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Purpose of review

After more than 10 years of methodological developments and clinical applications, diffusion imaging
tractography has reached a crossroad. Although the method is still in its infancy, the time has come to
address some important questions. Can tractography reproduce reliably known anatomy or describe new
anatomical pathways? Are interindividual differences, for example in tract lateralization, important to
understand heterogeneity of clinical manifestations? Do novel tractography algorithms provide a real
advantage over previous methods? Here we focus on some of the most exciting recent advancements in
diffusion tractography and critically highlight their advantages and limitations.

Recent findings

A flourishing of diffusion methods and models are bringing new solutions to the well known limitations of
classical tractography based on the tensor model. However, these methods pose also new challenges and
require the convergence and integration of different disciplines before they can replace what is currently
widely available.

Summary

Rigorous postmortem validation, clinical optimization and experimental confirmation are obligatory steps
before advanced diffusion technologies can translate into clear benefits for neurological patients.
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INTRODUCTION

‘To interpret the activity of living human brains, their
neuroanatomy must be known in detail. New tech-
niques are urgently needed since most of the methods
now used on monkeys cannot be used on humans’
(Crick and Jones, 1993) [1]

The study of brain connections has a long
history dating back to postmortem blunt dissection
performed by pioneer anatomists of the 18th and
19th century [2,3]. This method, although rudimen-
tary in our eyes, allowed to delineate the trajectories
of the major white matter bundles of the human
brain. The development of animal tracing studies in
the 20th century has further improved our knowl-
edge of connections, adding more detailed descrip-
tions of brain connectivity [4]. The ability to actively
trace individual axons is unique to tracer studies,
but these studies must be performed in nonhuman
animals and their findings in other species remain to
be confirmed. In 1994, a real breakthrough came
with the development of diffusion tensor imaging
(DTI) to study the organization of white matter in
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the living human brain. With this method it was
possible, for the first time, to measure and extract in
vivo and noninvasively the organization and integ-
rity of white matter fibres by quantifying the move-
ment of water molecules inside the tissue [5]. A few
years later, tractography algorithms were proposed
as a tool to mathematically reconstruct three-
dimensional trajectories of the major white matter
pathways [6–9]. Rapidly, this technique has become
the most important tool for investigating the
thorized reproduction of this article is prohibited.
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KEY POINTS

� Tractography methods reconstruct white matter
pathways in the living human brain and can be used to
assess interindividual anatomical differences.

� Atlases of white matter pathways can help to localize
damaged tracts and improve clinicoanatomical
correlation.

� New diffusion models and tractography algorithms
have been developed to resolve fibre crossing and
obtain truly tract specific characterization of diffusion
properties for each fibre orientation.

� Direct validation of newly discovered tracts is possible
by combining high-resolution diffusion imaging with
postmortem histology.

Neuroimaging
connectional anatomy of the normal [10,11] and
pathological human brain [12–18]. In parallel, a
new breed of diffusion-imaging methods have been
developed in the recent years with the aim to over-
come two of the major limitations of DTI tractog-
raphy: the inability to resolve multiple fibre
orientations inside the same voxel (i.e. the fibre-
crossing problem), and the lack of specificity of DTI
indices (i.e. the white matter integrity paradox). In the
next paragraphs we present 10 ‘hot topics’ in the
current diffusion imaging tractography field. We
discuss advantages and limitations of some of the
most recent advancements in the field and critically
highlight challenges ahead.
TOPIC 1: REPRODUCING KNOWN
ANATOMY

The ability to reproduce three-dimensional trajec-
tories of white matter connections in the living
human brain is a unique feature of tractography.
For some tracts the details of the ‘virtual reconstruc-
tions’ match those derived from human post-
mortem blunt dissections [19] or histology [20,21].
This is particularly evident for tracts that reach
cortical regions without crossing with other con-
nections (e.g. dorsal cingulum’ medial callosal fibres,
and so on). For other tracts, the matching is rather
incomplete due to the limitations of the diffusion
tensor model and the intrinsic low spatial resolution
of the human diffusion datasets.

In animals, axonal tracing methods have been
used to validate, for example, tractography path-
ways based on diffusion spectrum imaging (DSI)
[22]. Similarly, Dyrby et al. [23] attempted direct
validation of tractography with in-vivo manganese
in the minipig brain. A problem common to all the
opyright © Lippincott Williams & Wilkins. Unautho

376 www.co-neurology.com
above studies is that the methods used to validate
tractography have their own limitations (Table 1).
Hence, validation remains a difficult task due to the
lack of a universal gold standard for tracing con-
nections. Use of functional methods could represent
a valid alternative [24–27], although in this case
these methods would allow definition of the func-
tion associated with a specific tract rather than
confirming its exact anatomy (e.g., trajectory,
volume, etc.)
TOPIC 2: INTERINDIVIDUAL VARIABILITY

One of the major contributions of tractography to
brain anatomy is the identification of left and right
asymmetries in the cerebral white matter pathways.
By extracting surrogate measurements of tract
volume, such as the number of streamlines or the
space occupied by them, several studies revealed a
left lateralization of short and long association path-
ways such as the direct connections of the arcuate
fasciculus (between posterior temporal and inferior
frontal regions) [27], the optic radiations [20], the
frontal aslant tract [28

&

] and the U-shaped fibres
connecting primary motor and somatosensory cor-
tex [28

&

]. Other tracts, such as the anterior fronto-
parietal segment of the arcuate fasciculus [29

&

] and
the connections from temporal to superior parietal
cortex [30] are right lateralization. There is also
preliminary evidence that the degree of lateraliza-
tion of these tracts is associated with handedness
[28

&

], verbal memory performances [27] and visuo-
spatial tasks [29

&

]. These findings could be relevant
in clinical settings where quantification of the
degree of anatomical lateralization may help to
predict recovery, for example, in stroke patients
with neglect or aphasia [31].
TOPIC 3: ATLASING CORTICAL AND
SUBCORTICAL CONNECTIVITY

Until the advent of tractography, our knowledge of
white matter anatomy was based on a small number
of influential 19th and early 20th century post-
mortem dissection atlases [32–34]. In common with
their contemporary counterparts [35], these atlases
emphasize the constant or average anatomy of
representative participants at the expense of normal
variability between participants. In the recent
years, several groups have used DTI to produce
group atlases of the major white matter tracts
[2,19,36–38]. By extracting anatomical location of
each tract from several participants, these atlases
provide probability maps of each pathway and
quantify their anatomical variability. These atlases
help the clinician to establish a relationship of focal
rized reproduction of this article is prohibited.

Volume 25 � Number 4 � August 2012



Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

Table 1. Methods for tracing or tracking brain connections

Method Advantages Limitations

Blunt dissections Applicable to human brains Only for postmortem tissue

Direct anatomical method User driven and operator dependent

Identify large tracts Variable quality of the prepared sample

Destructive

Qualitative only

Limited ability to visualize crossing bundles
(false negatives)

Produce artifactual trajectories (false positives)

Time consuming

Staining degenerating myelin
(e.g. Marchi’s method)

Direct anatomical method Only for postmortem tissue

Identify large and small tracts Fibre delineation limited by the volume and
location of the lesion

Operator-independent Variable quality of the prepared sample

Applicable to human and animal brains Destructive

Qualitative only

Time consuming

3D reconstruction limited

Axonal tracing Direct anatomical method Not suitable for humans

Identify large and small tracts Fibre delineation depends on the injection site

Variable quality of results depending on the tracer used

Allow direct testing of specific hypotheses Qualitative only

Reveal fibre directionality Limited number of tracts per sample

Destructive

Time consuming

3-Dimensional reconstruction limited

Neurohistology Direct anatomical method Small field of view

Identify small local networks 3-Dimensional reconstruction limited

Not user driven Time consuming

Allows to distinguish neurochemical
properties of the fibres
(e.g., cholinergic, etc.)

Destructive

Cortical electrophysiology In vivo Not anatomical

Allows comparative studies between species Time consuming

Functional information Small number of hypothesis tested in the same sample

Small number or single neuron connectivity Invasive

Directionality can be inferred Presence of artifacts (e.g., noise, movement,
and so on)

Tractography In vivo Indirect anatomical method

Applicable to human and animal brains Low spatial resolution

Noninvasive Presence of artifacts

Time efficient Operator dependent

Allow to study large populations Limited visualization of bending, merging
and crossing fibres

Correlation with behavioural and other
functional measures

Quantitative

Multiple hypothesis testing

Not destructive

Hot topics in diffusion tractography Dell’Acqua and Catani
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Neuroimaging
lesions with nearby tracts and improve clinicoana-
tomical correlation [20]. It remains to be estab-
lished, however, how much of this variability is
due to a true underlying anatomical difference
(as suggested by correlations between structural
differences and behavioural performances [27,29

&

])
or is the result of methodological limitations (Fig. 1)
[39].
TOPIC 4: ANATOMICAL PROBABILITY
AND TRACTOGRAPHY UNCERTAINTY

The ‘probability’ maps reproduced in current diffu-
sion atlases must not be confused with the maps
produced by ‘probabilistic’ tractography [40–42].
Compared to deterministic approaches in which
the estimated fibre orientation (e.g. direction of
maximum diffusivity for the tensor model) is
assumed to represent the best estimate to propagate
streamlines, probabilistic methods generate
multiple solutions to reflect also the variability or
‘uncertainty’ of the estimated fibre orientation
[43

&&

,44]. These methods, therefore, provide
additional information on the reproducibility of
each tractography reconstruction by mapping the
intrinsic uncertainty of individual diffusion data-
sets. The uncertainty quantified by probabilistic
tractography is mainly driven by the magnetic
resonance noise, partial volume effects and inaccur-
acy of the chosen diffusion model. Therefore, the
probability of individual maps should not be con-
sidered as a direct measure of the anatomical prob-
ability of the tract. Indeed, in some cases artifactual
trajectories can have high probability similar to true
anatomical pathways. Ultimately, in datasets with-
out noise both deterministic and probabilistic
approaches based on the same diffusion model
would generate identical tractography maps.
opyright © Lippincott Williams & Wilkins. Unautho
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FIGURE 1. The anatomy of the arcuate fasciculus derived from (a
based on (b) diffusion tensor imaging and (c) spherical deconvolu
and differences in the reconstructed arcuate fasciculus are mainly
(a) modified from [39].
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Understanding these basic assumptions underlying
probabilistic tractography is important to interpret
correctly its results.
TOPIC 5: NOVEL DIFFUSION MODELS

One of the major improvements for both probabil-
istic and deterministic tractography is the introduc-
tion of novel advanced diffusion models to
estimation multiple fibre orientations. Several
models have been proposed.

Multiparametric methods (e.g., Multitensor
[45,46] or ‘Ball and Stick’ models [40,42]) are
model-dependent approaches in which the diffusion
data are fitted with a chosen model that assumes a
discrete number of fibre orientations (e.g., two or
more).

Nonparametric, model-independent methods
such as DSI [47], qBall imaging [48,49], or diffusion
orientation transform [50] have been developed to
better characterize the water molecular displace-
ment by using a spherical function or the diffusion
orientation distribution function (dODF). The mul-
tilobe shape of the dODF provides information on
the number of fibre orientations, their orientation
and the weight of each fibre component.

A third group of methods try to take advantage
of both approaches by extracting directly the under-
lying fibre orientation (i.e., fibre-ODF) using a
specific diffusion model for white matter fibres.
The latter approaches are usually described as
spherical deconvolution methods [51–58] and they
generally show higher angular resolution (i.e. the
ability to resolve crossing fibres at smaller angles)
compared with methods based on dODFs [59].
Spherical deconvolution methods are becoming
the methods of choice in an increasing number of
studies as they require acquisition protocols that are
rized reproduction of this article is prohibited.
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close to clinical DTI protocols (e.g. low number of
diffusion gradient directions and b-values that are
accessible in most clinical scanners).
TOPIC 6: VISUALIZING NEW TRACTS

Advanced diffusion models that resolve multiple
white matter trajectories offer the possibility of
describing tracts that are not visible using current
DTI methods and identify new tracts. By using
spherical deconvolution tractography, for example,
it is possible to visualize and quantify the volume of
the three segments of the superior longitudinal
fasciculus, a tract previously described only in
the monkey brain (Fig. 2) [29

&

,60]. Recently, the
same method has been used to reveal new details
of the short frontal lobe connections [28

&

].
Although an exact knowledge of these short
fibres represents a significant step forward in our
understanding of human anatomy, it is important
to be aware that tractography based on advanced
diffusion methods is prone to produce a higher
number of false positives compared to DTI tractog-
raphy. Hence, validation of these tracts with
Copyright © Lippincott Williams & Wilkins. Unau
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FIGURE 2. Visualization of the three branches of the superior lo
tracing and (b) human brain using spherical deconvolution tractog
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complementary methods [26] is necessary before
applying these anatomical models to clinical popu-
lations [3].
TOPIC 7: QUANTIFICATION AND CLINICAL
APPLICATIONS

By extracting quantitative diffusion indices, such as
fractional anisotropy and mean diffusivity, along
the dissected tract it is possible to characterize the
microstructural properties of tissue in the normal
and pathological brain and provide quantitative
measurements for group comparisons or individual
case studies [61,62]. The interpretation of these
indices, however, is not always straightforward,
especially in regions containing fibre crossing. An
example of the complexity of this problem is the
increase of fractional anisotropy commonly seen in
the normal-appearing white matter regions distant
to the lesioned area. Before interpreting these
changes as indicative of ‘plasticity or remodelling’,
other explanations should be taken into account. In
voxels containing both degenerating and normal
fibres, increases in fractional anisotropy values
thorized reproduction of this article is prohibited.
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fODF

DTI

λ1 = 0.67
λ2 = 0.67
λ3 = 0.25

FA = 0.42
MD = 0.53

λ1 = 0.75
λ2 = 0.63
λ3 = 0.30

FA = 0.40
MD = 0.56

λ1 = 0.83
λ2 = 0.59
λ3 = 0.33

FA = 0.40
MD = 0.58

λ1 = 0.90
λ2 = 0.54
λ3 = 0.37

FA = 0.42
MD = 0.60

FIGURE 3. Diffusion changes in a crossing configuration. This figure shows how average fibre orientation distribution function
(fODF), tensor ellipsoids and diffusivity values change according to the simulated degeneration of the vertical fibre component,
while the horizontal component remains intact. Please note that the changes in the overall fractional anisotropy (FA) do not
reflect the constant degeneration of the vertical fibre and therefore do not represent a direct quantitative measurement of fibre
integrity. DTI, diffusion tensor imaging; MD, mean diffusivity. MD, l1, l2, and l3 values are in [�10�3 mm2/s].

Neuroimaging
are, in fact, more likely due to the axonal degener-
ation of the perpendicular fibres (Fig. 3) [63].

The lack of specificity of current diffusion
indices (i.e., diffusion changes depend on a number
of biological, biochemical and microstructural fac-
tors) [44] and the intrinsic voxel-specific rather than
fibre-specific information derived from current
indices has stimulated scientists to work on new
methods and novel diffusion indices [58,64

&

,65].
Tractometry [66,67] is an interesting approach that
tries to combine tractography with the quantitative
mapping along individual tracts of complementary
neuroimaging measurements based on, for example,
relaxometry, magnetization transfer ratio [68], mye-
linated water fraction [69] or multicompartmental
diffusion indices [70,71]. More recently, true tract-
specific indices based on spherical deconvolution
that better describe the microstructural diffusion
changes of individual crossing fibres within the
same voxel have been proposed. Changes in the
hindrance modulated orientation anisotropy [64

&

],
for example, have a greater sensitivity than conven-
tional fractional anisotropy values to detect
degeneration that occurs only in one population
of fibres, whereas the others crossing fibres remain
intact (Fig. 4) [64

&

]. In the future, tractography
combined with other methods will allow to extract
even more specific tissue microstructure indices,
such as axonal diameter distributions or axonal
density [72–74].
opyright © Lippincott Williams & Wilkins. Unautho
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TOPIC 8: FUTURE TRACTOGRAPHY
ALGORITHMS
Most of the current tractography algorithms are still
based on the same tracking strategies originally
introduced by the first tractography approaches
[6–9]. These strategies apply rules to avoid, for
example, unrealistic fibre bending (i.e., angular
thresholds) or tracking outside white matter regions
(i.e., anisotropy thresholds) and are effective in
reducing some of the artifactual reconstructions
[9,75,76]. However, when tractography is performed
using multifibre approaches, new strategies are
necessary because of the increased risk of false-
positive reconstructions. Different approaches have
been recently proposed to guide the propagation of
the tractography algorithm across regions with
multiple fibre orientations and try to discriminate
between crossing, kissing and bending configur-
ations. Some of these approaches use ‘directional
consistency’ or similarity between fibre orientations
across neighbouring voxels [77,78], others use tract-
specific properties [58,64

&

] or microstructural
characteristics (e.g. axonal diameter) [79] to prop-
agate and differentiate tracts.

Global tractography is an alternative method
[80–82] in which the entire tract is generated sim-
ultaneously without a direct propagation of stream-
lines. By piecing together smaller tracts, the entire
pathways is globally fitted to a chosen model that
maximizes the consistency of the whole tract with
rized reproduction of this article is prohibited.
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FIGURE 4. Mapping diffusion indices along crossing white matter tracts. The arcuate fasciculus and the lateral projections of
the corpus callosum cross at the level of the corona radiata. (a) Fractional anisotropy (FA) values provide an average, voxel-
specific description of the anisotropic properties of the selected brain region and, therefore, identical FA values are attributed
to both crossing fibres. (b) The hindrance modulated orientational anisotropy (HMOA) index shows distinct diffusion
characteristics for the two crossing tracts, lower HMOA for the callosal projections and higher HMOA for the arcuate fibres.
Modified from [64&].
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the corresponding diffusion data. Because of small
local errors, the final pathway can be formed by
different anatomical tracts; for this reason anatom-
ical constraints (or priors) are applied to distinguish
between true tracts and artifacts [83].
TOPIC 9: CONNECTOMICS

Investigating the entire connectivity of the human
brain remains today one of the most challenging
tasks in neuroscience. Developing and applying
novel techniques to visualize and study large brain
networks is essential to achieve a complete recon-
struction of the human brain connectome [84

&

,85].
Whole brain tractography approaches combined
with powerful network analysis tools are currently
in development [86,87] and may offer in the
future a new tool to investigate connectivity in
the healthy and pathological brain. However, most
of the connectomic results rely on the anatomical
accuracy of tractography methods and their ability
to describe white matter trajectories between distant
cortical regions. Inevitably, the limitations of
current tractography algorithms bias the final
connectomic results. For example, most distant
hubs are likely to be understimated with analysis
based on probabilistic tractography [44]. Improving
tractography methods is, therefore, essential to pro-
vide solid foundations for mapping the human
connectome.
TOPIC 10: SPATIAL RESOLUTION,
ULTRARESOLUTION AND VALIDATION

Despite improvements in diffusion models and
algorithms the low spatial resolution and the lack
Copyright © Lippincott Williams & Wilkins. Unau
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of histological validation remain two of the major
limitations of in-vivo diffusion tractography. Little
is still known about the true correspondence
between tractography reconstructions, diffusion
indices and the real underlying tissue organization.
The development of new magentic resonance hard-
ware and new diffusion sequences have recently
shown that higher spatial resolutions can be
achieved in vivo [88,89,90

&

]. Even higher resolutions
have been reached in preliminary studies on
animals and human postmortem brains on preclin-
ical magnetic resonance systems [91–95]. The devel-
opment of ‘microtractography’ approaches based on
ultrahigh resolution datasets (e.g. 100 micron and
below) has the potential to offer unique tractogra-
phy reconstructions to characterize small connec-
tions and bridging the gap between in-vivo
neuroimaging and histological analyses. At such
resolution, reconstructions can be directly validated
with neurohistological analysis, and will offer
opportunities to study network organization at
different scales [90

&

,96].
CONCLUSION

Diffusion remains one of the most exciting and
challenging fields in neuroimaging. Clinicians
should not be discouraged by the fast-paced pro-
liferation of techniques and methods currently
applied to study white matter pathways. Most of
these methods offer new opportunities to visualize
in-vivo white matter connections in the normal and
pathological human brain and revitalize disconnec-
tionist accounts of neurological disorders. However,
these methods still need full validation before they
can be applied to clinical routine.
thorized reproduction of this article is prohibited.
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