

Goals

A. Gain exposure doing simple region of interest mapping.

B. Qualitatively compare tractography reliability across reconstruction method.

Picking up from last class

- 1. Reconstructed single subject data
- 2. Used three different approaches:
 - a. Diffusion Tensor Imaging
 - b. QBI
 - c. GQI
- 3. Generated simple region of interest.

Centrum Semiovale

1. Open DSI Studio (on the Desktop)

C	000	DSI Studio Aug 28 2014 build		
Dif	ffusion MRI Tractography	Recent src files: double click to open		
6	STEP1: Open Source Images	File Name	Directory	
Ĭ	Open diffusion MR images to create .src file (DICOM, NIFTI, Bruker 2dseq, Varian fdf)	1 257d_0006.src.gz	/Users/timothyv/Desktop	Thu Sep
0	STEP2: Reconstruction Open come to do reconstructiong COTI, QBI, DSI, GQI, or QSDR)			
0	STEP3: Fiber tracking Open .fib file to perform fiber tracking and analysis (track-specific analysis, connectivity matrix)	Depart file flere devide eliek te ener		
		Recent hb mes. double click to open	1	
		File Name	Directory	_

2. Select Step 3: Fiber Tracking

3. Open the DTI reconstruction from last class

	0	NT090_test.iib.mean.iib	/Osers/timotnyv/Dropbox/bigData/F0550/results	Tue C	
	7	CMU_60_20130923build.fib.mean.odf.fib.gz.fib	/Users/timothyv/Data/Atlases	Wed I	
	8	hcp80.sfODF.fib.gz.mean.fib.gz	/Users/timothyv/Data/DWITemplates	Fri Ju	
	9	hcp80.dODF.fib.gz.mean.fib.gz	/Users/timothyv/Data/DWITemplates	Fri Ju	
Diffusion MRI Connectometry	10	DSI257d-80_1mm_20140320build.fib.mean.fib.gz	/Users/timothyv/Data/DWITemplates	Mon N	

DSI Studio Interface Region List 3D Viewer () /Users/timothyv/Desktop/257d_0006.src.gz.dti.fib.gz Edit Regions Tracts Slices View Options 80 ⊕ 🖸 🗇 ion List Diffusion 🛊 🗁 🔀 +isosurface 🛛 Full + Contrast 1.00 Offset 0.00 Options 🗋 🗁 😃 🗙 🕕 🚹 Atlas... Region Wi... Type Color Name Tracking P... Backgroun... Slice Tract Regio... Surfa... ODF **Region Viewer 3D Viewer Options** Fiber Tracts 80 eaion Window & Tracking Parameters ▲ 🗸 □ G / G 🔘 🗖 📜 🕁 fa0 💠 Noov ≑ Stop - Contrast 1.00 🗘 Offset 0.00 🗘 Tracts Deleted Seed Track Data List **V** 🕑 48 VD 48 1) 25 Zoom 1.00 Θ 0 ⊕

VQ 48

VD 25

Zoom 1.00

(91.2,48,39.8) MNI(-107.8,8.5,49.7) aal: fa0=0 adc=0 axial_dif=0 radial_dif=0

 \odot

0

Ø

V \bigcirc **48**

But what if I forgot my ROI?

To draw an ROI again

To draw an ROI again

To draw an ROI again

(75.4,48,26.9) MNI(-71.9,1.2,20.5) aal: fa0=0.0371052 adc=0.77824 axial_dif=0.809279 radial_dif=0.762721

Or open the one you've saved

(75.4,48,26.9) MNI(-71.9,1.2,20.5) aal: fa0=0.0371052 adc=0.77824 axial_dif=0.809279 radial_dif=0.762721

How do the different reconstruction algorithms recover the three pathways that cross in the centrum semiovale:

- 1. the corpus callosum
- 2. corticospinal
- 3. arcuate/SLF

Θ	00	Options	
►	Region W	/indow	
▼	Tracking	Parameters	
	Termi	nation Index	fa ‡
	Thres	hold	0.05000
	Angul	ar Threshold	75
	Step S	Size(mm)	1.00
	Smoo	thing	0.70
	Min Le	ength(mm)	10.0
	Max L	ength(mm)	200.0
	Seed	Orientation	Random \$
	Seed	Position	Subvoxel ‡
	Rando	omize Seeding	Off ÷
	Direct	ion Interpoation	Trilinear ÷
	Tracki	ng Algorithm	Stremline(E: +
	Termi	nate if	20000
			Tracts ‡
	Threa	d Count	1
►	Backgrou	nd Rendering	
►	Slice	Rendering	
►	🗹 Trac	t Rendering	
►	🗹 Regi	ion Rendering	
►	Surf:	ace Rendering	
		Rendering	

The menu screen should look like this.

Parameter	Value
Termination Criteria	FA
Threshold	0.05
Max Angle	75 Degrees
Step Size	1 mm
Smoothing	0.70
Length	10-200 mm
Initial Direction	Random
Seed Position	Subvoxel
Interpolation	Trilinear
Tracking Algorithm	Streamline
Termination	20000 Seeds

Set the Tracking Parameters to these values.

(48 12 25) MNI(-0 6 80 -8 8) aal; fa0=0 adc=0 avial, dif=0 radial, dif=0

(92.5,48,28.7) MNI(-110.9,-0.2,22.7) aal: fa0=0 adc=0 axial_dif=0 radial_dif=0

File naming note

 The .trk file format is a binary file that is readable by the TrackVis visualization tool. It is substantially smaller and faster to read than the alternative .txt file format.

Repeat all steps for GQI and QBI

Parameter	Value	Parameter	Value
Termination Criteria	QA	Termination Criteria	QA
Threshold	0.05	Threshold	0.05
Max Angle	75 Degrees	Max Angle	75 Degrees
Step Size	1 mm	Step Size	1 mm
Smoothing	0.70	Smoothing	0.70
Length	10-200 mm	Length	10-200 mm
Initial Direction	Random	Initial Direction	Random
Seed Position	Subvoxel	Seed Position	Subvoxel
Interpolation	Trilinear	Interpolation	Trilinear
Tracking Algorithm	Streamline	Tracking Algorithm	Streamline
Termination	20000 Seeds	Termination	20000 Seeds

Output file: "DSI_QQI.trk"

Output file: "DSI_QQI.trk"

Visualizing what you've done

Basic Visualization

Basic Visualization

(14.4,48,36.6) MNI(86.2,7.6,42.2) aal: qa0=0 qa1=0 qa2=0 qa3=0 qa4=0 gfa=0 iso=0 sum=0 nqa0=0 nqa1=0 nqa2=0 nqa3=0 nqa4=0

Basic Visualization

(14.4,48,36.6) MNI(86.2,7.6,42.2) aal: qa0=0 qa1=0 qa2=0 qa3=0 qa4=0 gfa=0 iso=0 sum=0 nqa0=0 nqa1=0 nqa2=0 nqa3=0 nqa4=0

Homework

In a word document, show how each reconstruction method recovers the underlying pathways. Describe qualitatively what each tracking result looks like. Use separate pages for each pathway.

Due at the beginning of class on Thursday (9/11)

Homework (example)

```
Acquisition: DSI ¶
Reconstruction: GQI¶
¶
```

Summary: Few noisy streamlines. Good coverage of all three major pathways in the <u>semiovale</u>. Few artifacts appear to be present.¶

