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Abstract
Cognitive reappraisal is an emotion regulation strategy that is postulated to reduce risk for atherosclerotic cardiovascular disease
(CVD), particularly the risk due to negative affect. At present, however, the brain systems and vascular pathways that may link
reappraisal to CVD risk remain unclear. This study thus tested whether brain activity evoked by using reappraisal to reduce
negative affect would predict the multiyear progression of a vascular marker of preclinical atherosclerosis and CVD risk: carotid
artery intima-media thickness (CA-IMT). Participants were 176 otherwise healthy adults (50.6%women; aged 30–51 years) who
completed a functional magnetic resonance imaging task involving the reappraisal of unpleasant scenes from the International
Affective Picture System. Ultrasonography was used to compute CA-IMT at baseline and a median of 2.78 (interquartile range,
2.67 to 2.98) years later among 146 participants. As expected, reappraisal engaged brain systems implicated in emotion regu-
lation. Reappraisal also reduced self-reported negative affect. On average, CA-IMT progressed over the follow-up period.
However, multivariate and cross-validated machine-learning models demonstrated that brain activity during reappraisal failed
to predict CA-IMT progression. Contrary to hypotheses, brain activity during cognitive reappraisal to reduce negative affect does
not appear to forecast the progression of a vascular marker of CVD risk.
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Negative affect may confer risk for atherosclerotic cardiovas-
cular disease (CVD; Kraynak et al., 2018; Suls, 2018). Acute
experiences of negative affect, for example, increase the like-
lihood of ischemic events, arrhythmias, and sudden cardiac
death among vulnerable individuals (Jiang, 2015; Kamarck

& Jennings, 1991; Lampert, 2016; Steptoe & Brydon,
2009). In addition to acute affective states, an individual’s
propensity to experience negative affect also appears to confer
risk for CVD endpoints (e.g., early death; Kubzansky et al.,
2005; Rozanski et al., 1999) and for an accelerated progres-
sion of preclinical atherosclerosis (Stewart et al., 2007). The
CVD risk conferred by negative affect may be due—at least in
part—to its maladaptive or insufficient regulation (DeSteno
et al., 2013; Kubzansky et al., 2011); however, the deliberate
regulation of negative affect per se is rarely examined in the
context of CVD risk.

One affective regulation strategy that is postulated to re-
duce CVD risk is cognitive reappraisal (Appleton &
Kubzansky, 2014; Gianaros & Jennings, 2018). Cognitive
reappraisal involves intentionally changing the meaning of
events and contexts with the goal of changing affective re-
sponses (Gross, 2014). Four lines of evidence suggest that
individual differences in reappraisal processes may relate to
biological and behavioral risk factors for CVD. First, in clin-
ical contexts, reappraisal training is a component of adjunctive
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cognitive-behavioral programs designed to reduce CVD risk
in patient populations (Cohen et al., 2015). Second, in epide-
miological studies, the self-reported frequency of using reap-
praisal in daily life has been positively associated with cardio-
protective health behaviors and negatively associated with
lipid and inflammatory biomarkers of CVD risk (Appleton
et al., 2013; Appleton et al., 2014; Ellis et al., 2019). Third,
across psychophysiological studies, meta-analytic evidence
suggests that reappraisal decreases acute cardiovascular—
namely, heart rate—reactions to unpleasant stimuli
(Zaehringer et al., 2020). Heart rate reactions to unpleasant,
stressful, or otherwise aversive stimuli and contexts have been
associated separately with the severity of atherosclerosis in
nonhuman primates (Manuck et al., 1983) and biological
markers of atherosclerosis and CVD risk in humans (Chida
& Steptoe, 2010; Gianaros & Jennings, 2018; Turner et al.,
2020). Fourth, neuroimaging findings from a sample of 157
midlife adults indicate that activity in the medial prefrontal
cortex, particularly in the dorsal anterior cingulate cortex
(dACC), during reappraisal cross-sectionally associates with
systemic inflammation and preclinical atherosclerosis
(Gianaros et al., 2014). In aggregate, clinical efforts and find-
ings from epidemiological, psychophysiological, and neuro-
imaging studies appear compatible with speculations that re-
appraisal may relate to CVD risk via neural, behavioral, and
physiological pathways that influence the heart and
vasculature.

In the latter regards, it is notable that reappraisal not only
engages the dACC (Buhle et al., 2014) and other prefrontal
areas (Wager et al., 2008), but also a distributed ensemble of
brain systems whose activity relates to (i) processing affective
stimuli (Lindquist et al., 2012) and (ii) controlling and repre-
senting autonomic, neuroendocrine, cardiovascular, and im-
mune parameters of physiology that are involved in the early
etiology of CVD (Kraynak et al., 2018). The latter processes
are thought to be instantiated in an ensemble of brain systems
for visceral control that calibrate peripheral physiology with
the anticipated (predicted) metabolic demands of self-relevant
contexts (Koban et al., 2021; Quigley et al., 2021). This en-
semble includes areas of the insula, orbital and medial pre-
frontal cortex, amygdala, hippocampus, and cell groups of the
brainstem that could plausibly link affective processes with
physical health, particularly cardiovascular health (Koban
et al., 2021; Öngür & Price, 2000). As evidence, for example,
distributed (multivariate) activity patterns across this ensem-
ble and other brain systems that are evoked by negative affec-
tive stimuli (unpleasant visual scenes) associate with baseline
(cross-sectional) levels of a vascular marker of preclinical ath-
erosclerosis, namely, carotid artery intima-media thickness
CA-IMT; (Gianaros et al., 2020).

Baseline levels of CA-IMT are associated with the incident
(future) development of atherosclerotic plaques, and they are
interpreted to reflect the effects of CVD risk factors that have

accrued over the lifespan (Tschiderer et al., 2020). By com-
parison to such cumulative effects, the rate-of-change in CA-
IMT over time (e.g., years) is thought to reflect the more
recently experienced influence of proximal etiological deter-
minants of the progression of preclinical atherosclerosis
(Chambless et al., 2002). Various metrics reflecting the rate-
of-change in CA-IMT appear to be modifiable by behavioral
and pharmacological interventions, and they predict clinical
CVD endpoints in epidemiological studies (Baldassarre et al.,
2013; Willeit et al., 2020). An open question about the neu-
robiology of the pathways potentially linking affect and affect
regulation to CVD risk is whether distributed brain activity
patterns that are evoked by negative affective stimuli and by
reappraisal predict the prospective rate-of-change in CA-IMT
over multiple years. If so, then such findings would extend
prior cross-sectional findings by providing initial evidence as
to whether the neural correlates of negative affect and its reg-
ulation by reappraisal at a given point in time are able to
forecast (predict) the future progression of a precursor to later
clinical CVD endpoints: preclinical atherosclerosis.

Accordingly, the present study assessed brain activity by
functional magnetic resonance imaging (fMRI) among a com-
munity sample of 176 otherwise healthy adults (89 women, 87
men; aged 30 to 51 years), while they viewed and reappraised
unpleasant scenes from the International Affective Picture
System. At the time of initial testing and then a median of
2.78 (interquartile range, 2.67 to 2.98) years later, ultrasonog-
raphy was used to assess CA-IMT among those who returned
for follow-up testing (N = 146; 78 women, 68 men; 83%
retention). At the time of initial testing, participants were not
taking medications and were not diagnosed with clinical (e.g.,
cardiovascular) conditions that might confound initial
(baseline) CA-IMT levels. Whole-brain, multivariate, and pe-
nalized regression analyses with dimensionality reduction and
cross-validation (Kohoutova et al., 2020) were used to test
whether fMRI patterns evoked by viewing and reappraising
unpleasant scenes at the time of initial testing predicted the
change in CA-IMT over the multiyear follow-up interval.
Ancillary analyses explored the psychometric properties of
fMRI patterns and affective responses evoked by viewing
and reappraising the visual scenes, as well as the potential
influence of conventional CVD risk factors and self-reports
of negative affect on any associations observed between fMRI
patterns and CA-IMT.

Method

Preregistration and Availability of Code and Data

Hypotheses and planned analyses were preregistered at
Open Science Framework (OSF) on 02 November 2020
(https://osf.io/hk6qx/). Subsequently created data files and
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analysis scripts are available at OSF (https://osf.io/
hk6qx/) and GitHub (https://github.com/CoAxLab/
reappraisal-imt-progression). Group and individual
neuroimaging data and resul ts are avai lable a t
NeuroVault (https://neurovault.org/collections/10337). To
the authors’ awareness, this is the first study to report
associations between affect-related brain patterns and lon-
gitudinal changes in CA-IMT.

Participants

Participants were midlife and community-dwelling adults
from the Pittsburgh Imaging Project (PIP), a longitudinal
study of biological and behavioral risk factors for preclinical
atherosclerosis and CVD risk. The entire PIP cohort consists
of 331 individuals (aged 30 to 51 years; 166 women and 165
men; 230 identifying as white; 80 identifying as Black or
African American; 16 identifying as Asian or Asian
American; and 5 identifying as multiracial). Details regarding
recruitment, study design, and dates of data collection have
been published (Gianaros et al., 2017; Gianaros et al., 2020).
Table 1 summarizes characteristics and study variables for the
baseline and follow-up study participants included in the pres-
ent analyses.

Potential volunteers for PIP were screened by phone
and again by an in-person medical history interview.
Excluded from participating were people who endorsed:
a history of cardiovascular or cerebrovascular disease (in-
cluding treatment for or diagnoses of hypertension, stroke,
myocardial infarction, congestive heart failure, and ar-
rhythmias); history of any chronic medical or neurological
disorder (including type 1 and type 2 diabetes, emphyse-
ma, rheumatologic conditions, seizure disorders, and
chronic hepatitis); prior neurosurgery; current treatment
for or self-reported psychiatric conditions; consuming al-
cohol equaling or exceeding 5 servings 3 or more times
per week; regular use over-the-counter or prescribed med-
ications with autonomic, cardiovascular, or neuroendo-
crine effects (e.g., beta-blockers, decongestants, cortico-
steroid inhalers); regular use of psychotropic medications;
history of metal exposure or presence of metallic implants
unsafe for MRI; color-blindness; self-reported claustro-
phobia; and, for women, pregnancy (as verified by urine
test). These exclusion criteria were used to limit the influ-
ence of medications and chronic illnesses on measures of
subclinical disease status. Participants were compensated
$175.00 US for completing baseline study visits and
$87.50 US for the follow-up study visit. Informed consent
was obtained from all participants, and approval was
granted by the University of Pittsburgh Human Research
Protection Office (Protocol number: 07110287). Dates of
data collection for the full PIP cohort spanned from
August 2008, to July 2017.

Overview of Study Design and Measures

At the time of initial testing, PIP participants attendedmultiple
study visits. These entailed (a) informed consent; (b) medical
and demographic interviews; (c) anthropometric assessments
of height, weight, and body composition; (d) seated measure-
ment of blood pressure; (e) completion of questionnaires to
assess health behaviors and psychosocial characteristics; (f)
carotid artery ultrasonography; (g) fasting phlebotomy; and
(h) a magnetic resonance imaging (MRI) protocol.
Participants were instructed to fast for 8 h prior to a single
initial study visit, which involved fasting phlebotomy, a light
meal, and then MRI testing. This visit was scheduled to occur
between 7:00AM and 11:00AM for all participants.

In September of 2011, an fMRI task involving viewing and
reappraising unpleasant scenes from the International
Affective Picture System (Lang et al., 2008) was added to
the MRI visit of the PIP study. A total of 176 participants
completed this fMRI task. For these participants, a median
of 55 days separated the MRI and ultrasonography visits at
initial (baseline) testing (range = 2 to 175 days). Of the latter
176 participants, 146 returned for a follow-up carotid artery
ultrasound assessment that included fasting phlebotomy and
the re-assessment of medical status and other measures
assessed at baseline (83% retention rate, median follow-up
interval between the 2 carotid ultrasonography visits = 2.78
years, absolute follow-up minimum = 1.67 years and maxi-
mum = 5.02 years). No MRI testing was conducted at follow-
up. The entire span of data collection for this sub-sample of
the PIP cohort began in September 2011, and ended in July
2017. The present study is the first to report on baseline fMRI
measures of reappraisal and the longitudinal change in CA-
IMT in the PIP cohort.

Assessment of Demographics and Health Behaviors

At the time of initial testing, demographic information was
collected to assess age, race and ethnicity, income, and edu-
cation (years of schooling). At that time and again at follow-
up, participants reported on their smoking status and frequen-
cy of alcohol consumption over the past week. Biological sex
assigned by a physician at birth was self-reported.

Assessment of Conventional Cardiovascular Risk
Factors

At the time of initial testing and again at follow-up, partici-
pants underwent assessments of seated resting blood pressure,
waist circumference, and body mass index, as well as fasting
glucose and lipid levels. As detailed previously (Gianaros
et al., 2017), seated resting blood pressures (BPs) were obtain-
ed using an oscillometric method, wherein a total of 3 BPs
were taken 2 min apart after an acclimation period, with the
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average of the last 2 of the 3 BPs being used to compute
systolic (SBP) and diastolic (DBP) blood pressures.
Participants’ waist circumferences were measured at the level
of the umbilicus to the nearest 1/2 centimeter at end expira-
tion. Height was measured by a vertical-mounted stadiometer
(with shoes off), and weight was measured by a digital scale.
At the time of initial testing and at follow-up, a research nurse
performed phlebotomy. Concentrations of total cholesterol
and triglycerides were measured by a CHOL and triglyceride
GPO reagent, respectively, using an enzymatic, timed-
endpoint method on the SYNCHRON LX System
(Beckman Coulter, Inc., Brea, California). The concentration
of high-density lipoprotein (HDL) cholesterol was measured
with a HDLD reagent on the SYNCHRONLX System, which

uses an enzymatic, time-endpoint method to uniquely facili-
tate a detergent that solubilizes only the HDL lipoprotein par-
ticles (Beckman Coulter, Inc., Brea, California). Low-density
lipoprotein (LDL) cholesterol concentrations were estimated
by the Friedewald formula. Along with other demographic
and anthropometric variables, these measures were used to
derive Framingham 10-year risk scores (Grundy et al., 2001)
and composite measures of cardiovascular risk (see Table 1).

Assessment of Medical Conditions and Medication
Use

At the time of initial testing and again at follow-up, partici-
pants underwent medical history interviews. We determined

Table 1 Demographic information and descriptive statistics for participants with and without follow-up data

Characteristics Full sample (N =176) Follow-up (N = 145)

Women (%) 50.6 53.4

Age (years) 40.1 ± 6.3 40.4 ± 6.1

Race and ethnicity (%)

White 68.8 71.0

Black/African American 26.1 25.5

Asian/Asian American 4.0 2.1

Multiracial 0.6 0.7

Other 0.6 0.7

Number of school years completed 16.3 ± 3.3 16.3 ± 3.2

Smoking status (%)

Never smoked 61.4 66.2

Former smoker 19.9 19.3

Current smoker 18.8 14.5

Number of drinks in the last week 3.1 ± 4.6 3.0 ± 4.2

Body mass index (kg/m2) 26.7 ± 5.2 26.8 ± 5.5

Waist circumference (in) 35.2 ± 5.5 35.4 ± 5.6

Total cholesterol (mg/dL) 183 ± 33.9 184 ± 33.0

Triglycerides (mg/dL) 95.7± 56.3 95.2 ± 59.0

HDL (mg/dL) 51.8 ± 15.8 51.7 ± 13.6

LDL (mg/dL) 113.0 ± 27.7 114.0 ± 28.0

Glucose (mg/dL) 88.6 ± 8.6 88.9 ± 8.7

Systolic blood pressure (mmHg) 120.0 ± 11.4 120.0 ± 11.7

Diastolic blood pressure (mmHg) 71.0 ± 9.5 71.2 ± 9.4

Heart rate (bpm) 77.4 ± 11.6 77.4 ± 11.2

Framingham 10-year risk score (%) 1.1 ± 2.1 1.2 ± 2.2

“Look Neutral” rating (1–5) 1.3, 95% CI [1.2, 1.3] 1.2, 95% CI [1.2, 1.3]

“Look Negative” rating (1–5) 3.6, 95% CI [3.5, 3.7] 3.7, 95% CI [3.6, 3.7]

“Regulate Negative” rating (1–5) 3.1, 95% CI [3.0, 3.2] 3.1, 95% CI [3.0, 3.2]

“Look Negative” – “Look Neutral” 2.4, 95% CI [2.3, 2.5] 2.4, 95% CI [2.3, 2.5]

“Regulate Negative” – “Look Negative” − 0.5, 95% CI [− 0.6, − 0.4] − 0.5, 95% CI [− 0.6, − 0.4]

Mean CCA IMT (mm) 0.58 ± 0.10 0.58 ± 0.10

Annual progression of mean CCA IMT (mm/yr) - 0.0056 ± 0.0229

Annual progression of mean of the maximum IMT at site of fastest progression - 0.0904 ± 0.117
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that over the follow-up interval: (a) one participant reported a
new diagnosis of and treatment for hypertension; (b) one par-
ticipant began using a lipid-lowering medication; (c) two par-
ticipants began using glucose control medications; (d) three
participants began using psychotropic medications; (e) two
participants began using sleep medication; and (f) one partic-
ipant began using weight-loss medication. Out of the 89 wom-
en tested at baseline, 3 underwent hysterectomy prior to initial
testing; 1 was postmenopausal prior to initial testing; 5 were
premenopausal at initial testing and then peri-menopausal at
follow-up; 1 was peri-menopausal, both at the time of initial
testing and at follow-up; and none reported using hormone
therapy at initial testing or at follow-up. Given the low base
rates of changes in the above conditions and factors over the
follow-up interval, we did not attempt to determine the effects
of such changes on primary outcome variables (CA-IMT met-
rics). Nor did we exclude participants from analyses based on
the changes and conditions noted above.

Assessment of Carotid Artery Intima-Media Thickness
by Ultrasonography

Participants underwent carotid artery ultrasonography at
baseline and at follow-up. The protocol was performed
by a registered vascular technologist in the laboratory of
co-author EB-M. During ultrasonography, participants
were supine with their heads tilted at 45°. Using an
Acuson Antares scanner (Acuson-Siemens, Malvern, PA),
the technologist performed scout views of the left and right
carotid arteries in both the transverse and longitudinal
planes. A region-of-interest encompassing the artery walls
was identified for more focused B-Mode imaging of 3 ca-
rotid areas: (1) the near and far walls of the distal common
carotid artery (1 cm proximal to the carotid bulb); (2) the
far wall of the carotid bulb (defined as the point where the
near and far walls of the common carotid are no longer
parallel and extending to the flow divider); and (3) the first
cm of the far wall of the internal carotid (defined distally
from the edge of the flow divider). For the 3 carotid areas
(common, bulb, and internal), an optimal image was digi-
tized for later scoring with semi-automated edge detection
software (Artery Measurement System; Goteborg
University, Gothenburg, Sweden). The software is used
to draw two lines: one along the lumen-intima interface
and one along the media-adventitia interface. The distances
between the line-identified interfaces were measured in
1 cm segments, generating one measurement (in mm) for
each pixel in each segment (approximately 140 measure-
ments total for averaging). For the carotid 3 areas, the av-
erage, standard deviation, minimum, and maximum mea-
surement values were recorded. Figure 1 illustrates carotid
ultrasound images obtained at baseline and again at follow-
up for one study participant.

Assessment of Annualized Progression of Common
Carotid Artery Intima-Media Thickness

CA-IMT is a surrogate marker of generalized preclinical ath-
erosclerosis that predicts future (incident) clinical cardiovas-
cular and cerebrovascular events, as well as incident plaque
development (Tschiderer et al., 2020; Willeit et al., 2020).
Epidemiological findings demonstrate that an absolute CA-
IMT difference of 0.10 mm corresponds to a ~ 10–15% in-
creased risk for having a future myocardial infarction and ~
13–18% increased risk for a cerebrovascular event (Lorenz
et al., 2007). Moreover, meta-analytic evidence from clinical
trials measuring CA-IMT as a surrogate endpoint shows a
relative risk reduction of 0.91 (95% credible interval: 0.87–
0.95) for primary clinical cardiovascular outcomes associated
with an intervention effect of slowing CA-IMT progression by
0.01mm/year (Willeit et al., 2020). Importantly, carotid artery
segments exhibit differential progression rates over time, and
rates of progression across arterial segments do not equally
predict cardiovascular outcomes (Baldassarre et al., 2013;
Mackinnon et al., 2004). The majority of evidence regarding
CVD risk and the progression of CA-IMT has relied on mea-
surement of the far walls of the common carotid artery
(Willeit et al., 2020).

In view of cumulative evidence, to minimize the influence
of progression heterogeneity across segments, to account for
variable length-of-follow-up intervals, and to limit multiple
statistical testing, the primary and a priori outcome variable
(dependent measure) for analysis was the annualized progres-
sion rate of mean CA-IMT from the common carotid artery, as
digitized from the far wall and computed as IMT Time-2– IMT

Time-1/ years of follow-up. Secondary analyses use a variable
reflecting the fastest rate of progression in the mean of the
maximum CA-IMT for each participant for any segment of
the carotid arteries, as per the computational methods of prior
work (Baldassarre et al., 2013). This choice of a secondary
outcome measure is predicated on findings indicating that the
carotid segment exhibiting the fastest progression rate of the
mean of the maximum CA-IMT for a given individual may
outperform other metrics in the prediction of future cardiovas-
cular events (Baldassarre et al., 2013). CA-IMT data for one
participant were excluded from analyses because of excessive
movement artifacts present in the ultrasound images, yielding
an analytical N = 145 for the machine learning analyses of
CA-IMT longitudinal progression described below.

Assessment of fMRI Activity During Cognitive
Reappraisal

Participants completed a reappraisal task similar to the one
originally developed by Ochsner and colleagues, 2002). This
task was administered as an event-related fMRI paradigm, as
detailed previously (Gianaros et al., 2014). In brief,

Affective Science



participants underwent a standardized training session on re-
appraisal and allowed time for guided practice prior to brain
imaging. Participants were instructed that they would see un-
pleasant and neutral scenes after a cue that provided one of
two instructions: “Look” and “Decrease”. All scenes were
drawn from the International Affective Picture System
(IAPS; http://csea.phhp.ufl.edu/media.html). When cued by
the “Look” instruction, participants were asked to think and
feel naturally. When cued by the “Decrease” instruction, they
were asked to change the way they thought about the scene to
feel less negative (i.e., reappraise). Participants were
instructed to not look away nor to think of something else,

but rather to focus on each scene and actively try to change
their feelings about the scene. After each scene, they used a 1-
to-5 Likert-type scale to rate how negative they felt (1 = not at
all; 5 = strongly negative). Thus, the task consisted of 3 con-
ditions: “Look Neutral,” “Look Negative,” and “Regulate
Negative,” with 15 scenes per condition. Trial order was
pseudo-randomized such that no more than 2 of the same cues
were presented consecutively, and no more than 4 unpleasant
scenes were presented consecutively. Each condition was ini-
tiated by a cue (“Look,” “Decrease”) for 2 s, followed by an
IAPS stimulus for 7 s, and the rating scale for 4 s. Lastly, a rest
screen was shown for a variable 1–3 s. Unpleasant IAPS IDs

Fig. 1 Ultrasound images of the
left common carotid artery (CCA)
for a single participant tested at
baseline (panel a) and then 2 years
and 6.7 months later (panel b).
This participant exhibited an an-
nualized progression of average
carotid artery intima-media thick-
ness (CA-IMT) along the far wall
of the CCA of 0.08/mm per year.
The bottom of the images reflects
the proximal region of the CCA
and the top the distal regions of
the CCA (toward the heart and
head, respectively)
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used in the “Look Negative” condition were 2053, 2703,
3051, 3102, 3120, 3350, 3500, 3550, 6831, 9040, 9050,
9252, 9400, 9414, and 9921. Unpleasant IAPS IDs used in
the “Regulate Negative” condition were 3030, 3100, 3110,
3170, 3230, 3530, 6212, 9250, 9410, 9420, 9910, 2683,
6520, 6838, and 9254. IAPS IDs used in the “Look Neutral”
condition were: 2026, 2036, 2102, 2272, 2308, 2377, 2390,
2393, 2411, 2487, 2595, 7130, 7550, 8312, and 9210.

For this task paradigm, which presented IAPS stimuli in the
same order across participants, there were no statistical differ-
ences in IAPS normative ratings for valence and arousal be-
tween the “Look Negative” and “Regulate Negative” condi-
tions. IAPS stimuli for all conditions also included people (no
stimuli had only inanimate objects). Lastly, there were no
statistical differences in normative IAPS arousal and valence
ratings between the first and second halves of the task para-
digm for the conditions that were modeled for internal consis-
tency analyses below (see additional data posted online at
https://osf.io/hk6qx/).

Likert-type ratings of negative affect after each trial were
used to derive 2 variables: Self-reported affective reactivity
(“Look Negative” – “Look Neutral” ratings) and what has
been referred to as “reappraisal success” (“Regulate
Negative” – “Look Negative” ratings) as per prior fMRI stud-
ies of reappraisal (e.g., Wager et al., 2008). Study materials
that include task training instructions and a post-task experi-
mental questionnaire used to query participants about the ac-
tual emotion regulation strategies that they used during the
task are available online (https://osf.io/hk6qx/). One
participant among the 176 tested at baseline did not
complete the post-task questionnaire because of experimenter
error. This yielded an N = 175 for ancillary coding of whether
and how participants engaged in reappraisal (see below).

MRI Data Acquisition and Preprocessing

Brain imaging was conducted using a 3-Tesla Trio TIM scan-
ner (Siemens, Erlangen, Germany). Prior to imaging, a T1-
weighted magnetization prepared rapid gradient echo
(MPRAGE) structural image of the brain was obtained by
these parameters: repetition time = 2,100 msec; inversion time
= 1,100 msec; echo time = 3.31 msec; and flip angle = 80.
There were 192 sagittal slices (1 mm thick, no spaces between
slices) having a matrix size = 256 × 208 pixels (field-of-view
[FOV] = 256 × 208 mm). Functional blood-oxygen-level-
dependent (BOLD) image acquisition parameters for the
IAPS task were: matrix size = 64 × 64 pixels (FOV = 205 ×
205 mm), TR = 2,000 ms, TE = 28 ms, and FA = 90°. Thirty-
nine slices per volume were collected along an inferior-to-
superior encoding direction. Each slice was 3 mm in thickness
(no gap). A 6-s countdown preceded task onset. The 3 vol-
umes of this countdown were not modeled, nor were the 3

volumes collected after the offset of the final rest period
(344 functional run volumes in total).

fMRI data for the IAPS task were preprocessed with statis-
tical parametric mapping software (SPM12; http://www.fil.
ion.ucl.ac.uk/spm). For spatial preprocessing, T1-weighted
MPRAGE images were classified into 6 tissue types.
Biased-corrected and deformation field maps were then com-
puted. Functional images were realigned to the first image of
the series by 6-parameter rigid-body transformation, using the
re-slice step to match the first image on a voxel-by-voxel
basis. Before realignment, slice-timing correction was applied
to account for acquisition time variation. Realigned images
were co-registered to each participant’s skull-stripped and
biased-corrected MPRAGE image. Co-registered images
were normalized to Montreal Neurological Institute (MNI)
space. Normalized images were smoothed by a 6-mm full-
width-at-half-maximum (FWHM) Gaussian kernel.
Preprocessed images were manually (visually) inspected to
verify the absence of pipeline errors and suitability for
analysis.

In within-individual fMRI analyses, univariate general lin-
ear models (GLMs) were estimated to compute contrast maps
that were used for prediction analysis described below. Task
events were modeled by rectangular waveforms convolved
with the default hemodynamic response function in SPM12.
These regressors modeled events of the trial (i.e. cue, IAPS
scene, rating period, rest) specific to each condition (12 task
regressors in total). In each GLM, the six realignment param-
eters from pre-processing were included as nuisance regres-
sors, and low-frequency artifacts were removed by a high-pass
filter (128 s). Error variance was estimated and then weighted
by restricted maximum likelihood estimation, as implemented
in the robust weighted least squares (WLS) toolbox, v4.0
(Diedrichsen & Shadmehr, 2005). Linear contrasts were com-
puted as “Look Negative vs. Look Neutral” and “Regulate
Negative vs. Look Negative” comparisons corresponding to
the IAPS scene viewing periods. Main effects corresponding
to the latter contrasts are determined from individual GLMs at
the group (between-individual) level with whole-brain correc-
tion for multiple testing using a voxel-wise and false discov-
ery rate (FDR; Benjamini & Hochberg, 1995) threshold of
0.05 for display purposes in Figure 2.

Statistical Analyses

As preregistered, two primary research questions were ad-
dressed: The first was whether individual differences in brain
activity during the viewing of unpleasant relative to neutral
IAPS scenes predicted the multiyear change in CA-IMT (in
mm per year). The second was whether individual differences
in brain activity during the reappraisal vs. the viewing of
unpleasant IAPS scenes predicted the multiyear change in
CA-IMT. We expected that multivariate and whole-brain
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patterns evoked by viewing (question 1) and reappraising
(question 2) unpleasant IAPS scenes would predict the annu-
alized rate of progression of (a) far-wall CA-IMT in the com-
mon carotid (primary study dependent measure) and (b) the
mean of the maximum CA-IMT in the carotid segment
exhibiting the fastest rate of progression for a given individual
(secondary study dependent measure).

The independent variable used for the first question was the
whole-brain fMRI contrast map corresponding to the “Look

Negative vs. Look Neutral” comparison. The independent
variable used for the second question was the whole-brain
fMRI contrast map corresponding to the “Regulate Negative
vs. Look Negative” comparison. For all analyses using whole-
brain fMRI contrasts maps, we applied a mask that included
only gray matter voxels. This operation was performed using
the function, “masking.apply_mask,” which is available in
nilearn (Abraham et al., 2014). As noted, the primary depen-
dent variable used for both study questions was

Fig. 2 Color-scaled T-maps of
brain areas exhibiting significant
BOLD signal changes for the
contrasts of (A) “Look Negative
vs. Look Neutral” trials and (B)
“Regulate Negative vs. Look
Negative” trials. Maps in A–B
correspond to statistical paramet-
ric T-maps and are shown at a
false discovery rate (FDR)
threshold of 0.05. On the left, map
values are projected on the lateral,
medial, dorsal, ventral, anterior
and posterior brain surfaces for
both hemispheres. On the right,
axial planes are depicted for to z
coordinates of − 10, 0 and 10.
Warmer colors (red-orange) re-
flect relative increases in activity,
whereas cooler colors (blue) re-
flect relative decreases
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operationalized as the annualized progression of mean CA-
IMT from the far wall of the common carotid artery, as com-
puted by the change inmm per year. The secondary dependent
variable used for both study questions was operationalized as
the annualized progression of the mean of the maximum CA-
IMT of the carotid artery segment showing the fastest progres-
sion for a given person, computed as mm change per year
following computational steps detailed previously
(Baldassarre et al., 2013).

To establish generalizability in all statistical models testing
predictive associations for both primary study questions and
all independent and dependent variables, nested and k-fold
cross-validation was implemented to (a) optimize regression
estimators in an “inner loop” and then (b) determine predictive
generalizability in an “outer loop” using leave-one-out cross-
validation. Specifically, machine learning analyses with regu-
larization (penalization) and feature selectionwere executed in
a LASSO-PCR framework (Kohoutova et al., 2020).

In LASSO-PCR, principal components dimensionality re-
duction of the voxel-wise predictor space of the contrast maps
for the “Look Negative vs. Look Neutral” (question 1) and
“Regulate Negative vs. Look Negative” (question 2) compar-
isons was followed by optimizing the penalty parameter, λ, in
an inner loop applying 5-fold cross-validation. In this way,
participants were divided into training (80%) and testing
(20%) samples by stratifying over each CA-IMT outcome
variable distribution for primary and secondary analyses.
Within each cross-validation fold, LASSO was conducted
on training samples using a sequence of 1,000 λ values, and
the performance of each λ was determined by calculating the
mean squared error (MSE) between predicted and observed
outcome variables in respective testing (hold-out) samples.
After identifying the optimal λ across all test samples, the
entire LASSO procedure was repeated using optimal λs on
the entire sample to produce a predictive model.

To test the generalizability of the LASSO models and
to generate estimates of predicted outcomes for each par-
ticipant, we repeated the above process in an outer cross-
validation loop using the leave-one-out method. The final
predictive performance of a given LASSO model was
summarized by concatenating across the outer loops.
Here, relationships between predicted and observed
values were summarized by Pearson correlation coeffi-
cients and corresponding 95% bootstrapped confidence
intervals (CIs). The discrepancy between predicted and
observed values was calculated by the mean absolute er-
ror (MAE). Following guidelines for predictive modeling,
variance in observed values explained by predicted values
(R2) was calculated by the sums-of-squares formulation
(Poldrack et al., 2020). Bayes factors BF10 and BF01
were computed using the ‘BayesFactors’ package
(v0.9.12–4.2; Morey & Rouder, 2011) to estimate the sta-
tistical evidence of prediction effects, complementing the

informat ion provided by convent ional p -va lues
(Wagenmakers, 2007). BF10 reflects the posterior proba-
bility of the alternative hypothesis, relative to the null,
whereas BF01 reflects its inverse—corresponding to sta-
tistical evidence for the null relative to the alternative
hypothesis. For any outcome where generalization to un-
seen (test) data was observed (i.e., leave-one-out R2 > 0),
a final predictive map was generated by extracting the
feature weights after fitting the LASSO-PCR to the entire
dataset. This map was further multiplied by the input data
covariance matrix to facilitate appropriate interpretation of
the weights with respect to the response variable (Haufe
et al., 2014). Likewise, any individual features that reli-
ably contributed to observed predictive associations were
planned a priori to be estimated by bootstrap resampling
(5,000 resamples) at p < 0.05.

Ancillary Analyses

As contingent on any observed findings derived from the first
and second study questions above, statistical tests were
planned (preregistered) to evaluate whether conventional
measures of CVD risk modified associations between multi-
variate brain patterns and the progression of CA-IMT. These
included contingent multiple regression tests of whether
Framingham risk scores at the time of initial (baseline) testing
would moderate predicted vs. observed CA-IMT associations.
If moderation by Framingham scores was observed, then fur-
ther sensitivity testing was planned. Here, age, sex, and
smoking status were planned to be removed from
Framingham risk scores to compute a composite cardiometa-
bolic risk score by z-scoring and averaging components of the
metabolic syndrome; namely blood pressure, waist circumfer-
ence, body mass index, lipid levels, and glucose. Collectively,
using Framingham and composite cardiometabolic risk scores
as effect modifiers would address questions about the degree
to which affective brain patterns may interact with conven-
tional CVD risk factors to predict CA-IMT progression. In
addition to plans to test for effect modification by convention-
al CVD risk factors, additional ancillary testing was planned
to evaluate whether self-reports of negative affect evoked by
viewing or reappraising unpleasant IAPS scenes (a) correlated
with the progression of CA-IMT, and if so, (b) modified the
predictive associations between multivariate brain patterns
and CA-IMT progression.

In final ancillary testing, we computed the within-session
reliability of fMRI activity evoked by the task paradigm (i.e.,
internal consistency computed by the intraclass correlation
coefficient; ICC) following similar steps used previously
(Gianaros et al., 2020). Specifically, GLM analyses were used
to generate fMRI contrast maps for the approximate first and
second halves of the IAPS task paradigm (i.e., the first 23 and
last 22 trials). ICC analyses were then conducted by
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calculating the correlation between contrast maps from the
first and second halves of the task and applying the
Spearman-Brown (SB) correction method on a voxel-wise
basis. Comparable analyses were executed for self-reports of
negative affect.

As contingent on findings from the first and second
study questions, we further planned to estimate the ICCs
of the final predictive weight maps for CA-IMT generated
by LASSO-PCR. Here, the approach was to compute the
dot-product of all of the pairs of contrast maps generated
by the split-half procedure described above. For all
within-session reliability testing, we planned to adopt a
conservative approach that would estimate out-of-sample
ICCs. The basis for this approach is that evaluating
within-session reliabilities on the same individuals used
to generate predictive weight maps may over-estimate
ICC values. Accordingly, we planned to embed these cal-
culations within the cross-validation procedures that
assessed the generalizability of the LASSO-PCR models.
In this way, the whole-brain predictive patterns estimated
in each training set of the outer fold in cross-validation
could be used to produce a dot-product with the pair of
split-half contrast maps of the individual’s data used for
testing. Final ICC values were planned to be calculated
between the out-of-sample dot-products of each split-half
contrast map concatenated across all participants.

Assessment of Task Comprehension

We explored the possibility that excluding those individuals
who failed to engage in reappraisal during the fMRI task could
alter (e.g., improve) associations between predicted vs. ob-
served annualized CA-IMT values. To this end, two of the
authors (PJG and CD) independently coded free-response de-
scriptions of the emotion regulation strategies that participants
used during the fMRI task as reflecting reappraisal or not
(binary variable: 0 = no, 1 = yes). Inter-rater agreement was
computed by the two-way random effects ICC method to de-
termine absolute inter-rater agreement (Koo & Li, 2016).
Discrepancies between coders were first adjudicated by con-
versation. Unresolved judgments were adjudicated by a third
rater who was blinded to prior coding (co-author, KM) before
sensitivity tests reported below. To these ends, participants
were asked to describe the primary and any secondary strate-
gies they used to decrease their emotional responses to the
unpleasant IAPS scenes in the “decrease” (i.e., “Regulate
Negative”) condition. Specifically, they were asked: “What
sorts of things did you tell yourself to try to help you feel
differently in response to the negative pictures?” The response
format was open ended.

Coding of participant responses followed methods de-
tailed previously (McRae, Ciesielski, & Gross, 2012).
Specifically, responses were coded as reflecting

reappraisal if falling into any of following categories:
(1) explicitly positive, (2) change in current circum-
stances, (3) reality challenge, (3) change of future conse-
quences, (4) ascribing agency to a person capable of
changing the circumstances depicted in the scene, (5)
distancing, (6) problem-solving, (7) acceptance, and (8)
non-specific reappraisal. Failures to reappraise (e.g.,
avoiding looking at or thinking about the IAPS stimulus,
using expressive suppression as the primary strategy, or
using a strategy that is not cognitive) resulted in a score
of 0. As noted, 1 participant did not complete the post-
fMRI inventory. There were 8 participants who were
judged as failing to use reappraisal by the primary raters.
An additional 2 participants were judged as failing to use
reappraisal after adjudication by the third rater. There
were 3 additional participants who provided responses
that could not be judged by the raters as reflecting reap-
praisal or not. Inter-rater agreement for coding primary
strategies as reappraisal was ICC = 0.74; 95% CI = 0.66–
0.80, and that for secondary strategies was ICC = 0.79;
95% CI = 0.68–0.86. Of the participants who were
judged as not engaging in reappraisal by the raters, 8
were among those with longitudinal CA-IMT data.
Thus, data for these 8 participants were removed in an-
cillary sensitivity tests of the primary study questions.

Non-Preregistered Exploratory Analyses

In analyses that were not preregistered, we repeated the
machine-learning (LASSO-PCR) modeling described above
in an attempt to predict individual differences in self-
reported affective reactivity (“Look Negative” – “Look
Neutral” ratings) and “reappraisal success” (“Regulate
Negative” – “Look Negative” ratings). These were imple-
mented to explore whether the fMRI contrast maps that were
used to model CA-IMT were sufficient for predicting vari-
ables of conceptual relevance to negative affect and reapprais-
al. As in tests of the primary research questions on CA-IMT,
the independent variable used to predict affective reactivity
was the whole-brain fMRI contrast map corresponding to
the “Look Negative vs. Look Neutral” comparison. The inde-
pendent variable used to predict reappraisal success was the
whole-brain fMRI contrast map corresponding to the
“Regulate Negative vs. Look Negative” comparison. As
planned for CA-IMT analyses, we assessed the ICC of maps
that predicted self-reported changes in negative affect by the
cross-validation, split-half, out-of-sample, and dot-product
steps above.

All machine learning and related analyses of brain imaging
data were performed in Python, version 3.8, using the scikit-
learn (Pedregosa et al., 2011) and nilearn (Abraham et al.,
2014) libraries. Statistical analyses of non-brain imaging data
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were performed in R, version 3.6.1 (R Program for Statistical
Computing).

Results

Progression of CA-IMT over the Multiyear Follow-Up
Period

As expected in this midlife sample of 145 adults with com-
plete longitudinal data, far-wall common carotid CA-IMT
(primary study dependent measure) exhibited a positive annu-
alized progression over the follow-up period, with an average
increase of 0.006 mm per year (95% bootstrapped CI = 0.002
to 0.01 mm per year). Likewise, the mean of the maximum
CA-IMT in the carotid segment exhibiting the fastest rate of
progression for a given individual (secondary study dependent
measure) exhibited progression over the follow-up interval,
with an average increase of 0.090 mm per year (95%
bootstrapped CI = 0.074 to 0.110 mm per year). The higher
progression rate for the secondary study measure is compara-
ble to prior findings and was anticipated because the site of
fastest maximum CA-IMT progression includes arterial seg-
ments likely to contain focal atherosclerotic lesions driving
greater CA-IMT (Baldassarre et al., 2013).

Self-Reported Negative Affect During the fMRI Task

Among the 176 participants with complete baseline data,
viewing unpleasant IAPS scenes compared with neutral
scenes increased self-reported negative affect by an average
of 2.38 ± 0.71 (SD) points on a 1-to-5 Likert-type scale (M =
3.64 ± 0.65 vs 1.26 ± 0.32, paired t[175] = 44.19, p < 0.001).
Reappraising unpleasant IAPS scenes as compared with view-
ing these scenes decreased self-reported negative affect by
0.51 ± 0.62 points,M =3.14 ± 0.65 vs.M = 3.64 ± 0.65, paired
t(175) = 10.89, p < 0.001. These findings were unchanged in
direction and statistical significance when analyses were re-
stricted to only those 145 participants with complete follow-
up data.

Main Effects of the fMRI Task and Within-Session
Reliability of Contrast Maps

Among the 176 participants with complete baseline data, the
“Look Negative vs. Look Neutral” contrast revealed that
viewing unpleasant IAPS scenes engaged a distributed ensem-
ble of brain regions implicated in processing complex visual
affective stimuli. Brain regions exhibiting a relative increase
in activity to unpleasant IAPS scenes included the medial
temporal lobe (encompassing the amygdala), as well as areas
of the dorsal-medial pre-frontal, anterior cingulate, anterior
insular, and visual cortices in the occipital lobe. Brain regions

exhibiting a relative decrease in activity to unpleasant IAPS
scenes included ventral portions of the medial prefrontal cor-
tex and medial portions of occipital and parietal cortices, as
well as regions of the pre- and post-central gyri. Figure 2
(panel a) illustrates main effects of the fMRI task (see also
contrast maps available at NeuroVault (https://neurovault.
org/collections/10337). There was wide variability, however,
in the within-session reliability of mass univariate fMRI ac-
tivity changes distributed across the brain—with only 574
voxels (0.28% of the gray matter voxels) exhibiting “good-
excellent” ICC values (maximum ICC = 0.84). The median
ICC value of the entire contrast mass univariate contrast map
was 0.21, reflecting poor reliability (see panels a and b of
Figure 3, as well as voxel-wise maps available at NeuroVault).

As illustrated in Figure 2 (panel b), the “Regulate Negative
vs. Look Negative” contrast reveals that reappraising unpleas-
ant IAPS scenes engaged a distributed ensemble of brain re-
gions thought to be involved in the cognitive control of emo-
tion. Brain regions exhibiting a relative increase in activity
while reappraising unpleasant IAPS scenes included prefron-
tal areas of the middle, inferior, and superior frontal gyri, as
well as the inferior parietal lobule and anterior insula. Brain
regions exhibiting a relative decrease in activity while
reappraising unpleasant IAPS scenes included portions of
the precentral gyrus, middle and inferior frontal gyri, inferior
temporal gyri, and posterior cingulate cortex. Compared to the
“Look Negative vs. Look Neutral” contrast maps, there was
an overall reduction of ICC values on a voxel-wise basis,
suggesting less within-session reliability of reappraisal-
related fMRI activity (see panels a and b of Figure 3, as well
as voxel-wise maps available at NeuroVault). More precisely,
just 42 voxels (0.02% of grey matter voxels) exhibited “good-
excellent” ICC values (maximum ICC = 0.82). The median
ICC value across all voxels for this mass univariate contrast
map was 0.11, reflecting poor reliability.

For completeness of reporting and relative comparisons to
fMRI activity patterns, ICCs for self-reports of negative affect
ratings were as follows: “Look Neutral” = 0.57; “Look
Negative” = 0.74; “Regulate Negative” = 0.73; “Look
Negative - Look Neutral” = 0.71; and “Regulate Negative -
Look Negative” = 0.54. Collectively, the latter findings reflect
moderately higher reliabilities for self-reports of negative af-
fect than for fMRI activity in this task paradigm.

Prediction of CA-IMT

Analyses tested whether individual differences in brain activ-
ity during the viewing of unpleasant affective scenes predicted
the annualized rate of progression of (a) far-wall commonCA-
IMT and (b) the mean of the maximum CA-IMT in the carotid
segment exhibiting the fastest rate of progression for a given
individual. By cross-validated LASSO-PCR modeling, the
annualized progression of far-wall common CA-IMT was
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not predicted by the contrast of “Look Negative vs. Look
Neutral”, r(143) = − 0.411, 95% CI = − [0.939–0.353],
MAE = 0.017 mm, R2 = -0.022, BF10 = 0.031, and BF01
=32.492. The negative signs of the r and R2 values for hold-
out (test) set evaluations likely reflect the extremely poor
model fits and should be interpreted as equivalent to values
of zero. More precisely, apparent negative effect sizes can be
attributed to the models not reliably identifying predictive
principal components.

Similar observations were made for models using “Look
Negative vs. Look Neutral” contrasts to predict the mean of
the maximum CA-IMT in the carotid segment exhibiting the
fastest rate of progression for a given individual, r(143) = −
0.139, 95% CI = − [0.39–0.042], MAE = 0.056, R2 = −
0.05, BF10 = 0.075, and BF01 = 13.34.

To test whether these observed poor performances could be
due to excessive shrinkage during model estimation, we re-
peated these calculations in sensitivity tests that were not

Fig. 3 (a) Whole-brain voxel-wise intraclass coefficient (ICC) summa-
ries that reflect the split-half internal consistencies of the “Look Negative
vs. Look Neutral” contrast maps and “Regulate Negative vs. Look
Negative” contrast maps. To aid in visualizing the “good-excellent”

ICC range due to the scarcity of voxels, glass brain plots were employed.
(b) Comparison of reliabilities from both contrast maps using the empir-
ical distribution function and box plots that reflect the median and distri-
bution of the ICC values
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preregistered by replacing the LASSO regression model (a L1
regularization term) for ridge (an L2 regularization term) and
elastic net (both L1 and L2 regularization terms) models.
Likewise, we also tested whether the LASSO-PCR model
behaved differently by changing the outer cross-validation to
a 10-fold partition scheme. In all these cases, similar results
were obtained insofar as no CA-IMT variable was reliably
predicted by any fMRI pattern.

As above for the first study question, machine learning
analyses were used to test whether individual differences
in brain activity evoked by reappraising unpleasant IAPS
scenes predicted the annualized rate of progression of (a)
far-wall common CA-IMT and (b) the mean of the max-
imum CA-IMT in the carotid segment exhibiting the
fastest rate of progression for a given individual. Using
cross-validated LASSO-PCR, the annualized progression
of far-wall common CA-IMT was not predicted by the
“Regulate Negative vs. Look Negative” contrast, r(143)
= − 0.367, 95% CI = − [0464–0.270], MAE = 0.017
mm, R2 = − 0.032, BF10 = 0.034, and BF01 =
29.299. The Bayes factors again indicated strong evidence
in favor of the null hypothesis. Similar findings were ob-
served for models using “Regulate Negative vs. Look
Negative” contrasts to predict the mean of the maximum
CA-IMT in the carotid segment exhibiting the fastest rate
of progression for a given individual, r(143) = − 0.405,
95% CI = − [0.792–0.301], MAE = 0.056 mm, R2 = −
0.048, BF10 = 0.031, and BF01 = 32.075. As with the
models for the progression of common CA-IMT, the
models trained to predict the mean of the maximum CA-
IMT had strong to very strong evidence in favor of the
null hypothesis. Similar to findings for the “Look
Negative vs. Look Neutral” maps, there were no differ-
ences in results after changing the regularization terms in
the regression models and the outer cross-validation
strategy.

Lastly, sensitivity testing that excluded the 8 individ-
uals who were judged as failing to use reappraisal during
the fMRI task did not alter any of the above observations.
In other words, the findings did not improve when includ-
ing only those individuals who unambiguously engaged in
reappraisal.

In view of our inability to predict CA-IMT in any of
the preregistered and unplanned analyses, there was no a
priori basis to execute contingent tests of whether con-
ventional risk factors for CVD and self-reports of nega-
tive affect modified associations between multivariate
brain patterns and the progression of CA-IMT.
Moreover, because all machine learning approaches
failed to generate a reliable fMRI pattern that predicted
CA-IMT, we were unable to test whether resulting pre-
dicted vs. observed CA-IMT associations could be mod-
erated by additional variables. For completeness of

reporting, however, univariate correlations between all
study variables reported herein are depicted in Figure 4,
with additional correlation results available online at OSF
(https://osf.io/hk6qx/).

Prediction of Individual Differences in Task-Related
Changes in Self-Reported Negative Affect

In view of the null findings bearing on CA-IMT, additional
testing not in the preregistration plan was conducted to test
whether we could predict self-reported affective reactivity
(“Look Negative” – “Look Neutral” ratings) and reappraisal
success (“Regulate Negative” – “Look Negative” ratings).
Here, a predictive association was found between the out-of-
sample differences in affective reactivity and changes in brain
activation during viewing unpleasant vs. neutral IAPS scenes
(“Look Negative vs. Look Neutral” rating differences), as re-
vealed by a nested cross-validated LASSO-PCR (Figure 5,
panel a). However, this predictive association exhibited rela-
tively weak statistical evidence by Bayes criteria, r(143) =
0.143, 95% CI = [− 0.027, 0.308], one-tailedp = 0.043,
MAE = 0.520, R2 = 0.015, BF10 = 1.515, and BF01 =
0.66. In this case, the final predictive model retained 8 princi-
pal components from an optimal λ = 1.391, and it had an
overall ICC = 0.474. A summary of areas where increased
and decreased multivariate activity patterns consistently con-
tributed to the prediction of affective reactivity after
bootstrapping is provided in Supplementary Table 1.

By comparison to the affective reactivity findings above,
out-of-sample differences in self-reports of reappraisal success
(“Regulate Negative vs. Look Negative” rating differences)
were predicted by fMRI activity changes in a nested cross-
validation LASSO-PCRmodel (Figure 5, panel b). This effect
exhibited strong statistical evidence by Bayes criteria, r(143)
= 0.457, 95% CI = [0.307, 0.468], one-tailedp < 0.001, MAE
= 0.418, R2 = 0.209, BF10 > 150, and BF01 < 0.001.
Deploying this predictive model revealed an optimal λ =
0.023, which retained 137 principal components, yielding a
whole-brain weight map with an ICC = 0.390. Repeating
these analyses to exclude those 8 individuals whowere judged
as failing to reappraise during the fMRI task produced com-
parable results r(133) = 0.415, 95% CI = [0.239, 0.561], one-
tailed p < 0.001, MAE = 0.421, R2 = 0.172, BF10 > 150, and
BF01 < 0.001. A summary of areas where increased and
decreased multivariate activity patterns consistently contribut-
ed to the prediction of reappraisal success after bootstrapping
is provided in Supplementary Table 2.

Discussion

Does cognitive reappraisal evoke a pattern of brain activity
that reliably predicts the multiyear progression of a vascular
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marker of cardiovascular risk among midlife individuals?
Findings from the present study suggest not. Hence, viewing
and reappraising unpleasant scenes engaged an ensemble of
brain systems that are implicated in affective stimulus process-
ing and the cognitive control of emotion among 176 otherwise
healthy midlife individuals (Figure 2). Viewing and
reappraising unpleasant scenes likewise resulted in increases
and decreases in self-reported negative affect, respectively
(Table 1). Notwithstanding, brain activity patterns and corre-
sponding changes in self-reported negative affect evoked by
viewing and reappraising unpleasant affective scenes did not
reliably associate with the annualized change in multiple vas-
cular markers of cardiovascular risk obtained from different
segments of the carotid artery over a multiyear follow-up pe-
riod among 145 individuals with complete follow-up data.
Collectively, these longitudinal findings do not support hy-
potheses derived from prior epidemiological, psychophysio-
logical, and neuroimaging evidence suggesting that brain ac-
tivity patterns evoked by cognitive reappraisal may comprise
affective neural correlates of future (prospective) changes in
cardiovascular risk. Plausible explanations of the present ob-
servations could include psychometric limitations and other
features of the fMRI reappraisal task; low statistical power; a
short follow-up period for the assessment of carotid artery
markers, as compared with prior epidemiological studies; the
restricted range of preclinical and clinical disease in this oth-
erwise healthy sample; and, lastly, heterogeneity of specific
reappraisal tactics used across study participants that may ob-
scure meaningful individual differences in the affective neural
correlates of cardiovascular risk.

In line with prior epidemiological findings, CA-IMT visu-
alized from the far wall of the common carotid artery prog-
ressed at a mean annualized rate of 0.006 mm per year among
the 145 participants who returned for follow-up assessments.
As expected, the mean of the maximum CA-IMT in the carot-
id segment exhibiting the fastest rate of progression for a
given individual was appreciably higher, with an average in-
crease of 0.090 mm per year over the follow-up interval. The
latter rates of progression approximate those observed among
otherwise healthy midlife adults, with rates of progression
being accelerated among clinical populations and those at
high risk for CVD (Willeit et al., 2020). However, we note
that the progression rates of the present study sample are
somewhat less than what has been observed in other midlife
community-dwelling adults. For example, Kozakova et al.
(2013) reported 3-year progression rates of 0.017 mm per year
for men and 0.021 for women in the common carotid artery
(mean ages of 44 years at baseline). It is thus possible that our
exclusion criteria resulted in a sample of people for whom the
average and range of CA-IMT progression are restricted.
Notably, the annualized change in CA-IMT has not been con-
sistently associated with known or emerging CVD risk factors
that are assessed only at baseline. For example, in a midlife
sample of nearly 16,000 adults, only small effect sizes were
observed for a limited set of baseline risk factors in the pre-
diction of the rate of change in CA-IMT, including type 2
diabetes, smoking status, HDL levels, pulse pressure (i.e.,
the difference between SBP and DBP), white blood cell count,
and fibrinogen levels (Chambless et al., 2002). Among over
3,000 adults from the Multi-Ethnic Study of Atherosclerosis,

Fig. 4 A correlogram of study
variables depicting the strength of
their associations. Colors and
sizes of each area in the
correlogram correspond to the
direction and size of each
correlation, as coded along the
scale of the horizontal axis. SBP,
systolic blood pressure; DBP,
diastolic blood pressure; HR,
heart rate; HDL, high-density li-
poproteins; LDL, low-density li-
poproteins, CA-IMT, carotid ar-
tery intima media thickness; mm,
millimeter. *p < .05; **p < .01
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only ethnicity, HDL levels, and use of medications to lower
lipids and blood pressure at baseline exhibited small effect
sizes correlating with the rate of change in CA-IMT in over
a decade of follow-up (Tattersall et al., 2014). Thus, in the
broader context of epidemiological findings and what has
been observed previously for baseline predictors of the change
in CA-IMT, it may be that the affective neural correlates of
future changes in cardiovascular risk—if existent—are mini-
mal in their effect sizes and unreliably detected in small sam-
ples of otherwise healthy adults who are followed over rela-
tively brief time periods and exhibit a restricted range of pro-
gression rates. Indeed, only increased age correlated

significantly with an accelerated increase in the mean of the
maximum CA-IMT in the site of fastest progression the pres-
ent sample, with all other baseline factors exhibiting non-
statistically significant associations with longitudinal changes
in CA-IMT (see Figure 4).

In extension of the above interpretive issues, as shown in
Figure 3, the mass univariate patterns of brain activity evoked
by viewing and reappraising unpleasant affective scenes did
not exhibit particularly strong overall within-session reliabil-
ities (cf., Berboth et al., 2021). The latter may have
undermined the ability of fMRI contrast maps to predict small
changes in CA-IMT over the follow-up period across

Fig. 5 Raw and thresholded
weight maps used to predict
individual differences in self-
reported affective reactivity
(“Look Negative” – “Look
Neutral” ratings) and “reappraisal
success” (“Regulate Negative” –
“Look Negative” ratings). For
thresholding, cut-offs were p <
0.05 via bootstrapping (5000 iter-
ations) and cluster-extent of k >
50 contiguous voxels. Warmer
colors (orange/yellow) reflect
positive pattern weights and
cooler colors (blue) reflect nega-
tive weights
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individuals (Elliott et al., 2020). Thus, it may be other baseline
indicators of brain activity, such as resting state metabolism or
multivariate connectivity metrics reflecting network dynam-
ics, could be more likely to exhibit larger or more consistent
patterns of association with clinically relevant CVD outcomes
or intermediate risk factors (cf., Tawakol et al., 2017), possi-
bly owing to their more suitable psychometric properties for
studies of individual differences (Elliott et al., 2020; Kragel
et al., 2021).

The present null findings regarding the prediction of CA-
IMT can also be interpreted in the context of the heterogeneity
that participants reported in the use of primary and secondary
reappraisals. While cognitive reappraisal can be considered as
a process to change the meaning that is ascribed to stimuli,
events, and contexts to change affective experiences (Gross,
2014) or as a recategorization process that alters the construc-
tion of affective states (Barrett, 2017), there are different tac-
tics that individuals may use to reappraise at any given time
(McRae, Ciesielski, & Gross, 2012). Hence, while approxi-
mately 7.4% of the entire baseline sample was judged as fail-
ing to comply with reappraisal instructions, the remaining
sample reported using a broad range of tactics to reappraise.
The 4 most frequently reported primary strategies were coded
as reality challenges (e.g., “This picture is from a movie,” N =
44), changing the construal of future consequences (“This
situation will improve with time,” N = 43), changing the con-
strual of current circumstances (“The person is lucky to be
alive,”N = 30), and ascribing agency to people in the affective
scenes (“Professionals will help this person out of the situa-
tion,” N = 20). Other coded reappraisal tactics were approxi-
mately equally distributed across the sample. Thus, although
averaged self-reported ratings of negative affect decreased on
reappraisal trials and although individual differences in these
changes were moderately predicted by fMRI activity changes

(R2 = 0.21, Figure 5, panel b, Supplementary Tables 1–2), it is
possible that between-individual variation in specific reap-
praisal tactics are not fully encoded in the fMRI contrast maps
used to predict putative reappraisal-related health outcomes,
including CA-IMT progression. That is, although cognitive
reappraisal appeared to elicit “robust” effects on brain activity
(Figure 2), the failure to have captured substantive between-
individual variation in diverse reappraisal processes and their
neural correlates in predictive modelingmay have further con-
tributed to the observed low internal consistency values of the
contrast maps as compared to those for self-reported negative
affect across the paradigm (e.g., Infantolino et al., 2018) and
the overall patterns of null findings for CA-IMT. The latter
interpretation is on par with cumulative evidence that common
fMRI task paradigms and metrics, such as those used here,
may have limited statistical reliability to estimate stable indi-
vidual differences (Elliott et al., 2021). Moreover, post-hoc
exploratory analyses not in the preregistration plan bearing
on the latter point suggest the possibility that reappraisal suc-
cess actually declined on average from the first to the second
half of the task paradigm (Cohen’s d = 0.355; see Figure 6).
As shown, there was thus an increase in negative affect for
reappraisal (“Regulate Negative”) trials over the course of the
task. By comparison, there were no statistical changes in rat-
ings across the task for reactivity (“Look Negative”) trials.
Lastly, there appeared to be marked heterogeneity in changes
in affective ratings for reappraisal trials (see Figure 6). In
aggregate, it is thus possible that the internal consistency or
reliability of fMRI contrasts maps for reappraisal is
constrained both by the moderate reliability of affective per-
formance (i.e., “Regulate Negative - Look Negative” rating
difference ICC = 0.54), as well as a mean decline in overall
reappraisal success over time that is variably seen across
participants.

Fig. 6 A slope graph showing changes in average ratings of self-reported
negative affect per person between each half of the task paradigm for the
“Look Negative” (panel a) and “Regulate Negative” (panel b) conditions.
Greater ratings in the first half compared with the second half are
displayed with a blue line, whereas greater ratings in the second half

compared with the first half are displayed with a red line. Grey lines
represent no change in average ratings between halves. Changes across
participants were tested by a paired t-test, and the size of this effect was
computed as a Cohen's d for paired samples
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A final interpretive consideration is that prior epidemiolog-
ical work on individual differences in reappraisal and risk
factors for CVD have largely focused on trait dimensions of
emotion regulation, as often assessed by the Emotion
Regulation Questionnaire (Gross & John, 2003). The present
study employed an fMRI task paradigm that involved
instructed reappraisal, and the correspondence between
fMRI and self-report variables from this task paradigm to trait
dimensions of reappraisal appears to be moderate at best
(McRae, Jacobs, et al., 2012). Indeed, the ability to effectively
implement reappraisal during the fMRI task paradigm may
not uniformly represent or reliably index the habitual use of
this emotion regulation strategy in real-world contexts.
Moreover, recent evidence suggests that the habitual use of
reappraisal in everyday life may moderate the effects of
instructed reappraisal on cardiovascular and neuroendocrine
parameters of physiology during laboratory stress testing
(Jentsch & Wolf, 2020), but evidence for such moderation
appears to be mixed (Griffin & Howard, 2021). In these
regards, an inferential consideration is that the study exclusion
criteria may have restricted the sample to those without affec-
tive disorders, which may have further constrained variability
not only in CA-IMT, but also trait and state features of emo-
tion regulation of relevance to CVD risk. There is thus a ra-
tionale for future lines of inquiry on interactions between
instructed and trait features of reappraisal in the prediction
of CVD risk among more diverse populations.

To close, the present findings do not indicate that multivar-
iate brain activity patterns evoked by viewing and
reappraising unpleasant scenes reliably predict the multiyear
progression of a vascular marker of CVD risk (CA-IMT)
among otherwise healthy midlife adults, even though individ-
ual differences in self-reported changes in negative affect were
moderately predicted by such patterns. The present null find-
ings also do not agree with those of our prior cross-sectional
report on CA-IMT and fMRI activity measured during the
viewing and reappraising of unpleasant scenes among 157
adults (Gianaros et al., 2014). Open questions include whether
the present null findings could be attributed to the relatively
small sample of adults tested and small effect sizes to be de-
tected at the population level; the known inconsistency of
baseline individual-difference factors to predict CA-IMT over
relatively short and variable follow-up periods; the overall
weak-to-moderate within-session reliability of brain activity
patterns evoked by the fMRI task paradigm; heterogeneity in
when, how, and by whom reappraisal is used to change affec-
tive states; and, the yet-to-be clarified interplay of instructed
vs. trait dimensions of reappraisal in the context of CVD risk.
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