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Errors in Action Timing and Inhibition Facilitate Learning
by Tuning Distinct Mechanisms in the Underlying Decision
Process
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Goal-directed behavior requires integrating action selection processes with learning systems that adapt control using environmental
feedback. These functions are known to intersect at a common neural substrate with multiple known targets of plasticity (the cortico-
basal ganglia-thalamic network), suggesting that feedback signals have a multifaceted impact on future decisions. Using a hybrid of
accumulation-to-bound decision models and reinforcement learning, we modeled the performance of humans in a stop signal task where
participants (N 75: 37 males, 38 females) learned the prior distribution of the timing of a stop signal through trial-and-error feedback.
Changes in the drift rate of the action execution process were driven by errors in action timing, whereas adaptation in the boundary height
served to increase caution following failed stops. These findings highlight two interactive learning mechanisms for adapting the control
of goal-directed actions based on dissociable dimensions of feedback error.
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Introduction
Environmental uncertainty demands that goal-directed actions
be executed with a certain degree of caution, requiring agents to
strike the appropriate balance between speed and control based
on internal goals and contextual constraints. Because of the per-
vasive and dynamic nature of uncertainty in the real world, the
degree to which behavioral control is exercised must be learned

through trial and error. Indeed, decision processes (Verbruggen
and Logan, 2009; Schall et al., 2017) and postdecision feedback
learning (Sutton and Barto, 1998; Frank and Badre, 2012) are
thought to rely on overlapping subcomponents of cortico-basal
ganglia (BG)-thalamus networks, providing a possible neural lo-
cus for adaptive control (Bogacz and Larsen, 2011; Pedersen et al.,
2017).

We previously proposed a novel dependent process model
(DPM) of cortico-BG-thalamic-dependent inhibitory control
that was inspired by the architecture of these pathways (Dunovan
et al., 2015). In the DPM, reactive cancellation signals from the
hyperdirect pathway depend on the current state of a proactive
execution process, reflecting the instantaneous competition be-
tween the direct (i.e., Believer) and indirect (i.e., Skeptic) path-
ways (Fig. 1A,B) (Dunovan and Verstynen, 2016). Increasing the
strength of the Skeptic results in a slower accumulation of evi-
dence toward the execution threshold, promoting fast, reactive
cancellation in the context of greater uncertainty (see also (Bari-
selli et al., 2018).
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Significance Statement

Many complex behavioral goals rely on the ability to regulate the timing of action execution while also maintaining enough control
to cancel actions in response to “Stop” cues in the environment. Here we examined how these fundamental components of
behavior become tuned to the control demands of the environment by combining principles of reinforcement learning with
accumulation-to-bound models. Model fits to behavioral data in an adaptive stop signal task revealed two adaptive mechanisms:
(1) timing error-related changes in the rate of the execution signal; and (2) an increase in the execution boundary after failed stops.
These findings demonstrate unique effects of timing and control errors on the underlying mechanisms of control, the rate and
threshold of accumulating action signals.
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The question of adaptation of decision processes in BG path-
ways is complicated by the fact that these circuits have multiple
targets of plasticity. Converging lines of physiological (Schmidt et
al., 2013; Yttri and Dudman, 2016) and computational (Ratcliff
and Frank, 2012; Wei and Wang, 2016) evidence suggest that
both of the primary input structures to the BG, the striatum and
subthalamic nucleus (STN), are critical for guiding adaptive be-
havior, but in response to different sources of environmental
feedback. In the striatum, Yttri and Dudman (2016) found that
optogenetic reinforcement of cortical input to direct and indirect
pathways led to opposing changes in movement velocity, paral-
leling theoretical models that striatal learning would sculpt the
drift rate of a decision process over time (Dunovan and Ver-
stynen, 2016). In contrast, the STN is also seen as a major source
of behavioral adaptation in the BG (Brittain et al., 2012; Ca-
vanagh et al., 2014; Frank et al., 2015; Herz et al., 2016). For
instance, Cavanagh et al. (2014) found that activity in the STN
tracked the degree to which subjects slowed responding after
committing an error and that this behavioral phenomenon was
described by a diffusion model in which errors led to an increase
in threshold on subsequent trials.

Having multiple neural targets of plasticity suggests that in-
hibitory control processes may adapt differently in response to
different learning signals. For example, learning may adapt the
balance of direct and indirect pathway competition, changing the
drift rate of the execution process on each trial. Based on previous
optogenetics work (Yttri and Dudman, 2016), we predict that this
process will adapt based on errors in the timing or speed of an
action (Fig. 1C, left). In contrast, errors in selection (e.g., failing
to stop an inappropriate action) may impact future decisions by
either increasing the speed of future cancelation processes (Fig.
1C, middle) or elevating the threshold for evidence for the exe-
cution process, thereby delaying action execution in the context
of uncertainty (Fig. 1C, right) (Herz et al., 2016).

Here we examine how trial-to-trial feedback is incorporated into
future decisions as subjects learn to proactively control responses in
an adaptive version of the stop signal task, where subjects are scored
according to the precision of their response time (RT) on Go trials
and their accuracy on stop signal trials. This adaptive DPM reliably
captures feedback-dependent changes in RT and stop accuracy
through targeted changes in specific decision parameters, showing
how simple plasticity mechanisms can allow for cognitive systems to
effectively implement internal priors about environmental states
(Wu et al., 2002; Verstynen and Sabes, 2011).

Materials and Methods
Participants. Neurologically healthy adult participants (N � 75, 37 males,
38 females, mean age 22 years) were recruited from the Psychology Re-
search Experiment System at Carnegie Mellon University and compen-
sated for their participation through course credit toward fulfillment of
their semester course requirements. All experimental and analytical pro-
tocols described in this study were approved by the local Institutional
Review Board at Carnegie Mellon University. Experimenters obtained
informed, written consent from all subjects in compliance with Institu-
tional Review Board guidelines.

Experimental design and statistical analysis. The primary experimental
condition of interest, the mean and variance of contextual stop signal
delay (SSD) distributions, were manipulated between participant groups
(N � 25 per group). The effect of context on behavioral measures (e.g.,
correct go RTs, stop accuracy, and posterror slowing) was assessed using
separate one-way ANOVAs. Computational models were fit to individ-
ual subject- and subject-averaged data, and compared based on two
complexity-penalized goodness-of fit statistics: Akaike Information Cri-
terion (AIC) and Bayesian Information Criterion (BIC). A difference of
7–10 in the information criteria (IC) values for two models provides
strong support for the model with the lower value. All modeling code has
been made available on GitHub (https://github.com/CoAxLab/radd),
along with a demo for replicating several of the manuscript figures
(https://github.com/CoAxLab/radd/blob/master/demos/AdaptiveDPM_
Demo_2018.ipynb).

Figure 1. Adaptation mechanisms in the DPM. A, The DPM assumes that the state of an accumulating execution process at the time a stop cue is registered determines initial state of the braking
process, making it more difficult to cancel actions closer to the execution boundary. B, Competition between direct and indirect pathways represented by mutually inhibiting “believer” (green; direct
pathway) and “skeptic” (blue; indirect pathway) populations. Circuit-level dynamics of this competition modulate the rate of evidence accumulation leading up to action execution, leading to faster
actions when competition is dominated by the “believer.” C, Alternative control mechanisms that could be altered by feedback to adapt future performance. A, Adapted with permission from
Dunovan et al. (2015). B, Adapted with permission from Dunovan and Verstynen (2016).
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Adaptive stop signal task. All subjects completed a stop signal task
(Ntrials � 880) in which a vertically moving bar approached a white
horizontal target line at the top of the screen (Fig. 2A). On Go trials
(NGO � 600), the subject was instructed to make a key press as soon as the
bar crossed the target. The bar always intersected the target line at 520 ms
after trial onset. On each trial, the bar continued filling upward until a key
press was registered or until reaching the top of the screen, allowing a 680
ms window for the subject to make a response. If no response was regis-
tered, the subject received a penalty of �100 points. On Go trials where a
response was recorded before the 680 ms trial deadline, the subject re-
ceived a score reflecting the precision of their RT relative to the target
intersection time, resulting in maximal points when RT � 520 ms. On
Stop trials, the bar would stop and turn red before intersecting the target
line, prompting the subject to withhold their response. Successful and
unsuccessful Stop trials yielded a reward of 200 points and penalty of
�100 points, respectively. The subsequent trial would begin after a 1.5 s

intertrial interval. After batches of 110 trials, participants were given a
break with feedback of their current point total. Participants could initi-
ate the next trial block by pressing the spacebar. All participants com-
pleted the experiment in �1 h.

On the majority of Stop trials, the SSD, the delay between trial onset and
when the bar stopped, was sampled from a specific probability distribution
(Fig. 2B). We refer to these trials as context Stop trials (NContext � 200).
Context SSDs in the Early and Late groups were sampled from Gaussian
distributions with equal variance (� � 35 ms), centered at �E � 250 ms
and �L � 350 ms, respectively. Context SSDs in the Uniform group were
sampled from a uniform distribution spanning a 10 –520 ms window. In
Figure 2B, the sampled SSD times are plotted for a single subject in each
context, shown as dashes on a timeline ranging from 0 to 520 ms. Finally,
additional probe Stop trials (NProbe � 80) were included in which the bar
stopped at 200, 250, 300, 350, or 400 ms after trial onset (16 trials per
probe SSD), shown in the Figure 2B timeline (bottom, red dashes).

Figure 2. Adaptive stop signal task and contextual SSD statistics. A, Anticipatory stop signal task. Top, On Go trials, subjects were instructed to press a key when the ascending bar crossed a target
line, always occurring on 520 ms after trial onset. Feedback was given informing the subject if their response was earlier or later than the Go target (maximum 100 points). Bottom, On Stop trials,
the bar stopped and turned red before reaching the target line. If no response was made (correct), the subject received a bonus of 200 points. Failure to inhibit the key press resulted in a �100 point
penalty. B, Stop signal statistics across contexts. Distributions show the sampling distributions for SSDs on context trials in the Early (blue), Uniform (gray), and Late (purple) groups. Early and Late
SSDs were normally distributed (parameters stated as in-figure text, N(�, �)). Below the distributions, each row of tick marks indicates the context SSDs for a single example subject in each group.
Bottom row of red tick marks indicates the five probe SSDs included for all subjects regardless of context.
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Computational models: DPM. The DPM (Fig. 1A) (Dunovan et al.,
2015) assumes that the execution process (�e) begins to accumulate evi-
dence after a delay (tr) until reaching an upper decision threshold (a),
yielding a go decision and corresponding RT. The dynamics of �e are
described by the stochastic differential equation in Equation 1, accumu-
lating with a mean rate of ve (i.e., execution drift rate) and an SD de-
scribed by the dynamics of a white noise process (dW ) with diffusion
constant � as follows:

d�e � vedt � �dW

A response is recorded if �e reaches the execution boundary (a) before the
end of the trial window (680 ms) and before the braking process reaches the
lower (0) boundary (see below). In the event of a stop cue, the braking
process (�b) is initiated at the current state of �e with a negative drift rate (vb).
If �b reaches the 0 boundary before �e reaches the execution boundary, then
no response or RT is recorded from the model. The change in �b over time is
given by Equation 2, expressing the same temporal dynamics of �e but with a
negative drift. The dependency between �b and �e in the model is described
by the conditional statement in Equation 3, declaring that the initial state of
�b (occurring at t � SSD) is equal to the state of �e (SSD) as follows:

d�b � vbdt � �dW

�b�SSD� � �e�SSD�

To determine which of the model parameter(s) best accounted for the
observed behavioral effects across contexts, we first fit the model to the
average data in the Uniform group, leaving all parameters free (Table 1).
Using the optimized Uniform parameter estimates to initialize the
model, we then fit different versions of the model to data in the Early and
Late groups, allowing only one or two select parameters to vary between
conditions. This form of model comparison provides a straightforward
means of testing alternative hypotheses about the mechanism underlying
context-specific adaptation. The fitting procedure used a combination of
global and local optimization techniques (Bogacz and Cohen, 2004;
Dunovan et al., 2015). All fits were initialized from multiple starting
values in steps to avoid biasing model selection to unfair advantages in
the initial settings. Given a set of initial parameter values, all model
parameters, execution drift rate (ve), braking drift rate (vb), execution
onset delay (tr), and boundary height (a), were optimized by minimizing
a weighted cost function � 2

static (see Eq. 4) equal to the summed and
squared error between an observed and simulated (denoted by ^ sym-
bols) vector of the following statistics: probability ( P) of responding on
Go trials (g), probability of stopping at each Probe SSD (d � {200, 250,
300, 350, 400 ms}), and RT quantiles (q � {0.1, 0.2, 0.3, . . . , 0.9}) on
correct (RT C) and error (RT E) trials as follows:

�static
2 � wg�Pg � P̂g�

2 � �
d

5

wd�Pd � P̂d�
2 � �

q

9

wq
C�RTq

C � RT̂q
C�2

� �
q

9

wq
E�RTq

E � RT̂q
E�2

The cost-function weights (w) were derived by first taking the variance of
each summary measure included in the observed vector (across subjects),
then dividing the mean variance by the full vector of variance scores. This
approach represents the variability of each value in the vector as a ratio
(Ratcliff and Tuerlinckx, 2002), where values closer to the mean are
assigned a weight close to 1 and values associated with higher variability
a weight �1, lower variability a weight �1 (Bogacz et al., 2006; Dunovan
et al., 2015). Weights applied to the RT quantiles were calculated by

estimating the variance for each of the RT quantiles (Maritz and Jarrett,
1978) and then dividing the mean variance by that of each quantile. Stop
accuracy weights were calculated by taking the variance in stop accuracy
at each Probe SSD (across subjects) and then dividing the mean variance
by that of each condition.

To obtain an estimate of fit reliability for each model, we restarted the
fitting procedure from 20 randomly sampled sets of initial parameter
values. Each initial set was then optimized to average data in the Uniform
condition using the basinhopping algorithm (Wales and Doye, 1997) to
find the region of global minimum followed by a Nelder–Mead simplex
optimization (Nelder and Mead, 1965) for fine-tuning globally opti-
mized parameter values. The simplex-optimized parameter estimates
were then held constant, except for one or two designated context-
dependent parameter(s) that were submitted to a second Simplex run to
find the best fitting values in the Early and Late conditions.

Parameter recovery of static DPM. Parameters were initially sampled
from the following distributions:

	 � N�0.3, 0.15�

ve � N�0.75, 0.25�

vb � N�� 0.75, 0.25�

tr � N�0.3, 0.075�

where N��, �2� represents a normal distribution with mean (�) and SD
(�). A total of 2000 parameter sets were initially sampled and used to
simulate vectors of stopping accuracy and RT quantiles that were com-
pared with those of the average subject in each context by means of
Equation 4. For each of the three context conditions, the corresponding
sampled set of parameters associated with the lowest error value was then
selected as a “group-level” parameter set. For each of the three “group-level”
parameter sets, 20 synthetic datasets were generated, each comprised of 25
subjects with 1000 simulated trials per subject. Each subject-level dataset
was simulated using a single parameter set sampled from the distribu-
tions described in Table 2 to generate 1000 trials from the DPM. Finally,
the static DPM was fit to each of these three datasets using the same
optimization procedure described for fitting the DPM to the trial-
averaged stop accuracy and RT quantiles for correct and error trials with
the goal of recovering similar parameter values as those used to generate
each simulated dataset.

Adaptive DPM. Because standard parameter optimization for accu-
mulator models requires information about the variance of RTs across
trials, these approaches are poorly suited for investigating how decision
parameters respond to error on a trialwise basis. To overcome this issue,
cost function was modified (� 2

adapt) to identify the values for 	, 
, and p
that minimized the sum of the weighted difference between the average
observed and model-predicted stop accuracy (�acc) and go RT (�rt) over
a moving window of �30 trials (30 bins total; Eq. 5). The weights applied
to the model-predicted error in stop accuracy (�acc) and RT (�rt) were
calculated using the same method as for the static model cost function,
assigning less weight to estimates in bins (i) with higher observed vari-
ance across subjects. By averaging the behavioral measures in 30 trial
bins, this ensured that multiple Stop trials were included in each bin
while still allowing relatively high-frequency behavioral changes to be
expressed in the cost function as follows:

�adapt
2 � �

i

30

��acc,i � �̂acc,i�
2 � �

i

30

��rt,i � �̂rt,i�
2

These fits were performed by iteratively simulating the same trial se-
quence as observed for each individual subject, and fitting the average
simulated subject to the average observed subject. This ensures that di-
rect comparisons can be made between the trajectory of learning in the
model and actual behavior.

Parameter recovery of adaptive DPM. To assess the identifiability of
parameters in the adaptive DPM, we conducted a similar parameter re-
covery analysis to that performed for the static model. Three different

Table 1. Average uniform parameters and static DPM fit statistics

a ve vb tr �2 AIC BIC

Mean 0.347 0.91 �0.49 0.152 0.011 �176.97 �172.26
95% CI 0.022 0.065 0.046 0.009 8e-4 1.06 1.06
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“group-level” parameter sets (Table 2) were randomly sampled from the
following adaptive parameter distributions:

	 � U�0.0, 0.3�


 � U�0.0, 0.2�

p � U�0.0, 0.005�

where U(a,b) represents a uniform distribution between values a and b.
Datasets were generated by sampling 	, 
, and p for 25 simulated and
using the adaptive DPM to simulate 880 trials in the Uniform context for
each simulated subject. Subject-level samples for 	, 
, and p were drawn
from one of three sets of generative parameter distributions shown in
Table 2. Using these subject-level parameters, the adaptive DPM was
then used to simulate 880 trials using the trial structure as one of the real
subjects in the Uniform context. This procedure produced three artificial
datasets with the same number of observations as in the experimental
dataset (e.g., N � 25, 880 trials/subject). Finally, the adaptive DPM was
fit to each of these three datasets using the same optimization procedure
described for fitting the adaptive DPM to the empirical data. With the
goal of recovering similar values of 	, 
, and p as those used to generate
each simulated dataset.

Results
Inhibitory control adapts to contextual statistics
Subjects performed an anticipatory version of the stop signal task
(Fig. 2A; see Adaptive stop signal task) similar to that reported

previously (Dunovan et al., 2015), with the exception of how
contextual information was conveyed to the subject. Rather than
explicitly cuing the subject as to the probability of seeing a stop
signal on each trial, as was used in our previous study, subjects in
the current experiment had to rely on performance feedback to
learn the temporal distribution of stop signals in one of three
contexts.

To assess behavioral differences across contexts, we compared
accuracy on stop signal trials at each Probe SSD across groups
as well as the mean RTs on correct (response on Go trial) and
error (i.e., response on Stop trial) responses. Separate one-way
ANOVAs revealed a significant main effect of context across
groups on both correct RTs, F(2,72) � 10.07, p � 0.001, and error
RT (responses on stop signal trials), F(2,72) � 21.72, p � 0.00001.
Consistent with our hypothesis, we found a significant interac-
tion between context condition and Probe SSD, F(2.23,80.15) �
3.60, p � 0.027 (Fig. 3A). Shifting the mean of the context SSD
distribution later into the trial led to delayed responding on Go
trials (Fig. 3A, middle, right) as well as greater stopping accuracy
on probe trials (Fig. 3A, left) in the Uniform and Late groups
relative to the Early group. Thus, as predicted, participants could
reliably learn to modulate their inhibitory control efficiency
based on the probabilistic structure of prior stop signal timing
(Shenoy and Yu, 2011).

Table 2. Generative parameters used in parameter recovery analysis

Static model Adaptive model

True sets �a (� � 0.01) �ve (� � 0.01) �vb (� � 0.01) �tr (� � 0.005) �� (� � 0.01) �� (� � 0.005) �p (� � 0.000075)

Set 1 0.455 1.03 �0.783 0.090 0.27 0.005 0.0011
Set 2 0.323 1.00 �0.235 0.213 0.20 0.04 0.0016
Set 2 0.263 0.756 �0.247 0.206 0.02 0.10 0.00025

Figure 3. Effects of context on stop accuracy and RTs. A, Subject-averaged stop accuracy (left) and cumulative RT distributions for correct (Go trials; middle) and error (Stop trials; right) responses
in the Early (blue), Uniform (gray), and Late (purple) contexts. B, Posterror slowing following failed Stop trials in each context and subsequent decay over five trials. C, The posterror slowing observed
immediately after a failed stop (terr 	 1) in each context (e.g., first data point in B). Error bars and shaded area represent the 95% CI calculated across subjects.
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We next examined whether failed Stop trials elicited any sys-
tematic changes in RT on subsequent trials. Figure 3B shows the
immediate slowing and subsequent decay in RTs following a stop
error (probe trials only), calculated with respect to the average RT
on the five trials that preceded the error. A one-way ANOVA
revealed a significant effect of context on the degree to which
subjects slowed responses immediately following stop errors,
F(2,72) � 4.27, p � 0.018. Unlike the observed effects on RT and
accuracy, which scaled with differences in the mean SSD in each
context, group differences in posterror slowing appeared to be
driven by the variance of SSDs, with stop errors eliciting greater
slowing in the Uniform context than in the Early and Late con-
texts (Fig. 3C). Collectively, these findings suggest that adaptive
control is sensitive to multiple task dimensions and that these
dimensions manifest in dissociable behavioral profiles.

Static DPM parameter identifiability
The DPM (Dunovan et al., 2015) assumes that an execution de-
cision is made when an accumulating execution process, with
onset time tr and drift rate ve, crosses an upper decision boundary
a (see Computational models). On Stop trials, a nested braking
process, with negative drift rate vb, is initiated at the current state
of the execution process at the time of the SSD and accumulates
back toward the lower boundary (always set equal to 0; Fig. 1A).
The model successfully cancels an action when the braking pro-
cess reaches the lower bound before execution process terminates
at the upper execution threshold.

For a cognitive model to be informative, it is important to
verify that its parameters are identifiable, or able to be reliably
estimated from observable measures of the target behavior. The
issue of model identifiability is particularly relevant to novel vari-
ants of sequential sampling models, as several recently proposed
models within this class have been found to exhibit poor identi-
fiability despite providing convincing fits to experimental data
(Miletić et al., 2017; White et al., 2018). More common variants,
however, such as the drift-diffusion model and linear ballistic
accumulator, are reasonably identifiable with sufficient trial
counts and the application of appropriate optimization proce-

dures (Ratcliff and Tuerlinckx, 2002; van Ravenzwaaij and Ober-
auer, 2009; Visser and Poessé, 2017).

In practice, the identifiability of a model can be assessed by
performing fits to simulated data, for which the true parameters
are known, and comparing the recovered estimates. To evaluate
the identifiability of parameters in the DPM, we adopted the
following procedure. First, we identified three generative param-
eter sets that approximated the average stopping accuracy curve
and RT distributions observed in each context condition, ensur-
ing that the generative parameter sets yielded plausible behav-
ioral patterns. Each of these three generative parameter sets
served as hyperparameters describing the mean of a normally
distributed population from which 25 “subject-level” parameter
sets were sampled and used to simulate 1000 trials (for sampling
details, see Computational models). This produced a simulated
dataset similar in size and dimension to that of the empirical data
while capturing the assumption that subject parameter values in
each context vary around a shared mean. Each of the three group-
level parameter sets was used to generate 20 simulated datasets
(each comprised of 25 randomly sampled subjects with 1000 tri-
als per subject). The DPM was then fit to the subject-averaged
stop accuracy and RT quantiles for each of the simulated datasets
following the optimization routine outlined in Materials and
Methods (i.e., here, “subject-averaged” data were calculated by
first estimating the stop accuracy curve over probe SSDs, correct
RT quantiles, and error RT quantiles for each subject then calcu-
lating the mean for each of these values across subjects).

Parameter estimates recovered from the fits are summarized
in Figure 4A–D, with the recovered values for each parameter
plotted against the respective generative value for each of the
three sets. All parameters were recovered with a high degree of
accuracy. In addition to accurately recovering generative param-
eter values, the DPM provided high-quality fits to the datasets
generated from all three parameter sets, as shown by the posi-
tively skewed distribution of � 2 values in Figure 4E. The results of
this simulation and recovery analysis suggest that parameters of
the DPM are identifiable when fitting group-level data and are

Figure 4. Simulation and parameter recovery analysis of DPM. A, True and estimated boundary height (a; blue), (B) braking drift rate (vb; red), (C) onset time (tr; purple), and (D) execution drift
rate (ve; green) for three generative parameter sets. Lines indicate true generative parameter means. Lighter colors represent the range of sampled subject-level estimates. Squares represent
estimated parameter means. Error bars represent 
1 SD. E, Distribution of � 2 values for fits to all 60 simulated datasets (gray).
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robust to variability in the parameter values of individual
subjects.

Individual subject DPM fits
To better understand the cognitive mechanisms underlying the
observed effects of feedback on timing and control behavior
across contexts, we fit RT and stop accuracy data to the DPM. To
isolate the parameters that were influenced by the experimental
manipulations, the model fits were performed in multiple con-
secutive stages. To reduce the combinatorial space of possible
model configurations, we adopted a forward stepwise model se-
lection approach where we began by comparing models in which
a single parameter was free to vary across conditions (Table 3),
execution drift (ve), braking drift (vb), onset delay (tr), or bound-
ary height (a).

Because the behavioral effects of interest were driven by trial-
by-trial feedback (i.e., at the subject level) as well as differences in
the sampling distributions of SSDs across contexts (i.e., at the
group level), single parameter models were fit to behavioral data
for individual subjects, allowing select parameters to vary be-
tween the first and second half of trials in the experiment, and to
data at the group level, allowing parameters to vary across
contexts.

Consistent with our previous study in which subjects proac-
tively modulated the drift rate of the execution process (ve) in a
probabilistic cueing paradigm (Dunovan et al., 2015), we found
that allowing ve to vary between the first and second half of trials
provided the best average fit across subjects in the current exper-
iment (AICv � �206.5, BICv � �202.2, SD � 23.47; Fig. 5A).
Comparable IC scores were provided by alternative models (e.g.,
AICtr � �201.70, BICtr � �199.34, SD � 21.86). Thus, we also
inspected the number of subjects for which each model outper-
formed the rest and found that the ve model was the best fitting
model for more subjects (N � 33) than any alternative models
(see Fig. 5B). Parameter estimates (Fig. 5C) showed that the ve

values tended to increase over the course of the experiment,
higher in the second compared with the first half of trials. Nota-
bly, this effect was most pronounced in the Early context, fol-
lowed by the Uniform and Late contexts, respectively, suggesting
that subjects in the Early context were more sensitive to timing
errors than those in the Uniform and Late contexts.

Contextual modulation of DPM parameters
Next, we investigated whether the same mechanism was able to
account for the observed differences in RT and stop accuracy at
the group level, by first optimizing parameters to the average data
in the Uniform context, where the timing of the stop signal is
unpredictable, and then to the average data in the Early and Late
contexts, holding all parameters constant at the best fitting Uni-
form values, except for one or two parameters of interest. The
model that best accounted for differences in the stop accuracy

and RT quantiles across the three context conditions was selected
for further investigation of feedback-dependent learning mecha-
nisms. The fitting routine (for details, see Materials and Meth-
ods) was repeated a total of 20 times using different initialization
values for all parameters at the start of each run to avoid biases in
the optimization process. The summary of fits to the Uniform
context data is provided in Table 1. In line with our previous
findings (Dunovan et al., 2015), as well as the outcome of single-
subject fits in the current study, leaving the execution drift rate
free provided a better account of context-dependent changes in
behavior compared with alternative single-parameter models
(Best-Fit AICve � �363.02; Fig. 6A).

To further test the relationship between execution drift rate
and context, we performed another round of fits to test for pos-
sible interactions between the execution drift rate and a second
free parameter, boundary height (a), braking drift rate (vb), or
onset delay (tr). The AIC and BIC scores from these fits showed
that a combination of boundary height and execution drift rate
(ve and a) provided the best overall fit to the data (Best Fit AICa,ve

� �372.26), reasonably exceeding that of the drift-only model
(�AICve �AICa,ve� � 9.24) to justify the added complexity of the
dual-parameter model. Figure 6C shows a qualitative assessment
of the a and vE model’s goodness of fit, revealing a high degree of
overlap between the simulated and observed stop accuracy and
RT data in both Early and Late conditions. These results suggest
that there may be two targets of learning in the decision process:
a strong modulation of the execution drift rate and a subtler
modulation of the boundary height.

Adaptive DPM with dual-learning mechanisms
It is not clear from the preceding analysis whether error-driven
changes in the drift rate and boundary height are able to capture
trial-to-trial adjustments of response speed and stop accuracy as
statistics of the environment are learned experientially. Here we
explore how drift rate and boundary height mechanisms adapt on
a trialwise basis to different sources of feedback to drive context-
dependent control and decision-making.

We implemented two forms of corrective learning (Fig. 7A):
one targeting the execution drift rate v and another targeting the
height of the execution boundary a. We hereafter denote execu-
tion drift rate as v rather than ve to avoid multiple subscripts in
the adaptive model equations. On correct Go trials (Fig. 7A, left,
middle), the current drift rate (vt) was updated (vt	1; Eq. 6) to
reflect the signed difference between the model’s RT on the cur-
rent trial and the target time (T G � 520 ms), increasing the drift
rate following “slow” responses (i.e., RTt � T G ) and decreasing
the drift rate following “fast” responses (i.e., RTt � T G ). On
failed Stop trials, vt was updated according to the same equation
but with the error term reflecting the difference between RTt and
the trial response deadline (T S � 680 ms), thus slowing the drift
rate to reduce the probability of failed stops in the future. This
form of RT-dependent modulation in the drift rate is motivated
by recent findings demonstrating adaptation of action velocity by
dopaminergic prediction error signaling in the striatum (Yttri
and Dudman, 2016). In the context of the “believer-skeptic”
framework (Dunovan and Verstynen, 2016), fast RT errors could
reinforce the “skeptic” (i.e., indirect pathway) and suppress the
“believer” (i.e., direct pathway) by decreasing dopaminergic tone
in the striatum as follows:

vt	1 � vt � e	�RTt�TG/S�

In addition to receiving feedback about errors in action timing,
subjects also received penalties for failing to suppress responses

Table 3. Static fit statistics for early and late contexts

Context
parameter

�2, best
(mean, 95% CI)

AIC, best
(mean, 95% CI)

BIC, best
(mean, 95% CI)

Execution drift (ve) 0.023 (0.035, 0.0042) �363.02 (�343.49, 6.27) �343.49 (�339.75, 6.27)
Bound height (a) 0.041 (0.061, 0.0066) �334.90 (�316.72, 5.35) �316.72 (�312.98, 5.35)
Braking drift (vb) 0.045 (0.055, 0.0044) �330.11 (�321.57, 3.90) �337.10 (�317.83, 3.90)
Onset delay (tr) 0.031 (0.044, 0.0055) �348.01 (�332.44, 5.97) �33.69 (�328.69, 5.97)
a and ve* 0.017 (0.023, 0.0025) �372.25 (�359.87, 5.24) �374.04 (�352.35, 5.24)
vb and ve 0.023 (0.032, 0.0035) �358.42 (�344.51, 5.41) �356.63 (�337.18, 5.41)
tr and v

e
0.024 (0.032, 0.0031) �356.41 (�342.96, 4.48) �363.54 (�335.29, 4.48)

*The best-fitting model.
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on Stop trials. In the adaptive DPM, failed stops (Fig. 7A, right)
caused an increase in the boundary height (a0) according to a �
function with height 
t and decayed exponentially on each sub-
sequent trial (at�err�) until reaching its baseline value a0 or until
another stop error occurred (Eq. 7) as follows:

aterr � a0 � 
te
�terr

This form of adaptation in boundary height is motivated by phys-
iological evidence that the STN plays a critical role in setting
threshold for action execution and that this relationship is mod-
ulated by error commissions (Cavanagh et al., 2014). On all cor-
rect Go trials and the first failed Stop trial, the timing errors were
scaled by the same learning rate (	0). An additional parameter
was included to modulate the sensitivity (�) to stop errors over
time (Eq. 8), allowing the model to capture an observed decrease
in the stop accuracy over time in each of context groups (Fig. 8C).
According to Equation 8, � dropped exponentially over time at a
rate p, acting as a scalar on 	t (Eq. 9) and 
t (Eq. 10) before
updating values of drift rate (Eq. 6) and boundary height (Eq. 8)
after a failed stop. Higher values of p led to more rapid decay of �
toward zero and, thus, a more rapid desensitization to Stop trial
errors as follows:

�t � � ep��t� if stop trial
1 if go trial

	t � �t	0


t � �t
0

Adaptive DPM parameter identifiability
Before fitting the adaptive DPM to observed subject data, we first
performed a parameter recovery analysis, similar to that con-
ducted for the static DPM, to ensure that the learning rate and
decay parameters introduced in the adaptive model could be re-
liably identified (for procedural details, see Materials and Meth-
ods). The parameter recovery results are displayed in Figure 7B,
showing the recovered estimates for 	, 
, and p overlaid on the
true values. For all three generative parameter sets, the optimiza-
tion procedure for fitting the adaptive DPM accurately recovered
the true values of 	, 
, and p. In one case (recovery estimates of 	
for parameter set 2), the 95% CI of recovered parameter estimates
failed to overlap with the range of generative values; however, the
trend of recovered 	 estimates followed the trend of the true
values across parameter sets 1 (highest 	), 2 (medium 	), and 3
(lowest 	).

Adaptive fits in the uniform context
After confirming the identifiability of learning parameters in the
adaptive DPM, we next sought to confirm that the trial-averaged
behavior of the adaptive model was preserved after fitting the
learning rates (e.g., stop accuracy curve on probe trials and RT
quantiles on correct and error trials). The adaptive DPM’s pre-
dictions are indeed closely aligned with the empirical statistics
used to fit the static model (adaptive DPM � 2

static � 0.005, static
DPM � 2

static � 0.011; Table 4). Although this is not necessarily
surprising, it is promising to confirm that introducing feedback-
dependent adaptation in the drift rate and boundary height pa-
rameters does not compromise the model’s fit to trial-averaged

Figure 5. Single-subject DPM fits and model comparison. Variants of the DPM were fit to all individual subject datasets with different parameters left free to vary between the first and second
half of trials. A, Mean subject BIC and AIC scores for boundary height (a; blue), execution drift rate (ve; green), braking drift rate (vb; red), and onset delay (tr; yellow) (dark circles). Lighter circles
represent an individual subject. Error bars represent 95% CI. B, Same mean values as in A, but with size of the dots scaled to reflect the number of subjects for which each model had the lowest AIC/BIC
score. White text indicates the number of subjects best described by each model (e.g., factor used to scale the size of the dots). C, Observed increase in ve values estimated for the first (v1) and second
half (v2) of trials in each context. Error bars represent 95% CI. Schematic represents the relative increase in ve in Early (cyan), Uniform (gray), and Late (purple) contexts, compared with a shared initial
drift rate (i.e., before learning; black dotted line).
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statistics. Next, we inspected the degree to which this model cap-
tured changes in Go trial RT and Stop trial accuracy in the Uni-
form context. Indeed, the predicted time course of both
behavioral measures showed a high degree of correspondence
with the observed behavioral patterns (Fig. 7C,D). These qualita-
tive fits show that it is indeed possible to capture feedback-
dependent changes in RT and stop accuracy with the specific
types of error learning in ve (Eq. 6) and a (Eq. 7) parameters.
Without an alternative model with which to compare, however, it
is impossible to conclude anything about the specificity of these
particular learning rules (e.g., the hypothesized dependencies of
ve and a on timing and control errors, respectively). Therefore,
we compared the fits afforded by the primary version of the
adaptive DPM with an alternative version in which a was mod-
ulated by timing errors and ve was modulated by failed stops.
In the alternative version of the model, Equation 6 becomes

at	1 � at �
1

e	�RTt�TG/S�, increasing and decreasing a following

fast (RTt � 520 ms) and slow (RTt � 520 ms) responses on Go
trials, and increasing a on failed Stop trials in proportion to
the speed of response speed. Additionally, Equation 7 becomes

terr � 
0 � 
te

�terr, slowing ve by a magnitude of 
t. Indeed,
this alternate version of the adaptive model afforded an im-
provement over the static model fits to trial-averaged statistics
(adaptive DPMalt � 2

static � 0.007, static model � 2
static � 0.011;

Table 4); however, compared with the adaptive DPM in which
ve was modulated by timing errors and a was increased follow-
ing failed stops (� 2

adapt � 0.235, AIC � �326.4, BIC �
�320.1), fits of the alternative adaptive model (� 2

adapt � 0.861,
AIC � �248.6, BIC � �242.3) provided a worse fit to
feedback-dependent changes in RT and stop accuracy over
time in the Uniform context (Table 4).

Adaptive predictions in early and late contexts
Consistent with our original hypotheses, fits of the primary ver-
sion of the adaptive DPM to behavior in the Uniform context
highlight two possible mechanisms for acquiring the prior on the
SSD: adaptive modulation of response speed by the drift rate and
cautionary increases in boundary height following control errors.
To confirm that these mechanisms work together to adaptively
learn based only on the statistics of previous input signals, we
took the average parameter scheme from the Uniform context fits
and simulated each subject in the Early and Late contexts. If the
context-dependent changes in the RT distributions and stop ac-
curacy are indeed a reflection of the proposed learning mecha-
nisms, then the model simulations should reveal similar RT and
accuracy time courses as in the observed behavior.

Figure 8A shows the simulated stop-curve and RT distribu-
tions generated by the adaptive model based on feedback in the
Early and Late conditions. As in the observed data (Fig. 3A),

Figure 6. Group-level model comparison and best fit predictions across context. A, AIC (dark) and BIC (light) scores for all single-parameter models, allowing execution boundary height (a; blue),
execution drift rate (ve; green), braking drift rate (vb; red), or onset delay (tr; yellow) to vary across contexts. Three dual-parameter models were also included to test for possible benefits of allowing
ve (best fitting single parameter model) to vary along with a (teal), vb (purple), or tr (dark green). Error bars indicate the 95% CI. B, Qualitative effects of context on a (top) and ve parameter estimates
(bottom) in the Early and Late contexts. C, Model predicted data (lines and larger transparent circles) simulated with best fit parameters from the ve, a model, corresponding to dotted circle in A
overlaid on the average empirical data for Early (cyan), Uniform (gray), and Late (purple) contexts. Error bars represent 95% CI.
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adaptation to Early SSDs led to impaired stopping accuracy, but
faster RTs relative to simulated predictions in the Late condition.
In Figure 8B, C, the middle panels show the same trial-binned RT
and stop accuracy means as in Figure 7C, D (Uniform condition),
flanked by corresponding time courses from simulations to Early
(left) and Late (right) conditions. The adaptive model predic-
tions show a high degree of flexibility, conforming to idiosyn-
cratic changes in the trialwise behavioral dynamics within each
context SSD condition. For instance, the RTs in the Early condi-
tion exhibit a relatively minor and gradual decay over the course
of the experiment (Fig. 8B, left), contrasting markedly from the
early increase and general volatility of RTs in the Late condition
(Fig. 8B, right). The adaptive DPM largely captures both patterns,
underscoring feedback-driven adaptation in the drift rate as a
powerful and flexible tool for commanding inhibitory control
across a variety of settings. In addition to predicting group differ-
ences in the time course of RTs, the simulations in Figure 8C
show a striking degree of precision in the model-estimated
changes in stop accuracy, both over time and between groups.

Because the static model fits revealed marginal evidence for
the drift-only model (Fig. 6A), we next asked whether this sim-
pler model was able to account for the learning-related behav-
ioral changes with the same precision as the dual-learning (i.e.,
drift and boundary) model. To test this hypothesis, we ran sim-
ulations in which the boundary learning rate was set to zero,
thereby leaving only the drift rate free to vary in response to
feedback. Figure 9A shows the error between observed and
model-predicted estimates for each of the behavioral measures in
Figure 3 (e.g., RT, stop accuracy, and posterror slowing) based on
20 simulations of the drift-only and dual-learning models. Com-
pared with the drift-only model, the dual-learning model showed
no significant benefits in terms of fit to the trialwise RT (t(24) �
1.09, p � 0.28) or accuracy (t(24) � 0.23, p � 0.82) but showed a
marked improvement in the fit to posterror slowing (t(24) �
�6.91, p � 0.00001) (Fig. 9A). Importantly, the interaction of
drift rate and boundary adaptation in the dual-learning model

not only reduced the error in the model fit, but recovered the
same qualitative pattern of posterror slowing across contexts ob-
served in the data (Fig. 9B). In contrast, the drift-only model
predicted the largest posterror slowing effect in the Early condi-
tion (Fig. 9B, left). This is particularly revealing because no
information about the observed posterror slowing was in-
cluded in the adaptive cost function when fitting the learning-
rate parameters. Collectively, these results suggest that goal-
directed tuning of movement timing (i.e., RT) and control
(i.e., stop accuracy) is best described by feedback-driven
changes in the drift rate and boundary-height parameters of
accumulation-to-bound decisions.

Discussion
Here we demonstrate the existence of two separable, yet interact-
ing, learning mechanisms for inhibitory control that allow for
adapting to statistical regularities in environmental signals. Ad-
aptation to errors in the timing of action execution was mediated
by adjustments in the drift rate that progressively improved the
precision of RTs with respect to the target RT. Inhibition errors
(i.e., executed responses on trials requiring a stop) had a poster-
ror slowing effect, mediated by an increase in the execution
threshold that decayed over subsequent trials (Fischer et al.,
2018). These two mechanisms allowed for principled, context-
specific adjustments in behavioral control to conflicting sources
of task error (i.e., go timing and stop accuracy). Relative to the
Uniform condition, subjects in the Early condition exhibited
faster RTs at the expense of accuracy on probe Stop trials (Fig.
3B). Subjects in the Early condition benefited from predictably
short SSDs, making it easier to reactively cancel actions on Stop
trials without sacrificing the precision of Go trial RTs. In contrast,
subjects in the Late condition slowed their RT on Go trials to
accommodate the higher probability of a stop cue late in the trial.
Thus, due to incurring more stop errors, subjects in the Late
context delayed responding on Go trials to improve inhibition
accuracy. This principled adaptation in both action timing and

Figure 7. Adaptive DPM parameter recovery and learning predictions in Uniform context. A, Schematic showing how the execution drift rate is modulated following timing errors on Go trials (left)
and how the boundary height is modulated following failed inhibitions on Stop trials. B, Parameter recovery results for 	 (left, teal), 
 (middle, purple), and p (right, orange) parameters in the
primary version of the adaptive DPM. Horizontal lines indicate true generative parameter means. Light colors represent the range of sampled subject-level estimates. Squares represent estimated
parameter means. Error bars represent 
1 SD. Subject-averaged timeseries (dark line) and 95% CI (gray area) showing the (C) RT on Go trials and (D) accuracy on Stop trials. Each point in the
timeseries (n � 30) represents the windowed average RT/accuracy over �30 trials. The corresponding adaptive model predictions are overlaid (dotted line), averaged over simulations to each
individual subject’s data.
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inhibition was best described by an adaptive version of the DPM
in the current study, linking different kinds of task-relevant feed-
back signals to adaptation in dissociable control parameters.

These findings shed a critical light on the nature of inhibitory
control processes measured using accumulation-to-bound mod-
els. In standard accumulation-to-bound models of decision-
making, the drift rate and boundary height parameters are
functionally dissociated as representing the strength of evidence
and response caution, respectively (Brown and Heathcote, 2008;
Ratcliff et al., 2016). This dissociation, however, is only useful
insofar as evidence is clearly defined and can be manipulated
independently of the additional factors bearing on behavior (e.g.,

caution, expectation, attention). With the exception of percep-
tual decision-making tasks (Roitman and Shadlen, 2002), where
evidence can be interpreted with respect to the strength of sen-
sory information provided by the stimulus, it is often unclear
which sources of information should be treated as evidence in the
deliberation process and which are used to set the boundary
height. Understanding which learning signals these parameters
rely on provides critical insights into the sources of information
that drive the different decision parameters.

At the computational level, the drift rate parameter reflects the
log-likelihood ratio of evidence for alternative hypotheses. In the
context of the current task, the execution drift rate can be inter-
preted as representing the relative evidence for go and no-go
decisions encoded by the circuit-level competition between the
direct and indirect pathways (Bahuguna et al., 2015). Indeed,
studies combining behavioral modeling with single-unit record-
ings (Ding and Gold, 2010), optogenetics in animals (Yttri and
Dudman, 2016), and neuroimaging in humans (van Maanen et

Figure 8. Adaptive DPM modulates behavior according to context-specific control demands. A, Average stop accuracy curves (left) and correct (middle) and error (right) RT distributions predicted
by adaptive model simulations in the Early (blue) and Late (purple) contexts (initialized with the optimal parameters of the Uniform context). B, Empirical timeseries of go RTs with model predictions
overlaid for Early (left), Uniform (middle), and Late (right) contexts. C, Empirical and model predicted timeseries of stop accuracy for the same conditions as in B.

Table 4. Adaptive dependent process model fit statistics

Model version 	 
 p �2
adapt (static) AICadapt (static) BICadapt (static)

Primary 0.309 0.032 0.002 0.235 (0.005) �326.4 (�198.6) �320.1 (�195.1)
Alternative 0.005 0.199 0.004 0.861 (0.007) �248.6 (�189.1) �242.3 (�185.5)
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al., 2016) have found reliable links between behaviorally derived
estimates of drift rate and activity in the striatum (Brody and
Hanks, 2016). Crucially, the dynamics of competition between
direct and indirect pathways are sensitive to dopaminergic signals
that provide important feedback about the environmental con-
sequences of recent actions to drive behavior in the direction of
the agent’s current goal (Kravitz et al., 2012; Shan et al., 2014; Cox
et al., 2015; Vicente et al., 2016). Feedback-dependent reweight-
ing of corticostriatal connections has primarily been studied in
the context of action-value learning; however, new evidence sug-
gests a more nuanced role in tuning task-relevant movement
parameters (Rueda-Orozco and Robbe, 2015; Dudman and
Krakauer, 2016; Yttri and Dudman, 2016). Yttri and Dudman
(2016) demonstrated this by stimulating direct or indirect path-
way neurons in the mouse striatum based on the velocity of a
recently executed lever press and measuring the effects on future
movements. Similar to the opponent effects of dopaminergic er-
ror signals that mediate action-value associations (Kravitz et al.,
2012; Collins and Frank, 2014), they found that stimulation of the
direct pathway following high-velocity presses further increased
the velocity of future movements, whereas stimulation of indirect
pathway neurons decreased velocity. While the current study was
not concerned with action velocity per se, the adaptation of the
drift rate parameter to errors in action timing resembles a similar
behavioral dynamic to that observed by Yttri and Dudman
(2016). Indeed, a recent study by Soares et al. (2016) found that
dopaminergic neurons in the mouse midbrain were not only nec-
essary for accurate temporal perception but that the perception of
time could be systematically sped up or slowed down through
optogenetic suppression and stimulation of these neurons. Fu-
ture studies will be needed to confirm the proposed dependency
of the drift rate on striatum in which model fits to behavior are
performed in the presence of dopaminergic weighting at direct
and indirect synapses.

Based on previous evidence that proactive control is mediated
by the striatum (Majid et al., 2013; Pas et al., 2017), we have
argued that the feedback-dependent modulation of execution
drift rate is, at least in part, dopaminergic modulation of the
competition between the direct and indirect pathways (Dunovan
and Verstynen, 2016). In addition to the dopamine hypothesis,
an alternative possibility is that adaptation of the drift rate stems
from top-down changes in the background excitability of the
striatum, driven by diffuse inputs from premotor regions, such as
supplementary motor area and pre-supplementary motor area
(Forstmann et al., 2008; Murakami et al., 2014, 2017; van Maanen

et al., 2016). It remains unclear what functional differences may
exist between premotor and dopaminergic representations of
time or how they might differentially influence the encoding of
action timing within the striatum. Integrating the behavioral and
modeling techniques defined here with electrophysiological and
optogenetic manipulations can better distinguish the nature of
the training signal that modulates striatal activity during action
control.

Outside of the striatum, recent links have been identified be-
tween activity fluctuations in the STN and adaptive changes in
behavior (Cavanagh et al., 2014; Herz et al., 2016; Wessel et al.,
2016; Justin Rossi et al., 2017), raising new and interesting ques-
tions about the extent to which striatal and subthalamic learning
signals independently influence behavior and how they might
interact (Tewari et al., 2016). Numerous studies have implicated
the STN in setting the height of the decision threshold (Cavanagh
et al., 2011; Ratcliff and Frank, 2012; Frank et al., 2015; Herz et al.,
2016, 2017; Zavala et al., 2016), controlled by diffuse excitatory
inputs to the output nucleus of the BG and further suppressing
motor thalamus to delay action execution. Due to the monosyn-
aptic connections between cortex and the STN that make up the
hyperdirect pathway (Nambu et al., 2002), unexpected sensory
events (e.g., stop signals) can be quickly relayed through the STN
to raise the decision threshold for ongoing action plans to prevent
execution (Wiecki and Frank, 2013; Wessel and Aron, 2017). In
addition to this rapid cortically mediated form of adaptation,
evidence suggests that strategic adjustments in decision threshold
are achieved by more gradual forms of plasticity in the indirect
pathway (Wei et al., 2015; Schechtman et al., 2016). In the current
study, adaptive changes in the boundary height accounted for the
observed posterror slowing in responses following failed Stop
trials, motivated by neuroimaging and electrophysiological evi-
dence of STN-mediated slowing of responses (Cavanagh et al.,
2014; Frank et al., 2015; Herz et al., 2016). For simplicity, bound-
ary adaption was restricted to being unidirectional, increasing
after a stop error and decaying back to, but never below, its orig-
inal value. However, some evidence suggests that STN exerts
bidirectional control over decision threshold, capable of promot-
ing the adoption of both speed and accuracy policies (Herz et al.,
2017). Thus, relating the adaptive threshold in the DPM to re-
cordings in the STN will likely require a more nuanced approach
to generalize beyond the current task. Future studies will be
needed to examine how these BG-mediated adaptation mecha-
nisms are recruited to modify behavior, the relevant task dimen-
sions they are sensitive to, and the extent to which they differ

Figure 9. Utility of including boundary adaptation compared with drift-only model. A, Relative error of simulated compared with observed RT, accuracy, and posterror slowing on probe trial
measures based on 20 simulated datasets for the drift-only and drift and bound adaptive models. Posterror slowing in each context condition as predicted by the (B) drift-only and (C) drift and bound
models. For comparison with patterns observed in empirical data, see Figure 3C. Error bars indicate the 95% CI around the mean.
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from cortical sources of feedback learning (Purcell and Kiani,
2016).

Considered in the context of the emerging literature on BG
pathways, the current study highlights two distinct feedback-
dependent learning mechanisms: (1) a gradual tuning of the ex-
ecution drift rate that corrects for timing errors; and (2) a
cautionary increase in the execution threshold following failed
action inhibition. While cognitive models, such as the adaptive
DPM, are unable to capture the complexity of neural information
processing that underlies adaptive action control, they do pro-
vide a rich description of the component operations, helping to
guide study design and interpretation in experimental neurosci-
ence. Using a straightforward hybridization of accumulation-to-
bound dynamics and reinforcement learning, the current study
provides evidence for a dual-mechanism account of feedback-
dependent learning in inhibitory control.
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