrimination abilities for human testers, both within and across161

attributes. Certain attributes are easier to use as classification boundaries than others. This allows for customizing the difficulty162

of perceptual classification depending on the experimenter’s needs.163

Usage Notes164

Here, we provide detailed instructions to ensure bug-free usage of the Bit-or-Sweet pipeline. Start by completing the following165

steps to complete the initial setup of the stimulus generator.166

Installation167

1. Clone the repository locally168

2. Set up a Python virtual environment in the root directory169

% python −m venv venv170

3. Activate the virtual environment based on OS.171

MacOS or Unix:172

% s o u r c e venv / b i n / a c t i v a t e173

Windows:174

% venv \ S c r i p t s \ a c t i v a t e175

4. Install all the requirements176

% p i p i n s t a l l − r r e q u i r e m e n t s . t x t177

4/11

Implementation178

Following installation, the generate.py script can be run from the command line. This is where users can specify any of179

the various options available to make their unique set of stimuli.180

% python g e n e r a t e . py [− h] [− n N] [− p] [− c C] [− v] [− k] [− s S]181

Options:182

−h , −− h e l p show t h i s h e l p message and e x i t183

−n N number o f c a n d i e s t o g e n e r a t e N (d e f : a l l c o m b i n a t i o n s)184

−p m u l t i p r o c e s s i n g f l a g (d e f : o f f)185

−c C max number o f p r o c e s s e s t o spawn i f m u l t i p r o c e s s i n g (d e f : 4)186

−v v e r b o s e (d e f : o f f)187

−k keep e x i s t i n g f i l e s i n o u t p u t f o l d e r (d e f : o f f)188

−s S se e d v a l u e f o r randomly g e n e r a t e d c a n d i e s (d e f : 0)189

The image and meta file output of this script will be located in the OompletToolkit/Output/Oomplets/ directory. Now, the190

categorize.py script may be run from the command line.191

% python c a t e g o r i z e . py [− h] [− d D] [− i I] [− k] [− a]192

Options:193

−h , −− h e l p show t h i s h e l p message and e x i t194

−d , −− d e f d e f i n e your ’ b i t t e r ’ images (r e q u i r e d)195

−i , −− i n p u t name of t h e d i r e c t o r y from which Oomplets w i l l be s o r t e d196

−k keep e x i s t i n g f i l e s i n o u t p u t f o l d e r s (d e f : o f f)197

−a , −−any f l a g s Oomplets w i th ANY of d e f i n i n g a t t r i b u t e s a s Match (d e f : o f f)198

The categorize.py script was made to be easily customized. The -d option allows users to choose any number of199

non-contradicting attribute values to define their Match and NoMatch Oomplet groups. Attribute value specifications must be200

typed in the terminal exactly as shown in the list below.201

’ c o l o r _ c o o l ’ , ’ color_warm ’ ,202

’ s h a p e _ s h a r p ’ , ’ shape_mixed ’ , ’ shape_round ’ ,203

’ l a s h _ y e s ’ , ’ l a sh_no ’ ,204

’ wide_eyes ’ , ’ midd le_eyes ’ , ’ nar row_eyes ’ ,205

’ s h o r t _ l e g s ’ , ’ m i d d l e _ l e g s ’ , ’ l o n g _ l e g s ’ ,206

’ f e e t _ l e f t ’ , ’ f e e t _ r i g h t ’ , ’ f e e t _ i n ’ , ’ f e e t _ o u t ’ ,207

’ open_mouth ’ , ’ c losed_mouth ’ ,208

’ d o t s _ p a t t e r n ’ , ’ s t r i p e s _ p a t t e r n ’ ,209

’ r ight_arm_down ’ , ’ r i g h t _a rm_ up ’ , ’ l e f t_arm_down ’ , ’ l e f t _ a r m _ u p ’210

Example211

This section will show each step a user would take in order to generate a set of 200 images, and sort them based on their pattern212

and eye lashes, using a MacOS computer. First, the user needs to set up their virtual python environment.213

% python −m venv venv214

% s o u r c e venv / b i n / a c t i v a t e215

% p i p i n s t a l l − r r e q u i r e m e n t s . t x t216

Next, the user must navigate to the Scripts/ProcessingScripts directory. From here, they will run the generation217

script using this command:218

% python g e n e r a t e . py −n 200219

The user has now created 200 unique images in the Output/Oomplets directory. Now, they must navigate to the220

Scripts/AnalysisScripts directory, where the categorization script is located. To sort the images based on their221

desired attributes, the user must use this command:222

% python c a t e g o r i z e . py −d s t r i p e s _ p a t t e r n l a s h _ n o223

Once the script has finished running, the user will now have two new directories. Each image that has a striped pattern, and224

eye lashes will be located in the Output/Match directory. All images that do not meet this requirement will be located in the225

Output/NoMatch directory.226

5/11

Extending ODT227

One attractive characteristic of the ODT that is its extensibility. At present, the generated stimuli are static. However, because228

of their humanoid appearance and compositional structure, it would relatively straightforward to animate them (e.g. using229

Spine from esoteric software <https://esotericsoftware.com/>). This opens up the possibility for a wide range of dynamic230

attributes crossed with the predefined part attributes. It is also straightforward to introduce new parts through the creation231

of new component image files or to increase the number of levels per attribute so as to introduce more fine-grained category232

distinctions. These future advances would further expand the utility of Oomplets as research stimuli and improve the potential233

reach of the ODT.234

Data availability235

The code and assets used in the ODT stimulus generation pipeline are available on GitHub:236

(https://github.com/CoAxLab/OompletDatasetToolkit).237

Acknowledgements238

The authors would like to thank Michael Christel for his feedback and support. This work was sponsored, in part, by239

AFOSR/AFRL award FA9550-18-1-0251240

Author contributions statement241

MT and TV conceived of the design of the project, oversaw completion of the project, and contributed to writing of this paper.242

AZ, HT, RW, and YT implemented the original Ooomplet design and code generation. JPK contributed to designing and243

implementing the experimental tasks, including all data analysis, as well as leading the writing of the manuscript.244

Competing interests245

The authors have no competing interests to declare.246

References247

1. Shepard, R. N. & Metzler, J. Mental rotation of three-dimensional objects. Science 171, 701–703 (1971).248

2. Poggio, T. & Edelman, S. A network that learns to recognize three-dimensional objects. Nature 343, 263–266 (1990).249

3. Bülthoff, H. H. & Edelman, S. Psychophysical support for a two-dimensional view interpolation theory of object250

recognition. Proc. Natl. Acad. Sci. United States Am. 89, 60–64 (1992).251

4. Hayward, W. G. & Williams, P. Viewpoint dependence and object discriminability. Psychol. Sci. 11, 7–12 (2000).252

5. Tarr, M. J. Visual object recognition: Can a single mechanism suffice? In Perception of Faces, Objects, and Scenes:253

Analytic and Holistic Processes (Oxford University Press, Oxford, UK, 2006).254

6. Tarr, M. J. tarrlab stimuli. https://sites.google.com/andrew.cmu.edu/tarrlab/stimuli (2024). Accessed: 01-18-2024.255

7. Gauthier, I. & Tarr, M. Becoming a ’Greeble’ expert: Exploring mechanisms for face recognition. Vis. Res. 37 (1997).256

8. Op de Beeck, H. P., Baker, C. I., DiCarlo, J. J. & Kanwisher, N. G. Discrimination training alters object representations in257

human extrastriate cortex. J Neurosci 26, 13025–13036 (2006).258

9. Wong, A. C.-N., Palmeri, T. J., Rogers, B. P., Gore, J. C. & Gauthier, I. Beyond shape: how you learn about objects affects259

how they are represented in visual cortex. PLoS One 4, e8405 (2009).260

10. Hegdé, J., Thompson, S., Brady, M. & Kersten, D. Object recognition in clutter: Cortical responses depend on the type of261

learning. Front. human neuroscience 6, 170 (2012).262

11. Horst, J. S. & Hout, M. C. The Novel Object and Unusual Name (NOUN) Database: A collection of novel images for use263

in experimental research. Behav. Res. Methods 48, 1393–1409 (2016).264

12. Lebaz, S., Sorin, A.-L., Rovira, K. & Picard, D. Widgets: A new set of parametrically defined 3D objects for use in haptic265

and visual categorization tasks. Eur. Rev. Appl. Psychol. 70, 100552 (2020).266

13. Jones, T. et al. Neural and behavioral effects of subordinate-level training of novel objects across manipulations of color267

and spatial frequency. Eur. J. Neurosci. 52, 4468–4479 (2020).268

6/11

https://sites.google.com/andrew.cmu.edu/tarrlab/stimuli

14. Gauthier, I., Tarr, M. & Bub, D. Perceptual Expertise: Bridging Brain and Behavior (Oxford University Press, Oxford,269

UK, 2009).270

15. Tarr, M. J., Bülthoff, H. H., Zabinski, M. & Blanz, V. To What Extent Do Unique Parts Influence Recognition Across271

Changes in Viewpoint? Psychol. Sci. 8, 282–289 (1997).272

16. Vuong, Q. C. et al. Facelikeness matters: A parametric multipart object set to understand the role of spatial configuration273

in visual recognition. Vis. Cogn. 24, 406–421 (2016).274

17. Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M. & Boyes-Braem, P. Basic objects in natural categories. Cogn.275

Psychol. 8, 382–439 (1976).276

18. Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools (2000).277

19. ProjectTIER. Tier protocol 4.0. https://www.projecttier.org/tier-protocol/protocol-4-0/ (2023). Accessed: 05-05-2023.278

20. Cloudresearch. Connect by cloudresearch. https://www.cloudresearch.com (2023). Accessed: 06-05-2023 to 08-09-2023.279

21. Gorilla. Gorilla task builder 2. https://www.gorilla.sc (2023). Accessed: 01-19-2023 to 08-23-2023.280

22. Wickens, T. D. Elementary signal detection theory (Oxford university press, 2001).281

7/11

https://www.projecttier.org/tier-protocol/protocol-4-0/
https://www.cloudresearch.com
https://www.gorilla.sc

Figures & Tables282

a)

1971

b)

1990

d)

1997 f)

2009

g)

2012

h)

2016

i)

2020

j)

2022

1998

2003
c)

1992
e)

2006

Figure 1. A historical tour of computer generated stimuli for psychometric studies. Timeline not to scale. a) Shepard, R., et al.

(1971); b) Poggio, T., et al. (1990); c) Bülthoff, H., et al. (1992); d) Gauthier, I., et al. (1997); e) Op de Beeck, H. P., et al.

(2006); f) Wong, A. C.-N., et al. (2009); g) Hegdé, J., et al. (2012); h) Horst, J. S., et al. (2016); i) Lebaz, S., et al. (2020); j)

Jones, T., et al. (2020)

8/11

Figure 2. An example Oomplet with each component and attribute.

Generate

Oomplets

All Oomplets Have

Final Desired

Attributes?

Oomplet

Group A
(has

attribute X)

No Further

Categorization

Required

<categorize.py>

(attribute X/Y/Z)

Oomplet

Group B
(no

attribute X)

All Oomplets

Have Final

Desired

Attributes?

All Oomplets

Have Final

Desired

Attributes?

No

Yes

No Further

Categorization

Required

No Further

Categorization

Required

Yes

Yes

No

All

Oomplets

Oomplet

Group A1
(has attribute X and Y)

All Oomplets

Have Final

Desired

Attributes?

No Further

Categorization

Required

Oomplet

Group A2
(has attribute X,

no attribute Y)

All Oomplets

Have Final

Desired

Attributes?

No Further

Categorization

Required

Yes

No

<generate.py>

Yes

Oomplet

Group A1a

(has XYZ)

All Oomplets

Have Final

Desired

Attributes?

No Further

Categorization

Required

Oomplet

Group A1b

(has XY,

no Z)

All Oomplets

Have Final

Desired

Attributes?

No Further

Categorization

Required

Yes

Yes

First Categorization:

Second Categorization:

Third Categorization:

Group used for further sorting (pictured):

Group could be used, but not shown:

Figure 3. The categorization pipeline. Dashed lines represent potential paths while solid lines represent executed paths for one

example run of the pipeline.

9/11

Figure 4. Directory architecture for the ODT. Light grey folders indicate standard TIER Protocol 4.0 directories that are

unused.

10/11

Fixation
200ms

Stimulus
250ms to

2000ms

Feedback
500ms

time

Fixation
100ms

Fixation
100ms

Figure 5. The Stimulus display was shown to participants for at least 250 ms, and up to 2000ms. This display would transition

early to the Feedback display when participants selected a response.

Figure 6. Left: D-Prime scores of all participants, across all experiments. Right: ROC curve including data from all eight

experiments.

11/11

	References

